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Abstract—The growing adoption of wind energy resources
has demonstrated notable benefits in combating climate change.
Mobile wind turbines (MWTs) are uniquely positioned to navi-
gate transportation systems, being towed by trucks, and supply
energy to power distribution systems (PDSs). This flexibility
enables MWTs to serve as emergency power sources, thereby
contributing to enhancing the system resilience by facilitating
service restoration following extreme events. This paper presents
a novel framework based on Multi-agent Deep Reinforcement
Learning (MADRL) to dispatch MWTs for service restoration.
Deep Q-learning (DQL) and Double Deep Q-learning (DDQL)
approaches are implemented within the agent for training and
comparison purposes. Additionally, an action limitation is in-
corporated into the proposed framework in order to mitigate
the influence of wind power fluctuations. Case studies conducted
on an integrated power-transport system, comprising a Sioux
Falls transportation system and four IEEE 33-bus test systems,
illustrate the effectiveness of the proposed restoration scheduling
policy in enhancing PDSs’ resilience against disasters.

Index Terms—Mobile Wind Turbine (MWT), Double Deep Q-
learning (DDQL), Deep Q-learning (DQL), Multi-agent Deep Re-
inforcement Learning (MADRL), resilience, service restoration.

NOMENCLATURE

Acronyms

AC Actor critic
AC — OPF Alternating current optimal power flow.

Al Artificial intelligence.

AL Action limitation.

AR Agent reward.

CNN Convolutional neural network.
DQL Deep Q-learning.

DRL Deep reinforcement learning.
DDPG Deep deterministic policy gradient.
DDQL Double deep Q-learning.
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Deep neural network.

Grid forming.

High-impact, low-probability.
Hydrogen storage system.
Hydrogen-to-power.

Independent proxy policy optimization.
Markov decision process.

Mobile power source.

Mobile wind turbine.

Multi-agent deep reinforcement learning.
Mixed integer linear programming.
Policy gradient.

Power-to-hydrogen.

Power distribution system.

Repair crew.

System reward.

Transportation system.

Transportation node.

Indices and Sets

Index and set of PDS buses.
Index and set of PDS lines.
Index and set of loads.

Index and set of time steps.

Load outage cost of demand at bus d
($/kWh).

Baseline real power demand at bus d at time ¢
Baseline reactive power demand at bus d at
time ¢ (kvar).

Minimum permissible voltage (p.u.).
Maximum permissible voltage (p.u.).
Resistance of line (7, ) (p.u.).

Reactance of line (7,j) (p.u.).

Capacity limit of line (i, ) (kV A).

H2P conversion factor of HSS unit :.

H2P efficiency of HSS unit :.

P2H conversion factor of HSS unit 4.

P2H efficiency of HSS unit .

Real power demand at bus d at time ¢ (kW).
Reactive power demand at bus d at time ¢

(kV AR).



Py Real power supply from the main grid (kW).

Qyt Reactive power supply from the main grid
(kVAR).

Py Real power output of MWT (k).

v Reactive power output of MWT (kV AR).
Pij Real power flow of line (i, ;) at time ¢ (kWV).
Qijit Reactive power flow of line (i,5) at time ¢

(kVAR).
Vit From bus voltage for line (4, 5) (p.u.).
Vit To bus voltage for line (i,j) (p.u.).
€t Binary variable indicating the energized status
of bus ¢ at time ¢ (1 if energized, O otherwise).
Yij.t Binary variable indicating the energized status
of line (4,7) at time ¢ (1 if energized, 0O
otherwise).
p)?r Power output of HSS unit i (kW).
EH Energy storage value at time step i (KWh).
EH, Energy storage value at time step i —1 (kWh).
P? 2h Hydrogen power input to HSS unit ¢ (kW).
p];% Supply power from PDS to HSS unit i (kW).

I. INTRODUCTION

LIMATE change has led to an increased frequency and

magnitude of HILP events, which have been witnessed
to result in extensive equipment damage, prolonged electricity
outages, and significant disruptions in modern society. Cli-
mate change-induced power outages have caused substantial
economic losses and posed significant threats to human life,
highlighting the urgent need to enhance the resilience of
power grids to such extremes [1]. For example, Hurricane
Maria in 2017 severely impacted Puerto Rico by disrupting
31 major power-generating units across 20 facilities, leav-
ing the entire island without electricity [2]. Similarly, in
February 2021, an extreme winter storm led to a widespread
electricity generation failure in Texas, resulting in over 4.5
million households experiencing prolonged power outages and
approximately $130 billion in economic losses [3]. Given
these significant disruptions, a resilient electric system should
prioritize the restoration of essential services, such as medical
facilities and police stations [4]. Given the vulnerability of
rural infrastructure to HILP events such as natural disasters-
—which can damage TS, disrupt power distribution, and
cause shortages of fossil fuels (e.g., gasoline, natural gas)—-
renewable energy resources, which do not rely on fossil fuels,
should be integrated into the restoration efforts to mitigate the
impact of these events [5]-[7].

A. Literature Review

Due to their spatiotemporal flexibility, MPSs have become
essential in enhancing the resilience in PDSs during natural
disasters. Most recent literature has focused on developing
model-based optimization approaches for effectively routing
and scheduling MPSs to improve system resilience. For in-
stance, authors in [8] applied a two-stage robust optimization
approach to routing and scheduling of MPSs, aiming for a
resilience-oriented outcome. In response to seismic events,
the authors in [9] set up a two-stage mixed-integer nonlinear
programming optimization model to optimize MPSs routing

and scheduling for effective disaster recovery. A recovery
strategy was introduced for PDSs that incorporates MPS
deployment, addressing the variability in renewable energy
sources through probabilistic constraints [10]. Authors in [11]
tackled the issue of decision-dependent uncertainty related
to MPS availability, influenced by travel and waiting times,
providing a more accurate assessment of how MPSs can
contribute to the enhancement of PDS resilience. Authors in
[12] introduced a dynamic strategy for scheduling and routing
of MPSs, taking into account the unpredictable condition of
roads and electrical lines within integrated transport and power
networks. Authors in [13] developed a multi-period mixed-
integer linear programming co-optimization model that syn-
chronizes the efforts of MPSs and RCs, aiming to enhance the
resilience of PDSs. A co-optimization model that integrates the
dispatch of MPSs and RCs through a mixed-integer second-
order cone programming approach to fortify PDS resilience
was proposed in [14]. Authors in [15] designed a service
restoration model that not only increases the resilience of
essential systems during disasters but also aligns the operations
of MPSs with repair crew schedules, addressing limitations
within both the power and transport sectors. Focusing on event
prevention, Su et al. [16] advocate for a strategic public-safety
power shutoff decision coupled with the deployment of MPSs.
An innovative approach was introduced in [17], using battery-
electric locomotives as mobile energy storage to manage wind
energy variability and curtailment. However, the use of MPSs
discussed in [8]—[17] rely solely on traditional energy sources,
which produce harmful emissions and may be impacted by
supply chain disruptions during disasters in rural areas. In
contrast, MWTs are small-scale wind turbines designed for
easy transport and are often used for off-grid power generation
or powering remote locations [18]. The use of MWT fleets
in rural PDSs has been extensively explored, including in
energy management systems [19], pre-disaster management
[20], and post-disaster restoration [21]. The existing literature
[19]-[21] employs model-based optimization approaches, and
due to concerns on computational complexity, all three studies
use Monte Carlo simulations to address the uncertainty in
wind power prediction represented by a limited representative
number of scenarios.

