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Abstract—The emerging field of smart healthcare has identified
emotion detection as a key component in improving patient
care, diagnostics, and therapeutic interventions. This paper in-
troduces an innovative approach to emotion detection within
the healthcare domain by integrating a Convolutional Neural
Network (CNN) with a Maximum A Posterior (MAP) estimator
prepared for Magnitude-Squared Spectrum (MSS) analysis. The
effectiveness of CNN’s advanced feature extraction capabilities
with the statistical strength of MAP estimation offers a promis-
ing avenue for interpreting complex physiological signals. The
proposed methodology aims to accurately discern and quantify
emotional states, thus contributing to the personalization and
effectiveness of healthcare services. To validate the efficacy of this
approach, the work conducted extensive experiments on a diverse
data set composed of physiological signals, demonstrating that
the proposed model outperforms existing limitations in emotion
recognition tasks. The integration of MSS into CNN frameworks,
added with MAP estimation, provides a significant improvement
in the detection and analysis of emotions, resulting in more
responsive and intelligent healthcare systems. This proposed paper
not only presents a novel methodological contribution, but also
demonstrates the groundwork for future research toward the
intersection of emotional intelligence and healthcare technology.

Index Terms—emotion recognition, convolutional neural net-
work, MAP estimation, magnitude squared spectrum, healthcare

I. INTRODUCTION

Emotion detection has attracted significant attention in the
realm of smart healthcare due to its potential to revolutionize
patient care. Recognizing and interpreting human emotions is
a complex challenge that involves psychological understand-
ing, physiological signal analysis, and advanced computational
techniques. In healthcare settings, the ability to accurately as-
sess the emotional state of a patient can lead to better diagnosis,
personalized treatment plans, and improved patient-clinician
interactions. With the advent of wearable technology and the
demand of sensors capable of capturing biosignals, there is
need and an opportunity to integrate emotion detection into
smart healthcare solutions. Traditionally, emotion detection has
relied heavily on psychological assessments and self-reporting
methods. However, these approaches can be subjective and

are often limited by individuals’ ability to understand and
articulate their emotional states. To overcome these limitations,
researchers have moved towards biosignal processing as an
objective method for emotion detection. Physiological signals
such as heart rate, skin conductance, and brain activity offer
quantifiable data that can be analyzed to infer emotions.
Machine learning techniques have been instrumental in the
advancement of this field by providing tools to extract patterns
and insights from complex biosignal datasets. Among various
machine learning techniques, the convolutional neural network
(CNNs) has emerged as a powerful tool for feature extraction
and classification tasks. CNNs are particularly used for han-
dling data with spatial and temporal structures, making them
suitable for biosignal analysis. Despite their success, CNNs
often require large amounts of labeled data and substantial
computational resources. In addition, the black-box nature of
deep learning models can make it challenging to understand
the decision-making process, which is a critical aspect of
healthcare applications.

To address these challenges, the paper proposes a novel
approach that combines CNNs with a Maximum A Posterior
(MAP) estimator for MSS analysis. The MAP estimator is
a Bayesian inference technique that provides a probabilistic
framework for estimating parameters. When applied to MSS
representation of signal energy distribution over frequency,
it allows for a robust analysis of biosignals under uncer-
tain conditions. According to the World Health Organization
(WHO), mental health disorders are among the leading causes
of disability worldwide, affecting almost one billion people
worldwide [1]. Specifically, mood disorders such as depression
and anxiety have a staggering economic burden, estimated at
more than 1 trillion dollars per year in lost productivity. Early
detection and intervention are crucial for effective treatment
and management of such conditions.

Affective computing, which aims to develop computational
models for recognizing and responding to human emotions, has
emerged as a promising approach for monitoring mental health
[2]. Emotion recognition systems can potentially enable con-
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Fig. 1: Proposed system model

tinuous and unobtrusive tracking of an individual’s emotional
state, allowing timely identification of distress and facilitating
personalized interventions [3].

Traditional methods of emotion assessment, such as self-
report questionnaires and clinical interviews, are often sub-
jective, time consuming, and prone to bias [4]. In contrast,
affective computing techniques use physiological signals (e.g.,
speech, facial expressions, biosignals) to objectively infer emo-
tional states using machine learning and signal processing
algorithms [5].

