2024 IEEE Globecom Workshops (GC Wkshps) | 979-8-3315-0567-7/24/$31.00 ©2024 IEEE | DOI: 10.1109/GCWkshp64532.2024.11100329

A Scalable Blockchain Framework for Secure Data
and Computational Resource Management in SDN

Debashis Das*, La Chiara Landrum*, Pushpita Chatterjee*, and Uttam Ghosh*

*Department of CS and DS, Meharry Medical College, Nashville, TN, USA
debashis.das@ieee.org, llandrum24 @mmc.edu, pushpita.c@ieee.org, ghosh.uttam @ieee.org

Abstract—The rapid evolution of Software-Defined Networking
(SDN) has transformed network management by decoupling the
control and data planes. It provides centralized control, enhanced
flexibility, and programmability of network management services.
However, this centralized control introduces security vulnera-
bilities and challenges related to data integrity, unauthorized
access, and resource management. In addition, it brings forth
significant challenges in secure and scalable data storage and
computational resource management. These challenges are further
increased by the need for real-time processing and the ever-
increasing volume of data. To address these challenges, this paper
presents a scalable blockchain-based framework for security and
computational resource management in SDN architectures. The
proposed framework ensures decentralized and tamper-resistant
data handling and utilizes smart contracts for automated resource
allocation. Due to the need for advanced security and scalability
in SDN networks, this work incorporates sharding to improve
parallel processing capabilities. The performance of sharded
versus non-sharded blockchain systems under various network
conditions is evaluated. Our findings demonstrate that the sharded
blockchain model enhances scalability and throughput with robust
security and fault tolerance. The framework is also assessed for its
performance, scalability, and security to enhance SDN resilience
against data breaches, malicious activities, and inefficient resource
distribution.

Index Terms—Decentralized computing, Network resilience,
Secure data transmission, Data storage security, Fault tolerance.

I. INTRODUCTION

Software-defined networking (SDN) has changed how we
manage networks by separating the control functions from
the actual data flow to control network resources from a
central point [1]. This allows network administrators to manage
and control the entire network from a centralized controller.
It also provides the development and management of smart
communities and wireless networks by providing flexibility
and centralized control. It can dynamically allocate bandwidth
and optimize performance based on user demand and network
conditions to support various services like smart lighting,
traffic management, and energy distribution [2]. However, this
centralization nature of SDN creates several issues, such as
data integrity & tampering, scalability & performance, and
transparency & trust [3]. These issues underscore the need
for reliable ways to protect both data storage and network
resources. If an attacker gains access to the central controller,
they could potentially disrupt the entire network. In addition,
if the central controller is compromised, sensitive data flowing
through the network could be exposed to unauthorized access

or be altered without detection [4]. These challenges can have
severe consequences, including network downtime, loss of sen-
sitive data, and decreased trust among users and stakeholders.
Therefore, there are required innovative solutions that can
secure SDN environments without sacrificing their efficiency
and ensure robust and trustworthy network management.

Meanwhile, Blockchain technology provides a decentralized
framework and distributed storage that inherently resists tam-
pering and makes secure SDN environments [1]. The control
plane in SDN can be decentralized across multiple nodes by
integrating blockchain technology, where each maintains a copy
of the network state within an immutable ledger [5]. This
decentralized approach ensures that even if one node is compro-
mised, the network as a whole remains secure and operational.
Blockchain’s consensus mechanisms can be used to validate
network changes and transactions to prevent unauthorized
modifications and ensure data integrity [6]. The transparency
provided by blockchain allows all network participants to verify
operations and reduce the risk of malicious activities. Thus,
this integration not only addresses the security weaknesses of
centralized SDN but also enhances scalability, trustworthiness,
resilience, and robust network infrastructure.

