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Ferromagnetic resonance (FMR) is a broadly used dynamical measurement used to characterize a wide range of magnetic 

materials. Applied research and development on magnetic thin film materials is growing rapidly alongside a growing 

commercial appetite for magnetic memory and computing technologies. The ability to execute high-quality, fast FMR 

surveys of magnetic thin films is needed to meet the demanding throughput associated with rapid materials exploration and 

quality control. Here, we implement an optimal Bayesian experimental design software developed by McMichael et al. [1] 

in a vector network analyzer-FMR setup to demonstrate an unexplored opportunity to accelerate FMR measurements. A 

systematic comparison is made between the optimal Bayesian measurement and the conventional measurement. Reduced 

uncertainties in linewidth and resonance frequency ranging from 40 % to 60 % are achieved with the Bayesian 

implementation for the same measurement duration. As the optimal Bayesian approach only decreases random errors, we 

evaluate how large systematic errors may limit the full advantage of the optimal Bayesian approach. This approach can be 

used to deliver gains in measurement speed by a factor of three or more and as a software add-on, has the flexibility to be 

added on to any FMR measurement system to accelerate materials discovery and quality control measurements, alike. 
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I. INTRODUCTION 

Ultrathin magnetic films and multilayers are widely used in data storage [2,3] and are gaining traction in next-

generation memory [4-6] and computing [7,8] devices. The performance of these devices relies heavily on the 

magnetic properties of the constituent materials, including the magnetic anisotropy for data retention and Gilbert 

damping for magnetic relaxation and energy dissipation [9]. Therefore, materials engineering becomes pivotal 

and demands high-throughput methods for materials characterization to advance structure-processing-function 

relationships in these technologically-relevant material classes. 

Ferromagnetic resonance spectroscopy (FMR) is one of the most widely-adopted measurement techniques 

used to evaluate the intrinsic magnetic properties of materials. Typically carried out with a magnetically saturated 

specimen, FMR informs on key intrinsic properties, such as effective magnetization/effective magnetic anisotropy 

fields [10], gyromagnetic ratio [11], damping [12], and exchange constant [13]. The earliest FMR investigations 

were typically carried out in radio-frequency (rf) cavity environments with a fixed excitation frequency and under 

a swept external magnetic field [14,15]. Later studies replaced the cavity geometry with stripline and coplanar 

transmission lines, introducing the broadband FMR approach used today to track the frequency-field dispersion 

across a wide range of frequencies, simplifying the characterization of key magnetic properties like the Gilbert 

damping constant and the spectroscopic g-factor [12,16-18]. Broadband FMR can be implemented in a field-

modulation scheme, with a dedicated microwave generator, a diode detector, and a lock-in amplifier paired with 

modulation coils [19]. This scheme usually is carried out in a field-swept mode at fixed rf frequency, minimizing 

the influence of the complex frequency response of a transmission line loaded by a magnetic thin film sample and 

enabling FMR detection of magnetic thin film specimens only a few monolayers thick [20,21]. Another alternative 

for broadband FMR uses a vector network analyzer (VNA) to both generate the rf stimulus and detect the complex 

transmission and reflection coefficients of the device under test – in this case, the loaded transmission line (VNA-

FMR) [22]. In addition to field-swept observations at fixed rf frequency, VNA-FMR also supports a frequency-

swept mode, which is especially useful for observing FMR under specific magnetic fields within a specimen’s 

major (or minor) magnetic hysteresis loop [19,23,24]. However, a conventional VNA-FMR setup does not have 

field modulation and consequently the FMR signal can be overwhelmed by a larger low-frequency noise 

background. Worse still is the case of frequency-swept scans, for which a non-magnetic background overwhelms 

the FMR signal [19,25]. Recently, a modification on VNA-FMR by adding field modulation was introduced to 

take advantage of the narrow noise bandwidth associated with frequency scans and the background rejection of 

non-magnetic contributions derived by subtracting two frequency scans under different external magnetic fields 
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[25]. This so-called field-differential VNA-FMR approach can enhance the signal-to-noise ratio (SNR) and 

suppress frequency-dependent background [25].  