Speech is a particularly informative modality for emotion
recognition, as it encodes both linguistic and paralinguistic cues
related to emotional states [6]. However, real-world speech
signals are often corrupted by noise and distortions, which
can degrade the performance of emotion recognition systems.
Therefore, robust feature extraction and noise suppression
techniques are crucial for accurate emotion detection from
speech data. In smart healthcare applications, the integration
of emotion detection systems has seen a shift from traditional
methods to machine learning-based approaches. CNNs have
been particularly successful in image and speech recognition
tasks and are increasingly being applied in the analysis of
physiological signals. However, there is a gap in research
concerning the use of MAP estimators in conjunction with
CNNs for emotion detection through MSS analysis. This paper
aims to fill this gap by exploring the advantages of these
methods.

A. Objectives

The primary objective of this study is to develop and validate
a CNN-based MAP estimator for MSS analysis tailored for
emotion detection in smart healthcare applications. The specific
aims are as follows:

e To design a CNN architecture optimized for MSS feature
extraction from physiological signals.

o To integrate MAP estimation with the CNN framework to
enhance the model’s ability to handle uncertainty and improve
interpretability.

e To compare the performance of the proposed approach
with existing emotion detection methods.

o To assess the clinical applicability of the proposed system
in smart healthcare environments.

The system model is proposed, as shown in Fig. 1, to identify
emotions based on physiological signals. The system would
collect physiological signals, process them, and then estimate
and detect emotions. Data Collection: Physiological signals are

collected from a sensor in the body of the research participant.
Magnitude-Squared Spectrum: The signal is then processed by
an MSS module. MSS likely refers to Multi-Signal Processing,
a technique that combines information from multiple sources.
In this case, the sources would be the different physiological
signals collected by the sensor. CNN: The processed signal
is then fed into a CNN which performs well in identifying
patterns in data in various applications. Here, CNN would
be trained to identify patterns in physiological signals that
are associated with different emotions. MAP: the output of
the CNN is then fed into a MAP estimator. MAP refers
to Maximum A Posteriori, which is an estimation technique
used in probability theory as per the conventional definition.
In this case, the MAP estimator would be used to estimate
the most likely emotion based on the CNN output. Lastly,
Emotion Detection: the MAP estimator outputs a detected
emotion. The goal of the system is to develop a way to
automatically identify emotions based on physiological signals.
This proposed approach has applications in a variety of fields,
such as human-computer interaction, mental health, and other
smart healthcare applications. The research introduces a CNN-
based Maximum A Posterior Estimator of Magnitude-Squared
Spectrum approach for emotion detection in smart healthcare
applications. The main findings demonstrate that this approach
effectively reduces spectral distortion and suppresses noise,
leading to more accurate emotion recognition from speech
signals, even in noisy environments. The contributions include
a novel integration of CNNs with MAP estimation to enhance
emotion detection performance in challenging conditions. This
paper is organized as follows: Section 2 provides a com-
prehensive review of related work in the field of emotion
detection, with a focus on biosignal processing and machine
learning applications in smart healthcare. Section 3 details the
methodology used in this study, including CNN architecture,
MAP estimation framework, data collection procedures, signal
pre-processing, feature extraction, and model training. Section
4 presents the results of the experiments conducted to evaluate
the performance of the proposed approach, along with a dis-
cussion of the findings. Section 5 discusses the implications
of this study for smart healthcare applications and outlines
potential future research directions based on the results. Section
6 concludes the paper with a summary of key contributions
and final thoughts on the advancement of emotion detection in
smart healthcare through innovative computational methods.

II. RELATED WORK

The research for effective ways to detect emotions has
involved experts in many different fields working together,
including the fields of psychology, signal processing, and
artificial intelligence. This section explores the evolution of
emotion detection strategies, focusing on their application in
healthcare and the role of machine learning, particularly CNN's
and MAP estimators.

Emotion Detection in Healthcare Emotion detection in
healthcare has traditionally relied on psychological evaluations,
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such as the use of questionnaires and clinical interviews [7].
However, these subjective measures are often complemented
by physiological indicators [8]. Researchers have found cor-
relations between emotional states and physiological signals
such as heart rate variability (HRV), electrodermal activity
(EDA), and electroencephalogram (EEG) patterns [9]. The
integration of sensor technology into healthcare care has led
to the development of wearable devices that can continuously
monitor physiological signals, providing a wealth of data for
emotion analysis [10]. Studies have demonstrated the potential
to use these signals in conjunction with machine learning
algorithms for real-time emotion recognition [11], which can
be particularly beneficial for patients with communication
difficulties or mental health conditions [12].