Al-based data-driven approaches to addressing some of the
computational challenges are being extensively studied. DRL
is closely linked to optimal control and dynamic programming,
offering significant advantages in real-time optimization of
systems with imprecise or even in the absence of models
(often known as model-free algorithms) [22]. DRL generates
actions based on the current state, and following several
training steps, it can determine the optimal actions for different
states [23]. Due to these advantages, DRL has been applied
in power systems management to enhance the resilience of
power systems [24]. In response to the challenge of service
restoration in PDSs during natural disasters, authors in [25]
developed a decentralized MADRL framework for coordinated
decision-making between MPSs and RCs aimed at enhancing
resilience. In [26], a single-agent DRL method was proposed
to make optimal dispatch decisions of MPSs for critical load
restoration, accounting for uncertainties in electricity demand.



In [27], the authors developed a model-free real-time MADRL
method for service restoration via routing and scheduling of
MPSs in a coupled power-transport network.

B. Contributions and Paper Structure

To the best of our knowledge, previous studies [25]-[27]
on utilizing DRL for MPS assignment have not examined
the role and application of renewable-based MPS, such as
MWT. In disaster-stricken regions, infrastructure damage can
result in fuel shortages and road disruptions [6], [7], challenges
that were not addressed in previous research. To bridge this
gap, this article introduces a PDS restoration framework that
incorporates MWT fleets. Unlike traditional MPSs, such as
diesel generators, MWT fleets can continuously supply power
without relying on fuel, but they also face unique challenges,
particularly their dependence on wind availability, which re-
quires strategic deployment to ensure reliable power genera-
tion. Road damage in rural areas adds further uncertainty, as it
can significantly delay MWT fleet relocation. To address the
impact caused by the wind speed uncertainty and provide a
restoration strategy with time limitations, we propose a DRL-
based resilience enhancement DRLBRE framework based on
MADRL. In this framework, several key considerations can
be highlighted including:

1) The proposed framework introduces a reward function
that compares overall system rewards with individual
agent rewards. This reward system helps the framework
deliver higher-performing PDS restoration strategies us-
ing MWT fleets;

2) The framework incorporates action limitations to mit-
igate the impact of wind speed fluctuations, enhancing
the stability of MWT fleet dispatch. This approach leads
to improved training rewards by ensuring more reliable
decision-making under varying wind conditions;

3) The framework applied a two-stage training process.
In the first stage, a base model is trained on multiple
fault scenarios in power-transport systems, establishing
a solid foundation for the second stage, which refines
strategies under specific faults caused by emergency
natural disasters within time limitations. This approach
minimizes training time limitations during emergency
situations, enhancing the framework’s efficiency, man-
ageability, and ease of deployment.

The rest of this article is organized as follows: Section
IT provides an overview of the MWT technologies and the
general framework, where the DQL and DDQL algorithms
are also introduced; Section III provides the training reward
and the numerical analysis of the studied cases; Section
IV provides a summary of research findings and outlines
prospects for future endeavors.

II. PROBLEM DESCRIPTION
A. Mobile Wind Turbines

MWTs are small-scale wind turbines that are mounted
on trailers or other mobile platforms, making them easily
transportable to the desired locations to generate electricity

[19]. Compared to backup power sources, such as uninter-
rupted power supply units used to restore the distribution
system, MWTs offer the advantage of mobility. They can be
transported by trucks to supply power to interrupted nodes
at different locations, enabling continuous operation until all
nodes are reconnected to the main grid. In addition, MWTs
have a lower power generation cost compared to traditional
diesel generators. Due to the fuel cost and the inefficiency of
the diesel generator, the electrical power generation cost is 1
$/kW h, while the electrical power generation cost for MWTs
ranges from 0.07 to 0.25 $/kWh [28].

-_—un,

Fig. 1. A typical MWT setup [29].

Furthermore, there is a lack of research on service restora-
tion schemes for rural PDSs, which face distinct challenges
due to their isolated locations, constrained resources, and lim-
ited technical expertise. Natural disasters can severely disrupt
rural supply chains, complicating the deployment of MPSs,
especially diesel-based resources. Challenges in securing fuel
and logistical difficulties post-disaster hinder timely power
recovery efforts. Due to their independence from supply chains
and their capability to generate green energy, MWTs emerge
as a particularly effective strategy for swift service restoration
in rural areas following extensive power outages. In this paper,
we utilized MWTs from Uprise Energy [29], each capable of
providing a maximum power output of 50 £ when connected
to the PDS.

B. DRLBRE Framework for MWT-Enabled Restoration

The DRLBRE framework, devised to boost PDS resilience
via. MWT fleets, is depicted in Fig. 2. The framework is
designed to rapidly generate a restoration strategy for the
PDS using MWT fleets following a natural disaster, aiming
to minimize economic losses. The strategy must account for
faults in both the PDS and TS, as well as the inherent
uncertainty of wind speed. To achieve a rapid response vi-
tal for effective restoration, we employ a DRL approach,
which yields significantly faster decisions than traditional
optimization methods [25]. Our framework is composed of two
fundamental components: the environment and the DRL agent
components. In the environment component, certain nodes of
the PDS are linked to nodes in the TS, enabling MWT fleets
to travel through the TS and supply power to PDS. In this
study, we consider several PDSs integrated with a TS. When
a disaster occurs, it results in damaged overhead power lines
in PDSs and disconnected paths in the TS. The PDS and TS
data, along with wind speed information, serve as input to the
DRL agent model, constituting the model’s state. This state
inputs a DNN to determine actions using the e-greedy function
[30]. These actions guide the movement and power supply of
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Fig. 2. The proposed framework for DRL-based resilience enhancement in PDS using MWTs.

the MWT fleets within the environment, following an action
transfer function. The actions taken by agents lead to changes
in environment information by altering the power generation of
MWT fleets. A reward function evaluates the changes in power
supply from MWT fleets, providing rewards to the DRL agent
accordingly. The agent stores action, state, and reward data as
experiences for training purposes. Training continues until the
training reward meets a predefined standard, at which point
model training ceases, and the model can generate actions
based on the environment input states. To address the challenge
of balancing the increased training time required by a complex
environment with the time constraints imposed by emergency
natural disasters, we adopted a two-stage training approach.
In DRL, the two-stage method splits the training process into
two phases, each designed with a specific focus [31]. This
approach is commonly employed to handle complex tasks,
beginning with the creation of a foundational model and then
fine-tuning it for more specialized scenarios [32]. In our case,
the first stage is dedicated to training the base model, during
which PDS and TS faults along with wind power outputs,
are randomly assigned for each training episode. The second
stage involves application training, which uses well-defined
configurations of PDS faults, TS faults, and random wind
power conditions.