Conventional execution of FMR measurements is informed by existing, but typical knowledge about 

specimens. For example, an experimenter often knows the form of the resonance frequency-field relationship, 

depending on the projection of an external magnetic field along a symmetry direction and the shape of the 

specimen. In the special case of a thin-film sample, the Kittel equation presents simplified analytical expressions 

for the dispersion under applied fields either perpendicular to the film plane or within the film plane [26]. Having 

identified one resonance magnetic field (rf frequency) at a given stimulus rf frequency (magnetic field), one can 

reasonably estimate as to what range of magnetic field (frequency) a subsequent FMR will be identified under a 

different frequency (magnetic field). As accurate estimation of material properties using broadband FMR requires 

a sequence of these observed resonance fields (frequencies) to evaluate the film properties, an experimenter may 

use this knowledge to narrow the range of examined fields (frequencies) around the FMR condition for each 

subsequent frequency (magnetic field). This approach clearly accelerates the acquisition of FMR data over 

alternatives that would survey a broader range of frequency (magnetic field). At the same time, this constitutes a 

model- and not data-dependent acquisition scheme. And as the data itself is likely to better guide where high SNR 

measurements can be made, alternative approaches should be explored for selecting measurement ranges to 

deliver better SNR and speed for FMR investigations. 

 Bayesian experimental design interprets observations based on Bayesian inference and appropriately selects 

the values of control variables (e.g., the applied fields or frequencies for FMR) to decrease the uncertainties of 

measured parameters [27]. Recently, optimal Bayesian design was used to speed up the optical detection of 

magnetic resonance of nitrogen-vacancy centers and achieved more than one order of magnitude acceleration 

[28]. In this work, we implement optimal Bayesian experiment design [1] in a field-differential VNA-FMR 

measurement setup. This approach seeks to maximize the FMR measurement time acquiring data points that most 

effectively sample from the FMR absorption line shape. A systematic comparison between conventional 

measurement and optimal Bayesian experimental design reveals improvements in SNR and acquisition time that 

offer uncomplicated implementation and execution in a conventional FMR measurement system.  

II. SETUP AND MEASUREMENT PROCEDURE 

As demonstrated in FIG. 1, an FMR spectrometer that combines a two-port, 20-GHz vector network analyzer, 

a 150-mm-diameter dipole electromagnet, a pair of 100-mm-diameter Helmholtz coils, and a custom-built 

grounded coplanar waveguide (CPW) board was used in this study. Independent power supply units operating in 
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current mode were used to excite the dipole electromagnet and the Helmholtz coils, respectively. Experiments 

were launched using a custom user interface developed in Python and optimal Bayesian design of frequency 

ranges was carried out using the optbayesexpt package developed at the National Institute of Standards and 

Technology (NIST) [1,29]. An intermediate frequency bandwidth (IFBW) of 100 Hz was chosen for our 

measurement apparatus but a broader or narrower bandwidth may prove advantageous for white noise rejection 

in other measurement environments.  

A Fe80B20 (FeB) sample was tested in this study. The sample was grown by direct current magnetron 

sputtering in a 14-target custom, ultrahigh vacuum sputter deposition facility (base pressure less than 3 × 10-8 Pa). 

The stack structure of Ta(3)/FeB(20)/Ta(3) was produced on a Si(100) wafer coated with a 500-nm layer of 

thermal oxide (numbers in parentheses denote thicknesses in nm). All layers were deposited at an ambient 

temperature of 293 K and under a working Ar pressure of 0.4 Pa with a target-to-substrate distance of 20 cm in a 

confocal geometry. The sputtering power was 5.3 W/cm2 for the Ta cathode and 4.0 W/cm2 for FeB, leading to a 

deposition rate of 0.034 nm/s for Ta and 0.025 nm/s for FeB. A small (0.5 cm × 0.5 cm) cleave from a larger (2.0 

cm × 2.0 cm) sample was reserved for FMR observations, placed film-side down on the CPW, and placed directly 

above approximately 2 mm of track length of the 1.1 mm wide center conductor. Conventionally, FMR 

measurements are conducted under either a field-swept mode or a frequency-swept mode. For the field-swept 