Machine Learning for Emotion Detection Machine learn-
ing has revolutionized the field of emotion detection by al-
lowing the analysis of complex and high-dimensional biosig-
nal data [13]. Various machine learning techniques, including
support vector machines (SVM), random forests, and neural
networks, have been used to classify emotional states [14].
Among these, deep learning approaches, particularly CNNs,
have shown great promise due to their ability to automatically
extract relevant features from raw data [15,24].

CNN Applications in Bio-signal Analysis CNNs have been
successfully applied to a range of biosignal analysis tasks,
such as EEG signal classification [16] and ECG-based emotion
recognition [17]. The architecture of CNNs allows them to
capture spatial and temporal dependencies in data, making them
well suited for processing time-series physiological signals
[18]. Recent advances have focused on optimizing CNN archi-
tectures for better performance and interpretability in healthcare
applications [25,26].

MAP Estimation in Signal Processing Analysis

The MAP estimation technique is a Bayesian method em-
ployed in signal processing to estimate parameters by maximiz-
ing the posterior distribution [9]. It has been used in various
applications, including image reconstruction and speech en-
hancement [12-13], where uncertainty is a significant concern.
The combination of MAP estimation with MSS analysis has
been explored to some extent to reduce noise in biosignals
[10], but its application in emotion detection remains a crucial
factor for researchers.

A. Gaps in Current Research Analysis

Although there has been substantial progress in emotion
detection using machine learning, there are still gaps in the
literature, especially regarding the integration of MAP esti-
mators with CNNs for MSS analysis in bio signals. Existing
research has focused primarily on machine learning models or
statistical estimations separately. There is a lack of studies that
combine these approaches to take advantage of both the feature
extraction capacity of CNNs and the statistical strength of MAP
estimators.

Moreover, most current methodologies do not fully exploit
the information in the frequency domain contained in physio-
logical signals, which can be crucial to distinguish important

parameters for emotional differences [12,14-18]. The proposed
research aims to fill this gap by introducing a CNN-based MAP
estimator approach for MSS analysis, which has the potential
to improve the precision and reliability of emotion detection
systems in smart healthcare applications.

III. METHODOLOGY

This section provides a detailed methodology for our pro-
posed emotion recognition system based on MAP spectral es-
timation and CNN framework. The state-of-the-art approach in-
volves: Signal preprocessing using short-time Fourier transform
(STFT), application of MAP estimation on magnitude-squared
spectrum, extraction of enhanced spectral feature vectors, and
training a compact 1D CNN for classification. The model
aims to accurately classify emotional states from physiological
signals that may be corrupted by noise and distortions. The sub-
sequent subsections explain each component mathematically.

A. Dataset

For the validation of the suggested approach in our ex-
perimental assessments, we employ two datasets. The initial
dataset is IEMOCAP [19], a collection of human data that
includes around 12 hours of audio-video conversation files, as
well as data on speech and facial motion capture. The dataset
contains a text file that labels human emotions at specified
time points and provides audio spoken stimuli for emotions
such as neutrality, sadness, anger, and happiness. The second
dataset is the NOIZEUS speech corpus, which comprises 30
speech stimuli uttered by six individuals, including three males
and three females [21],[22]. The audio stimuli in this dataset
are captured at a frequency of 8 kHz and consist of non-
stationary noises at different input signal-to-noise ratios. In
order to validate the aim, noisy stimuli were generated by
impairing clean stimuli with babbling noise and AWGN at
various input signal-to-noise ratios, as explained by Paliwal
et al. [20].

B. Short-time Fourier Transform

Since the input physiological signals represent nonstation-
ary processes, their frequency characteristics vary with time.
Hence, a time-frequency representation is better suited for
analysis than the simple Fourier transform. The work applies
a STFT which segments the signal into smaller overlapping
frames and computes the discrete Fourier transform (DFT) for
each frame:

X(n, k)= Z z(m)w(n — m)e=32mkm/N )

m=—0o0

Here, w(n) denotes a sliding analysis window of length N
samples. The STFT spectrum X (n, k) describes the frequency
content at the n'” frame and k'" frequency bin. The inverse
STFT allows full reconstruction of the original signal from its
time-frequency representation which is represented as:
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This property will be utilized in the next sub-section after
the STFT spectrum is modified, as mentioned below.

C. Magnitude-Squared Spectrum

MSS derived from the STFT only retains magnitude informa-
tion about the input signal but not phase information. Therefore,
MSS is computed as the squared magnitude of the STFT, which
captures the intensity of different frequency components over
time but discards the phase information as required for the
proposed approach.