C. MADRL Algorithm

With the purpose of restoring the PDS following a natural
disaster via MWT fleets, the DRL model is designed to
provide action for each MWT fleet, which corresponds to
selecting a target TN for power supply. The effectiveness of
each action is evaluated only after its execution, as the travel
time of MWT fleets can be different. In some cases, MWT
fleets may need to continue supplying power at their current
location based on the island demand and wind speed in TN.
Differences in transportation time costs require that each MWT
fleet follow an independent direction. Moreover, since multiple
MWT fleets must collaborate to complete the restoration task,

the DRL agent must consider not only the information from
the PDS and TS, but also the status of all other MWT
fleets, including their current locations and power output. This
necessitates real-time information exchange and coordination
among fleets to enhance both individual performance and the
overall restoration strategy. Therefore, we implement MADRL
in our framework. In this study, each MWT fleet applies one
agent A;,i € I. The problem can be formulated as a MDP.
All agents are DRL models, which enable agents to learn
actions from their environments directly with exploration and
exploitation [33]. A MDP is a 4-tuple (S, A, P, R), including
s € S which stands for the state set of the environment;
the agent action set A; P stands for the probability that s
transfers to s’ due to action a at time ¢; R represents the reward
for taking action a at the current time step ¢. In each time
step, the action a;; is computed with an exploration policy
conditioned on the current local state information s; ;. The
action a;; is then applied to the environment, which responds
by transitioning to a new state sg’t and providing a reward 7; ;
for that action. Following this process, each agent ¢ receives a
local state information, action, reward, and the local state for
the next time step as the experience (s;, i, "¢, S : s} ). The
objective of each agent ¢ is to maximize the total reward for
the entire process R = ZtT:o r;¢+» where T' is the total time
step.

In our framework, we applied DDQL and DQL as the DRL
algorithm for each agent. The process for the MWT fleet
agents is shown in Algorithm 1. The agent, denoted as 1,
belongs to the set I. The state for each agent at each time step
consists of the information on the PDS, TS, power generation
and MWT fleets location, shown as:

Si7t:[Ni,tanafPafT]7 I (1)

N, is the transportation node information of the MWT
fleet, P, is the power generation of the MWT fleet, fp is
the fault information of PDS, and fr is the fault information



of the TS. The action of the agent a;., Vi € I, represents
the destination of the MWT fleet, indicating the TS node to
which the MWT fleet should travel. Figure 3 illustrates how
each agent generates actions and accesses information from
other MWT fleets. When an MWT fleet completes its previous
action or initiates the restoration process, its corresponding
agent is activated and generates a new action based on the
current input state, which is transferred from the environment
information. This input state is composed of several matrices
that include information about the PDS, TS, the current
location of the MWT fleet, and the status of other MWT fleets.
By modifying the input matrices, each agent gains experience
in directing a specific MWT fleet. Once an action is completed,
the environment updates and returns the state for the current
time step. The information of the updated state triggers the
agent to generate the next action, ensuring that each MWT fleet
receives timely and individualized guidance for the restoration
task. The reward r; 4,7V, stands for the cost of the load that
is restored by the MWT fleets, which is used to evaluate the
performance of the action. Further details will be discussed in
Subsection III-A2.

Agent 1 PDS —
TS
Agent 2 R T
Switch & *rlg Other MWT | ||
| Agent3 | L‘QZE{:I_ ! information
. State matrices
Agent 4 Environment Slngle MWT -
information |

Fig. 3. Agent interaction cycle: information acquisition and action generation.

Algorithm 1 : DQL & DDQL Algorithm for MWT Agent

1: Initialize replay memory D; ¢ € I with capacity N

2: Initialize the weight 6 and 0

3: Set soft update of target parameters 7 and leaning rate «;
4: Set discount factor « and exploration rate €

5: for episode = 1, M do

6: Set PDS and TS fault in environment

7 Get the initial input state s; ¢ ¢ € 1

8 for time step t = 1,7 do

9 for . =1,1 do

0 Generate action a; ; for each agent (MWT fleet) base
on the e-greedy

10:

11: Transfer a;,; to the destination node N; ¢ of MWT
12: end for

13: Apply N; q ¢ € I in the environment

14: Run the AC-OPF for PDS

15: for : =1,1 do

16: Calculate reward r; ; with load restoration cost
17: Get the next state s ;

18: Store transition (Ss¢, Gi,¢, Tit, Si,) in Ds

19: Sample (s;,a;,7;,s;) randomly from D;

20: Calculate the target value y; for DQL and DDQL
21: Calculate the loss function for DQL and DDQL
22: Update 6 with loss function

23: Update the state s;; = sj ;i € I

24: end for

25: Get episode-done value e based on ¢

26: if e stand for current episode complete then

27: Break the episode

28: end if

29: end for

30: Decreases the e-value

31: end for

For the training process described in Algorithm 1, the initial
steps involve setting up the hyperparameters and initializing
the replay buffer, which stores the experiences for DQL and
DDQL from Steps 1 to 4. At the start of each episode, in
Step 6, faults in the PDS and TS are introduced to simulate
a rural area affected by a natural disaster. In Step 7, the state
s; for each agent is generated based on the conditions of
the PDS and TS. From Steps 8 to 12, each agent uses the
state information to determine its action following the e-greedy
policy. These actions are then translated into MWT fleet
operations, including their power supply status and locations
within the PDS and TS. In Steps 13 and 14, the actions of the
MWT fleet are applied to the environment, and the AC-OPF
is calculated for the PDS. Steps 16 to 18 involve each agent
calculating the reward value based on the AC-OPF results,
obtaining the next state 527,5, and storing the experience in
their respective replay buffers. Finally, in Steps 19 and 20, the
agents randomly sample training data from the replay buffer
and calculate the target value y; for DQL and DDQL. The
target value for DQL is:

y; = 75 + ymax Q(s;, a';07) (2)

Note that DDQL uses two separate networks—an online
network for action selection and a target network for target
Q-value calculation—reducing overestimation bias, whereas
DQL uses a single network for both, which can lead to
overestimation. The target value of DDQL is calculated with
the weight of the two Q networks:

b= 1 4 AQ Qs ) @)

In Step 21, the loss function of the DQL and DDQL is
calculated based on the target value as follows:

Li(0;) = (y; — Q(sj,a,:0))*, i€ (4)

In Step 22, the weight of the Q network in DQL and DDQL
is updated with the learning rate «; and discount parameter.
For the Q network of DQL and local Q network of DDQL,
the weight update equation is:

91‘ < 92 - Q- VHILz(ez) (5)

while the weight update equation for the target network of
DDQL is:
0; — 70; + (1 —71)0, (6)

In Step 23, the state information is updated using the state
data in the next time step. From Steps 25 to 28, the process
checks whether the cycle should end on the basis of the
number of time steps. In Step 30, the exploration parameter e
decays accordingly.

D. AC-OPF in PDS

The restored load power in the PDS is calculated through
an AC-OPF process. In each time step ¢, based on the MWT
fleet power supply information P;’ftt, AC-OPF is used to
quantify the restored load power. The objective is to maximize



the expected cost sum of restored loads for PDS. The total
restoration load cost is the sum of the restoration cost of each
load d, which is calculated based on the load outage cost cif
and the real power demand for each restored load Péflt at each
time step, formulated as

e 3 St} o
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The objective function (7) aims to maximize the cost
sum of restored loads of the PDS. The formulated AC-OPF
incorporates real and reactive power balance constraints (9)
and (10) at bus . The sets B, Bj4, and L represent the
MWT fleets, loads, and power distribution lines, respectively.
The power supply from the main grid is denoted as P,’y’. The
status of demand at load point d is governed by constraints
(11) and (12), while e;; is a binary variable indicating the
energized status of bus ¢ (1 if energized, O otherwise). Voltage

[
® PDS Bus
+ Vulnerable lines

F

and power flow limitations for each bus and distribution line
are described in (13) and (14), and the linearized power flow
constraints are provided in (15) and (16). The binary variable
Yij,+ represents the energized status of distribution line (7, j) (1
if energized, 0 otherwise) and depends on the fault settings in
the PDS. Since the distribution line undergoes repairs during
the restoration process, ¥;;: should be checked at each time
step in the training episode. M represents a large positive value
introduced to help simplify or relax the given constraints.