Therefore, this paper proposes a blockchain-based SDN
controller model that enhances network security, scalability,
and fault tolerance by developing decentralized control, secure
data storage, and distributed computing. The proposed model
employs sharding to divide the blockchain network into smaller,
manageable segments (shards) to process transactions in paral-
lel. The proposed cross-shard communication and coordination
mechanisms ensure that transactions involving multiple shards
are handled consistently and securely. The smart contracts are
implemented to enforce access control policies to ensure only
authorized entities can access or modify network configurations
and data transactions. Furthermore, the proposed model ensures
a robust security framework capable of protecting the network
from various attacks, including tampering, unauthorized access,
and data breaches. Furthermore, the key contributions of this
work are:

o This paper proposes a decentralized SDN architecture
where multiple blockchain nodes act as distributed con-
trollers to resolve fault tolerance and improve network
security.

o This paper provides a tamper-proof and transparent data

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 25,2025 at 20:04:46 UTC from IEEE Xplore. Restrictions apply.

storage mechanism for SDN configurations and transac-
tions by employing hash-based cryptography.

« In addition, the Sharding technique is utilized to divide the
blockchain network into smaller ones and to allow parallel
transaction processing to significantly improve throughput
and overall network efficiency.

o The paper undergoes rigorous security analysis for using
sharding to evaluate its effectiveness including data con-
sistency, scalability, overhead cost, and throughput.

The remainder of the paper is organized as follows. In section
II, a few recent existing Blockchain-enabled SDN frameworks
are discussed with their limitations. Section III presents the
proposed blockchain-based SDN system and discusses the
overall implementation process. Then, section IV performs a
security analysis of the proposed system model. Section V
presents the experimental results and performance evaluations
of the proposed system. Finally, section VI summarizes our
work and discusses possible future research.

II. RELATED WORKS

In recent research, the integration of SDN and Blockchain
has emerged as a promising approach for enhancing security,
scalability, and privacy in cloud storage and IoT networks.
Several studies have demonstrated the effectiveness of using
SDN’s centralized control for improved reliability and flexibil-
ity. Blockchain’s decentralized nature ensures robust trust and
security in transaction processes. In literature [7], the authors
proposed the Block-SDoTCloud architecture, which uses SDN
and Blockchain to enhance security in cloud storage networks.
The architecture utilizes a centralized SDN controller for im-
proved reliability, flexibility, and load balancing. However, the
system’s performance under varying network conditions is the
key challenge.

The authors in [8] proposed a network infrastructure that
integrates SDN and Blockchain to create a secure and adaptable
framework for next-generation smart cities. However, the scala-
bility of the framework as the number of IoT devices continues
to grow and the potential latency introduced by Blockchain
transactions remains challenging. In literature [9], this work
introduces a blockchain-based forensic architecture within SDN
for Internet of Things (IoT) environments to address challenges
in digital forensics such as data integrity, evidence deletion,
and alteration. This architecture establishes a Chain of Custody
(CoC) using blockchain, integrates flow table rules on SDN
switches for different types of traffic (VoIP, FTP, HTTP), and
utilizes a Linear Homomorphic Signature (LHS) algorithm for
user validation. However, the remaining challenges are the
scalability and efficiency of the forensic architecture as the
network grows, particularly in handling large volumes of IoT
traffic and complex security demands.

In [10], this work presents “DistB-SDCloud,” a blockchain-
based SDN architecture for cloud computing platforms in
Smart Industrial Internet of Things (IloT) applications. The
remaining challenges are the architecture’s scalability as the
number of [oT devices and data volumes increase. The study

TABLE I: Useful notations and their definitions.

Notation Description

Total number of controllers in the blockchain network (nodes).
Local state maintained by node % (configuration and status of the
network managed by the SDN controller).

Threshold number of nodes required to reach consensus

New proposed network state after an update.

Number of compromised nodes in the network.

Proposed update to the network state.

Shard in the network.

Number of nodes within a shard.

Additional nodes required for consensus during high-threat periods.
A data transaction in the blockchain network.

Data associated with transaction 7.

Leaf node representing the hash of a transaction in the Merkle tree.
Non-leaf node in the Merkle tree (hash of its child nodes.)
Merkle Root, representing the hash of all transactions.

