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Abstract—The growing adoption of wind energy resources
has demonstrated notable benefits in combating climate change.
Mobile wind turbines (MWTs) are uniquely positioned to navi-
gate transportation systems, being towed by trucks, and supply
energy to power distribution systems (PDSs). This flexibility
enables MWTs to serve as emergency power sources, thereby
contributing to enhancing the system resilience by facilitating
service restoration following extreme events. This paper presents
a novel framework based on Multi-agent Deep Reinforcement
Learning (MADRL) to dispatch MWTs for service restoration.
Deep Q-learning (DQL) and Double Deep Q-learning (DDQL)
approaches are implemented within the agent for training and
comparison purposes. Additionally, an action limitation is in-
corporated into the proposed framework in order to mitigate
the influence of wind power fluctuations. Case studies conducted
on an integrated power-transport system, comprising a Sioux
Falls transportation system and four IEEE 33-bus test systems,
illustrate the effectiveness of the proposed restoration scheduling
policy in enhancing PDSs’ resilience against disasters.

Index Terms—Mobile Wind Turbine (MWT), Double Deep Q-
learning (DDQL), Deep Q-learning (DQL), Multi-agent Deep Re-
inforcement Learning (MADRL), resilience, service restoration.

NOMENCLATURE

Acronyms

AC Actor critic

AC −OPF Alternating current optimal power flow.

AI Artificial intelligence.

AL Action limitation.

AR Agent reward.

CNN Convolutional neural network.

DQL Deep Q-learning.

DRL Deep reinforcement learning.

DDPG Deep deterministic policy gradient.

DDQL Double deep Q-learning.
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DRLBRE DRL-based resilience enhancement.

DNN Deep neural network.

GFM Grid forming.

HILP High-impact, low-probability.

HSS Hydrogen storage system.

H2P Hydrogen-to-power.

IPPO Independent proxy policy optimization.

MDP Markov decision process.

MPS Mobile power source.

MWT Mobile wind turbine.

MADRL Multi-agent deep reinforcement learning.

MILP Mixed integer linear programming.

PG Policy gradient.

P2H Power-to-hydrogen.

PDS Power distribution system.

RC Repair crew.

SR System reward.

TS Transportation system.

TN Transportation node.

Indices and Sets

i ∈ B Index and set of PDS buses.

(i, j) ∈ L Index and set of PDS lines.

d ∈ Bld Index and set of loads.

t ∈ T Index and set of time steps.

Parameters

clod Load outage cost of demand at bus d
($/kWh).

P̄ ld
d,t Baseline real power demand at bus d at time t

(kW ).
Q̄ld

d,t Baseline reactive power demand at bus d at

time t (kvar).
V Minimum permissible voltage (p.u.).
V̄ Maximum permissible voltage (p.u.).
rij Resistance of line (i, j) (p.u.).
xij Reactance of line (i, j) (p.u.).
S̄ij Capacity limit of line (i, j) (kV A).

µh2p
i H2P conversion factor of HSS unit i.

¸h2pi H2P efficiency of HSS unit i.
µp2h
i P2H conversion factor of HSS unit i.

¸p2hi P2H efficiency of HSS unit i.

Variables

P ld
d,t Real power demand at bus d at time t (kW ).

Qld
d,t Reactive power demand at bus d at time t

(kV AR).
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Pmg
g,t Real power supply from the main grid (kW ).

Qmg
g,t Reactive power supply from the main grid

(kV AR).
Pwt
g,t Real power output of MWT (kW ).

Qwt
g,t Reactive power output of MWT (kV AR).

Pij,t Real power flow of line (i, j) at time t (kW ).
Qij,t Reactive power flow of line (i, j) at time t

(kV AR).
Vi,t From bus voltage for line (i, j) (p.u.).
Vj,t To bus voltage for line (i, j) (p.u.).
ei,t Binary variable indicating the energized status

of bus i at time t (1 if energized, 0 otherwise).

yij,t Binary variable indicating the energized status

of line (i, j) at time t (1 if energized, 0

otherwise).

Ph2p
i Power output of HSS unit i (kW ).

EH
i Energy storage value at time step i (kWh).

EH
i−1 Energy storage value at time step i−1 (kWh).

P p2h
i Hydrogen power input to HSS unit i (kW ).

pp2hi Supply power from PDS to HSS unit i (kW ).