III. NUMERICAL CASE STUDIES
A. Environment Setup

The MADRL environment simulates the problem that needs
to be addressed. The agent will make decisions based on the
current state of the environment. The framework’s environment
encompasses four components: (i) a system simulation of the
TS and PDSs; (ii) a wind speed generation function and MWTs
output power estimation; (iii) the action transfer function of the
MWTs, which converts the DRL agent’s output into actions
for the MWTs within the framework; (iv) an action reward
function, which estimates rewards based on the power supplied
by MWTs and the power outage costs at PDS load points.

1) The Integrated Power-Transport Network: Assuming
that MWTs are used as assets aiding in the restoration of
the rural PDS following disasters, we consider a limited-scale
PDS. Therefore, we utilize four IEEE 33-bus test systems to
represent the rural PDS. For the TS, we apply the Sioux Falls
system, which consists of 24 TS nodes. For each PDS, there
are candidate nodes coupling with nodes in TS. This allows
MWTs to travel between coupling nodes in the TS, as deter-
mined by the DRL agent, to connect to the PDS and supply
power. In this study, faults within the PDS are represented as
broken vulnerable lines in PDSs, marked by red lightning to
signify potential outages. The fault configurations within the
PDS entail randomly selecting several power lines to be failed
at different times throughout the process. This results in the
segmentation of the PDS into multiple disconnected islands.
Certain sections are isolated from the main grid and require
power from MWTs. The complete PDS restoration process

lasts 24 hours and is divided into 48 time steps. To model
e
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Fig. 4. An integrated power-transport network with IEEE 33-bus test system and Sioux Falls TS.



the fault scenario in the PDS, we randomly select four or five
distribution lines to be damaged in each PDS. Simulating the
actions of repair crews, we assume each line will be fixed after
a certain number of time steps. The repair time is randomly
assigned, ranging from 23 to 35 time steps.

The lower section of Fig. 4 depicts the TS, where nodes of
different colors indicate the coupling relationship between the
TS and each PDS. The TS fault is modeled as road damage
caused by a disaster. Throughout the environment’s process,
these damaged roads will not be repaired, maintaining the
existing road conditions to restrict the transport of MWTs. In
each case within the environment, three roads in the TS will
be randomly selected to be unavailable during the disaster.

To enable MWTs to navigate the TS using the shortest path,
we used Dijkstra’s algorithm to calculate the optimal route
[34]. When considering faults in the TS, damaged roads are
excluded when running Dijkstra’s algorithm. During training,
when the MWT receives a destination node—derived from
the action generated by the DRL agents—the environment
provides routing information based on the MWT’s current
TS node location and the destination TS node. The MWT
then moves along the calculated shortest path until it reaches
its destination. Since TS road damage in rural areas cannot
be repaired quickly, the shortest path information remains
unchanged for an entire training episode, which represents
the whole restoration process. To reduce training computation
and prevent recalculating the shortest path for each agent, we
pre-compute a shortest path matrix at the beginning of each
training episode.

2) Wind Speed and MWT Output Power: The power output
of a wind turbine follows a truncated cubic relationship with
wind speed [35]. In this context, the Weibull distribution
is commonly employed due to its effectiveness in modeling
uncorrelated wind speeds [36]. Since wind speeds vary across
different times and locations, we use the Weibull distribution
to randomly generate wind speed values for each TN at every
time step in each episode. Given that the proposed framework
is intended for post-disaster deployment, the MWT fleets are
likely to operate under adverse conditions, including elevated
wind speeds commonly observed during extreme weather
events such as hurricanes. When wind speeds exceed the cut-
out speed, the MWT will stop power generation as a protective
measure to protect wind turbines from potential damage. The
wind speed data is generated prior to the start of each episode.
Since the same MWT is used for all units, the power output of
each wind turbine is determined for every TS node at each time
step using the generated wind speed data. The wind turbine

power output function is given by:

3
vg’»iﬁpmm 0 <V < Vmax
Pmaz

0 V > Vout

P= (17)

UV > Umazx

P represents the wind power output of the MWT; v is the
wind speed at the current time step; vj,q, iS the rated wind
speed of the wind turbine; P,,,, is the rated wind power
output of the wind turbine; and v, is the cut-out speed of the
wind turbine. Since the primary task of the MWT fleet is to
efficiently restore PDS nodes by supplying power, the MWT

fleet’s power generation capability is critical for evaluating
performance and calculating rewards for the DRL agent. Low
or zero power generation from the MWT fleet results in a lower
reward. During training, the reward mechanism encourages
the agent to avoid actions that position the MWT fleet in
areas with low wind speeds or winds exceeding the cut-
out speed. The MWT considered in this paper is capable of
generating power over a wide range of wind speeds [29],
with maximum power output achieved at a wind speed of
11m/s [37]. The cut-out speed is set to 25m/s [38]. The
wind power information for the next time step is provided
as input to demonstrate that the agent receives predictive
wind power data. The MWT focused in this paper has the
ability to generate power with a wide range of wind speeds
[29]. Each MWT has a maximum power output of 50 kW.
GFM converters have been implemented in microgrids and
islanded power systems [39], enabling wind power plants to
operate similarly to traditional synchronous power stations. By
adjusting current and voltage, these converters help manage
interconnection fluctuations [40]. Consequently, we deployed
multiple MWTs and grouped them into a fleet, establishing a
wind power plant capable of aiding restoration efforts. The
maximum power output for each MWT fleet is limited to
1000 kW. Figure 5 illustrates a wind power output scenario for
MWTs. The TS consists of 24 nodes, and the entire process
spans 48 time steps, resulting in a 24 x 48 matrix. In this study,
we deploy four MWT fleets with identical wind turbine power
output configurations. Each colored block in Fig. 5 represents
the wind power output of a single MWT fleet operating at a
specific TS node during the corresponding time step.
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Fig. 5. MWT wind power output at each time step in PDS.

3) Action and Transfer Function: The restoration schedul-
ing policy for the PDS comprises a series of actions, each
corresponding to a specific destination TN for MWT fleets.
These actions are represented by output labels from the DRL
agent, and the total number of labels defines the action space
size. In our simulation environment, there are 23 labels, align-
ing with the number of TNs, excluding the TN where the depot
is located. The action transfer function is used to transfer the
action label information to the action of the MWT fleets, which
is the destination TNs of the MWT fleets. The inherent un-
certainty in wind speeds, coupled with potential faults in PDS
and TS, significantly expands the state space within the MDP



framework. When combined with an extensive action space,
this leads to a substantial increase in the number of potential
state-action pairs, or MDP tuples. Such an expansion poses
challenges for DRL agents, as the enlarged and more complex
state-action space complicates the exploration process, making
it more difficult for agents to identify optimal restoration
actions for each state. To enhance exploration efficiency within
our DRL framework, we implement an AL function that
constrains the action space by excluding choices likely to
result in suboptimal performance. Specifically, the AL function
prevents scenarios where multiple MWT fleets simultaneously
supply power to a single TN. This restriction mitigates the
compounded negative effects of low wind speeds by preventing
multiple MWT fleets from simultaneously delivering insuffi-
cient power to the PDS. Additionally, the AL mechanism helps
avoid potential power waste that can occur when multiple
MWT fleets generate power in the same TN under high wind
speed conditions, thereby preserving the overall operational
efficiency of the fleet. By narrowing the action space to more
promising options, the AL function facilitates more effective
exploration and accelerates the convergence of the DRL agents
toward optimal restoration strategies. The algorithm for the
action transfer function is described in Algorithm 2.