Adversary attempting to bypass access control.

A distributed application (Dapp) within the SDN network.

Initial state of the system before executing smart contracts.
Output state after executing smart contract 7;.

Set of validators in the network.

Validator in the network.

Cryptographic hash of state ;.

Total number of transactions processed by the network.

the concatenation of two hashes

Z?:Gﬁ@'i « |z

5.

>
—~
~
N>

-

Ay

2

A

S ol

D
-

e s = A Y
<

[11] highlights the importance of access control as a critical
defense mechanism for organizations to ensure cybersecurity
and comply with data privacy in SDN environments. They
discussed the scalability and adaptability of access control
and data management mechanisms across diverse and dynamic
environments are remaining challenges. Further research is
needed to address these challenges. Thus, our work focuses on
addressing these concerns by proposing a solution that enhances
security, scalability, and efficiency within SDN-Blockchain
integrated networks.

III. PROPOSED SYSTEM MODEL

The proposed system model integrates blockchain technology
with SDN to create a decentralized and secure network archi-
tecture. The key components of this architecture include a de-
centralized controller network, secure data storage mechanisms,
a distributed computing framework, and scalability solutions.
Table I presents the useful notations and their definitions.

A. Decentralized SDN Controller Network

Instead of relying on a single centralized controller, the
proposed system utilizes multiple blockchain nodes acting as
distributed controllers. Each controller maintains a copy of the
SDN state, and blockchain consensus mechanisms ensure that
all nodes agree on the network state. This decentralization
enhances fault tolerance and reduces the risk of a single point
of failure. Each node 7 maintains a local state S;, which is
the current configuration and status of the network managed
by the SDN controller. In a Byzantine Fault Tolerance (BFT)
model [12], consensus is reached when at least Ml out of N
nodes agree on the network state. The threshold M is typically

defined as: oN
B

This condition ensures that the network can tolerate up to
N — M compromised nodes to maintain consensus. For a de-

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 25,2025 at 20:04:46 UTC from IEEE Xplore. Restrictions apply.

cision or network update to be validated, the states S; across
all nodes must reach consensus, i.e., S = Sg = --- = Sy.
When a network change occurs, it is proposed by a node ¢ and
propagated across the network. Other nodes validate the change
by comparing it with their current state S; and the proposed
state. Therefore, consensus is achieved when M nodes validate
and adopt the new state. The new state S’ is accepted if the
following condition is met:

N
Z agree(S}) > M,)
i=1

1 if node ¢ agrees new state;

Where, agree(S)) = { 3)

0 otherwise;

If C is the number of compromised nodes, the system is
secure as long as C < N — M. Beyond this threshold, the
network may suffer from inconsistencies, as malicious nodes
could overpower the honest ones. Therefore, network updates
are proposed by node i and require validation by at least M
nodes. If an inconsistency is detected after an update, the
network can roll back to the last agreed state S,..,. Here,
the rollback is initiated if the number of nodes supporting the
rollback exceeds the threshold M. The network reverts to Sy;.c,
if the following rollback condition is met.

N
Z rollback(U}) > M 4)

i=1

Instead of requiring each node to individually sign a trans-
action or state update, a threshold signature scheme allows M
nodes to collectively generate a single valid signature [13].
If N nodes attempt to sign a transaction, a valid signature is
produced only if at least M nodes participate. Then no single
compromised node can produce a valid signature on its own.

Therefore, the network is divided into K shards, with each
shard managing a subset of nodes and transactions. Each shard
reaches consensus independently to reduce the overall load and
increase scalability. Consensus within a shard is achieved if
M; = [% nodes agree on the shard’s state. The global
network state is then an aggregation of the consensus states
from each shard. The system dynamically adjusts M based on
real-time network conditions and potential threats. For instance,
during a detected attack, M could be increased to enhance
security under normal conditions, and a lower M could be used
to improve performance. Therefore, M becomes a function of
time and threat level as follows:

M(t) = FN(t)-‘ +4(t) 5)

3
Thus, the proposed model ensures that the proposed archi-
tecture remains secure, fault-tolerant, scalable, and capable of
handling large-scale and complex network environments.