I. INTRODUCTION

C
LIMATE change has led to an increased frequency and

magnitude of HILP events, which have been witnessed

to result in extensive equipment damage, prolonged electricity

outages, and significant disruptions in modern society. Cli-

mate change-induced power outages have caused substantial

economic losses and posed significant threats to human life,

highlighting the urgent need to enhance the resilience of

power grids to such extremes [1]. For example, Hurricane

Maria in 2017 severely impacted Puerto Rico by disrupting

31 major power-generating units across 20 facilities, leav-

ing the entire island without electricity [2]. Similarly, in

February 2021, an extreme winter storm led to a widespread

electricity generation failure in Texas, resulting in over 4.5

million households experiencing prolonged power outages and

approximately $130 billion in economic losses [3]. Given

these significant disruptions, a resilient electric system should

prioritize the restoration of essential services, such as medical

facilities and police stations [4]. Given the vulnerability of

rural infrastructure to HILP events such as natural disasters-

—which can damage TS, disrupt power distribution, and

cause shortages of fossil fuels (e.g., gasoline, natural gas)—-

renewable energy resources, which do not rely on fossil fuels,

should be integrated into the restoration efforts to mitigate the

impact of these events [5]–[7].

A. Literature Review

Due to their spatiotemporal flexibility, MPSs have become

essential in enhancing the resilience in PDSs during natural

disasters. Most recent literature has focused on developing

model-based optimization approaches for effectively routing

and scheduling MPSs to improve system resilience. For in-

stance, authors in [8] applied a two-stage robust optimization

approach to routing and scheduling of MPSs, aiming for a

resilience-oriented outcome. In response to seismic events,

the authors in [9] set up a two-stage mixed-integer nonlinear

programming optimization model to optimize MPSs routing

and scheduling for effective disaster recovery. A recovery

strategy was introduced for PDSs that incorporates MPS

deployment, addressing the variability in renewable energy

sources through probabilistic constraints [10]. Authors in [11]

tackled the issue of decision-dependent uncertainty related

to MPS availability, influenced by travel and waiting times,

providing a more accurate assessment of how MPSs can

contribute to the enhancement of PDS resilience. Authors in

[12] introduced a dynamic strategy for scheduling and routing

of MPSs, taking into account the unpredictable condition of

roads and electrical lines within integrated transport and power

networks. Authors in [13] developed a multi-period mixed-

integer linear programming co-optimization model that syn-

chronizes the efforts of MPSs and RCs, aiming to enhance the

resilience of PDSs. A co-optimization model that integrates the

dispatch of MPSs and RCs through a mixed-integer second-

order cone programming approach to fortify PDS resilience

was proposed in [14]. Authors in [15] designed a service

restoration model that not only increases the resilience of

essential systems during disasters but also aligns the operations

of MPSs with repair crew schedules, addressing limitations

within both the power and transport sectors. Focusing on event

prevention, Su et al. [16] advocate for a strategic public-safety

power shutoff decision coupled with the deployment of MPSs.

An innovative approach was introduced in [17], using battery-

electric locomotives as mobile energy storage to manage wind

energy variability and curtailment. However, the use of MPSs

discussed in [8]–[17] rely solely on traditional energy sources,

which produce harmful emissions and may be impacted by

supply chain disruptions during disasters in rural areas. In

contrast, MWTs are small-scale wind turbines designed for

easy transport and are often used for off-grid power generation

or powering remote locations [18]. The use of MWT fleets

in rural PDSs has been extensively explored, including in

energy management systems [19], pre-disaster management

[20], and post-disaster restoration [21]. The existing literature

[19]–[21] employs model-based optimization approaches, and

due to concerns on computational complexity, all three studies

use Monte Carlo simulations to address the uncertainty in

wind power prediction represented by a limited representative

number of scenarios.

AI-based data-driven approaches to addressing some of the

computational challenges are being extensively studied. DRL

is closely linked to optimal control and dynamic programming,

offering significant advantages in real-time optimization of

systems with imprecise or even in the absence of models

(often known as model-free algorithms) [22]. DRL generates

actions based on the current state, and following several

training steps, it can determine the optimal actions for different

states [23]. Due to these advantages, DRL has been applied

in power systems management to enhance the resilience of

power systems [24]. In response to the challenge of service

restoration in PDSs during natural disasters, authors in [25]

developed a decentralized MADRL framework for coordinated

decision-making between MPSs and RCs aimed at enhancing

resilience. In [26], a single-agent DRL method was proposed

to make optimal dispatch decisions of MPSs for critical load

restoration, accounting for uncertainties in electricity demand.
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In [27], the authors developed a model-free real-time MADRL

method for service restoration via routing and scheduling of

MPSs in a coupled power-transport network.