(frequency-swept) mode, the data are collected with external fields (frequencies of driving electromagnetic waves) 

fixed and a quasistatic sweep of the microwave frequency (external magnetic field) employing a uniform step size 

between the endpoints of the sweep range. For the optimal Bayesian design, the swept range is updated after each 

sweep to maximize the expected information gain for the upcoming measurement. In this work, we present an 

implementation of the optimal Bayesian experiment design in the frequency-swept mode VNA-FMR to evaluate 

performance gains over the conventional frequency-swept mode. The field-differential scheme [25] is used to 

suppress frequency-dependent background signals for both the conventional and the optimal Bayesian 

measurements. Although the comparison is made under the frequency-swept mode VNA-FMR, the results can be 

generalized to field-swept mode VNA-FMR and other types of FMR without VNA as well. To evaluate the 

generalizability of the Bayesian approach in enhancing FMR efficiency, we extended our investigation to a field-

swept FMR setup, which has a dedicated microwave generator and a diode detector. A FePd sample with 

perpendicular magnetic anisotropy was tested. We observed significant improvement in measurement efficiency 

when the Bayesian approach was implemented (see more details in the Supplementary Materials). 
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FIG. 1. A schematic of the field-differential VNA-FMR setup used in this study. 𝐻dc: static magnetic field 

generated by the electromagnet. ℎrf: radio-frequency magnetic field.  

 

 
A. Conventional Measurement Procedure 

We highlight the conventional measurement scheme in FIG. 2(a), whereby a linear frequency sweep is 

repeated several times for white noise reduction and correspondingly to reduce the uncertainties in parameters 

(resonance field 𝑓res and linewidth Δ𝑓) fitted by the least-squares method. For the representative case in FIG. 2(a), 

each sweep contains 401 evenly distributed frequencies, ranging from 16.19 GHz to 19.19 GHz. In practice, each 

frequency-swept scan includes two sequential scans with an applied positive/negative field bias (field-differential 

detection) of 0.5 mT superposed on the background field for each scan (0.200 T, in this case). The magnitude of 

the bias field is chosen to avoid exceeding approximately 25 % of the linewidth in the field (>~4 mT for the tested 

sample and frequency range) to avoid possible line shape distortion [25]. Data from the two sequential scans are 

processed to obtain a field-derivative scattering parameter (𝑆21
′ ) from each field-differential sweep [25]:  

𝑆21
′ (𝑓) = 2

𝑆21
+ (𝑓)−𝑆21

− (𝑓)

[𝑆21
+ (𝑓)+𝑆21

− (𝑓)]
,                                           (1) 

where, 𝑆21
+ (𝑓) and 𝑆21

− (𝑓) are the scattering parameters from VNA sweeps with a positive and negative bias field, 

respectively. At the end of the measurements, 𝑆21
′ (𝑓) from the sequential field-differential frequency sweeps [10 

sweeps for the case of FIG. 2(a)] are averaged to generate the data used to estimate the resonance frequency and 

resonance linewidth.  

 The real and imaginary parts of the complex transmission parameter 𝑆21
′(𝑓) reflect the derivative of the 

absorptive and dispersive effects of the magnetic thin film altering the inductance of the CPW. They can be fitted 

by the derivative Lorentzian function [30,31]: 
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𝑆21
′ (𝑓) =

𝐴absΔ𝑓(𝑓−𝑓res)

[(𝑓−𝑓res)2+(
Δ𝑓

2
)

2
]

2 + 𝑖
𝐴disp[(

Δ𝑓

2
)

2
−(𝑓−𝑓res)2]

[(𝑓−𝑓res)2+(
Δ𝑓

2
)

2
]

2 ,                                     (2) 

where 𝐴abs, 𝐴disp, 𝑓res, and Δ𝑓 are the amplitudes of absorptive and dispersive terms, resonance frequency, and 

line width, respectively. Unless stated otherwise, only the real part of 𝑆21
′  is used to fit the absorptive term for 𝑓res 

and Δ𝑓 after observing a stronger phase noise contribution to the imaginary component Im(𝑆21
′ ) in our particular 

experimental apparatus. Figure 2(b) shows the real part of 𝑆21
′  obtained by averaging 10 field-differential sweeps. 

For each sweep, 401 data points are evenly distributed in the swept frequency range. The least-squares fitting 

yields 𝑓res = (17.5004 ± 0.0036)  GHz and Δ𝑓 = (0.3469 ± 0.0143)  GHz where the reported error bars 

represent the one-sigma fitting error associated with the best-fit parameters.  