B. Secure Data Storage Management

This section demonstrates how the blockchain mechanism
ensures the integrity, transparency, and security of data trans-
actions, and how smart contracts enforce access control. The
proposed system utilizes cryptographic techniques and smart
contracts to safeguard network configurations and data transac-
tions and create a tamper-proof and decentralized storage model
[14]. It covers both the security of the data structure (using
cryptographic hashes and Merkle trees) and the correctness of
access control (using smart contracts). Data transactions in the
SDN are recorded on the blockchain, where each transaction is
cryptographically linked to the previous one. Each transaction
T; in the blockchain is represented as:

T; = (W(Tj-1), D;) (6)

A cryptographic hash function 7 has the following properties:
1) A(z) always produces the same hash for the same input
x. The hash function is collision-resistant which means it is
computationally infeasible to find two different inputs that
produce the same hash. 2) A hash h(z) is computationally
infeasible to find an input x’ such that h(2’) = h(z). 3) It
is computationally infeasible to find two distinct inputs x and
y such that Ai(z) = A(y). 4) A small change in the input x
significantly changes the output /i(x). Suppose an adversary
tries to modify transaction 7; to T!, where

T'j = (WTj-1), D)) 7

The new transaction 7;’ would produce a different hash
R(T}). Consequently, the hash in transaction 7;,1 would no
longer match A(7}) and breaks the chain. Thus, to verify the
integrity of large numbers of transactions, they are organized
into a Merkle tree. A Merkle tree is a binary tree where each
leaf node represents the hash of a transaction, and each non-leaf
node is the hash of its child nodes. Each leaf node £; in the
Merkle tree represents the hash of a transaction: 7; = (7).
The root of the Merkle tree (known as the Merkle Root [15])
R is computed as follows:

R=n((T)@T2)©h(W(Ts) ®W(Ta)) ... (8)

The Merkle proof consists of the hashes of the sibling nodes
from the leaf node corresponding to 7; to the Merkle Root. If
the computed root from the proof matches the stored Merkle
Root, the transaction is valid and has not been tampered with.
Therefore, access control in the proposed model is enforced
through smart contracts, which are self-executing contracts with
the terms of the agreement directly written into code. The
smart contract defines an access control policy Ax(D;) for
each data transaction D;. Ax(D;) = True if and only if the
entity K satisfies the conditions defined in the smart contract for
accessing or modifying D;. It checks whether entity X holds
a specific role (e.g., Admin controller) and whether the current
time is within a predefined access window. Now, consider
an adversary K’ who tries to bypass the smart contract by

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 25,2025 at 20:04:46 UTC from IEEE Xplore. Restrictions apply.

directly modifying D;. Since D; is stored on the blockchain,
any unauthorized modification attempt would fail the consensus
check (as Ax/(D;) = False). The network nodes would reject
the transaction and, in this way maintain the integrity and
security of the data.

C. Distributed Computational Resource Management

The distributed computational resource management in the
proposed system uses smart contracts and a consensus mech-
anism to ensure secure, consistent, and coordinated operations
across the network. This section illustrates how state transitions
are managed, consensus is reached, and data consistency is
maintained. It uses smart contracts to deploy and execute F
[16]. It performs decentralized computing tasks across the
network and ensures that the operations are secure, consistent,
and resilient to tampering. F within the SDN operates as a
sequence of smart contracts 71, 72, . . . ,)y,. Each smart contract
is a piece of code that performs a specific computation or
operation within the F. Each smart contract n; takes the input
state 6;_; from the previous contract and produces a new state
0;. The output state §; of one contract may serve as the input
state 6; for another contract ;1 and it creates dependencies
between contracts. The entire execution sequence 6y — 61 —

