Article

Recurrent evolution and selection shape
structural diversity at the amylase locus
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The adoption of agriculture triggered a rapid shift towards starch-rich diets in human
populations'. Amylase genes facilitate starch digestion, and increased amylase copy
number has been observed in some modern human populations with high-starch

intake?, although evidence of recent selection is lacking®*. Here, using 94 long-read
haplotype-resolved assemblies and short-read data from approximately 5,600
contemporary and ancient humans, we resolve the diversity and evolutionary history
of structural variation at the amylase locus. We find that amylase genes have higher
copy numbersin agricultural populations thanin fishing, hunting and pastoral
populations. We identify 28 distinct amylase structural architectures and demonstrate
that nearly identical structures have arisen recurrently on different haplotype
backgrounds throughout recent human history. AMY1 and AMY2A genes each
underwent multiple duplication/deletion events with mutation rates up to more than
10,000-fold the single-nucleotide polymorphism mutation rate, whereas AMY2B gene
duplications share a single origin. Using a pangenome-based approach, we infer
structural haplotypes across thousands of humans identifying extensively duplicated
haplotypes at higher frequency in modern agricultural populations. Leveraging 533
ancient human genomes, we find that duplication-containing haplotypes (with more
gene copies than the ancestral haplotype) have rapidly increased in frequency over
the past 12,000 years in West Eurasians, suggestive of positive selection. Together,
our study highlights the potential effects of the agricultural revolution on human
genomes and the importance of structural variation in human adaptation.

Dietary changes have had amajorrolein humanadaptation and evolu-
tion, impacting phenotypes such as lactase persistence>® and polyun-
saturated fatty acid metabolism’®. One of the most substantial recent
changes to the human diet is the shift from hunter-gatherer socie-
ties to agricultural-based subsistence. The earliest instance of crop
domestication can be traced to the Fertile Crescent of southwestern
Asia approximately 12 thousand years before present (kyr BP), laying
the foundation for the Neolithic revolution’. Agriculture subsequently
spread rapidly westward into Europe by way of Anatolia by approxi-
mately 8.5 kyr BPand eastward into the Indian subcontinent. However,
the transition to agriculture-based subsistence has happenedindepen-
dently several other times throughout human history, and today, the
overwhelming majority of carbohydrates consumed by humans are
derived from agriculture.

Plant-based diets are rich in starches, which are broken down into
simple sugars by a-amylase enzymes in mammals. Human genomes
contain three different amylase genes located proximally to one
another at a single locus: AMY1, which is expressed exclusively in

salivary glands, and AMY2A and AMY2B, which are expressed exclu-
sivelyin the pancreas. However, it haslong been appreciated that the
amylase locus exhibits extensive structural variation in humans'©t,
with all three genes exhibiting copy number variation. Indeed, the
haplotype represented in the humanreference genome GRCh38 con-
tains three tandemly duplicated AMYI copies (see the Methods for
details on amylase gene naming conventions). Other great apes do not
exhibit copy number variation and have just asingle copy each of the
AMY1,AMY2A and AMY2B genes®. These three amylase genes are the
result of duplication events, occurring first in the common ancestor
of Old World monkeys and apes, and again in the common ancestor of
great apes®. This ancestral single-copy state has also been reported
inNeanderthals and Denisovans®. AMYI copy number correlates with
salivary amylase protein levels in humans, and an analysis of seven
human populations found increased AMYI copy number in groups
with high-starch diets®. Although it has been proposed that this gene
expansion may have been an adaptive response to the transition from
hunter-gatherer to agricultural societies, evidence of recent selection
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Fig.1|Worldwide amylase copy number diversity.a-c, World maps
indicating average AMY1 (a), AMY2A (b) and AMY2B (c) copy number in 147
different human populations. The point size indicates population sample sizes
(ranging from1to134),and the colour indicates the mean copy number. Copy
number distributions acrossindividual populations and continental groups
aredisplayedin Extended DataFig.1.d, Copy number distributions of AMY1

atthislocus has been lacking®*. Moreover, subsequent analyses iden-
tifying a putative association of AMYI copy number and body mass
index™ failed to replicate®”, highlighting the challenges associated
with studying structurally variable loci, which are often poorly tagged
by nearby single-nucleotide polymorphisms (SNPs)*. Another major
challenge in characterizing selective signatures at structurally com-
plexlociis the difficulty of phasing copy numbers onto haplotypes.
Furthermore, although the humanreference genome contains asingle
fully resolved amylase haplotype, the sequence, structure and diver-
sity of haplotypes on which different copy numbers have emerged
areunknown.

Amylase copy number diversity worldwide

Although extensive copy number variation has been documented
at the amylase locus in humans**»" sampling of human diversity
worldwide has beenincomplete. To explore diversity at this locus, we
compiled 4,292 diverse high-coverage modern genomes from several
sources®?° (see the Methods for information on all datasets used in
this paper) and used read-depth-based approaches (see the Methods;
Supplementary Fig.1) to estimate diploid copy number in147 different
human populations (Fig. 1a-c, Extended Data Fig.1and Supplementary
Table1, subcontinental groupings as per Mallick et al.?®). Diploid AMY1
copy number estimates ranged from 2to 20 and were highest in popu-
lations from Oceanic, East Asian and South Asian subcontinents. Nev-
ertheless, individuals carrying high AMY1 copy numbers were present
inall continental subgroups. AMY2A (0-6 copies) showed the highest
average copy number in African populations, with deletions more
prevalent in non-African populations. AMY2B (2-7 copies) exhibited
high-population stratification with duplications essentially absent
from Central Asian/Siberian, East Asian and Oceanic populations. We
also assessed three high-coverage Neanderthals and a single Deniso-
vanindividual, confirmingall to have the ancestral copy number state
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samplesize. Two-sided Pvalues of aStudent’s t-test are shown without
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(Extended Data Fig. 1). Thus, copy number variation across all three
amylase genes is probably human specific.

Although AMY1 copy number has been shown to exhibit a strong posi-
tive correlation with salivary protein levels? the relationship between
pancreatic amylase gene expression and copy number has not been
assessed. Analysing GTEx* data, we confirmed that AMY2A and AMY2B
expression was confined to the pancreas. We then genotyped diploid
copy numbersin305samples for which expression datawere available
alongside high-coverage genome sequencing. Both AMY2A (0-5 copies)
and AMY2B (2-5 copies) copy numbers were significantly and positively
correlated with gene expression levels (P=4.4 x10°and P=6.5x10™,
respectively, linear model; Extended Data Fig. 2).

The strongest evidence of potential selection at the amylase locus
comes from comparisons of seven modern-day populations with
high-starch versus low-starch intake?. We identified 382 individuals
from 33 different populations with traditionally agricultural-based,
hunter-gatherer-based, fishing-based or pastoralism-based diets in
our dataset (Supplementary Table 2). The copy number of all three
amylase genes was higher in populations with agricultural subsistence
thanin those from fishing, hunting and pastoral groups, although it
was only strongly significant for AMY1I (Fig. 1d and Supplementary
Fig.2;P=0.0019,P=0.016 and P=0.051for AMY1, AMY2A and AMY2B,
respectively, Student’s t-test). These results thus corroborate previous
work and demonstrate that pancreatic amylase gene duplications are
also more common in populations with starch-rich diets.

Twenty-eight distinct structural haplotypes

The amylase structural haplotype present in the human reference
genome (GRCh38) spans approximately 200 kb and consists of several
long, nearly identical segmental duplications. Although the approxi-
mate structures of several other haplotypes have beeninferred through
in situ hybridization and optical mapping, these lack sequence and



-1 ¢ . U]
.- . 250 (3)
D I 750 ¢ @
ccec@cocone o . (1)

L] L] (] . LR RN
° W]

2 4 6 8 10 12 14 16 18 20 AMY?
. )

. 50 ° @
. : 2,000 ° 1)
. o o . . ° 1)
6 AMY2A ® ®

b P . )

AMY2B
[SEANENES RN

AMY2B
WAoo~
.