 Each 401-frequency VNA scan (using a 100-Hz IFBW) requires 3.95 s of sweep time, with an additional 

0.35 s for setting the alternating bias fields, plus some additional overhead time to initialize the next sweep and 

data acquisition. As a consequence, the entire measurement (10 field-differential sweeps) portrayed in FIG. 2(a,b) 

takes ≈ 87 s. The modulation frequency in this case is 0.12 Hz, much lower than the 5.6 Hz in the previously 

reported field-differential work [25]. It is mainly caused by the larger number of frequencies (401 vs. 53) per 

sweep and a narrower IFBW (100 Hz vs. 1000 Hz) that was picked to balance the suppression of white noise and 

pink noise in order to optimize SNR with a given measurement duration in our apparatus. 

B. Optimal Bayesian Experimental Design 

The optimal Bayesian experimental procedure has two major differences from the conventional mode. Firstly, 

in addition to the least-squares fitting for 𝑓res and Δ𝑓 at the end of measurements, the optimal Bayesian mode 

analyzes newly measured 𝑆21
′ (𝑓) after each field-differential sweep to update a probability distribution function 

(PDF) 𝑝(𝛉) in the fitting parameter space 𝛉 = (𝑓res, Δ𝑓, 𝐴abs, 𝐴disp, 𝜎), where 𝜎 denotes the standard deviation 

of the signal noise. The PDF is updated by using Bayesian inference [28,29]:  

𝑝post(𝛉) = 𝑝[𝛉|𝑆21
′ (𝑓)] = 𝑝[𝑆21

′ (𝑓)|𝛉] ⋅ 𝑝prior(𝛉) 𝑝[𝑆21
′ (𝑓)]⁄ ,               (3) 

where the prior 𝑝prior and the posterior 𝑝post are the PDF updated after the last sweep and the current sweep. The 

initial prior PDF is obtained by conducting least-squares fitting on 𝑆21
′ (𝑓) of the first sweep, as detailed later. 

𝑝[𝑆21
′ (𝑓)] in the denominator is assumed to be a constant. 

Secondly, before each field-differential sweep, the up-to-date 𝑝 is used to calculate the utility of different 

sweep settings. Utility estimates the benefit (in terms of lowering the variance of the parameter distribution) per 
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unit of measurement duration. When the allowable measurement settings are a serial of discrete frequencies, the 

utility of a sweep that covers a set of frequencies {𝑓𝑖} can be defined as [28,29]: 

𝑈({𝑓𝑖}) =
1

𝑇
∑ 𝜎

𝑆21
′ ,𝛉

2 (𝑓𝑖) 𝜎
𝑆21

′
2 (𝑓𝑖)⁄𝑖   .                     (4) 

𝜎𝑆21
′ ,𝛉(𝑓𝑖) and 𝜎𝑆21

′ (𝑓𝑖) are the variance of signal at measured frequency 𝑓𝑖 caused by the probability distribution 

of 𝛉 and noise. Intuitively, a large 𝜎
𝑆21

′ ,𝛉
2 (𝑓𝑖) 𝜎

𝑆21
′

2 (𝑓𝑖)⁄  indicates the signal at 𝑓𝑖 is relatively more sensitive to the 

fitted parameters (𝑓res, Δ𝑓, …) than to noise. Therefore, 𝜎
𝑆21

′ ,𝛉
2 (𝑓𝑖) 𝜎

𝑆21
′

2 (𝑓𝑖)⁄  serves as a good indicator for the 

benefit of a sweep. On the other hand, the measurement duration of the sweep 𝑇 = 𝑇s + 𝑁freq𝑇0 , represents the 

cost. 𝑇s  and 𝑇0  are the additional time needed for starting a new sweep and the sweep time at individual 

frequencies. 𝑁freq is the number of frequencies per sweep. With a discrete allowable frequency set, the Bayesian 

design returns both the optimal number and range of frequencies for the next sweep. In general, when 𝑇s/𝑇0 is 

larger, the optimized sweep has a larger number of frequencies that span a wider range around the frequency with 

the highest benefits. However, in VNA-FMR, there are only limited options for the number of frequencies per 

sweep (e.g., 101, 201, 401, etc.). Therefore, in our measurements, only the frequency range is optimized (𝑇s/𝑇0 

is set as 68). The optimized frequency range, which spans around the most sensitive frequency, is supposed to 

improve the information yield rate compared to the conventional mode with a fixed frequency range. 