- — #,, must be consistent across all network nodes. The
consensus mechanism ensures that all nodes in the network
agree on the state of the system after each smart contract
execution. This is essential for preventing unauthorized changes
and maintaining consistency across the SDN network. Each
validator ¥ € ® proposes a state 6, after executing the contract
7;. Validators vote on the proposed state #;. A consensus is
reached if a sufficient majority (see equation 1) for BFT of
validators agree on the state 6;. The state transition is accepted
if: AgreedState(0;) = MajorityVote(6;). If the majority of
validators agree on 6;, then 6; is accepted as the new state of
the system. All nodes in the network independently execute the
smart contracts and propose the resulting state ;. The use of
cryptographic hashes and the consensus mechanism prevents
any unauthorized changes to the state of f. Nodes verify the
proposed state by comparing the hash of the executed state
with the proposed state hash. If %(6;) matches the proposed
state, it is accepted; otherwise, it is rejected. Once consensus is
reached on 6,,, the final state of the distributed application, 6,,
is committed to the blockchain. This ensures that the results of
the distributed computation are secure, consistent, and verifiable
by all participants.

D. Scalability management

To address scalability challenges in blockchain-enhanced
SDN systems, the sharding technique is designed to improve
transaction throughput and overall network efficiency with-
out compromising security. Sharding involves dividing the
blockchain network into smaller and more manageable seg-
ments called shards. Each shard operates independently and
processes a subset of transactions. Without sharding, each of
the N nodes processes all 7 transactions. With sharding, the
network is divided into K shards, and each shard processes

% transactions. If the total number of nodes N is uniformly
distributed across the shards, then each shard will have approx-
imately % nodes. The processing capacity of each shard is %,
and the total network processing capacity becomes /C X % =T,
which is the same as without sharding but distributed among
shards. The load on each node is reduced to %, compared to
T without sharding. Each node only processes a fraction of the
total transactions, reduces congestion, and improves throughput.
Formally: Load per node = % and total throughput = N x %

However, sharding introduces complexities in coordinating
transactions across multiple shards and maintaining a consistent
global state. So, cross-shard transactions and atomic commits
are used to manage this consistency. A cross-shard protocol
ensures that all shards involved in a multi-shard transaction
reach a consensus on the transaction outcome. Let 7;; represent
a transaction that affects both shard ¢ and shard j. This is mod-
eled as: 7;; = Coordination between KC; and K; where K; €
Shardi, KC; € Shardj. For atomicity, a coordinator ensures
that either all shards involved in the transaction commit the
transaction or none do. This can be modeled as:

Commit(7;;) = 9)

1 if all IC; involved agree
0 otherwise

The global state Kgjopar Of the network is the sum of the
states of all shards, represented as:

K
Ksglobal = E K
i=1

State changes within a shard must be propagated to other
relevant shards to maintain consistency. The propagation of
state KC; from shard ¢ to shard j is essential when 7;; affects
multiple shards.

(10)

K; < Propagate(K;), Vi, j € {1,2,...,K} (11
An atomic commit protocol can be used to ensure that the
global state is consistent across all shards: each shard prepares
for the transaction and shares its readiness with others and all
shards commit the transaction only if all are prepared, which is
shown in equation 12. The consensus mechanism ensures that
all nodes within a shard agree on the shard’s state. That means:
Consensus(/C;) = Agreement among nodes in K;

1 if Prepared(K;) VK; € Involved Shards

Commit(7) = 0 otherwise
(12)
To maintain fault tolerance, the system must ensure that the
global state is correct even if some nodes fail or act maliciously.
This is often achieved using BFT mechanisms, which require
fault tolerance condition: N > 3 f + 1. Therefore, the scalability
of the proposed model can be improved by ensuring consistency

and fault tolerance using shards.

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 25,2025 at 20:04:46 UTC from IEEE Xplore. Restrictions apply.