MSS(n, k) = |X(n,k)|? 3)

However, this still contains noise and interference compo-
nents that can degrade the classification performance. Hence,
the proposed work applies MAP estimation to further enhance
the MSS representation.

D. MAP Spectral Estimation

The key goal of MAP spectral estimation is to suppress noise
while retaining reliable frequency information that represents
the characteristics of the underlying source signal.

The work uses an auto-regressive (AR) framework to model
the power spectrum as mentioned:

v
P(k) = 4)
[A(k)P?
where A(k) denotes the Fourier transform of the AR co-
efficients and ~ is the noise variance. The MAP optimization
provides the enhanced spectrum as represented by:

VX (n, k)
T(k) +

The weighting function T'(k) is derived from AR parameters
to attenuate unreliable frequency bins where signal power is
less than noise power. The key outcomes are noise reduction
and prominence of emotionally dominant features. The MAP
estimator significantly suppresses random noise across frequen-
cies, while retaining and enhancing the prominent peaks that
likely contain useful effective information.

MSS(n, k) = ®)

E. Feature Extraction

The MAP-enhanced magnitude spectra M SS(n, k) are used
to extract feature vectors for emotion classification. Along with
the magnitude, the original phase information is also retained:

D(n, k) =2LX(n,k) (6)

This allows reconstruction of the time-domain frame as:

| N1
:N;

S(n, k)7 el ®(nh) (7
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Therefore, the feature vector for the n'" frame is formed by
the victories enhanced spectrum becomes:

f(n) = vec|MSS(n, k)] (8)

The sequence of such feature vectors captures the emotion-
dominant time-frequency patterns from the input signal. This
serves as input to the CNN classifier.

FE. 1D CNN Architecture

The CNN architecture aims to learn dominant representations
of the MAP-enhanced spectral vectors to discriminate between
emotional states. As per the proposed work, we use 1D
convolution filters that span across the frequency bins of each
frame as shown:

=04y jWhigs [ )

Where * denotes the convolution operation, Wilj is the filter
extending from frequency bin i to j, and b' is the bias term.

Here, batch normalization and maximum-pooling layers help
to improve generalization capability. The network has a simple
stack of 3 convolutional blocks followed by 2 dense layers and
softmax output and the key hyperparameters are as follows:

« Convolution layers: 32, 64, 128 filters

o Kernel size: 3

e Pool size: 2

o Dense layers: 512, 256 units

¢ Output dimension: 4 (emotions)

The model is trained end-to-end using the Adam optimizer
by minimizing the categorical cross-entropy loss:

L=- Z Yn log(gn)

n

(10)

Here, y, and g, are the true and predicted emotion labels,
respectively. The optimized network provides enhanced emo-
tion recognition performance, as quantified in our experiments.
In CNNs, key parameters are kernel size, stride, and padding
are crucial for feature extraction, while model training involves
selecting the right loss function, optimizer, and regularization
techniques to prevent overfitting. Hyperparameter tuning, in-
cluding batch size and layer configuration, optimizes model
performance. Finally, metrics like accuracy and precision are
essential for evaluating the model’s effectiveness as presented
in the next subsection.

G. MAP-based Feature Extraction
Algorithm 1: MAP-based Feature Extraction
1 Input: Physiological signal z(n) Apply STFT to get
X (n, k) Compute magnitude spectrum: M (n, k)Find AR
model parameters Derive weighting function: T'(k) MAP
spectral estimation: S(n, k) = A’Tj\{k(;;’; ) Retain phase:
®(n, k) Output: Enhanced features f(n)
The proposed algorithm outlines the key steps to extract
emotionally dominant characteristics using the proposed MAP
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technique. The input physiological signal is initially converted
to a time-frequency representation using a STFT. The magni-
tude spectrum M (n, k) captures the signal characteristics in
time and frequency. An autoregressive model (AR) is then
estimated to approximate the spectral envelope, which provides
the weighting function T'(k) for the estimation of the MAP.
The MAP spectrum retains prominent peaks while suppressing
noise and unreliable frequency components. The phase ®(n, k)
is also stored to allow signal reconstruction. The enhanced
spectral features f(n) preserve useful effective information for
emotion classification.