In FIG. 2(c), the frequency sequence of optimal Bayesian measurement is illustrated. The first field-

differential sweep in the optimal Bayesian mode is the same as the conventional one, where the 401 evenly 

distributed frequencies are swept through the desired frequency range. Then, the 𝑆21
′ (𝑓) from the first field-

differential sweep is fitted with the derivative Lorentzian function to get the best fits (𝑓res
0 , Δ𝑓0, …) and their 

uncertainties ( 𝜎𝑓res
0 , 𝜎Δ𝑓0 , … ), which are used to construct the prior 𝑝(𝑓res, Δ𝑓, … ) =

[𝑁(𝑓res
0 , 𝜎𝑓res

0 )𝑁(Δ𝑓0, 𝜎Δ𝑓0) … ] for the subsequent Bayesian inference. Here, 𝑁(𝜇0, 𝜎)  represents a normal 

distribution with a mean of 𝜇0 and a standard deviation of 𝜎. Starting from the second field-differential sweep, 

the frequency range is given based on the principle of maximizing utility and each sweep contains 101 frequencies 

(with a smaller number of frequencies per sweep, the modulation frequency increases to 0.26 Hz). As a result, the 

frequency range of each subsequent field-differential sweep changes dynamically. In practice, the subsequent 

sweeps become concentrated in a narrower field range (17 GHz to 18 GHz) around the position of the resonance. 

In FIG. 2(d), which shows the data collected within 87 s, it can be seen that the resonance region (17.25 GHz to 

17.9 GHz) has a much higher data density compared to the region away from the resonance. Consistent with the 
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utility-maximizing principle, our data imply that more time has been spent measuring in the vicinity of the 

resonance instead of in the vicinity of the background. The least-squares fit to the Lorentzian expression gives 

𝑓res = (17.5078 ± 0.0015) GHz and Δ𝑓 = (0.3420 ± 0.0098) GHz (error bars are one-sigma errors of best-fit 

parameters), reflecting a reduction in the best-fit uncertainty.  

Figure 2(e,f) shows the evolution of the one-sigma errors from the least-squares fitting of 𝑓res and Δ𝑓 with 

measurement duration for both the conventional (401 frequencies per sweep) and the optimal Bayesian mode (101 

frequencies per sweep). An examination of the choice of frequencies per sweep, leading to the optimized quantity 

mentioned above, will be described in a subsequent section. For both measurement design approaches, the 

uncertainty decreases with measurement duration. When 𝑡 > 200 s, estimated uncertainty approximately follows 

the 1/√𝑡 trend and advantageously, the Bayesian approach reduces 𝜎𝑓res
 by ≈ 60 % and 𝜎Δ𝑓 by 40 % compared 

to the conventional mode. When 𝑡 is short (< 30 s), both approaches yield similar magnitudes of uncertainty, a 

consequence of the optimal Bayesian mode initializing with the same first field-differential sweep as the 

conventional one. For a field-differential sweep of 101 frequencies, it takes the Bayesian mode an extra 0.2 s for 

Bayesian inference and calculating the subsequent frequency range. Ultimately, the optimal Bayesian mode 

catches up to the conventional technique and outperforms for measurement durations in excess of 30 s.  

 
FIG. 2. A comparison of the conventional and the optimal Bayesian experimental procedure. An in-plane external 

field 𝜇0𝐻ext =0.2 T is applied. (a,c) The sequence of swept frequencies for (a) the conventional mode and (c) the 

optimal Bayesian mode. N represents the index of frequencies swept in a measurement. (b,d) The real part of the 

signals (circles) and fits (lines) measured by (b) the conventional mode and (d) the optimal Bayesian mode with 

a measurement duration of 87 s. The data in (b) represent the averaged results from 10 field-differential sweeps, 

whereas the data in (d) are unaveraged results from individual field-differential sweeps. (e,f) One-sigma fitting 

uncertainties of (e) 𝑓res and (f) Δ𝑓 from least squares fitting as a function of measurement duration. Symbols and 

lines are experimental data and 1/√𝑡  guidelines, respectively. Black circles and red triangles correspond to 

conventional and optimal Bayesian experimental designs.  
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III. RESULTS AND DISCUSSION 