2A= ‘H>£>‘> P)ﬁ>‘1 1<
|:’.>:>M:2éf>b;0<‘:.:>b;<)1‘:-1<;—
e i < e —
2A= “/<jl" ‘Q}- 1=
A 1= f< fo =

A 1= 1e 1= e 1= H5

° @
° ™
° W]

L]
[ ]
@ (15)
® hg38(16)

° ™)
® @

1

. M
® CHMI3(2)
° M
° @
@ Anc (13)

oON A O®ONA

Assembly copy number

< A e
() oI eSO > <D>ED O ) a——>

HaA2

) |:>:>V:>£>DN:>E>_K>.:>_—
(13) |:>|:>M:‘>t>_<j<—q<‘—

) :@m@_

2A=> 1

Ao e e 1 Ao 1o H3A3B3

(1) oD OESICOD > DD ) a—>

2A= 1=>

1) e e DetiC i <> D) e— HAAZE2
A 1= 1o 1= e 1ot =

oD O D <> (| <mmd> <D D> E—)>
A= 1= f< 1= 1< 1= 1= 1=

o oDy < @< () <( (> ) E—)>
A= 1= q< 1o 1e 1= 1< 1= e 1=

D D e < (<> < (<) < (<) < (> ) me—)> HO
1 1=

o e <O a— |5

H7

A= 1=

02 46 8101214

e = Hia

Read depth copy number 0 100

Fig.2|Pangenome-basedidentification ofamylase structural haplotype
diversity. a, Therelationship between AMY1, AMY2A and AMY2B copy number.
Thesize and colour indicate the number of individuals with acopy number
genotype pair. b, Hierarchical MAP-graph (top) and variation graph (bottom)
architectures. The colours and numbers in the MAP-graph correspond to
principalbundlesshownin panel c. Genes associated with bundles areindicated.
¢, Twenty-eight distinct amylase structural haplotypesidentified in 94
haplotypes. Thefilled arrows indicate principal bundles representing homology
relationships, whereas labelled open arrows indicate genes (1indicates AMY1,
2AindicatesAMY2A and 2B indicates AMY2B). The numbersin parentheses and
thecirclesizesindicate the number of haplotypes identified with a specific

structural resolution*'5, Nevertheless, the variegated relationship
between different amylase gene copy numbers (Fig. 2a) indicates the
existence of awide range of structures.

To characterize the structural diversity of the amylase locus,
we first constructed a minimizer-anchored pangenome graph
(MAP-graph)® from 94 amylase haplotypes derived from 52 long-read,
haplotype-resolved diploid genome assemblies recently sequenced
by the Human Pangenome Reference Consortium (HPRC)* along-
side GRCh38 and T2T-CHMI13 reference? (see Methods; Fig. 2b). The
MAP-graph captures large-scale sequence structures with vertices
representing sets of orthologous or paralogous sequences; thus, input
haplotypes can be represented as paths through the graph. We next
performed a principal bundle decomposition of the graph, which identi-
fies stretches of sequence that are repeatedly traversed by individual
haplotypes (the coloured loops in Fig. 2b). These principal bundles
represent the individual repeat units of the locus. We identified nine
principal bundles in the amylase graph corresponding to: the unique
sequencesoneither side of the structurally complex region containing
amylase gene duplications (bundles 0 and 1), the repeat units span-
ning each of the three amylase genes and the AMY2Ap pseudogene
(bundles2,3and5), as well as several other short repeat units (Fig. 2c).
For 35 individuals in which both haplotypes were incorporated into
the graph, short-read-based diploid genotypes were identical to the
sum of the haplotype copy numbers, highlighting the concordance of

200 300 400 500 600
Size (kb)

structure. Haplotypes are ordered by their relationship in the tree (left), which
isgenerated fromtheJaccard distance between haplotypes from the variation
graph. Consensus structures, which refer to clusters of similar structures,
areindicated (right). The names of the consensus structures are formatted
‘HxAyBz’, where x corresponds to the copy number of AMY1,y to the number
of AMY2A, and zto the number of AMY2B. ‘Ay’ and ‘Bz’ are only included in the
namewhenyorzdoesnotequaltol.d, Therelationship betweenread-
depth-based copy number and assembly-based copy numbers for amylase
genes for35individuals (70 haplotypes) in which both haplotypes were
assembled across the amylase region.

both short-read genotypes and long-read haplotype assemblies (see
Methods; Fig. 2d).

Together, weidentified 28 unique structural haplotypes at the amyl-
aselocus (Fig. 2c and Supplementary Table 3), of which only 2 had been
previously fully sequenced and characterized (the chimpanzee and
humanreference genome haplotypes). The structurally variable region
(SVR) of the locus spans across all of the amylase genes and rangesin size
from approximately 95 kb to approximately 471 kb, in all cases begin-
ning with a copy of AMY2B and ending with a copy of AMY1. To better
understand the relationships between these structural haplotypes,
we constructed a pangenome variation graph using the PanGenome
Graph Builder (PGGB)® (Fig. 2b). In contrast to the MAP-graph, this
graph enables base-level comparisons between haplotypes. Using this
graph, we computed a distance matrix between all structural haplo-
types and built aneighbour-joining tree fromthese relationships (see
Methods; Fig. 2¢). This tree highlights 11 different clusters of structures,
or ‘consensus structures’, each defined by a unique copy number com-
bination of amylase genes (Fig. 2¢, right, the names of the consensus
structures correspond to the copy number of AMY1, AMY2A or AMY2B
genes; see the figure legend for details). Distinct structural haplotypes
with the same consensus structure differed largely in the orientation of
repeats, or only slightly in their composition. Several of these consensus
structures correspond to approximate architectures that have been
previously hypothesized™; however, three novel consensus structures
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are described here (H9, H3A2 and H3A3B3). Among these consensus
structures, AMYIranged from1to 9 copies with copy 6 and copy 8 states
unobserved, AMY2A ranged from O to 3 copies, AMY2Ap ranged from O
to4 copies,and AMY2Branged from1to 3 copies. We also assessed these
haplotypes for mutations that might significantly disrupt the function
of any of the amylase genes. We identified a single-base substitution
thatintroduced a premature stop codonin AMY1shared between two
haplotypes with high AMY1 copy number, as well as several missense
mutationsinall three amylase genes of varying predicted impact (Sup-
plementary Table 4). These mutations were generally found at low
frequencies. Because of the low frequency (approximately 2%) and
single origin of the loss-of-function mutation, we do not explicitly
account for itin downstream analyses. Together, these results reveal
the wide ranging and nested-nature of diversity at the amylase locus:
different haplotypes can have vastly different copy numbers of each
ofthe three genes, and haplotypes with identical gene copy numbers
existinawide array of forms.

Evolution of structural haplotypes

To discern the evolutionary origins of the vast diversity of structures
observed, we sought to explore the SNP haplotypes on which they
emerged. We leveraged unique sequences (bundles 0 and 1) flanking
the SVR in which SNPs can be accurately genotyped. We first quanti-
fied linkage disequilibrium around the amylase locus in 3,395 diverse
humansamples (see Methods). To our surprise, linkage disequilibrium
was extremely high between SNPs spanning the SVR (approximately
190-370 kb apart in GRCh38; Fig. 3a and Extended Data Fig. 3a,b). Of
note, linkage disequilibrium was 7-20-fold higher than similarly spaced
pairs of SNPs across the remainder of chromosome 1in all major conti-
nental populations (Fig. 3b). Trio-based recombination rate estimates
also indicate reduced recombination rates across the SVR* (Fig. 3a,
bottom panel). We hypothesize that these exceptionally high levels
of linkage disequilibrium arise from the suppression of crossovers
between homologues containing distinct structural architectures with
vastly different lengths during meiosis.

The high linkage disequilibrium across the amylase locus implies
that the evolutionary history of the flanking regions are a good proxy
for the history of the linked complex structures of the SVR. As such,
we constructed a maximume-likelihood coalescent tree from these
blocks using three Neanderthal haplotypes and a Denisovan haplo-
type (all containing the ancestral structural haplotype) as outgroups
(see Methods; Fig. 3c, Extended Data Fig. 4a and Supplementary
Fig. 3). Time calibration of the tree was performed using an esti-
mated 650 kyr BP human-Neanderthal split time”. Annotating this
coalescent tree with the different amylase structural architectures
revealed that most haplotype structures have experienced repeated
evolution, where similar and even identical structures have arisen
recurrently on different haplotype backgrounds. Only a handful of
structural haplotypes are exceptions to thisrecurrence, including those
with AMY2B gene duplications, which stem from a single originating
haplotype.