Algorithm 2 : Agent Action Transfer Function

: Getting the action label of other agent and storage to Aj;s¢

: Getting the current agent action number a

: Getting the depot TN number ngepot

: Getting the action number lower bound a;ower and upper bound

aupper based on action setting

5. Getting the agent location node number njocqtion

6: Combining the Ajist, Ndepot, Glower, aNd Gupper as the list of
prohibited nodes Npronibit

7: for node number n; in Npronivit do

8: if a >=n,; and a < n;+1 then

9: Change the action a as ar according to ar = a + ¢

10: Break the For loop

11: end if

12: end for

13: if ar = aupper then

14: Change the action a7 as njocation t0o make the MWT fleet
stop to supply power

15: end if

N O R S

The Action Transfer Function algorithm involves three key
steps: Step (i) it identifies the bounds of the action number,
the actions of other agents, and the TN number of the depot
to establish a list of prohibited nodes; Step (ii) it transfers
the agent’s action based on this list by comparing the action
number and node number in the prohibited node list; Step
(iii) it compares the transferred action with the action size to
determine whether the agent should halt and supply power
or not. Including the actions of other agents in both Step
(i) and Step (ii) by adding them to the forbidden node list
constitutes the AL aimed at preventing multiple MWT fleets
from converging on the same node within the TS. This enables
the AL to mitigate the influence of wind speed variations at
individual TNs on the total power output of MWT fleets.

4) Reward Function Setting: The reward function serves
as a pivotal aspect of the environment, providing an assess-
ment of the feedback received from the agents’ actions. Our

objective is to optimize the episode reward throughout the
restoration process following the disaster. The episode reward
is calculated as the sum of the rewards at each time step. The
reward is calculated based on the cost of the load restored by
MWT fleets. Figure 6 illustrates the power demand and outage
costs at each PDS node, where darker colors indicate higher
demand and higher power outage costs. This paper posits that
all four PDSs use the same information (load demand and
power outage costs) for each node, as illustrated in Fig. 6.
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(b) The power outage cost at PDS load points
Fig. 6. The power demand and the power outage cost of PDS nodes

To ensure that MWT fleets do not supply power to the island
connected to the main grid, their reward value is converted
into a penalty to influence the target value of the MADRL.
The objective is to optimize the episode reward, which is
the aggregate of the rewards from four episode MWT fleets.
Therefore, the reward for each agent at each time step should
be considered in two different ways: one is to use the SR,
which is the average of the rewards from the four agents,
and the other is the AR. The SR influences the agent’s target
value based on the performance of all agents’ actions, while
the AR encourages the agent to concentrate on its own action
performance. The AR obtained by each agent when the MWT
fleet under its control is supplying power is determined by the
following equation:

PmwT

(18)
ptotale

Rywr = cioad -

where, Rjnwr represents the reward value for each agent,
and cjoqq denotes the cost of the load supplied by the MWT
in the current section of the PDS. p;wr signifies the wind
power output of the MWT fleet, while p;,.,; indicates the total
power supplied by the MWT fleet in the current section of the
PDS. Ny represents the transfer coefficient, which diminishes
the magnitude of the reward. Our framework prioritizes min-
imizing economic losses in the PDS and improving system
resilience. This means that developing an effective power
restoration strategy takes precedence over other considerations.
Incorporating fuel costs into the reward calculation could skew
the restoration strategy, preventing it from supplying power to
the most critical loads and potentially lowering the restored
load’s overall value. Hence, transportation cost is recognized
but treated as a secondary concern, ensuring that it does not
interfere with the primary objective of rapid and effective



power restoration. Furthermore, MWT fleet’s fuel consumption
is negligible compared to the total value of lost load.

B. DNN Model and State Generation

In this paper, we employ a CNN as the DNN part of the
MARDRL agents. This CNN is responsible for classification,
using input matrices to assign action labels. These matrices
encapsulate information from our framework environment
related to MWT fleets, PDSs, and TS. The types of features
in the input matrices are detailed in Table I. These feature
information will be transformed into five matrices as input for
the CNN, with the feature data types presented in Table I.

TABLE I
ENVIRONMENT OUTPUT FEATURE INFORMATION IN INPUT MATRIX

State Matrix Number

Feature Type
TS Feature
PDS Fault
Wind Speed Feature
Other MWT fleets Status
Other MWT fleets Location
Other MWT fleets Supplying Power
Other MWT fleets Action
MWT fleet Status
MWT fleet Location
MWT fleet Supplying Power
MWT fleet Action

—_
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In Table I, State Matrix 1 contains feature information on
the length of transportation paths following the occurrence of
faults due to disaster-induced damage. State Matrix 2 furnishes
information on the status of distribution lines, contributing to
the state’s understanding of the PDS. State Matrix 3 offers
wind speed features for each TN. State Matrix 4 presents fea-
tures of MWT fleets controlled by other agents, encompassing
MWT fleet status, location, supplied power, and action values.
State Matrix 5 provides feature information on the MWT fleet
controlled by the current agent. State Matrices 1 to 3 offer
general feature information, while the feature details provided
by State Matrices 4 and 5 aid the agent in understanding its
own situation and the status of other agents.

The CNN will provide the agent’s action label based on
the input state information. In CNN, there are two Convo-
Iutional (Conv) layers, two Pooling (Pool) layers, and three
Fully Connected (FC) layers in total. The architecture of the
proposed CNN is: Input(5, 12x12) — Conv1(64, 10x10) —
Pool1(64, 5x5) — Conv2(128, 4x4) — Pool2(128, 2x2) —
FC1((64x2)x2x2, 144) — FC2(144, 72) — FC2(72, action
size). The learning rate 7 is 5e-3, and the minimum exploration
rate € is le-3.

C. Base Model Training

This paper employs two RL networks: DQL and DDQL.
Utilizing these networks, we investigate suitable reward strate-
gies and action transfer functions within this framework by
testing various algorithm combinations to identify the optimal
configuration for training. We calculate the total reward by
summing the episode rewards of four agents to assess training
performance. The moving reward represents the average value
of the total reward over the last 100 episodes. The moving
reward curve is shown in Fig. 7. In the legend label of Fig.
2, SR means applying system reward during the training, AR

means applying the agent reward during the training, and AL
means applying the action limitation in the action transfer
function. We utilize the episode number at which the network
achieves a moving reward of 1,500 as the benchmark for
evaluating the training speed. Details regarding the training
speed are provided in Table II.