To further compare the two approaches under a typical FMR measurement session of extracting a series of 

resonance spectra to estimate 𝜇0𝑀eff and 𝛼, we evaluated the FMR response of the FeB sample under a series of 

external magnetic fields ranging from 0.07 T to 0.24 T with an interval of 0.005 T. A measurement duration of 

120 s was spent at each applied field. Figure 3 shows the field-dependent 𝑓res and Δ𝑓 measured using both modes. 

The 𝑓res vs. 𝜇0𝐻ext dispersion relationship is modeled by the Kittel equation for the resonance relationship of a 

thin film in a planar applied external magnetic field: 𝑓res = 𝑔𝜇B𝜇0 ℎ⁄ √𝐻ext(𝐻ext + 𝑀eff) , with the Bohr 

magneton 𝜇B = 9.274 × 10−24 J/T and the Planck constant ℎ = 6.626 × 10−34 J ⋅s. For the conventional mode, 

the least-squares fitting gives 𝑔 = 2.178 ± 0.007 and 𝜇0𝑀eff = (1.431 ± 0.011) T, where error bars reflect the 

one-sigma fitting uncertainties. The standard deviation of measured data from the fitting curve 𝜎𝑓res,tt = 0.009 

GHz, which will be referred to as the total uncertainty in the upcoming discussion. For the optimal Bayesian mode, 

the least-squares fitting parameters with one-sigma fitting uncertainties are 𝑔 = 2.148 ± 0.006 , 𝜇0𝑀eff =

(1.479 ± 0.009) T, and 𝜎𝑓res,tt = 0.0071 GHz. In FIG. 3, the field dependence of linewidth is fitted by Δ𝑓 =

𝜕𝑓 𝜕(𝜇0𝐻ext)⁄ (
2ℎ

𝑔𝜇B
𝑓𝛼 + 𝜇0Δ𝐻0). For the conventional mode, the least-squares fitting parameters and one-sigma 

fitting uncertainties are 𝛼 = 0.00565 ± 0.00012, 𝜇0Δ𝐻0 = (0.027 ± 0.011) mT, and 𝜎Δ𝑓,tt = 0.007 GHz. As 

for the optimal Bayesian mode, 𝛼 = 0.00544 ± 0.00008, 𝜇0Δ𝐻0 = (0.044 ± 0.008) mT, and 𝜎Δ𝑓,tt = 0.005 

GHz. In short, the optimal Bayesian measurement diminishes the total uncertainty (𝜎tt) in 𝑓res by 21 % and in Δ𝑓 

by 29 %. The uncertainties of parameters (𝜇0𝑀eff and 𝑔) from 𝑓res vs. 𝜇0𝐻ext fitting decrease by 14 % and 18 %, 

respectively while the uncertainties of fitted parameters (𝛼 and 𝜇0Δ𝐻0) from Δ𝑓 vs. 𝜇0𝐻ext fitting fall by 27 % 

and 33 %, respectively. One may notice that the diminished uncertainties of 𝜇0𝑀eff, 𝑔, 𝛼, and 𝜇0Δ𝐻0 (reductions 

from 14 % to 33 %) are not as large as that in the uncertainties of 𝑓res and Δ𝑓 (60 % and 40 %, respectively). This 

can be explained by the contribution of systematic errors in addition to the random errors that are reduced by the 

optimal Bayesian approach. Systematic error causes repeatable deviations of measured values from the true values 

of 𝑓res or Δ𝑓, which does not diminish with repeating measurements. Within our setup, one apparent source of 

systematic error arises from the variation of the power level in the transmission line. This contribution could be 

further minimized by leveling the power of the transmission line across the entire frequency range. Although the 

fluctuation of 𝑓res or Δ𝑓 repeatedly measured at a given external field is due to random errors, the deviation of 

field-dependent 𝑓res or Δ𝑓 from fitting curves has origins in both random and systematic errors. To verify this 

explanation, the systematic error 𝜎sys can be isolated as one of (at least) two contributions to the total measurement 
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error, 𝜎sys = √𝜎tt
2 − 𝜎ran

2 , where 𝜎ran is an estimation of the random error in 𝑓res or Δ𝑓 calculated by the root 

mean square of one-sigma fitting errors of 𝑓res or Δ𝑓 under a series of fields: 𝜎ran𝜎ran = √𝑀−1 ∑ 𝜎fit,𝑖
2𝑀

𝑖=1 .. In the 

expression, 𝑀 is the number of fields chosen (𝑀 = 35, from 0.07 T to 0.24 T with a field interval of 0.005 T). 