Our time-calibrated tree further enabled us to performanancestral
state reconstruction for each of the amylase gene copy numbers to
quantify the number of times each gene has undergone duplication
or deletion (Fig. 3d and Extended Data Figs. 4b and 5). We found that
all amylase structural haplotypes in modern humans are descended
from an H3" haplotype approximately 279 kyr Bp. This suggests that
the initial duplication event, from the ancestral HI* haplotype to H3',
significantly predates the out-of-Africa expansion (that is, more than
279 kyr BP). We identified 26 unique AMY1 gene duplications and 24
deletions since then, correspondingto a per generation mutation rate
(M) 0f 2.09 x 107, Although these estimates may be affected by rare
recombination events or additionalunsampled duplications/deletions,
their magnitude highlights the exceptional turnover of this locus in
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recentevolution, with AMYI gene copy number changes occurringata
rate of approximately 10,000-fold the genome-wide average SNP muta-
tion rate?®. AMY2A exhibited substantially fewer mutational events,
undergoing six duplications and two deletions (A = 3.07 x 107), with
the most recent AMY2A duplication occurring within the past 9.4 kyr
BP (Fig.3c-e). Although duplications of AMY2A have occurred several
times, we identified a single origin of the complete loss of the AMY2A
geneinour tree, which occurred 13.5-40.7 kyr BP and resulted in the
H2AO haplotype (Fig.3c,d,f). Only two AMY2B duplications were identi-
fied (\ =7.36 x107%), occurring sequentially on asingle haplotype and
thus allowing us to resolve the stepwise process of their formation
(Fig. 3¢c,d,g). We estimate that the first duplication event occurred
46-107.8 kyr BP, followed by a deletion 26.9-46 kyr BP, and finally by
asecond duplication event 4.1-19.5 kyr BP (Fig. 3g).

Although our collection of 94 assembled haplotypes spanning the
complex SVR provides the most complete picture of amylase evolution
to date, it still represents just a small fraction of worldwide genetic
variation. To characterize the evolution of amylase haplotypes more
broadly, we performed a principal component analysis combining the
fully assembled haplotypes with 3,395 diverse human genomes using
the flanking regions of the SVR (see Methods for details; Extended Data
Figs.3c,4cand 6 and Supplementary Figs. 4 and 5). This method identi-
fied severaladditional AMYI and AMY2A duplication events worldwide,
asexpected given their high mutation rate, and support for additional
haplotypes with complete AMY2A deletions (Extended Data Figs. 4c
and 6 and Supplementary Fig. 4). However, we found no evidence of
additional AMY2B gene duplications, supporting the single origin of
these haplotypes.

Pangenome-based haplotype deconvolution

Our analyses of SNP diversity at regions flanking the amylase SVR
also revealed a substantial reduction in diversity compared with
the chromosome-wide average (quantified by m, 2-3-fold lower;
Extended Data Fig. 3d). To further investigate whether this signature
wasindicative of aselective sweep, we ran several genome-wide selec-
tion scans (Supplementary Table 5 and Supplementary Figs. 6-18).
We found that some statistics tended to be higher at regions flank-
ing the amylase SVR in specific populations (West Eurasians, Central
Asia and Siberia and modern populations with traditionally agricul-
tural diets; Supplementary Figs. 7,9,12 and 14), consistent with a soft
or incomplete sweep. However, these results fell below the 99.95%
threshold of the genome-wide empirical distribution, although this
could be a consequence of the limitations of SNP-based methods in
detecting selection at rapidly evolving, structurally complex loci,
where identical structures repeatedly emerge on distinct haplotype
backgrounds.

Instead of relying on neighbouring SNPs as a proxy for amylase
structural variants, we developed an approach to directly identify the
structural haplotype pairs presentinshort-read-sequenced individu-
als. In brief, this approach, which we term ‘haplotype deconvolution’,
consists of mapping a short-read-sequenced genome to the pange-
nome variation graph (Fig. 4a) and quantifying read depth over each
nodeinthe graph (n = 6,640 nodes in the amylase graph). This vector
ofread depths is then compared with a set of pre-computed vectors
generated by threading all pairs of 94 long-read-assembled haplo-
types (thatis, all possible genotypes) over the same graph. Finally, we
inferred the structural genotype of the short-read genome to be the
pair of long-read-assembled haplotypes whose vector representa-
tion most closely matches to the short-read vector (see Methods).
We assessed the accuracy of this approach using four orthogonal
approaches (see Methods for details; Extended Data Fig. 7a). Together,
these approachesindicate that our haplotype deconvolution method
is robust and approximately 95% accurate, and limited primarily by the
completeness of the reference pangenome.
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Fig.3|Evolutionary history ofamylase structural haplotypes. a, Heatmap
oflinkage disequilibrium for SNPs across an approximately 406-kb region
spanning unique sequences on either side of the structurally variable region

of amylase for 802 West Eurasians (WEA; see Extended DataFig. 3afor all
populations). Schematics of the GRCh38 structure and the recombination
ratearealsoshown (bottom). Note that regions outside the annotated
recombination hotspot have recombinationrateslower than 0.2cMMb™.

b, Boxplots comparing linkage disequilibrium between pairs of SNPs on either
side of the SVR (thatis, 190-370 kb apart) to identically spaced SNPs across
chromosome1for major human populations with more than100 samples.

The centreline of the boxplotindicates the median, box limitsindicate the first
and third quartiles, and the whiskers indicate the smallest/largest observation
withinbox limits +1.5 times the interquartile range. AFR, Africa; AMR, Americas;
CAS, Central AsiaSiberia; EA, East Asia; OCN, Oceania; SA, South Asia. ¢, Atime-
calibrated coalescent tree from the distal non-duplicated region flanking the

We used haplotype deconvolution to estimate worldwide allele
frequencies and continental subpopulation allele frequencies for
amylase consensus structures across 7,188 haplotypes (Fig. 4b and
Supplementary Tables 6 and 7). The reference haplotype, H3', was
the most common globally; however, several haplotypes exhibited
strong population stratification. The H5 haplotype is the most frequent
haplotypein East Asian populations, whereas the ancestral haplotype
H1?wasunderrepresented in East Asian and Oceanic populations. The
high copy H9 haplotype was largely absent from African, West Eura-
sian and South Asian populations, whereas ranging from 1% to 3% in
populations from the Americas, East Asia, and Central Asiaand Siberia.
Haplotypes with AMY2B duplications (that is, H2A2B2, H3A3B3 and
H4A2B2)were essentially absent from East and Central Asia, explaining

SVR (leftmost grey arrow in panel a) across 94 assembled haplotypes (the tree
fromthe proximal regionin Extended DataFig.4). The number next toeach
tip corresponds to the structural haplotype that the sequenceis physically
linked to, and the colour of the circle at each tip corresponds to its consensus
haplotypestructure (see the inset structural tree). The copy numbers of each
amylase gene and pseudogene are also shown next to the tips of the tree. The
asteriskindicatesthesingle, recent origin of the premature stop codonin
AMYI1.d, Ancestral-state reconstruction and mutation rate estimates for
amylase gene copy number (archaic outgroups are excluded). Thebranch
colour corresponds to the copy number. e-g, Illustrations of the most recent
AMY2A gene duplication, the complete loss of the AMY2A gene, and the
sequential and joint duplication of AMY2A and AMY2B genes (grey shaded
areainpanelc).Blue, red and orange shaded areas indicate duplication,
deletionand inversion events, respectively.

our previous observation of the lack of AMY2B duplication genotypes
in these global populations (Fig. 1c) and consistent with their single
origin.

We next compared the relative haplotype frequencies among
modern human populations with traditionally agricultural-based,
hunter-gatherer-based, fishing-based or pastoralism-based diets
(Fig. 4c). Agricultural populations differed significantly from
non-agricultural populations (P=0.011, chi-squared test) and were
enriched for haplotypes with higher AMYI copy number, including
the H5, H7 and H9 haplotypes, as well as for haplotypes with higher
AMY2A and AMY2B copy number (H4A2B2 and H2A2B2). By contrast,
fishing-based, hunting-based and pastoralism-based populations
were enriched for the reference H3', deletion H2A0 and ancestral H1*
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haplotypes. These results demonstrate that haplotypes with increased
amylase gene copy number are enriched in modern-day populations
with traditionally agricultural diets.