Algorithm 2: CNN Classification

1 Input: Features f(n) Parameters: F-Filters per layer,
K-Kernel size, P-Pool size for each conv layer | do-_

2Convolve fU—1) with F filters Apply activation and
normalization Max pool with window P Flatten-feed to
dense layers Output: Predicted emotion g

This outlines the CNN architecture for emotion classifica-
tion. MAP-extracted spectral feature vectors f(n) are fed as
input. A series of 1D convolutional layers then learn to extract
distinct patterns across time and frequency. Batch normalization
and non-linear activation generalizes further clearer outputs. As
Max pooling reduces dimensionality, the latter fully connected
layers map the features to emotion labels which are predicted
using softmax activation. The entire model is trained end-to-
end using gradient descent and backpropagation to minimize
the classification loss. The proposed scheme can reduce spectral
distortion and suppress noise in a CNN-based Maximum A
Posterior Estimator of Magnitude-Squared Spectrum approach,
since the CNN is capable of learning complex, non-linear map-
pings from noisy inputs to clean the outputs. By modeling the
relationships between noisy and clean spectra, CNN effectively
enhances the signal by preserving the important spectral fea-
tures while minimizing distortions. Further, the MAP estimator
refines this process by incorporating prior knowledge about the
clean signal’s characteristics, leading to more accurate noise
suppression and reduced spectral distortion.

IV. PROPOSED APPROACH AND SIMULATIONS

This section provides the detailed methodology and exper-
imental simulations for evaluating the proposed Magnitude
Squared Spectrum with MAP (MSSP:MAP) estimation tech-
nique. Comparative analysis is performed using both objective
speech quality and intelligibility metrics: Perceptual Evaluation
of Speech Quality (PESQ), Log-Likelihood Ratio (LLR), Seg-
mental SNR (SNRseg), Weighted Spectral Slope (WSS), Signal
distortion (Csig), Background intrusiveness (Cbak), Overall
quality (Covl) and Short-time Objective Intelligibility (STOI).
This further justifies the proposed work in terms of comparison
and validity.

A. Signal Model

Here, we consider a noisy speech signal y(n) generated by
corrupting the clean speech s(n) with additive noise d(n):

y(n) = s(n) + d(n) (1)

Here, the proposed speech enhancement technique aims to
suppress the noise and recover the original signal s(n) as
accurately as possible.

B. Enhanced Speech

The enhanced time-domain signal §(n) is reconstructed
using the inverse STFT on the MAP-estimated MSS:

3(n) = STFT Y (MSSnrap(m, k)ze/®0R)y  (12)

This reconstructed output contains reduced noise and higher
perceptual quality compared to the noisy input speech.

C. Objective Evaluation

For justifying the novelty, we compare the performance of
proposed MSSP: MAP against spectral subtraction (SS) and
LogMMSE methods. The quality and intelligibility of enhanced
speech is measured using the following metrics:

1) PESQ: Perceptual Evaluation of Speech Quality (PESQ)
predicts speech quality on a scale of 1 (bad) to 5 (excellent)
based on auditory transform and psycho-acoustic model are as
shown:

PESQ = 4.5 —0.1D — 0.0309A (13)

where D represents average disturbance and A denotes asym-
metric disturbance.

2) LLR: The Log-Likelihood Ratio (LLR) evaluates frame-
level noise attenuation can be written as:

¥ (m, k)P
S(m, k)2

Here, the higher LLR indicates better noise suppression.
3) SNRseg: Segmental SNR (SNRseg) provides frame-level
signal-to-noise ratio as presented by:

LLR(m, k) = log (14)

2
SN Rseg(m) = 101og;( 2 |S(m. ]f)| ) (15)

2k |5 (m, k) = S(m, k)|?
This justifies higher SNRseg which implies to lower spectral
distortion in the application.
4) WSS: Weighted spectral slope (WSS) measures noise
coloration based on tilt in the power spectrum which can be
written as:

WSS =Y k(P(k+1) - P(k)) (16)
k

Where P(k) denotes the power spectrum. Here, WSS closer
to 0 indicates less coloration. Figure 2 shows performance Error
rate comparisons for recognition of angry emotion for smart
healthcare applications
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Fig. 2: Performance Error rate comparisons for recognition of
Angry Emotion

5) Csig, Cbak Covl:: The quality metrics Csig, Cbak and
Covl measure speech signal distortion, background intrusive-
ness and overall effect:

. Dy
=1--—= 1
Csig D+ oD, (17)
BDy
=1- — 1
Chak Dy + Dy + aDy (18)
Covl=1-— Dos (19)

Dos + Db + Oél)d

where D terms denote the audible distortion components and
«, B are constants.