4000

= B R -t v
5) 0 —Model 1
22000 ?2232{ %
£ -4000 Mo 5
6000 [—Model 6
4000 Episode Number 8000 12000
Fig. 7. Training moving reward for different networks.
TABLE II
TRAINING EPISODE OF DIFFERENT MODELS
Model Episode
Number AR SR AL DQL  DDQL Number
1 VA V4 V4 9,065
2 Vv Vv 11,208
3 Va VA V4 9,364
4 VA Vv 9,188
5 V4 V4 v 9,673
6 v 4 11,214

In Fig. 7, when comparing the moving reward curve of
Model 2 and Model 4, it is evident that without the AL
in the action transfer function, the SR outperforms the AR.
The model using SR motivates agents to take actions that
increase the total episode reward, while the model using AR
prompts agents to choose actions that enhance their individual
rewards. Comparing the moving reward curve with those of
other models employing AR functions, it is evident that the
episode moving reward rises faster. This acceleration is due
to the system reward function, which allows individual agents
to make sacrifices for the benefit of the overall reward. In the
absence of AL, since AR leads agents to disregard the rewards
of others, training encourages agents to select the optimal
action for themselves, which may result in multiple agents
supplying the same island and thus not utilizing the maximum
wind power generation. Consequently, agents operating under
SR could achieve higher episode rewards during training
and converge sooner. However, agents that sacrifice their AR
value to achieve a higher total episode reward may lead the
MADRL model to converge to a suboptimal solution. This
occurs because actions with a higher AR are replaced by
those with a higher SR but lower AR during the MADRL
training process. Based on the training results, AL reduces
episode costs by 1.3% to 13.7%. Additionally, the final moving
reward of training with AR and AL is over 31.8% higher than
that of training with SR and AL. Considering the need for
the framework to deliver strategies as quickly as possible, we
incorporate AR and AL into the MADRL framework.

Upon incorporating AL with SR in Model 1, the episode
cost of increasing the moving reward is lower compared to that
in Model 4. Similarly, when comparing Models 2 and 3, as
well as Models 5 and 6, within each pair of models sharing the
same DRL structure and reward function, it becomes evident
that AL significantly accelerates the training speed. After
implementing AL, agents will assign different actions to each
MWT fleet, directing them to various destination TNs. Since
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Fig. 8. The moving reward and the episode reward standard deviation for models with different combinations.

wind speed at each TN is randomly generated, the reward
for the same action will vary with changes in wind power.
In the absence of AL, actions by the agents can result in
multiple MWT fleets supplying power to the same TN. This
concentration on a single node can lead to greater fluctuations
in wind speed and reduce the overall episode reward. The agent
with SR allows some cases to achieve a higher episode reward,
which means that the restoration policy is more efficient for
the cases of the current episode. However, the experience
from these episodes may cause some agents’ replay buffers
to accumulate experiences with high system rewards but low
individual agent rewards. When there are changes in fault
settings and wind power, these agents lack experiences with
high individual rewards, which can reduce the total reward for
the episode. This defect leads to the final moving reward of
Model 1 being lower than that of Model 3. Compared to the
moving reward curve of Models 3 and 5, the training speed
and the moving reward do not have obvious differences. Due
to the random fault settings in both the PDS and TS during
the disaster, the reward for each episode fluctuates based on
these settings, resulting in a non-zero standard deviation in
Fig. 8. To compare the performance of Model 3 and Model 5,
we use these models as the base model for training with the
same fault setting.

D. Case Model Training

In our framework, the second stage of training, known as
case model training, is focused on developing a restoration
strategy for the PDS to handle emergency natural disasters.
This stage is designed to produce a time-sensitive restoration
solution that effectively meets emergency challenges within a
limited training period. To enhance performance and speed up
the training process, we utilized the model trained during the
first stage as the foundation for the second stage. For the case
model training, each training episode used a single fixed fault
setting. In our test scenarios, the PDS fault configuration is
detailed in Table III, while the TS fault setting involves three

fault paths: 6 — 8, 8 — 16, and 14 — 23. The reward curves
for various agent model configurations are presented in Fig.
9. In the second stage of training, the MADRL agents retain
the same structure as used during the base training phase.
To compare and evaluate the effectiveness of our two-stage
training approach, we conducted multiple additional training
runs using identical agent configurations. These additional runs
utilized only the replay buffer from the first stage, without
loading the network weights of the base model. In this second
stage of training, we adjusted the value of ¢ to enhance
exploration, helping agents identify actions that perform better
for the current scenario. Two initial e-values were considered:
(1) 1.0, to encourage greater exploration of models without
prior experience, and (ii) 0.15. Furthermore, since models 3
and 5 in Fig. 7 exhibit similar levels of training reward, we
incorporated both into the case training for further comparison.
These models were treated as base models for the case training
phase to determine which could deliver a more effective
restoration strategy.
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Fig. 9. Moving reward during model training with varying initial model
settings.

In Fig. 9, training sessions utilizing base models, trained
with various fault cases in the environment, attain higher
moving rewards. Due to the sufficient experience possessed
by the base model, high-reward actions can be achieved from
the beginning of the training process. This prior experience en-
ables rapid acquisition of high-reward actions. Consequently,
the base model enhances the efficiency of developing transport
strategies for MWT fleets. Comparing the two trainings with
base models, the agent’s performance using the DDQL net-
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TABLE III
FAULT SETTING IN FOUR PDSs IN CASE 1
PDS Fault Line Fault Line Fault
# Endpoint Node 1  Endpoint Node 2  time step
2 3 24
I 3 23 34
6 26 28
1 2 33
7 8 23
I
2 19 33
6 26 34
4 5 28
14 15 34
111 2 19 30
20 21 23
31 32 31
1 2 26
7 8 34
v 6 26 25
27 28 30
31 32 25

work outperforms that of the agent using the DQL network.
The final moving reward of the DDQL network is 5.5% higher
than that of the DQL network, and the DDQL network’s
moving reward converges earlier than the DQL network’s. This
is because DDQL helps avoid the excessive optimism in Q-
value estimation seen with DQL, allowing the agent to reduce
training costs per episode and achieve higher rewards through
more frequent Q-value iterations. However, since the base
model already possesses substantial experience from initial
training, the agent with the DDQL network can secure higher
rewards consistently from the beginning to the end of the
training in a specific environment setting.

Additionally, the final performance of training without the
base models and using an epsilon value of 1.0 exceeds that
of training with an epsilon value of 0.15. The higher epsilon
value prolongs the exploration phase, allowing the training
to cover more episodes and accumulate more experience.
This increases the likelihood of achieving better actions and
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rewards, particularly for agents with an epsilon value of
1.0. When comparing the training without the base model,
the agent utilizing the DQL network secures better moving
rewards by the end of the training process than those using the
DDQL network. The caution of DDQL in avoiding excessive
optimism means that 2,000 episodes may not be adequate to
iterate the network towards achieving high moving rewards.
Thus, the performance between DQL and DDQL presents
a contrast to that observed in agents trained with the base
model. Figure 10 illustrates various cases depicting the training
moving reward curve and the disparity in different fault
settings in TSs and PDSs. In various scenarios with different
environment settings, the agent’s moving reward consistently
demonstrates the superiority of the DDQL model. Once train-
ing converges, the DDQL model consistently achieves higher
rewards compared to the DQL model.