IV. SECURITY ANALYSIS

The proposed model integrates blockchain technology with
sharding to enhance security and reliability. The security anal-
ysis focuses on two key aspects:

Tamper-proof Data storage: Tamper-proof data storage en-
sures that once data is recorded, it cannot be altered or
deleted without detection. Suppose an attacker wants to alter a
transaction in block Bj. The attacker would need to change
By, and then recalculate hashes for all subsequent blocks
Byi1, Bgya, ..., By,. The difficulty of this task depends on
the computational effort required to recalculate the hashes:
Effort = Difficulty (H(By), H(Bk+1), ..., H(By)). The dif-
ficulty of altering n blocks is exponential for n which makes it
infeasible to tamper if the network’s consensus mechanism is
robust. The probability of a single node successfully mining a
block (validating a transaction) is W To successfully alter
a transaction, an attacker would need to control a fraction f
of the total network computational power, where f > % Thus,
this is computationally infeasible for a well-distributed network
to achieve.

Risk of Single Point of Failure: To analyze the security of
the proposed model we examine two key aspects: the risk of a
single point of failure and the probability of successful attacks.
In the proposed system, each node operates independently, and
the probability that any individual node fails is denoted as p.
To understand the system’s resilience, we need to compute
the probability that at least one node fails. First, calculate the
probability that a single node does not fail, which is 1 — p. If
all nodes are independent, the probability that none of the n
nodes fail is Probability of no failures = (1 — p)™. Therefore,
the probability that at least one node fails is:

Pfailure =1- (]- - P)n

As n increases, (1—p)™ decreases because even if each node
has a relatively high failure probability, the combined prob-
ability of no failures decreases exponentially. Consequently,
Praire approaches 1, which indicates the likelihood of at least
one node failing is high when n is large. For large n, Prajjure
becomes more stable and less sensitive to individual node
failures. This means the system becomes increasingly resilient
to single points of failure.

Attack Probability: In a decentralized system, an attacker
needs to compromise a fraction f of the total number of nodes
to disrupt the system. The probability Pyack indicates that an
attacker can successfully disrupt the system is calculated by
considering the fraction of compromised nodes as stated below:

13)

Number of compromised nodes

Pattack = (14)

Total nodes

If f is the fraction of compromised nodes required to cause
disruption, then: Pk = f. The effectiveness of an attack
depends on how many nodes are compromised relative to
the total number of nodes. If f is small (i.e., the fraction
of compromised nodes needed is low), the system is more
vulnerable. Conversely, if f is high (i.e., a large fraction of
nodes needs to be compromised), the system is more secure.

Throughput Comparison Latency Comparison

~®- Normal Load - Shardin

g - Normal Load - Sharding
80000 ¢ ardin .

ding

60000 1 7

@

40000

Latency (seconds)
e 3

20000 Pk

Throughput (transactions/sec)

o 20 80 100 o 20 80 100

a0 60) 60
Number of Shards Number of Shards

Execution Cost Comparison Transaction Cost Comparison

-8~ Normal Load - Sharding
rdin

Execution Cost (units)
Transaction Cost (units)

0 20 80 100 o 20 80 100

40 60 40 60
Number of Shards Number of Shards

Fig. 1: Performance metrics analysis with and without sharding.

In a well-distributed network with a high number of nodes, f
becomes relatively large and makes it difficult for an attacker to
compromise a sufficient fraction of nodes. The security analysis
of the proposed sharded model demonstrates that decentralized
control through sharding significantly improves both failure
resilience and attack resistance. Sharding enhances security by
distributing data and processing load across multiple nodes
(shards). However, it reduces the risk of single points of failure
and makes it harder for attackers to compromise a significant
fraction of the system. The proposed model’s decentralized
nature significantly reduces the probability of system failure
due to individual node failures, as shown in Fig. 2. With
more nodes n, the system’s resilience increases because the
probability that at least one node fails decreases, and the overall
system stability improves.