B. Contributions and Paper Structure

To the best of our knowledge, previous studies [25]–[27]

on utilizing DRL for MPS assignment have not examined

the role and application of renewable-based MPS, such as

MWT. In disaster-stricken regions, infrastructure damage can

result in fuel shortages and road disruptions [6], [7], challenges

that were not addressed in previous research. To bridge this

gap, this article introduces a PDS restoration framework that

incorporates MWT fleets. Unlike traditional MPSs, such as

diesel generators, MWT fleets can continuously supply power

without relying on fuel, but they also face unique challenges,

particularly their dependence on wind availability, which re-

quires strategic deployment to ensure reliable power genera-

tion. Road damage in rural areas adds further uncertainty, as it

can significantly delay MWT fleet relocation. To address the

impact caused by the wind speed uncertainty and provide a

restoration strategy with time limitations, we propose a DRL-

based resilience enhancement DRLBRE framework based on

MADRL. In this framework, several key considerations can

be highlighted including:

1) The proposed framework introduces a reward function

that compares overall system rewards with individual

agent rewards. This reward system helps the framework

deliver higher-performing PDS restoration strategies us-

ing MWT fleets;

2) The framework incorporates action limitations to mit-

igate the impact of wind speed fluctuations, enhancing

the stability of MWT fleet dispatch. This approach leads

to improved training rewards by ensuring more reliable

decision-making under varying wind conditions;

3) The framework applied a two-stage training process.

In the first stage, a base model is trained on multiple

fault scenarios in power-transport systems, establishing

a solid foundation for the second stage, which refines

strategies under specific faults caused by emergency

natural disasters within time limitations. This approach

minimizes training time limitations during emergency

situations, enhancing the framework’s efficiency, man-

ageability, and ease of deployment.

The rest of this article is organized as follows: Section

II provides an overview of the MWT technologies and the

general framework, where the DQL and DDQL algorithms

are also introduced; Section III provides the training reward

and the numerical analysis of the studied cases; Section

IV provides a summary of research findings and outlines

prospects for future endeavors.

II. PROBLEM DESCRIPTION

A. Mobile Wind Turbines

MWTs are small-scale wind turbines that are mounted

on trailers or other mobile platforms, making them easily

transportable to the desired locations to generate electricity

[19]. Compared to backup power sources, such as uninter-

rupted power supply units used to restore the distribution

system, MWTs offer the advantage of mobility. They can be

transported by trucks to supply power to interrupted nodes

at different locations, enabling continuous operation until all

nodes are reconnected to the main grid. In addition, MWTs

have a lower power generation cost compared to traditional

diesel generators. Due to the fuel cost and the inefficiency of

the diesel generator, the electrical power generation cost is 1

$/kWh, while the electrical power generation cost for MWTs

ranges from 0.07 to 0.25 $/kWh [28].

Fig. 1. A typical MWT setup [29].

Furthermore, there is a lack of research on service restora-

tion schemes for rural PDSs, which face distinct challenges

due to their isolated locations, constrained resources, and lim-

ited technical expertise. Natural disasters can severely disrupt

rural supply chains, complicating the deployment of MPSs,

especially diesel-based resources. Challenges in securing fuel

and logistical difficulties post-disaster hinder timely power

recovery efforts. Due to their independence from supply chains

and their capability to generate green energy, MWTs emerge

as a particularly effective strategy for swift service restoration

in rural areas following extensive power outages. In this paper,

we utilized MWTs from Uprise Energy [29], each capable of

providing a maximum power output of 50 kW when connected

to the PDS.

B. DRLBRE Framework for MWT-Enabled Restoration

The DRLBRE framework, devised to boost PDS resilience

via MWT fleets, is depicted in Fig. 2. The framework is

designed to rapidly generate a restoration strategy for the

PDS using MWT fleets following a natural disaster, aiming

to minimize economic losses. The strategy must account for

faults in both the PDS and TS, as well as the inherent

uncertainty of wind speed. To achieve a rapid response vi-

tal for effective restoration, we employ a DRL approach,

which yields significantly faster decisions than traditional

optimization methods [25]. Our framework is composed of two

fundamental components: the environment and the DRL agent

components. In the environment component, certain nodes of

the PDS are linked to nodes in the TS, enabling MWT fleets

to travel through the TS and supply power to PDS. In this

study, we consider several PDSs integrated with a TS. When

a disaster occurs, it results in damaged overhead power lines

in PDSs and disconnected paths in the TS. The PDS and TS

data, along with wind speed information, serve as input to the

DRL agent model, constituting the model’s state. This state

inputs a DNN to determine actions using the ϵ-greedy function

[30]. These actions guide the movement and power supply of
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Fig. 2. The proposed framework for DRL-based resilience enhancement in PDS using MWTs.