6) STOI:: Short-time objective intelligibility (STOI) quan-
tifies speech intelligibility based on temporal envelope corre-
lation in the proposed approach which is:

1 {slm), wa(m))
STOI = 7 2 1y

20
ya(m)] 0

where ys and y, are the clean and enhanced speech envelopes
and N is total number of frames and m denotes effective
number of frames. Here, STOI ranges from O to 1 and with
higher score indicates postive intelligible speech metrics.

D. Results and Analysis
V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel emotion recognition method-
ology based on integrating MAP spectral estimation within a
CNN framework. The key novelty is applying the MAP tech-
nique to magnitude-squared FFT spectra derived from physi-
ological signals. This helps suppress ambient noise and retain
the relevant emotional frequency components. The subsequent
CNN architecture standards of the benchmark IEMOCAP and
NOIZEUS datasets as validated experimentally. The proposed
model achieves weighted accuracy scores of 73.25 percent and
71.18 percent respectively, demonstrating the effectiveness of
combining MAP and CNNs. The noise robustness introduced
by the estimation of MAP coupled with the relevant frequency

TABLE I: Comparison for Noisy, Paliwals, Proposed and
Berout’s Methods for Angry emotion for evaluation metric
SNRseg, WSS, PESQ, STOI, Loss, Csig, Cback, Covl

Input SNR for Angry Emotion
¥°‘SC Metrics | 0 dB 5dB 10 dB 15 dB
ype
SNRseg | -4.5614 -1.1181 2.45663 6.175738
WSS 84.25365 62.1749 44.54031 | 30.92803
PESQ 1.740819 2.170152 | 2.509908 | 2.865332
Noisy STOI 0.701133 0.799289 | 0.869998 | 0.917157
Loss 0.813387 0.719711 | 0.628117 | 0.541127
Csig 2.760663 3.418573 | 3.929440 | 4.369801
Cback 1.588965 2.165667 | 2.676722 | 3.176204
Covl 2.095215 2.695050 | 3.165279 | 3.598194
SNRseg | 0.909738 2.953154 | 4.576895 | 5.532606
WSS 81.32863 60.85383 | 52.99748 | 47.02986
PESQ 2.326833 2.613919 | 2.873721 | 3.015599
Paliwal STOI 0.698499 0.793590 | 0.837919 | 0.867534
Loss 0.909407 0.898492 | 0.892996 | 0.887762
Csig 3.096084 3.544320 | 3.832330 | 3.998709
Cback 2.234239 2.643525 | 2.925001 | 3.094801
Covl 2.565404 2.985036 | 3.279345 | 3.448823
SNRseg | -0.311221 | 2.408402 | 4.975396 | 6.989129
WSS 83.04138 59.76949 | 44.26966 | 36.69436
PESQ 2.399885 2.511002 | 2.895760 | 3.021564
Proposed STOI 0.726151 0.823792 | 0.880139 | 0.909435
Loss 0.838414 0.805192 | 0.759296 | 0.730841
Csig 3.166516 3.740673 | 4.113390 | 4.32076
Cback 2.074378 2.567602 | 2.959596 | 3.224904
Covl 2.521175 3.033500 | 3.386686 | 3.599206
SNRseg | -0.976345 | 0.802364 | 2.546570 | 3.632544
WSS 91.85765 9229799 | 8391111 | 79.81444
PESQ 2.105975 2.245505 | 2.350146 | 2.416240
Berouti STOI 0.8510 0.817175 | 0.782152 | 0.767120
Loss 0.81344 0.71442 0.63612 0.56451
Csig 2.967943 3.063552 | 3.253856 | 3.359255
Cback 1.936142 2.111814 | 2.330426 | 2.459112
Covl 2.363566 2.480486 | 2.649166 | 2.745316

representations. These are demonstrated by CNN which en-
ables building automated emotion recognition systems that are
affected by real-world distortions in day to day smart healthcare
applications. Finally, the work can be extended by deploying
such emotion detection systems on embedded or edge devices,
which will enable training and applying effective intelligence
with various smart applications in healthcare, education, and
human-computer interaction. Future research could explore the
integration of multimodal data, e.g., the combination of speech
with facial expressions or physiological signals, to improve the
accuracy of emotion detection. Adapting the model for real-
time processing and testing it in smart healthcare scenarios,
such as remote patient monitoring, could enhance practical
applications. In addition, investigating advanced neural network
architectures or applying transfer learning can further refine the
effectiveness of the model in noisy environments.
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