Recentselectionin West Eurasia

The development of agriculture approximately 12,000 years ago in
the Fertile Crescent catalysed a rapid shift in the diets and lifestyles
of West Eurasian populations. Most of the ancient genome sampling
to date has been performed in Europe, allowing us to deeply explore
the evolution of the amylase locus in these populations following
the adoption of agriculture. To uncover how the genetic diversity
oftheamylase locus was shaped over this time period, we collated 533
recently generated ancient genomes from West Eurasia®*°, which span
in age from approximately 12,000 to approximately 250 BP (Fig. 5a,
Supplementary Table 8 and Supplementary Fig. 19). We estimated
amylase gene copy numbers from these ancient individuals and com-
pared these with copy numbersin modern Europeans (Extended Data
Fig. 8a, Supplementary Table 1 and Supplementary Fig. 20). Over-
all, copy numbers of all amylase genes tended to be lower in ancient
hunter-gatherer populations thanin Bronze Age through present-day
European populations, although these comparisons are of varying
statistical significance due to our limited sample size of some ancient
populations (ANOVA followed by Tukey’s test; Extended Data Fig. 8a
and Supplementary Table 9). We next assessed how total copy num-
bers have changed as afunction of time for each of the three amylase
genes (Fig.5b).Inall three cases, we observed significantincreasesin
total copy number over the past approximately 12,000 years (P=1.1x
107%,P=1.6 x10and P= 0.0032 for AMY1, AMY2A and AMY2B, respec-
tively, linear model). The total AMYI copy number increased by an
average of approximately 2.9 copies over this time period, whereas
AMY2A and AMY2B increased by an average of 0.4 and 0.1 copies,
respectively. These results are suggestive of directional selection at
this locus for increased copy number of each of the three amylase
genes.
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We next applied our haplotype deconvolution approach to these
ancient genomes to infer how the frequency of amylase structural
haplotypes has changed over recent time. Simulations confirmed this
method to be highly accurate even on low-coverage ancient genomes
(see Methods; Extended Data Fig. 7b). We further conservatively
selected 288 of the 533 individuals with the highest confidence hap-
lotype assignments (see Methods; Supplementary Table 6 and Sup-
plementary Figs.21and 22). Six haplotypes were found at appreciable
frequencies (more than1%) in either modern or ancient West Eurasian
populations including the HI*and H2A0 (AMY2A deletion) haplotypes,
whicheach containthree total functional amylase gene copies, and the
H3', H5, H7 and H4A2B2 haplotypes, which contain between five and
nine total amylase gene copies (Fig. 5c and Supplementary Fig. 23).
Modelling the frequency trajectories of each of these haplotypes using
multinomial logistic regression, we found that the ancestral H1* and
the H2AO0 haplotypes both decreased significantly in frequency over
the past approximately 12,000 years, from a combined frequency of
approximately 0.88 to amodern-day frequency of approximately 0.14
(Fig. 5¢,d, inset, Extended Data Fig. 8b and Supplementary Figs. 22
and 23). By contrast, duplication-containing haplotypes (with five or
more amylase gene copiesin contrast to the ancestral three copies; note
that no haplotypes containing four copies were observed) increased in
frequency commensurately more than sevenfold (from approximately
0.12 to approximately 0.86) over this time period.

We used three complementary approaches to test whether posi-
tive selection could explain the substantial rise in the frequency of
duplication-containing haplotypes (see Methods for model parameters
and assumptions). First, we used a Bayesian approach that assumes
a constant population size and selection coefficient (ApproxWF>).
The posterior distribution of the selection coefficient (s) supported
positive selection (P <1x107%, empirical Pvalue) with an average of
Saup = 0.022 (Fig. 5d). We next used bmws*?, which allows s, to vary
over time. Selection was found to be the strongest 12-9 kyr BP, with
Squp approaching 0.06 (Fig. 5e). Subsequently, selection has signifi-
cantly weakened, approaching O inrecent times (average s,,, = 0.027;
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Fig.5|Recentselection at the amylase locus in West Eurasia. a, Locations
of 533 West Eurasian ancient genomes from which amylase copy numbers
were estimated. Theinset shows the estimated ages of these samples. CHG,
Caucasian hunter-gatherer; EHG, Eastern hunter-gatherer; WHG, Western
hunter-gatherer.b, Copy number genotypes plotted as afunction of age
overlaid with asmooth generalized additive model fit. The inset shows the
isolated linear model (blue) and the generalized additive model (red) fit to
data. Two-sided Pvalues from the linear model are shown without adjustment
for multiple testing. The shaded areasindicate 95% confidence intervals of the
fitted models. ¢, Haplotype trajectories fit by multinomial logistic regression
forsix haplotypes (right) presentat more than 1% frequencyin ancientand
modern West Eurasians. The structures with the three total ancestral amylase
copies (anc/del) are distinguished from duplication-containing haplotypes

Fig.5e). Finally, weimplemented anapproximate Bayesian computation
approach adapted and modified fromKerner et al.** to account for the
important demographic factors that shape allele frequencies over time
(for example, population structure, admixture events and population
growth; see Methods). The posterior distribution of s, is centred
around 0.0175and does not overlap O, whereas the time of the selection
onset is estimated to be around 9 kyr BP (Fig. 5f and Supplementary
Fig.24).Inaddition, none of the neutral simulations conducted (that s,
withsg,, = 0) exhibits higher allele frequency increases than observed
inthe data (Fig. 5g and Supplementary Fig. 25). Together, these results
are consistent with positive selection for duplication-containing hap-
lotypes at the amylase locus following the adoption and spread of agri-
culture in West Eurasia.

with five or more amylase genes (dup). The shaded areasindicate 95%
confidenceintervals. d, Posterior density of the selection coefficient for dup
haplotypes over the past12,000 years estimated from ApproxWF (mean of
0.022,indicated by the dotted line; no estimates < O were observed in
1,000,000 MCMCiterations). The inset shows binned observations of dup
versus anc/del haplotype frequency trajectories. e, Frequency and selection
coefficient trajectories for dup haplotypes (blue line) and their 95% credible
intervals (shaded area) estimated from bmws. f, Posterior distribution of
theselection coefficient and the time of selection onset based on the ABC
approach. Thered dashed lines mark the median of the distribution. g, The
observedallele frequency trajectory and the expected allele frequency
trajectories fromthe top 1,000 of all simulations and the top 1,000 neutral
simulations.

Discussion

The domestication of crops and subsequent rise of farming radically
reshaped human social structures, lifestyles and diets. Several evolu-
tionary signatures of this transition have been identified in ancient
and modern West Eurasian genomes®****, However, although it has
been hypothesized that the amylase locus has similarly undergone
selection due to this transition?, footprints of recent positive selection
have notbeen detected to date**. Here, taking advantage of long-read
assemblies, we characterized the complex haplotype structures at the
amylase locus to the highest resolution to date, illuminating struc-
tural and sequence complexity intractable to short-read sequencing
(for example, Supplementary Fig. 26). Furthermore, these long-read

Nature | Vol 634 | 17 October 2024 | 623



Article

haplotypes provide previously inaccessible information about flanking
SNPs linked to these complex structures. These enable us to build coa-
lescent trees revealing the rapid and repeated duplication and deletion
eventsatthislocusinrecent human history. In particular, we found that
the majority of these events occurred within the past 50 kyr and thus
would only be tagged by rare variantsin the flanking region. Thus, the
extensive homoplasy and high mutation rate at this region make flank-
ing SNPs poor tags in classical tests for selective sweeps®*¥, potentially
explaining the failure of previous efforts aimed at detecting selection
atthislocus. Finally, we leveraged long-read assemblies toimprove the
utility of existing short-read data by constructing pangenome graphs
oftheamylaselocus, which we used to infer the haplotype structurein
short-read-sequenced individuals. This graph-based approach, termed
haplotype deconvolution, unlocks the ability for regions previously
inaccessible to short reads to now be revisited in both modern and
ancient datasets.

Using our haplotype deconvolutionapproach, we were able to con-
fidently reconstruct the haplotype structures of 288 ancient samples
at the amylase locus. We found that haplotypes carrying duplicated
copies of amylase genes have increased in frequency sevenfold in the
past 12,000 years. We note that our analyses are limited by the rela-
tively low sample sizes and uneven sampling of high-quality ancient
genomes in West Eurasia that are suitable for haplotype assignment.
The several approaches that we used to test for selection are also
dependent on various model assumptions and genotyping accu-
racy. Nevertheless, we present multiple lines of evidence (Figs. 1d,
4c and 5b-g) that consistently support recent selection in West
Eurasians at the amylase locus potentially linked to the adoption of
agriculture.