the MWT fleets within the environment, following an action

transfer function. The actions taken by agents lead to changes

in environment information by altering the power generation of

MWT fleets. A reward function evaluates the changes in power

supply from MWT fleets, providing rewards to the DRL agent

accordingly. The agent stores action, state, and reward data as

experiences for training purposes. Training continues until the

training reward meets a predefined standard, at which point

model training ceases, and the model can generate actions

based on the environment input states. To address the challenge

of balancing the increased training time required by a complex

environment with the time constraints imposed by emergency

natural disasters, we adopted a two-stage training approach.

In DRL, the two-stage method splits the training process into

two phases, each designed with a specific focus [31]. This

approach is commonly employed to handle complex tasks,

beginning with the creation of a foundational model and then

fine-tuning it for more specialized scenarios [32]. In our case,

the first stage is dedicated to training the base model, during

which PDS and TS faults along with wind power outputs,

are randomly assigned for each training episode. The second

stage involves application training, which uses well-defined

configurations of PDS faults, TS faults, and random wind

power conditions.

C. MADRL Algorithm

With the purpose of restoring the PDS following a natural

disaster via MWT fleets, the DRL model is designed to

provide action for each MWT fleet, which corresponds to

selecting a target TN for power supply. The effectiveness of

each action is evaluated only after its execution, as the travel

time of MWT fleets can be different. In some cases, MWT

fleets may need to continue supplying power at their current

location based on the island demand and wind speed in TN.

Differences in transportation time costs require that each MWT

fleet follow an independent direction. Moreover, since multiple

MWT fleets must collaborate to complete the restoration task,

the DRL agent must consider not only the information from

the PDS and TS, but also the status of all other MWT

fleets, including their current locations and power output. This

necessitates real-time information exchange and coordination

among fleets to enhance both individual performance and the

overall restoration strategy. Therefore, we implement MADRL

in our framework. In this study, each MWT fleet applies one

agent Ai, i ∈ I . The problem can be formulated as a MDP.

All agents are DRL models, which enable agents to learn

actions from their environments directly with exploration and

exploitation [33]. A MDP is a 4-tuple (S,A, P,R), including

s ∈ S which stands for the state set of the environment;

the agent action set A; P stands for the probability that s
transfers to s′ due to action a at time t; R represents the reward

for taking action a at the current time step t. In each time

step, the action ai,t is computed with an exploration policy

conditioned on the current local state information si,t. The

action ai,t is then applied to the environment, which responds

by transitioning to a new state s′i,t and providing a reward ri,t
for that action. Following this process, each agent i receives a

local state information, action, reward, and the local state for

the next time step as the experience (si,t, ai,t, ri,t, s
′

i,t). The

objective of each agent i is to maximize the total reward for

the entire process R =
∑T

t=0 ri,t, where T is the total time

step.

In our framework, we applied DDQL and DQL as the DRL

algorithm for each agent. The process for the MWT fleet

agents is shown in Algorithm 1. The agent, denoted as i,
belongs to the set I . The state for each agent at each time step

consists of the information on the PDS, TS, power generation

and MWT fleets location, shown as:

si,t = [Ni,t, Pw, fP , fT ], i∀I (1)

Ni,t is the transportation node information of the MWT

fleet, Pw is the power generation of the MWT fleet, fP is

the fault information of PDS, and fT is the fault information
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of the TS. The action of the agent ai,t, ∀i ∈ I , represents

the destination of the MWT fleet, indicating the TS node to

which the MWT fleet should travel. Figure 3 illustrates how

each agent generates actions and accesses information from

other MWT fleets. When an MWT fleet completes its previous

action or initiates the restoration process, its corresponding

agent is activated and generates a new action based on the

current input state, which is transferred from the environment

information. This input state is composed of several matrices

that include information about the PDS, TS, the current

location of the MWT fleet, and the status of other MWT fleets.

By modifying the input matrices, each agent gains experience

in directing a specific MWT fleet. Once an action is completed,

the environment updates and returns the state for the current

time step. The information of the updated state triggers the

agent to generate the next action, ensuring that each MWT fleet

receives timely and individualized guidance for the restoration

task. The reward ri,t, i∀I , stands for the cost of the load that

is restored by the MWT fleets, which is used to evaluate the

performance of the action. Further details will be discussed in

Subsection III-A2.

Fig. 3. Agent interaction cycle: information acquisition and action generation.