V. RESULTS AND DISCUSSION

The primary goal of this experiment is to evaluate the impact
of sharding on several key aspects of the proposed system.
The experiment is conducted in a simulated environment where
sharding is applied to a transactional system. Mininet (to simu-
late the SDN part of the setup for handling data flow and traffic
management), Ethereum (to create a decentralized application
layer in the test setup), and GNS3 (to complement Mininet
by adding more advanced routing and network configurations)
tools are used in the test setup. The system is modeled to
evaluate various metrics related to fault tolerance, overhead
costs, throughput, and scalability. The experiment evaluates the
performance of a sharded system, where the number of shards
is 100. The system’s performance and risks associated with
sharding are simulated based on a fixed number of transac-
tions and transactions per second rate. The average latency of
transactions and latency for transactions within each shard are
measured from initiation to completion. Fig 1 provides how
sharding impacts various performance and risk metrics and a
clear comparison between sharded and non-sharded systems. As

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 25,2025 at 20:04:46 UTC from IEEE Xplore. Restrictions apply.

Data Consistency Risk vs. Number of Shards Scalability Benefit vs. Number of Shards

100 1" _g— pata Consistency Risk 500

—e— Scalability Benefit

80

70

Risk Metric
Benefit Metric

60 100

4 20 40 60 80 100 4 20 40 60 80 100
Number of Shards Number of Shards

Overhead Cost vs. Number of Shards Throughput Benefit vs. Number of Shards

20.0 1 —e— Overhead Cost 1000 1 —— Throughput Benefit

Cost Metric
5
o
Benefit Metric

4 20 40 60 80 100 [20 40 60 80 100
Number of Shards Number of Shards

Fig. 2: Analysis of risk metrics associated with sharding.

the number of shards increases, throughput typically improves
because the transaction load is distributed across multiple
nodes, which reduces the burden on any single node. on the
other hand, latency may initially decrease with more shards
due to parallel processing but can increase if overhead costs and
communication delays between shards become significant. The
added complexity of managing inter-shard communication and
synchronization can also introduce coordination bottlenecks.
Moreover, the risk of data inconsistency increases as the
number of shards grows, due to the complexity of maintaining
consistency across multiple nodes. Data integrity and coherence
across distributed shards can require additional mechanisms,
which may further impact system performance. Generally, fault
tolerance risk decreases with more shards since the failure of a
single shard affects only a portion of the overall system. This
balance between performance, latency, and fault tolerance with
sharding is depicted in Fig. 2.

VI. CONCLUSION

The proposed blockchain-based approach addresses the crit-
ical challenges of scalability and security in data storage
and computing within SDN environments. The integration of
blockchain with SDN mitigates the inherent vulnerabilities of
centralized control by providing tamper-proof data storage,
verifiable transactions, and automated access control through
smart contracts. The proposed model creates a secure, decen-
tralized, and scalable SDN network architecture. This work
not only contributes to the ongoing development of secure
SDN architectures but also finds the way for more resilient
and adaptable networking frameworks in the era of advanced
data and resource management. The performance improvements
demonstrated in our evaluation underscore the potential of this
approach to serve as a foundational model for future secure and
scalable SDN infrastructures. Future work will focus on further
optimizing the integration of blockchain with SDN to reduce
latency and improve transaction throughput. Further research
will also investigate the use of advanced consensus algorithms

and cross-chain interoperability to enhance the scalability and
efficiency of the system.

ACKNOWLEDGEMENT

This work was also supported by the National Science
Foundation under award numbers 2219741 and 2401928.

REFERENCES

[1] D. Das, S. Banerjee, K. Dasgupta, P. Chatterjee, U. Ghosh, and U. Biswas,
“Blockchain enabled sdn framework for security management in 5g
applications,” in Proceedings of the 24th International Conference on
Distributed Computing and Networking, ser. ICDCN °23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 414-419.
[Online]. Available: https://doi.org/10.1145/3571306.3571445

[2] A. Muthanna, A. A. Ateya, A. Khakimov, I. Gudkova, A. Abuarqoub,
K. Samouylov, and A. Koucheryavy, “Secure and reliable iot networks
using fog computing with software-defined networking and blockchain,”
Journal of Sensor and Actuator Networks, vol. 8, no. 1, p. 15, 2019.