One of the best-studied examples of human adaptation to diet is
the evolution of lactase persistence® (although see refs. 38,39 regard-
ing potential complexities underlying selection at this locus). Our
estimates of s4,, are comparable in magnitude to estimates of s at the
MCM6/LCT locus reported in many studies*?***, However, increased
AMYI copy numbers have also been associated with deleterious oral
health outcomes*® (that is, cavities), highlighting a potential evolu-
tionary trade-off, which might result in distinct selection dynamicsin
contrast to other diet-associated locisuch as LCT. The repeated muta-
tion and homoplasy found at the amylase locus adds further evolu-
tionary complexity, in contrast to loci driven by point mutations. We
found the mutation rate of amylase gene duplications/deletions to
be approximately 10,000-fold the average SNP mutation rate, similar
to short tandem repeats*. This is similar to recently described struc-
tural variation mutationrates atampliconic Y chromosome regions*.
In both cases, the duplication architecture of the locus potentially
predisposes to de novo structural variant formation through non-allelic
homologous recombination between long paralogous sequences on
the same chromatid or sister chromatids*, or non-crossover gene
conversion, which canyield similar structural variants*. Thus, linkage
disequilibrium is maintained across the locus, evenin the presence of
rapid, recurrent structural changes.

Another interesting parallel between MCM6/LCT and the amyl-
aselocus is that the ability to digest milk has arisen independently
in different populations>®. Similarly, agriculture has been adopted
independently several times throughout human history’. Here, in
addition to showing evidence of positive selection in West Eurasian
populations, we found that haplotypes carrying higher amylase copy
numbers are found more commonly in multiple other populations with
traditionally agricultural subsistence worldwide. These results suggest
that selection forincreased amylase copy number may have also hap-
pened several times throughout human history, coincident with the
severalindependent adoptions of agriculture. Because ancient samples
from regions other than Europe are scarce, we were not able to infer
potential selection associated with other agricultural adoptions. More
extensive sampling of diverse ancient genomes and modern long-read
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assemblies are needed to further test this hypothesis. The expansion of
amylase genes accompanying transitions to starch-rich diets appears
to have also occurred independently across several different com-
mensal species including dogs, pigs, rats and mice, highlighting the
repeated evolution of this locus across taxa'>* and the far-reaching
effect of the agricultural revolution on the genetics and evolution of
species beyond our own.
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Methods

Amylase gene naming conventions

The reference genome GRC38 represents an H3 haplotype with three
copies of the AMYI gene and one copy each of the AMY2A and AMY2B
genes. The three AMYI copies are identified with labels AMYI1A, AMYIB
and AMYIC due to the HUGO naming convention requirements for all
gene copies to have unique names. However, these various copies of
AMYI1 genes across different haplotypes are recent duplications that
share high sequence similarity, and therefore are referred to simply
as AMYI genes in this paper and others***, By contrast, AMY2A and
AMY2B stem from a much older gene duplication event and are much
morediverged than the different copies of AMY1genes®. They share the
AMY2 prefix simply because they are both expressed in the pancreas.

Datasets
Short-read sequencing data were compiled from high-coverage rese-
quencing of the 1,000 Genomes Project (1IKG) samples', the Simons
Genome Diversity Panel (SGDP)?°, and the Human Genome Diversity
Panel (HGDP)™®. Genomes from GTEx* samples were also assessed, but
only for gene expression analyses as the ancestry of these samples was
not available. In total, we obtained copy number genotype estimates
for 5,130 contemporary samples. Among these, 838 are GTEx samples,
698 are trios from the 1KG, and the rest (n = 3,594, that is, 7,188 haplo-
types) are unrelated individual samples compiled from the 1KG, HGDP
and SGDP. GTEx and 1KG trio samples were excluded from analyses
characterizing the global diversity of the amylase locus. We performed
haplotype deconvolutions onall unrelated samples as well as trio data
(n=4,292total), but the trios were only used for validation purposes.
Supplementary Fig. 25 shows structural variant calls from the gno-
mAD project*. Phased SNP calls from 1KG and HGDP samples were
compiled from Koenig et al.*’, which includes all of our 1KG and HGDP
samples but only some of the SGDP samples (n = 3,395 total). These
data were used for the analyses of linkage disequilibrium, nucleotide
diversity, principal component analysis (PCA) and selection scans®.
Ancient genome short-read fastq samples were compiled from
Allentoft et al.>* and Marchi et al.* and were mapped to the human
reference genome GRCh38 with BWA (v0.7.17; ‘bwa mem’)*8, The mod-
erngenomes and the 14 Marchi et al. genomes are of high coverage and
quality; however, the Allentoft et al. samples were of varying quality and
coverage®. The Allentoft et al. datasetincluded more than1,600 ancient
genomesincluding 317 newly sequenced ancient individuals alongside
1,492 previously published genomes. Unfortunately, many published
ancient genomes have been filtered to exclude multi-mapped reads
leaving large gaps over regions such as the amylase locus. After remov-
ing genomes with missing data, 690 samples remained. We carefully
analysed these 690 genomes to determine their quality by quantifying
the standard deviation of genome-wide copy number (after removing
the top and bottom fifth percentiles of copy number to exclude outli-
ers). We chose a standard deviation cut-off of 0.49 based on a visual
inspection of the copy number data and selected 519 samples (approxi-
mately 75% of 690) with sufficient read depth for copy number geno-
typing. Ancient samples were assigned to one of eight major ancient
populations in West Eurasia based on their genetic ancestry, location
and age obtained from their original publications*?*****° (Fig. 5a, Sup-
plementary Table 8 and Supplementary Fig. 19). These populations
include: Eastern hunter-gatherer, Caucasian hunter-gatherer, Western
hunter-gatherer, early farmer (samples with primarily Anatolian farmer
ancestry), Neolithic farmer (samples with mixed Anatolian farmer
and Western hunter-gatherer ancestry), Steppe pastoralist (samples
with mixed Eastern hunter-gatherer and Caucasian hunter-gatherer
ancestry), Bronze Age (samples with mixed Neolithic farmerand Steppe
ancestry), and Iron Age to early modern. Finally, four archaic genomes
were assessed including three high-coverage Neanderthal genomes
and the high-coverage Denisova genome?153,

Long-read haplotype assemblies were compiled from the HPRC?,
Year 1 genome assembly freeze data were compiled along with year 2
test assemblies. Haplotype assemblies were included in our analyses
onlyif they spanned the amylase SVR. Furthermore, in cases in which
both haplotypes of an individual spanned the SVR, we checked to
ensure that the diploid copy number of amylase genes matched with the
read-depth-based estimate of copy number. We noted that several year
lassemblies (which were not assembled using ONT ultralong sequenc-
ing data) appeared to have been misassembled across the amylase
locus, as they were either discontiguous across the SVR or had diploid
assembly copy numbers that did not match with short-read-predicted
copy number. We thus reassembled these genomes incorporating ONT
ultralong sequence using the Verkko assembler (v1.3.1)**, construct-
ingimproved assemblies for HG00673, HG01106, HG01361, HGO1175,
HGO02148 and HG02257. Alongside these HPRC genome assemblies, we
included GRCh38 and the newly sequenced T2T-CHM13 reference?.

Determination of subsistence by population

The diets of several populations (see Supplementary Table 2) were
determined from the literature from the following sources>* %, We
were able toidentify the traditional diets for 33 populations. All other
populations were excluded from this analysis.

Read-depth-based copy number genotyping

Copy number genotypes were estimated using read depth as described
inref.16.In brief, read depth was quantified from BAMs in1,000-bp slid-
ingwindowsin200-bp steps across the genome. These depths werethen
normalized toacontrol regionin which no evidence of copy number var-
iationwas observedin more than4,000 individuals. Depth-based ‘raw’
estimates of copy number were then calculated by averaging these esti-
mates over regions of interest. Regions used for genotyping are found
inSupplementary Table 10. We note that the AMY2Ap pseudogeneis a
partial duplication of AMY2A that excludes the approximately 4,500 bp
ofthe 5’ end of the gene. This region can thus be used to genotype the
AMY2A copy without ‘double counting’ AMY2Ap gene duplicates. Copy
number genotype likelihoods were estimated by fitting modified
Gaussian mixture model to raw copy estimates across all individuals
with the following parameters: k, the number of mixture components,
set to be the difference between the highest and lowest integer-value
copy numbers observed; i, a k-dimensional vector of mixture weights;
0, asingle-variance term for mixture components; and o, an offset
term by which the means of all mixture components are shifted. The
difference between mixture component means was fixed at 1, and the
model was fitusing expectation maximization (Supplementary Fig.1).
The copy number maximizing the likelihood function was used as the
estimated copy number for each individual in subsequent analyses.
Comparing these maximum likelihood copy number estimates with
dropletdigital PCRyielded very high concordance with = 0.98,0.99
and 0.96 for AMY1, AMY2A and AMY2B, respectively (Supplementary
Fig.1). For comparisons of copy number as a function of sustenance,
populations were downsampled to a maximum of 50 individuals. We
also used alinear mixed effects model approach in which all samples
were maintained, which provided similar results (P=0.013, P= 0.058
and P=0.684 for AMY1, AMY2A and AMY2B, respectively).