Algorithm 1 : DQL & DDQL Algorithm for MWT Agent

1: Initialize replay memory Di i ∈ I with capacity N

2: Initialize the weight ¹ and ¹
′

3: Set soft update of target parameters Ä and leaning rate ³i

4: Set discount factor µ and exploration rate ϵ
5: for episode = 1,M do
6: Set PDS and TS fault in environment
7: Get the initial input state si,t i ∈ I
8: for time step t = 1, T do
9: for i = 1, I do

10: Generate action ai,t for each agent (MWT fleet) base
on the ϵ-greedy

11: Transfer ai,t to the destination node Ni,d of MWT
12: end for
13: Apply Ni,d i ∈ I in the environment
14: Run the AC-OPF for PDS
15: for i = 1, I do
16: Calculate reward ri,t with load restoration cost
17: Get the next state s′i,t
18: Store transition (si,t, ai,t, ri,t, s

′

i,t) in Di

19: Sample (sj , aj , rj , s
′

j) randomly from Di

20: Calculate the target value yj for DQL and DDQL
21: Calculate the loss function for DQL and DDQL
22: Update ¹ with loss function
23: Update the state si,t = s′i,ti ∈ I
24: end for
25: Get episode-done value e based on t
26: if e stand for current episode complete then
27: Break the episode
28: end if
29: end for
30: Decreases the ϵ-value
31: end for

For the training process described in Algorithm 1, the initial

steps involve setting up the hyperparameters and initializing

the replay buffer, which stores the experiences for DQL and

DDQL from Steps 1 to 4. At the start of each episode, in

Step 6, faults in the PDS and TS are introduced to simulate

a rural area affected by a natural disaster. In Step 7, the state

si,t for each agent is generated based on the conditions of

the PDS and TS. From Steps 8 to 12, each agent uses the

state information to determine its action following the ϵ-greedy

policy. These actions are then translated into MWT fleet

operations, including their power supply status and locations

within the PDS and TS. In Steps 13 and 14, the actions of the

MWT fleet are applied to the environment, and the AC-OPF

is calculated for the PDS. Steps 16 to 18 involve each agent

calculating the reward value based on the AC-OPF results,

obtaining the next state s′i,t, and storing the experience in

their respective replay buffers. Finally, in Steps 19 and 20, the

agents randomly sample training data from the replay buffer

and calculate the target value yj for DQL and DDQL. The

target value for DQL is:

yj = rj + µmax
a′

Q̂(s′j , a
′; ¹−) (2)

Note that DDQL uses two separate networks—an online

network for action selection and a target network for target

Q-value calculation—reducing overestimation bias, whereas

DQL uses a single network for both, which can lead to

overestimation. The target value of DDQL is calculated with

the weight of the two Q networks:

yj = rj + µQ̂(s′j , argmax(Q(s′j , a
′))) (3)

In Step 21, the loss function of the DQL and DDQL is

calculated based on the target value as follows:

Li(¹i) = (yj −Q(sj , aj ; ¹))
2, i ∈ I (4)

In Step 22, the weight of the Q network in DQL and DDQL

is updated with the learning rate ³i and discount parameter.

For the Q network of DQL and local Q network of DDQL,

the weight update equation is:

¹i ← ¹i − ³ · ▽θiLi(¹i) (5)

while the weight update equation for the target network of

DDQL is:

¹
′

i ← Ä¹i + (1− Ä)¹
′

i (6)

In Step 23, the state information is updated using the state

data in the next time step. From Steps 25 to 28, the process

checks whether the cycle should end on the basis of the

number of time steps. In Step 30, the exploration parameter ϵ
decays accordingly.

D. AC-OPF in PDS

The restored load power in the PDS is calculated through

an AC-OPF process. In each time step t, based on the MWT

fleet power supply information Pwt
g,t , AC-OPF is used to

quantify the restored load power. The objective is to maximize
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the expected cost sum of restored loads for PDS. The total

restoration load cost is the sum of the restoration cost of each

load d, which is calculated based on the load outage cost clod
and the real power demand for each restored load P ld

d,t at each

time step, formulated as
{

max
Ξmg

E

{

∑

d∈Bld

∑

t∈T

clod P
ld
d,t

}

(7)

subject to
Ξmg =

{

P ld
d,t, Q

ld
d,t, P

mg
g,t , Q

mg
g,t , P

wt
g,t , Q

wt
g,t,

Pij,t, Qij,t, Vi,t, Vj,t, ei,t, yij,t} (8)
∑

g∈Bwt

Pwt
g,t + Pmg

g,t + =
∑

d∈Bld

P ld
d,t

−
∑

(j,i)∈L

Pji,t +
∑

(i,j)∈L

Pij,t, ∀i ∈ B, t ∈ T (9)