TABLE IV
TRAINING EPISODE TIME COST

Basic Initial e Episode
Model  Valme PPQL DQL  (PUTE
Vv 0.15 \/ 2.79015
i 0.15 v 2.69349
0.15 \/ 291075

0.15 Vv 2.72304

1.00 \/ 2.90691

1.00 Vv 2.72928

Table IV displays the training time cost for each episode.
When comparing episodes with identical base models and e-
values, training with the DDQL network requires more time
than the DQL network due to the differences in the target
loss values. Using the base training model reduces the time
required for each episode. The CPU for training is ¢7— 12700,
and the GPU is NVIDIA — 3060T"i. Based on our previous
training comparisons of reward functions, DRL algorithms,
and action transfer functions, we have opted for AR as the
reward setting for our environment. Each agent utilizes the
DDQL algorithm, and we apply AL in the action transfer
function to maximize rewards during training.

As indicated by the training results in Figure 9 and Table



IV, our two-stage training approach enhances the restora-
tion strategy’s performance within defined constraints. This
framework allows training to occur before natural disasters
strike, enabling the development of time-sensitive restoration
strategies to effectively address emergency challenges. By
leveraging pre-training during the initial stage, our two-stage
method improves emergency response performance when a
disaster occurs. This approach mitigates the impact of limited
training time during emergencies, making the framework more
efficient, straightforward to manage, and easier to implement.

E. MWT Fleets Restoration Strategy

To demonstrate the restoration strategy derived from the
proposed framework, we present the MWT fleets restoration
strategy based on the training results from Case 1. The
environment fault setting in Case 1 is identical to that used in
the training, as shown in Fig. 9. Figure 11 provides detailed
information on the fault settings and restoration strategy of the
MWT fleets. The upper section shows the fault locations in
the distribution lines across four PDSs, while the lower section
illustrates the transportation road faults in the TS and the
MWT fleets’ actions for movement and power supply during
the restoration process. The PDSs fault duration information
is provided in Table III.

In Fig. 11, MWT fleet 1 first moves to TN 4 and supplies
power to PDS 1 from Bus 9 between time steps 4 and 23.
Once the distribution line between Bus 2 and Bus 3 in PDS 1
is repaired, the island supplied by MWT fleet 1 is reconnected
to the main grid. MWT fleet 1 then moves to TN 6 of the
TS to supply power to PDS 2 until all distribution line faults
are repaired. MWT fleet 2 moved to supply power in PDS 2,
initially providing power to TN 15 from Bus 32. After the
distribution line fault in PDS 2 between Bus 7 and Bus 8 is
repaired, MWT fleet 2 moves to TN 23 and supplies power
from Bus 12 in PDS 2. According to the load information
in Fig 6, the repair of the distribution line makes the island
containing Bus 12 significantly more valuable than the one
with Bus 32, as the new island has a higher load demand and
greater output value. MWT fleet 3 first moves to TN 3 and
supplies power from Bus 32 in PDS 1 between time steps 7
and 20. With the PDS 1 distribution line faults between Bus
2 and Bus 3, and between Bus 6 and Bus 26 scheduled to be
repaired at time step 28, MWT fleet 3 relocates to TN 1 at

time step 24 to supply power from Bus 25 until all distribution
line faults are repaired. MWT fleet 4 moves directly to TN
18 and continues supplying power to Bus 9 in PDS 4. The
island containing Bus 9 in PDS 4 remains disconnected from
the main grid until all distribution line faults are repaired.
According to Fig. 6, the high outage cost due to the load
demand ensures that the agent receives a significant reward.
Figure 12 illustrates the power contribution of each MWT
fleet and compares the total supplied power to the four PDSs
with and without the restoration strategy. The restoration
strategies are generated by the trained model shown in Fig.
10. Comparing the green and the black lines in each case,
it is evident that the trained models effectively supply power
to the loads and reduce power outages at each time step in
the PDSs. In each case, MWT fleets provided 8% to 10% of
the load power. The reward function guides the agent to direct
MWT fleets to supply power to higher-priority loads, reducing
economic losses on the PDS load side by 12% to 16%.

F. Development Training

To address the temporal and spatial variability in MWT fleet
power output, we incorporated additional HSS units as backup
power sources. The HSS unit can store electrical energy and
supply power to the PDS during emergency events. It consists
of a water electrolyzer, hydrogen storage, and a fuel cell.
The system stores electrical energy by electrolyzing water to
produce hydrogen, which is later utilized by the fuel cell to
generate power. Figure 13 illustrates the operational statuses
of the MWT fleets, HSS units, and PDS, with each section
representing different power supply scenarios. Part 1 shows
that when the load and HSS units are connected to the main
grid, the main grid supplies power to the load and charges
the HSS units. Part 2 describes the situation when the island
is disconnected from the main grid and no MWT fleet is
supplying power, in which case the HSS units will provide
power if their storage tanks contain hydrogen. Parts 3 and 4
depict the collaboration between MWT fleets and HSS units,
where both supply power to the load, and the power output of
the HSS units depends on the output of the MWT fleets and
the island’s load demand. Parts 5 and 6 illustrate scenarios
where the MWT fleets generate sufficient power for the load.
If the MWT fleets produce excess power beyond the HSS
units’ demand and the storage tanks are not full, the surplus
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energy is used to charge the HSS units, with the stored energy
available for use when the MWT fleets cannot supply power to
the island. Four HSS units were added to the PDS in Buses 11,
19, 23, and 26, as shown in Fig. 14. Based on commercially
available products, we consider HSS units with a nominal
power output of 100kW [41] in this study. The HSS units
can be charged using an electrolyzer when surplus power is
available on the island [42]. For the hydrogen storage tanks, we
assume they have sufficient capacity to store hydrogen capable
of generating a total of 200kW h of energy. The power output
of HSS unit and the variations in the energy storage level of
HSS unit are formulated as follows:

P = py 0 (19)
Ef = gl — ptr (20)

where Pih2p represents the power output of a single HSS

unit, p?2p indicates the hydrogen consumption by the HSS
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Fig. 13. PDS restoration status with HSS units and MWT fleets.
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unit, uéﬁp denotes the H2P conversion factor, and nl’»ﬂp is the

H2P efficiency of the HSS unit. EX and EX | refer to the
energy storage levels of HSS unit at the current and previous
time steps, respectively. At the start of each training episode,
the HSS unit begins with its storage fully charged and can
supply power to islands disconnected from the main grid until
the stored energy is exhausted. If MWT fleet generates more
power than the island load demands and the connected HSS
unit still has storage capacity available, the excess MWT fleet
power is used to recharge the HSS unit. The relationships
governing the charging power and energy storage of HSS unit
are described by the following equg%i,?ns.

2h P;
PI = i o @D
Ef = EH | + pr?h (22)

where PP M is the hydrogen power input to a single HSS unit;
pP*" is the supply power from PDS to HSS unit; 12*" is P2H
conversion factor of the HSS unit; 77 M is the P2H efficiency
of the HSS unit.