Analysis of gene expression

Gene expression datafrom the GTEx project” were downloaded along-
side short-read data (see above section). Normalized gene expression
values for AMY2A and AMY2B were compared with copy number esti-
mates using linear regression (Extended Data Fig. 2).

MAP-graph construction

Regions overlapping the amylase locus were extracted from genome
assemblies in two different ways. First, we constructed a PanGenome
Research Tool Kit (PGR-TK) database from the HPRC year 1 genome



assemblies and used the default parameters of w=80,k=56,r=4and
min-span = 64 for building the sequence database index. The GRCh38
chromosome 1: 103655518-103664551 was then used to identify cor-
responding AMY1/AMY2A/AMY2B regions across these individuals.
Additional assemblies were subsequently added to our analysis by using
minimap2 (ref. 64) to extract the amylase locus from those genome
assemblies. The MAP-graph and the principal bundles were gener-
ated using revision (v0.4.0; git commit hash: ed55d6a8). The Python
scripts and the parameters used for generating the principal bundle
decomposition canbe foundin the associated GitHub repository. The
position of genes along haplotypes was determined by mapping gene
modes to haplotypes using minimap2 (ref. 64).

Analysis of mutations at amylase genes

To identify mutations in amylase genes from long-read assemblies
and evaluate their functional impact, we first aligned allamylase gene
sequences to AMYIA, AMY2A and AMY2B sequences on GRCh38 using
minimap2 (ref. 64). We then used paftools.js® for variant calling, and
vep-v.105.0 (ref. 65) for variant effect prediction.

PGGB-based graph construction

Although the existing pangenome graphs from the HPRC provide a
valuable resource, we discovered that they did not provide the best
reference system for genotyping copy number variation. Our validation
of the genotyping approach revealed that we would experience high
genotyping error when gene copies (for example, all copies of AMY1
or all copies of AMY2B) were not fully ‘collapsed’ into a single region
in the graph. We thus elected to rebuild the graph locally to improve
genotyping accuracy for complex structural variants. This achieves
substantiallyimproved results by allowing multiple mappings of each
haplotype against others, which leads to a graph in which multi-copy
genes are collapsed into single regions of the graph. This collapsed
representationisimportant for graph-based genotyping. Inaddition,
weincorporated additional samples, some of which were reassembled
by us, that were not part of the original dataset from the HPRC to have
amore comprehensive representation of variability in the amylase
locus, which required rebuilding the pangenome graph model at the
amylase locus.

A PGGB graph was constructed from 94 haplotypes spanning the
amylase locus using PGGB (v0.5.4; commit 736c50d8e32455cc25d-
b19d119141903f2613a63)* with the following parameters: -n 94’ (the
number of haplotypesinthe graphtobebuilt) and -c 2’ (the number of
mappings for each sequence segment). The latter parameter allowed us
tobuildagraphthat correctly represents the high copy number varia-
tioninsuchalocus. We used ODGI (v0.8.3; commit de70fcdacb3fcO6fd-
1d8c8d43c057a47fac0310b)%° to produce aJaccard distance-based
(thatis, 1-Jaccard similarity coefficient) dissimilarity matrix of paths
in our variation graph (‘odgi similarity -d’). These pre-computed dis-
tances were used to construct a tree of relationships between haplotype
structures using neighbour joining.

Haplotype deconvolution approach

We implemented a pipeline based on the workflow language Snake-
make (v7.32.3) to parallelize haplotype deconvolution (that is, assign
to ashort-read-sequenced individual the haplotype pair in a pange-
nome that best representsits genotype atagivenlocus) in thousands
of samples.

Given a region-specific PGGB graph (gfa; see ‘PGGB-based graph
construction’), alist of short-read alignments (BAM/CRAM), areference
build (fasta) and a corresponding region of interest (chr: start-end;
based onthe alignment of the BAM/CRAM), our pipeline ranas follows:
1. Extracted the haplotypes from the initial pangenome using ODGI

(v0.8.3; ‘odgi paths -f")%¢,

2. For each short-read sample, extracted all the reads spanning the
region of interest using SAMTOOLS (v1.18; ‘samtools fasta’)®".

3. Mapped the extracted reads back to the haplotypes withBWA (v0.7.17;
‘bwamem’)*s. To map ancient samples, we used ‘bwa aln’ with param-
eters suggested in Oliva et al.*® instead: ‘bwa aln -11024 -n 0.01-02".

4. Computed anode depth matrix for all the haplotypes in the pange-
nome; every time a certain haplotype in the pangenome loops over
anode, the path depth for that haplotype over that node increases
by one. This was done using a combination of commands in ODGI
(‘odgichop-¢32’and ‘odgi paths -H’).

5. Computed anode depth vector for each short-read sample; short-
read alignments were mapped to the pangenome using GAFPACK
(https://github.com/ekg/gafpack; commit ad31875) and their cov-
erage over nodes was computed using GFAINJECT (https://github.
com/ekg/gfainject; commit f5feb7b).

6. Compared each short-read vector (see step 5) witheach possible pair
of haplotype vectors (see step 4) by means of cosine similarity using
(https://github.com/davidebolo1993/cosigt; commit €247261; which
measures the similarity between two vectors as their dot product
divided by the product of their lengths). The haplotype pair having
the highest similarity with the short-read vector was used to describe
the genotype of the sample.

7. Thefinal genotypes were assigned as the corresponding consensus
structures of the highest similarity pair of haplotypes.

Our pipeline is publicly available on GitHub (https://github.com/
raveancic/graph_genotyper) andis archived in Zenodo (https://zenodo.
org/doi/10.5281/zenod0.10843493).

We assessed the accuracy of the haplotype deconvolution approach
in several different ways. First, we assessed 35 individuals (70 hap-
lotypes) for which both short-read sequencing data and long-read
diploid assemblies were available. In 100% of cases (70 of 70 haplo-
types), weaccurately distinguished the correct haplotypes presentin
anindividual from short-read sequencing data. We further assessed
how missing haplotypes in the pangenome graph might assess the
accuracy of our approach by performing a ‘leave-one-out, jackknifing’
analysis. In this approach, for each of the 35 long-read individuals,
we rebuilt the variation graph with a single haplotype excluded and
tested our ability to identify the correct consensus haplotype from
the remaining haplotypes. The true positive rate was approximately
93% in this case.Second, we compared our haplotype deconvolutions
to haplotypes determined by inheritance patterns in 44 families in a
previous study® (Supplementary Table 3). We note that this study
hypothesized the existence of an H4A4B4 haplotype without having
observed it directly. In our study, we also found no direct evidence
of the H4A4B4 haplotype. Furthermore, we found that inheritance
patterns are equally well explained by other directly observed hap-
lotypes and thus exclude these predictions from our comparisons
(twoindividuals excluded). We identified the exact same pair of hap-
lotypes in 95% of individuals (125 of 131 individuals), and in 97% of
individuals (288 of 298 individuals), the haplotype pair that we iden-
tified is among the potential consistent haplotype pairs identified
frominheritance. Third, we compared inheritance patterns in 602
diverse short-read-sequenced trios from the 1KG populations®. For
each family, we randomly selected one parent and assessed whether
either of the two offspring haplotypes were present in this randomly
selected parent. Across all families, this proportion, p, represents an
estimate of the proportion of genotype calls that are accuratein both
the offspring and that parent, thus the single sample accuracy can
be estimated as the square root of p. From these analyses, we identi-
fied 533 of 602 parent-offspring genotype calls that are correct, cor-
responding to an estimated accuracy of 94%. Fourth, we compared
our previously estimated reference genome read-depth-based copy
number genotypes to those predicted from haplotype deconvolu-
tions across 4,292 diverse individuals. These genotypes exhibited
95-99% concordance across different amylase genes (95%, 97% and
99% for AMY1, AMY2A and AMY2B, respectively). Cases in which the
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two estimates differed were generally high-copy genotypes for which
representative haplotype assemblies have not yet been observed and
integrated into the graph (Extended Data Fig. 7a). Overall we thus
estimated the haplotype deconvolution approach to be approximately
95% accurate for modern samples, and thus choose not to propagate
the remaining 5% uncertainty into downstream analyses.