∑

g∈Bwt

Qwt
g,t +Qmg

g,t + =
∑

d∈Bld

Qld
d,t

−
∑

(j,i)∈L

Qji,t +
∑

(i,j)∈L

Qij,t, ∀i ∈ B, t ∈ T (10)

P ld
d,t f ei,tP̄

ld
d,t, ∀i ∈ B, ∀d ∈ Bld, t ∈ T (11)

Qld
d,t f ei,tQ̄

ld
d,t, ∀i ∈ B, ∀d ∈ Bld, t ∈ T (12)

ei,tV
2 f V 2

i,t f ei,tV̄
2, ∀i ∈ B, t ∈ T (13)

P 2
ij,t +Q2

ij,t f yij,t · S̄ij , ∀(i, j) ∈ L, t ∈ T (14)

V 2
i,t − V 2

j,t f 2 · (rijPij,t + xijQij,t)

+ (1− yij,t) ·M, ∀(i, j) ∈ L, t ∈ T (15)

V 2
i,t − V 2

j,t g 2 · (rijPij,t + xijQij,t)

+ (yijt − 1) ·M, ∀(i, j) ∈ L, t ∈ T (16)
The objective function (7) aims to maximize the cost

sum of restored loads of the PDS. The formulated AC-OPF

incorporates real and reactive power balance constraints (9)

and (10) at bus i. The sets Bwt, Bld, and L represent the

MWT fleets, loads, and power distribution lines, respectively.

The power supply from the main grid is denoted as Pmg
g,t . The

status of demand at load point d is governed by constraints

(11) and (12), while ei,t is a binary variable indicating the

energized status of bus i (1 if energized, 0 otherwise). Voltage

and power flow limitations for each bus and distribution line

are described in (13) and (14), and the linearized power flow

constraints are provided in (15) and (16). The binary variable

yij,t represents the energized status of distribution line (i, j) (1

if energized, 0 otherwise) and depends on the fault settings in

the PDS. Since the distribution line undergoes repairs during

the restoration process, yij,t should be checked at each time

step in the training episode. M represents a large positive value

introduced to help simplify or relax the given constraints.

III. NUMERICAL CASE STUDIES

A. Environment Setup

The MADRL environment simulates the problem that needs

to be addressed. The agent will make decisions based on the

current state of the environment. The framework’s environment

encompasses four components: (i) a system simulation of the

TS and PDSs; (ii) a wind speed generation function and MWTs

output power estimation; (iii) the action transfer function of the

MWTs, which converts the DRL agent’s output into actions

for the MWTs within the framework; (iv) an action reward

function, which estimates rewards based on the power supplied

by MWTs and the power outage costs at PDS load points.

1) The Integrated Power-Transport Network: Assuming

that MWTs are used as assets aiding in the restoration of

the rural PDS following disasters, we consider a limited-scale

PDS. Therefore, we utilize four IEEE 33-bus test systems to

represent the rural PDS. For the TS, we apply the Sioux Falls

system, which consists of 24 TS nodes. For each PDS, there

are candidate nodes coupling with nodes in TS. This allows

MWTs to travel between coupling nodes in the TS, as deter-

mined by the DRL agent, to connect to the PDS and supply

power. In this study, faults within the PDS are represented as

broken vulnerable lines in PDSs, marked by red lightning to

signify potential outages. The fault configurations within the

PDS entail randomly selecting several power lines to be failed

at different times throughout the process. This results in the

segmentation of the PDS into multiple disconnected islands.

Certain sections are isolated from the main grid and require

power from MWTs. The complete PDS restoration process

lasts 24 hours and is divided into 48 time steps. To model

Fig. 4. An integrated power-transport network with IEEE 33-bus test system and Sioux Falls TS.
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the fault scenario in the PDS, we randomly select four or five

distribution lines to be damaged in each PDS. Simulating the

actions of repair crews, we assume each line will be fixed after

a certain number of time steps. The repair time is randomly

assigned, ranging from 23 to 35 time steps.

The lower section of Fig. 4 depicts the TS, where nodes of

different colors indicate the coupling relationship between the

TS and each PDS. The TS fault is modeled as road damage

caused by a disaster. Throughout the environment’s process,

these damaged roads will not be repaired, maintaining the

existing road conditions to restrict the transport of MWTs. In

each case within the environment, three roads in the TS will

be randomly selected to be unavailable during the disaster.