In Subsection III-C, we showed that integrating AL and
AR enhanced training performance, enabling the framework
to produce more effective restoration strategies. Compared to
the agent model using the DQL algorithm, the agent model
utilizing the DDQL algorithm further improved the overall
performance of the framework. To further benchmark our
approach against other established methods, we substituted the
DDQL algorithm in our MADRL agents with three alternative
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DRL algorithms: AC algorithm, DDPG algorithm, IPPO algo-
rithm. We then evaluated the performance of the framework
in terms of reward and time cost. Each agent used the AL
and AR, and the training reward curves are presented in Fig.
15. The details of the converged rewards and the episode time
costs are shown in Table V.
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Fig. 15. The training reward for different DRL algorithms.
TABLE V
THE CONVERGE REWARD AND EPISODE COST FOR DIFFERENT DRL
MODELS IN THE DRLBRE FRAMEWORK

Model Converge Episode Converge
Name Reward Time(s) Episode
AC 1408 2.76589 7868
DDPG 2268 3.25455 7105
IPPO 2685 2.78373 7655
DDQL 3248 2.79016 7685

Based on the training results in Table V, the training episode
time cost for the frameworks using AC, IPPO, and DDQL is
similar, while the framework with DDPG agents requires more
time per episode. This is because DDPG consists of two AC
networks, resulting in a total of four DNNs per agent, whereas
the other three algorithms have only two DNNs per agent.
The additional DNNs in DDPG increase the time required for
agents to compute actions and calculate target values during
training. As illustrated in Fig. 15, the framework that employs
agents based on DDQL achieves notably higher rewards than
those that use other DRL algorithms. This difference arises
from the action space design for agents in the environment.
Agents utilizing algorithms like AC, DDPG, and IPPO, which
are based on PG methods, are well-suited for continuous action
spaces due to the activation functions in their networks. In
these algorithms, the agent action space is limited by the
activation functions of the network to a continuous range
between -1 and 1. However, in our research, the agent action
corresponds to a target TS node, which must be selected
from a discrete set of 24 values. To address this, we partition
the continuous action space into 24 equal intervals, each
corresponding to a specific TS node number. These small
intervals make it more challenging for the agent to distinguish
subtle differences in action values, increasing the probability
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of the agent selecting incorrect actions for restoration. In
previous research [25], the authors utilized Proximal Policy
Optimization, a PG algorithm. To address the challenge of
continuous agent action spaces, the authors choose to establish
a model using two agents that separate the direct moving
information of a single MPS and the information of the
power supply. One group of agents provides data on possible
movement paths from the current TS node, while another set
supplies details on the MPS power status. This method can de-
compose a single complex action into two simple actions and
use two agents to provide two-action information. However,
more agents mean that the model needs more networks and
will increase the training time cost. With the limitation of the
training time caused by the emergency natural disaster, we use
a single agent to direct the MWTs action in our framework.
Compared to the TS used in previous research [25], our TS
is significantly more complex. This complexity leads to much
smaller intervals when using a PG-based algorithm. Therefore,
we opted to use the DDQL algorithm in our agents. The DDQL
algorithm, being a value-based approach, naturally aligns with
discrete action spaces, eliminating the need for action space
conversions from continuous to discrete. Consequently, our
framework, utilizing DDQL agents, achieves higher rewards
and can address the restoration problem in more complex TS
scenarios with reduced time costs.

TABLE VI
AVERAGE REWARD FOR 30 TEST CASES USING DIFFERENT MODELS
Method AC DDPG _ IPPO_ DDQL _ MILP
Average re- g0, 16 238457 265348 3193.696 3566.303
ward

Computation ¢ | 97.5 83.4 83.7 2169.3

(s

After obtaining the initially trained model, we use the
DRL agent for testing and compare its performance with
a traditional MILP-based optimization approach. The test is
conducted across 30 distinct fault scenarios with randomized
wind speeds to simulate rapid response conditions following
a natural disaster. The results, presented in Table VI, are
evaluated using the agent’s reward function, which assesses
the effectiveness of each mitigation action step by step. The
comparison shows that our framework, which integrates AL
and AR with DDQL, significantly enhances response speed
while maintaining competitive performance. Figure 16 illus-
trates the reward values across 30 test cases, representing
the performance of models employing different algorithms.
The purple line indicates the performance achieved by the
MILP-based optimization approach. Compared to the MILP
model, our framework, which implements DDQL, provides
equivalent restoration performance in 10 test cases. Among the
frameworks utilizing various DRL algorithms, our approach




achieves the best performance in 16 test cases. In contrast, the
AC algorithm provides the best restoration strategy in only one
test case, the DDPG algorithm leads in 6 test cases, and the
IPPO algorithm performs best in 7 test cases. Our framework,
leveraging DDQL, outperforms frameworks that implement
other DRL algorithms, achieving the highest performance in
the majority of test scenarios. Additionally, it demonstrates
stable and competitive results compared to the traditional
MILP optimization method, underscoring its effectiveness in
diverse fault conditions within power-transport systems.
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Fig. 16. The training reward curve for different DRL algorithms.

Figure 17 shows the results of three different test cases for
PDS restoration with MWT fleets and HSS units. The left
section of Fig.17 illustrates the movement of MWT fleets
within the TS affected by road damage. The right section
presents the power output of each MWT fleet, the total power
output of the HSS units, and the system load restoration
information. Using the information in the left section of
Fig.17, our framework can generate a restoration strategy to
identify the shortest path free from road damage. Based on the
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(e) Case 3 MWT fleet movement.

Fig. 17. The test case result of restoration with MWT fleets and HSS units

HSS units configuration in our PDS, each HSS unit can deliver
100kW power for 2 hours, with a total maximum power
output of 1600kWW. When comparing the total power output
of HSS units in three scenarios, with MWT fleet charging and
the primary energy storage in HSS units, the HSS units can
sustain the power supply to the PDS for a longer duration.
During hours 8, 9, and 10 in Fig. 17(b), MWT fleet 2 and
MWT fleet 3 are in motion within the TS and are unable to
supply power to the PDS. As a result, the power supply from
HSS unit increases, preventing a decline in PDS restoration
power compared to hour 7. This demonstrates that HSS unit
enhances the performance of the PDS restoration strategy in
our framework. The inclusion of HSS unit also highlights the
scalability of our framework in integrating additional energy
resources.

IV. CONCLUSION

This paper introduces an innovative MADRL framework
to tackle the coordinated dispatch of MWT fleets for PDS
service restoration following extreme disasters. The proposed
MADRL framework consists of two training stages: initially,
the base model is trained using a variety of random environ-
mental scenarios. Subsequently, this model undergoes further
training with specific scenario settings to develop a scheduling
strategy tailored to the current scenario. The MADRL neural
network in the framework offers discrete actions with sensible
transfer functions to devise scheduling restoration strategies
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for PDSs with MWT fleets, ensuring the supply of power to
loads isolated from the main grid. To develop a more efficient
restoration policy and shorten training time for emergency
restoration tasks, we implement a DDQL network to establish
the agent within the framework. We integrate AL into the
action transfer function to accelerate the training process,
reducing training episodes by 1.3% to 13.7%. Additionally,
AR is used as the reward function for each agent, improving
the training reward by 31.8% and enhancing the restoration
policy. Numerical analyses with six different fault scenarios
in a power-transport system, consisting of four IEEE 33-bus
test systems and one Sioux Falls TS, demonstrated that the
framework can provide efficient restoration strategies, supply
power to loads separated from the main grid, and enhance
the resilience of the PDS. The results from various cases
with different power-transport system fault settings show that
the restoration policy provided by our framework directs
MWT fleets to supply 8% to 10% of the PDS load power.
Additionally, our framework takes load value into account,
guiding the MWTs to prioritize high-value loads within limited
power, reducing economic losses by 12% to 16%.
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