To determine the impact of coverage and technical artefacts com-
moninancient DNA, we performed simulations. We selected 40 indi-
viduals having both haplotypes representedinthe AMY graph and, for
those, we simulated short reads mirroring error profilesin modernand
ancient genomes across different coverage levels. More specifically,
we simulated paired-end short reads for the modern samples with
wgsim (https://github.com/Ih3/wgsim; commit al2da33, ‘wgsim -1
150 -2150’) and single-end short reads for the ancient samples with
NGSNGS® (commit 559d552, ‘ngsngs -ne -If Size_dist_sampling.txt
-seq SE-m b7,0.024,0.36,0.68,0.0097 -q1 AccFreqL150R1.txt’ follow-
ing the suggestions by the author in https://github.com/RAHenriksen/
NGSNGS). Synthetic reads were then aligned against the GRCh38 build
of the human reference genome using bwa-mem2 (ref. 70; commit
7f3a4db). For samples modelling modern individuals, we generated
5-30X coverage data, whereas for those modelling ancient genomes,
we aimed for lower coverage (1-10X) to better approximate true-to-life
data. Weranour haplotype deconvolution pipelineindependently for
modern and ancient simulated samples, as well as varying coverage
levels. Out of 480 tests, only 9 (approximately 1%) yielded incorrect
predictions, exclusively in ancient simulated sequences, with coverage
ranging from 1X to 4X. Cosine similarity scores for ancient simulated
sequences ranged from 0.789 to 0.977 (median of 0.950), whereas
scores for modern simulated sequences ranged from 0.917 to 0.992
(median of 0.981; Extended Data Fig. 7b). We therefore conclude that
the haplotype deconvolution method is also highly accurate for ancient
samples. Out of an abundance of caution, we further imposed a con-
servative quality score threshold of 0.75to ancient samples, resulting
in 288 ancient samples with high-confidence haplotype assignment
out of a total of 533 (Supplementary Figs. 20 and 21). We note that
the haplotype deconvolutions in ancient samples are probably more
accurate thanread-depth genotypes, which tend to be biased towards
higher copy number.

Linkage disequilibrium estimation

To investigate pairwise linkage disequilibrium across the SVR region
ataglobal scale, we first merged our copy number estimates with the
joint SNP call set from the HGDP and 1KG", resulting ina variant call set
of 3,395 diverse individuals with both diploid copy number genotypes
and phased SNP calls. In brief, we used beftools (v1.9)% to filter HGDP
and 1KG variant data for designated genomicregions on chromosome1,
including theamylase SVR and flanking regions defined asbundle 0 and
bundle1(distal and proximal, respectively) using the GRCh38 reference
coordinate system (--region chromosome 1:103,456,163-103,863,980
in GRCh38). The resulting output was saved in variant call format (vcf),
keeping only biallelic SNPs (-m2-M2-v snps), and additionally filtered
withvcftools (v.0.1.16) with -keep and -recode options for lists of indi-
viduals grouped by continental region in which we were able to estimate
diploid copy numbers. Population-specific vcf files were further filtered
for aminor allele frequency filter threshold of 5% (--minmaf 0.05) and
used to generate anumeric genotype matrix with the physical positions
of SNPs for linkage disequilibrium calculation (R?statistic) and plotting
with the LDheatmap” functioninR (v4.2.2).

To further dissect the unique evolutionary history of the amyl-
ase locus, we compared regions with high R* across the SVR with
linkage disequilibrium estimates for pairs of SNPs across regions
of similar size in chromosome 1. We specifically focused on pairs of
SNPs spanning bundle O (chromosome 1: 103456163-103561526 in
GRCh38) and the first 66-kb of bundle1, hereafter labelled as bundle
1a (chromosome 1: 103760698-103826698 in GRCh38), as revealed

by the linkage disequilibrium heatmap. Then, we computed the R*
values for any pair of SNPs in chromosome 1 for each superpopula-
tion within a minimum of 190-kb distance (that is, the equivalent
distance fromthebundle 0 end to the bundlelastart usingthe GRCh38
reference coordinate system) and maximum 370-kb distance (that
is, the equivalent distance from the bundle O start to the bundle 1a
end using the GRCh38 reference coordinate system). To calculate
pairwise linkage disequilibrium across the human chromosome 1
for different populations, we ran plink (v1.90b6.21)” with options
-r2 -ld-window 999999 -Id-window-kb 1000 -1d-window-r2 O -
make-bed -maf 0.05, using population-specific vcf files for a set of
biallelic SNPs of 3,395 individuals from the HGDP and 1KG as input.
Astheresulting plink outputs only provide R? estimates for each pair
of SNPs and respective SNP positions, we additionally calculated
the physical distances between pairs of SNPs as the absolute differ-
ence between the base-pair position of the second (BP_B) and first
(BP_A) SNP. We then filtered out distances smaller than 190 kb and
greater than 370 kb, and annotated the genomic region for each R?
value based on whether both SNPs fall across the SVR or elsewherein
chromosome 1. The distance between SNP pairs was also binned into
intervals 0f 20,000 bp, and the midpoint of each interval was used
for assessing linkage disequilibrium decay over genomic distances.
Theresulting dataset wasimported in R to compute summary statis-
tics comparing linkage disequilibrium across each major continen-
tal region, or superpopulations, and we used ggplot2 to visualize
the results.

Coalescent tree, ancestral-state reconstruction and PCA

To construct the coalescent tree, we first extracted bundle O and bun-
dle 1a sequences from all 94 haplotypes (that is, distal and proximal
unique regions flanking the amylase SVR) that went through principal
bundle decomposition. Onthe basis of their coordinates on the human
reference genome (GRCh38), we used SAMtools (v1.17)™ to extract
these sequences from three Neanderthal and one Denisovan genomes
that are aligned to GRCh38. We used kalign (v3.3.5)” to perform mul-
tiple sequence alignment on bundle 0 and bundle 1a sequences. We
used IQ-TREE (v2.2.2.3)7 to construct a maximum likelihood tree with
Neanderthal and Denisova sequences as the outgroup, using an esti-
mated 650 kyr human-Neanderthal split time for time calibration”. We
used ggtree (v3.6.2)” inR (v4.2.1) to visualize the tree and annotated
eachtipwithitsstructural haplotype and amylase gene copy numbers.
We used cafe (v5.0.0)”® to infer the ancestral copy numbers of each
of the three amylase genes along the time-calibrated coalescent tree
(excluding the outgroups) and to estimate their duplication/deletion
rates. The timing of each duplication/deletion event was estimated
based onthe beginning and end of the branch along which the amylase
gene copy number had changed. We used ggtree and ggplot (v3.4.2)
in R to visualize these results, and used Adobe Illustrator (v27.5)
to create illustrations for several of the most notable duplication/
deletion events”.

Next, we performed a PCA combining 94 HPRC haplotype sequences
with variant calls for 3,395 individuals from the HGDP and 1KG. We
first aligned all 94 bundle 0 and 94 bundle 1a haplotype sequences
to the human reference genome (GRCh38) using minimap2 (v2.26)%*,
and called SNPs from haplotypes using paftools.js. Each haplotype
sequence appears as a pseudo-diploid in the resulting vcf file (that is,
whenthe genotypeis different from the reference, itiscoded as being
homozygous for the non-reference allele). These haplotype-specific
vcffiles were merged together and filtered for biallelic SNPs (-m2 -M2
-v snps) with beftools, resulting in a pseudo-diploid vcf file from 94
haplotype sequences for each bundle. These were then merged with
therespective bundle 0 and bundle 1a vcffiles from the HGDP and 1KG,
alsofiltered for biallelic SNPs, using beftools. Finally, we ran plink with
aminor allele frequency of 5% (--maf 0.05) to obtain eigenvalues and
eigenvectors for PCA and used ggplot (v3.4.2) to visualize the results.
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These analyses were conducted with bundle 0 and bundle laseparately,
with highly concordant results (Supplementary Figs. 3 and 4). Analyses
focused on bundle 0 are mostly reported in the main text (Fig. 3 and
Extended DataFig. 6), whereas bundle 1aresults are shown as extended
data (Extended Data Fig. 4).