For the conventional mode, the estimated systematic error contributions are 𝜎𝑓res,sys = 0.0089 GHz and 𝜎Δ𝑓,sys =

0.0039  GHz, while for the optimal Bayesian mode, the systematic errors are 𝜎𝑓res,sys = 0.0071  GHz and 

𝜎Δ𝑓,sys = 0.0029 GHz. Our results suggest that 𝜎𝑓res,tt  is dominated by the systematic error 𝜎𝑓res,sys , which 

explains the limited improvement in 𝑓res  fitting brought by the Bayesian mode. However, for 𝜎Δ𝑓,tt , the 

contribution of systematic error is comparable to that of random error. Therefore, a relatively higher improvement 

from the Bayesian mode is observed on the Δ𝑓 vs. 𝜇0𝐻ext fitting. The results also imply that if the measurement 

goal is strictly quantifying the dispersion relationship 𝑓res vs. 𝜇0𝐻ext (without Δ𝑓 vs. 𝜇0𝐻ext), short measurement 

durations [e.g., 20 s, based on FIG. 2(e), which yield 𝜎𝑓res,ran that are comparable to 𝜎𝑓res,sys] can be adopted 

without significantly compromising the uncertainties of the final estimated parameters (𝑔 and 𝑀eff). With a 

shorter measurement duration, the random errors increase and become a more important contribution to the total 

error. In this case, the optimal Bayesian approach, which reduces random errors, may be more effective in reducing 

the uncertainties of 𝑔 and 𝑀eff. 

 
FIG. 3. Field-dependent 𝑓res (a) and Δ𝑓 (b) measured using conventional (black circles) and optimal Bayesian 

(red triangles) experimental designs. Circles and solid lines represent measured data and fits. 

For field-differential VNA-FMR measurements, the choice of Nfreq for each sweep directly affects the sweep 

time and, therefore, the modulation frequency. In general, a larger number of frequencies requires a longer sweep 

time and results in lower modulation frequency, which makes the signals more vulnerable to pink noise [25]. 

However, a small number of frequencies has apparent drawbacks as well, leading to a large frequency interval 
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and, correspondingly, larger discretization error for the resonance frequency and frequency linewidth. Here, we 

compare the performance of the conventional and optimal Bayesian methods using a variety of number of 

frequencies per sweep (101, 201, 401, 801). The results are summarized in FIG. 4 and FIG. 5. For the conventional 

mode, significantly larger uncertainties [shown in FIG. 4(a-d) and FIG. 5] are observed when 101 frequencies 

(0.03 GHz frequency interval) are used. This can be explained by the large discretization errors stated above. The 

uncertainties of Δ𝑓 decrease with Nfreq and increase again when Nfreq is 801 [black symbols in FIG. 4(b)], likely 

due to the high pink noise contribution associated with the low modulation frequency (0.06 Hz). For the optimal 

Bayesian mode, the measured frequency ranges keep changing. No matter how many frequencies are measured 

per sweep, the frequency interval in the resonance region can be rather small [see FIG. 2(e)]. Therefore, 

discretization errors are less of a concern and the 101-frequency case does not have significantly higher 

uncertainties for the optimal Bayesian mode. On the contrary, owing to the higher modulation frequency (0.26 

Hz), the 101-frequency case has the lowest uncertainty for the optimal Bayesian mode. Therefore, as shown in 

FIG. 2 and FIG. 3, the 401-frequency and 101-frequency cases are selected for comparison of the conventional 

mode and the optimal Bayesian mode. In FIG. 4(e,f), the orders of magnitude of the estimated systematic errors 

are relatively consistent: ≈0.008 GHz for 𝜎𝑓res,sys and ≈0.005 GHz for 𝜎Δ𝑓,sys. This makes sense because the 

systematic errors should be insensitive to the number of frequencies and measurement methods (conventional or 

optimal Bayesian). Figure 5 presents the one-sigma uncertainties of final fitting parameters. Similar to the trend 

in FIG. 4, for the conventional approach, the 801-frequency case yields the lowest uncertainties for 𝑔-factor and 