[3] J. C. C. Chica, J. C. Imbachi, and J. F. B. Vega, “Security in sdn: A
comprehensive survey,” Journal of Network and Computer Applications,
vol. 159, p. 102595, 2020.

[4] M. Rahouti, K. Xiong, Y. Xin, S. K. Jagatheesaperumal, M. Ayyash, and
M. Shaheed, “Sdn security review: Threat taxonomy, implications, and
open challenges,” IEEE Access, vol. 10, pp. 45 82045 854, 2022.

[5] U. Ghosh, D. Das, P. Chatterjee, and S. Shetty, “Quantum-enabled
blockchain for data processing and management in smart cities,” in 2023
IEEE 24th International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2023, pp. 425-430.

[6] D. Das, S. Banerjee, P. Chatterjee, U. Ghosh, W. Mansoor, and U. Biswas,
“Design of an automated blockchain-enabled vehicle data management
system,” in 2022 5th International Conference on Signal Processing and
Information Security (ICSPIS), 2022, pp. 22-25.

[7] A.Rahman, M. J. Islam, M. Saikat Islam Khan, S. Kabir, A. I. Pritom, and
M. Razaul Karim, “Block-sdotcloud: Enhancing security of cloud storage
through blockchain-based sdn in iot network,” in 2020 2nd International
Conference on Sustainable Technologies for Industry 4.0 (STI), 2020, pp.
1-6.

[8] S. Rani, H. Babbar, G. Srivastava, T. R. Gadekallu, and G. Dhiman, “Se-
curity framework for internet-of-things-based software-defined networks
using blockchain,” IEEE Internet of Things Journal, vol. 10, no. 7, pp.
6074-6081, 2023.

[9] M. Pourvahab and G. Ekbatanifard, “An efficient forensics architecture

in software-defined networking-iot using blockchain technology,” IEEE

Access, vol. 7, pp. 99 573-99 588, 2019.

A. Rahman, M. J. Islam, S. S. Band, G. Muhammad, K. Hasan, and

P. Tiwari, “Towards a blockchain-sdn-based secure architecture for cloud

computing in smart industrial iot,” Digital Communications and Net-

works, vol. 9, no. 2, pp. 411-421, 2023.

L. Golightly, P. Modesti, R. Garcia, and V. Chang, “Securing distributed

systems: A survey on access control techniques for cloud, blockchain, iot

and sdn,” Cyber Security and Applications, vol. 1, p. 100015, 2023.

X. Dai, L. Huang, J. Xiao, Z. Zhang, X. Xie, and H. Jin, “Trebiz:

Byzantine fault tolerance with byzantine merchants,” in Proceedings of

the 38th Annual Computer Security Applications Conference, 2022, pp.

923-935.

D. Das, K. Dasgupta, and U. Biswas, “A secure blockchain-enabled

vehicle identity management framework for intelligent transportation

systems,” Computers and Electrical Engineering, vol. 105, p. 108535,

2023. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S0045790622007509

D. Das, U. Ghosh, P. Chatterjee, and S. Shetty, “Advanced federated

learning-empowered edge-cloud framework for school safety prediction

and emergency alert system,” in 2023 IEEE 12th International Conference

on Cloud Networking (CloudNet), 2023, pp. 507-512.

S. T. Alvi, M. N. Uddin, and L. Islam, “Digital voting: A blockchain-

based e-voting system using biohash and smart contract,” in 2020 third

international conference on smart systems and inventive technology

(ICSSIT). 1EEE, 2020, pp. 228-233.

L. Besancon, C. F. Da Silva, P. Ghodous, and J.-P. Gelas, “A blockchain

ontology for dapps development,” IEEE Access, vol. 10, pp. 49905-

49933, 2022.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

Authorized licensed use limited to: TRINITY COLLEGE LIBRARY DUBLIN. Downloaded on August 25,2025 at 20:04:46 UTC from IEEE Xplore. Restrictions apply.