Signatures of recent positive selectionin modern human
populations

Toinvestigate very recent or ongoing positive selection at the amylase
locus in modern humans, we first looked for significant signatures of
reduced genetic diversity across the non-duplicated regions adjacent to
the SVR compared with chromosome1in different populations world-
wide. This stems from the assumptionthat, given low SNP density across
the SVR, the high levels of linkage disequilibrium found between pairs
of SNPs spanning bundle 0 and bundle 1aindicate that SNPsin bundle O
orbundlelcanbe used as proxies for the selective history of the linked
complexstructures of the SVR. We calculated nucleotide diversity ()
onsliding windows of 20,000 bp spanning GRCh38 chromosome 1 with
vcftools using population-specific vcf files from the HGDP and 1KG fil -
tered foraset of biallelic SNPs asinput. Each window was annotated for
the genomicregion, namely, bundle 0, SVR and bundle 1a. Allwindows
comprising the SVR were removed from the resulting output due to
low SNP density. We then used ggplot2 in R to compare and visualize
nucleotide diversity in the flanking regions of the amylase locus (that
is,bundle 0 and bundle 1a) and the rest of chromosome 1 for each major
continental region or super-population.

To identify either soft-selective and hard-selective sweeps at the
flanking regions of the SVR, we computed several different extended
haplotype homozygosity-based statistics and statistics based on
distortions of the haplotype frequency spectrum (Supplementary
Table 5). Vcffiles from the HGDP and 1IKG chromosomes 1-22 GRCh38
were filtered for biallelic SNPs and minor allele frequency of 0.05 for
target populations with over 10 individuals to calculate iHS®, nSL®
and XP-nSL® as implemented in selscan (v2.0.2)% (see Supplementary
Table 5foradescription of populations and selection statistics). Utah
residents with Northern and Western European ancestry (CEU) and
Yoruba (YRI) populations were also included to confirm the ability of the
tests to consistently identify the LCT hard sweep in CEU and inrelation
totheamylaselocus (Supplementary Table 5). Scores for these statistics
were normalized using the genome-wide empirical background with
selscan’s co-package norm (v1.3.0). This was also used to compute the
fraction of the standardized absolute values > 2 for each statistic in
non-overlapping 100-kb windows genome-wide®. For XP-nSL statistics,
modernrainforest hunter-gatherersin Africa and the pastoralists Yakut
were used as reference populations, so that positive scores correspond
to possible sweeps in the populations with traditionally agricultural
diets. Wealso used lassip (v1.2.0)%*to compute H12 and H2/H1 statistics®
and saltiLASSIA®* on sliding windows of 201 SNPs with intervals of 100
SNPs. SNP positions within the SVR were removed from the resulting
outputs due to low SNP density. We then compared the average and
distribution of all selection statistics across individual SNPs or windows
located within bundle O and bundle 1a (Iabelled as ‘AMY region’) and
located within chromosome 2:135-138 Mb (labelled as the ‘LCT region’)
with that of therest of the genome using geom_stats() and geom_den-
sity() functionsin ggplot2 (Supplementary Table 5and Supplementary
Figs. 6-18). We also used an outlier approach and focused on the top
0.05% of the test statistic across all windows genome-wide for modern
populations of known subsistence, and considered estimates above
this threshold to be strong signals of selection®°. To improve detec-
tion power, we computed Fisher’s exact score®® from SNP ranks for the
two selection statistics that were better able to identify signatures of
selection at the AMY locus. Then, we investigated whether the scores
computed from these statistics for SNPs located at the AMY locus were
amongthetop 1% of Fisher’s exact scores estimated genome-wide (Sup-
plementary Table 5and Supplementary Fig. 18).

Inference of recent positive selection in West Eurasian
populations using ancient genomes

To determine whether changesin the frequency of different structural
haplotypes over the past 12,000 years were consistent with positive
selection, we first grouped amylase structural haplotypes (n =11) into
those with the ancestral number of amylase gene copies (three total)
or with amylase gene duplications (five or more copies). We used
three complementary approaches to infer the selection coefficient
associated with duplication-containing haplotypes. First, we used
ApproxWF? to perform Bayesian inference of the selection coeffi-
cientfrombinned allele frequency trajectories. We ran ApproxWF for
101,0000 Markov chain Monte Carlo (MCMC) steps with parameters
n=10,000, h=0.5and pi =1. We assumed ageneration time of 30 years
to convert the age of ancient samples from years to generations. The
first10,000 steps of the MCMC process were discarded in all analyses.
Next, we used bmws (v0.1.0)*? to estimate the allele frequency trajec-
tory and time-varying selection from genotype data with parameters
-d diploid -14.5-g30-n10000 -t. We further ran 1,000 bootstrap rep-
licates to obtain 95% credible intervals around our estimates. Last,
we used an approximate Bayesian computation approach adapted
and modified from ref. 33 to explicitly account for the demographic
processes underlying the allele frequency changes. We performed
extensive forward-in-time simulations using SLiM (v3.7.1)¥ based on a
well-established demographic model for West Eurasians® thatincludes
major population split and admixture events as well as population
growth (Supplementary Table11). We allowed three model parameters
tovary across simulations: selection coefficient (s), the time of selec-
tiononset (¢, in kyr BP) and the initial allele frequency in the ancestral
population (f). Selection is only applied to known agricultural popu-
lations (that is, early farmers, Neolithic farmers, and Bronze Age to
present-day Europeans), and its strength is assumed to be constant
over time. These parameter values were setin evenly spaced intervals
(thatis, 21 values of s € [-0.01, 0.04], 21 values of ¢ € 3, 15], 31 values
of fe[0.05, 0.8]), and 1,000 replicate simulations were run for each
unique parameter combination. This resultedin 13,671,000 simulations
in total. For each simulation, we calculated the difference between
the observed and the expected binned allele frequency trajectories,
accounting for uneven samplingin time and genetic ancestry. We then
selected the top 0.1% of simulations (that is, 13,671 simulations) that
best resemble the observed data to approximate the posterior distri-
bution of model parameters. We also examined the allele frequency
changes (thatis, the difference between allele frequencies in the first
and last time bin) across all neutral simulations with s = 0 and compared
them with the observed allele frequency change in the data (Supple-
mentary Fig. 25).

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Alldatausedin this project are publicly available and described in the
‘Datasets’ section of the Methods. Copy number genotypes, structural
haplotypes, haplotype deconvolutions and pangenome graphs can be
found in the Supplementary tables and a GitHub repository (https://
github.com/sudmantlab/amylase_diversity_project) that is archived
inZenodo (https://zenodo.org/doi/10.5281/zen0d0.10995434)%8, The
HPRC data can be obtained at https://humanpangenome.org/data/.
ThelKGdataand the HGDP data can be obtained at https://www.inter-
nationalgenome.org/data/. The SGDP data can be obtained at https://
www.simonsfoundation.org/simons-genome-diversity-project/. The
joint1KG and HGDP variant call set can be obtained at https://gnomad.
broadinstitute.org/downloads#v3-hgdp-1kg. The ancient data are
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available on the European Nucleotide Archive under the accession
codes PRJEB64656 and PRJEB50857. The raw GTEx expression data can
be obtained at https://gtexportal.org/home/datasets. GTEx genetic
data are available under restricted access at https://gtexportal.org/
home/protectedDataAccess.

Code availability

The code for haplotype deconvolution can be found in the follow-
ing GitHub repository (https://github.com/raveancic/graph_geno-
typer) and is archived in Zenodo (https://zenodo.org/doi/10.5281/
zeno0do.10843493)%, All other code used in the paper can be found
in the following GitHub repository (https://github.com/sudmantlab/
amylase_diversity_project) andisarchivedinZenodo (https://zenodo.
org/doi/10.5281/zenodo.10995434)%,
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indicated by the shade. Binned haplotype frequency is shown with the black
curve, with the following five time bins to maximize evennessinsample size
across bins (unitinkyrBP):[12, 8.5),[8.5,5.5),[5.5,2.5),[2.5,0), 0. Thisbinned
frequency trajectoryis used as the summary statistics for the ABC analysis.
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