𝜇0𝑀eff while the 401-frequency case yields 𝛼 and 𝜇0Δ𝐻0 with lowest uncertainties. For the optimal Bayesian 

mode, the 101-frequency case has the lowest uncertainties for 𝑔-factor, 𝜇0𝑀eff, 𝛼, and 𝜇0Δ𝐻0. If we compare the 

lowest uncertainties measured by the two approaches, the optimal Bayesian mode yields comparable 𝜎𝑔, 10 % 

lower% lower 𝜎𝜇0𝑀eff
, 26 % lower 𝜎𝛼, and 26 % lower 𝜎𝜇0Δ𝐻0

. For certain cases, fitting Re(𝑆21
′ ) with both the 

absorptive term and the dispersive term could yield a lower uncertainty due to the mixing of real and imaginary 

signals along the transmission line. When the dispersive term is included in the fitting of Re(𝑆21
′ ), the best 

Bayesian case yields 29 % lower 𝜎𝑔, 20 % lower 𝜎𝛼, 19 % lower 𝜎𝛼, and 18 % lower 𝜎𝛼 than the best conventional 

case. As discussed previously, a larger improvement is expected if the measurement duration is reduced from the 

current duration (120 s) as it will make random errors more dominant compared with systematic errors. 

In this work, we compare the uncertainties with a given measurement duration. In practice, a more common 

scenario is shortening the measurement duration required for achieving certain uncertainties. In this case, the 
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benefits of implementing optimal Bayesian design can be estimated based on the trend: 𝜎ran ∝ 1/√𝑡. A 40 % (60 

%) reduction in 𝜎ran with a given measurement duration corresponds to a 64 % (84 %) reduction in measurement 

duration with a given uncertainty target. The Bayesian method provides nearly an order of magnitude increase in 

measurement throughput. 

 
FIG. 4. Impacts of the number of frequencies in each scan (Nfreq) on the uncertainties of (a,c,e) 𝑓res and (b,d,f) Δ𝑓. 

(a,b) Total uncertainties calculated by the standard deviation of measurement data from fits. (c,d) Uncertainties 

from derivative Lorentzian fitting averaged over fields. (e,f) Systematic uncertainties estimated by 𝜎sys
2 = 𝜎tt

2 −

𝜎ran
2 . Conventional and optimal Bayesian results are denoted by black circles and red triangles, respectively. Solid 

symbols represent Re(𝑆21
′ ) is fitted by both absorptive and dispersive terms while open symbols are obtained with 

Re(𝑆21
′ ) fitted by only the absorptive term. For certain cases, fitting with both the absorptive and the dispersive 

terms generates lower uncertainties possibly due to the mixing of real and imaginary signals. 
 
 

 
 

.  
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FIG. 5. One-sigma uncertainties of (a) g-factor, (b) 𝛼, (c) 𝜇0𝑀eff, and (d) 𝜇0Δ𝐻0 from fitting. Conventional and 

optimal Bayesian results are denoted by black circles and red triangles, respectively. Solid symbols represent 

Re(𝑆21
′ ) is fitted by both the absorptive and the dispersive terms while open symbols are obtained with Re(𝑆21

′ ) 

fitted by only the absorptive term. 

 

IX. CONCLUSION 

We implemented an optimal Bayesian experimental design in a field-differential VNA-FMR setup. 

Respective reductions of 60 % and 40 % in the uncertainties of 𝑓res  and Δ𝑓 were observed with a common 

measurement time. These reductions are equivalent to 84 % and 64 % decreases in measurement time to achieve 

the same uncertainty targets as a conventional field-differential VNA-FMR method. The results show that the 

optimal Bayesian design can significantly accelerate the throughput of FMR measurements. This has particular 

merit for high-throughput materials screening in research and development environments as well as for fast, wafer-

scale quality control in industrial settings, where throughput in FMR techniques could provide particular utility 

for inspection of 300 mm magnetic memory films.  
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