To enable MWTs to navigate the TS using the shortest path,

we used Dijkstra’s algorithm to calculate the optimal route

[34]. When considering faults in the TS, damaged roads are

excluded when running Dijkstra’s algorithm. During training,

when the MWT receives a destination node—derived from

the action generated by the DRL agents—the environment

provides routing information based on the MWT’s current

TS node location and the destination TS node. The MWT

then moves along the calculated shortest path until it reaches

its destination. Since TS road damage in rural areas cannot

be repaired quickly, the shortest path information remains

unchanged for an entire training episode, which represents

the whole restoration process. To reduce training computation

and prevent recalculating the shortest path for each agent, we

pre-compute a shortest path matrix at the beginning of each

training episode.
2) Wind Speed and MWT Output Power: The power output

of a wind turbine follows a truncated cubic relationship with

wind speed [35]. In this context, the Weibull distribution

is commonly employed due to its effectiveness in modeling

uncorrelated wind speeds [36]. Since wind speeds vary across

different times and locations, we use the Weibull distribution

to randomly generate wind speed values for each TN at every

time step in each episode. Given that the proposed framework

is intended for post-disaster deployment, the MWT fleets are

likely to operate under adverse conditions, including elevated

wind speeds commonly observed during extreme weather

events such as hurricanes. When wind speeds exceed the cut-

out speed, the MWT will stop power generation as a protective

measure to protect wind turbines from potential damage. The

wind speed data is generated prior to the start of each episode.

Since the same MWT is used for all units, the power output of

each wind turbine is determined for every TS node at each time

step using the generated wind speed data. The wind turbine

power output function is given by:

P =















v3

v3
max

Pmax 0 < v < vmax

Pmax v > vmax

0 v > vout

(17)

P represents the wind power output of the MWT; v is the

wind speed at the current time step; vmax is the rated wind

speed of the wind turbine; Pmax is the rated wind power

output of the wind turbine; and vout is the cut-out speed of the

wind turbine. Since the primary task of the MWT fleet is to

efficiently restore PDS nodes by supplying power, the MWT

fleet’s power generation capability is critical for evaluating

performance and calculating rewards for the DRL agent. Low

or zero power generation from the MWT fleet results in a lower

reward. During training, the reward mechanism encourages

the agent to avoid actions that position the MWT fleet in

areas with low wind speeds or winds exceeding the cut-

out speed. The MWT considered in this paper is capable of

generating power over a wide range of wind speeds [29],

with maximum power output achieved at a wind speed of

11m/s [37]. The cut-out speed is set to 25m/s [38]. The

wind power information for the next time step is provided

as input to demonstrate that the agent receives predictive

wind power data. The MWT focused in this paper has the

ability to generate power with a wide range of wind speeds

[29]. Each MWT has a maximum power output of 50 kW.

GFM converters have been implemented in microgrids and

islanded power systems [39], enabling wind power plants to

operate similarly to traditional synchronous power stations. By

adjusting current and voltage, these converters help manage

interconnection fluctuations [40]. Consequently, we deployed

multiple MWTs and grouped them into a fleet, establishing a

wind power plant capable of aiding restoration efforts. The

maximum power output for each MWT fleet is limited to

1000 kW. Figure 5 illustrates a wind power output scenario for

MWTs. The TS consists of 24 nodes, and the entire process

spans 48 time steps, resulting in a 24×48 matrix. In this study,

we deploy four MWT fleets with identical wind turbine power

output configurations. Each colored block in Fig. 5 represents

the wind power output of a single MWT fleet operating at a

specific TS node during the corresponding time step.

Fig. 5. MWT wind power output at each time step in PDS.

3) Action and Transfer Function: The restoration schedul-

ing policy for the PDS comprises a series of actions, each

corresponding to a specific destination TN for MWT fleets.

These actions are represented by output labels from the DRL

agent, and the total number of labels defines the action space

size. In our simulation environment, there are 23 labels, align-

ing with the number of TNs, excluding the TN where the depot

is located. The action transfer function is used to transfer the

action label information to the action of the MWT fleets, which

is the destination TNs of the MWT fleets. The inherent un-

certainty in wind speeds, coupled with potential faults in PDS

and TS, significantly expands the state space within the MDP
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framework. When combined with an extensive action space,

this leads to a substantial increase in the number of potential

state-action pairs, or MDP tuples. Such an expansion poses

challenges for DRL agents, as the enlarged and more complex

state-action space complicates the exploration process, making

it more difficult for agents to identify optimal restoration

actions for each state. To enhance exploration efficiency within

our DRL framework, we implement an AL function that

constrains the action space by excluding choices likely to

result in suboptimal performance. Specifically, the AL function

prevents scenarios where multiple MWT fleets simultaneously

supply power to a single TN. This restriction mitigates the

compounded negative effects of low wind speeds by preventing

multiple MWT fleets from simultaneously delivering insuffi-

cient power to the PDS. Additionally, the AL mechanism helps

avoid potential power waste that can occur when multiple

MWT fleets generate power in the same TN under high wind

speed conditions, thereby preserving the overall operational

efficiency of the fleet. By narrowing the action space to more

promising options, the AL function facilitates more effective

exploration and accelerates the convergence of the DRL agents

toward optimal restoration strategies. The algorithm for the

action transfer function is described in Algorithm 2.

Algorithm 2 : Agent Action Transfer Function

1: Getting the action label of other agent and storage to Alist

2: Getting the current agent action number a
3: Getting the depot TN number ndepot

4: Getting the action number lower bound alower and upper bound
aupper based on action setting

5: Getting the agent location node number nlocation

6: Combining the Alist, ndepot, alower , and aupper as the list of
prohibited nodes Nprohibit

7: for node number ni in Nprohibit do
8: if a >= ni and a < ni+1 then
9: Change the action a as aT according to aT = a+ i

10: Break the For loop
11: end if
12: end for
13: if aT = aupper then
14: Change the action aT as nlocation to make the MWT fleet

stop to supply power
15: end if

The Action Transfer Function algorithm involves three key

steps: Step (i) it identifies the bounds of the action number,

the actions of other agents, and the TN number of the depot

to establish a list of prohibited nodes; Step (ii) it transfers

the agent’s action based on this list by comparing the action

number and node number in the prohibited node list; Step

(iii) it compares the transferred action with the action size to

determine whether the agent should halt and supply power

or not. Including the actions of other agents in both Step

(i) and Step (ii) by adding them to the forbidden node list

constitutes the AL aimed at preventing multiple MWT fleets

from converging on the same node within the TS. This enables

the AL to mitigate the influence of wind speed variations at

individual TNs on the total power output of MWT fleets.

4) Reward Function Setting: The reward function serves

as a pivotal aspect of the environment, providing an assess-

ment of the feedback received from the agents’ actions. Our

objective is to optimize the episode reward throughout the

restoration process following the disaster. The episode reward

is calculated as the sum of the rewards at each time step. The

reward is calculated based on the cost of the load restored by

MWT fleets. Figure 6 illustrates the power demand and outage

costs at each PDS node, where darker colors indicate higher

demand and higher power outage costs. This paper posits that

all four PDSs use the same information (load demand and

power outage costs) for each node, as illustrated in Fig. 6.

(a) The power demand across PDS nodes

(b) The power outage cost at PDS load points

Fig. 6. The power demand and the power outage cost of PDS nodes

To ensure that MWT fleets do not supply power to the island

connected to the main grid, their reward value is converted

into a penalty to influence the target value of the MADRL.

The objective is to optimize the episode reward, which is

the aggregate of the rewards from four episode MWT fleets.

Therefore, the reward for each agent at each time step should

be considered in two different ways: one is to use the SR,

which is the average of the rewards from the four agents,

and the other is the AR. The SR influences the agent’s target

value based on the performance of all agents’ actions, while

the AR encourages the agent to concentrate on its own action

performance. The AR obtained by each agent when the MWT

fleet under its control is supplying power is determined by the

following equation:

RMWT = cload ·
pMWT

ptotalNf

(18)

where, RMWT represents the reward value for each agent,

and cload denotes the cost of the load supplied by the MWT

in the current section of the PDS. pMWT signifies the wind

power output of the MWT fleet, while ptotal indicates the total

power supplied by the MWT fleet in the current section of the

PDS. Nf represents the transfer coefficient, which diminishes

the magnitude of the reward. Our framework prioritizes min-

imizing economic losses in the PDS and improving system

resilience. This means that developing an effective power

restoration strategy takes precedence over other considerations.

Incorporating fuel costs into the reward calculation could skew

the restoration strategy, preventing it from supplying power to

the most critical loads and potentially lowering the restored

load’s overall value. Hence, transportation cost is recognized

but treated as a secondary concern, ensuring that it does not

interfere with the primary objective of rapid and effective
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power restoration. Furthermore, MWT fleet’s fuel consumption

is negligible compared to the total value of lost load.

B. DNN Model and State Generation

In this paper, we employ a CNN as the DNN part of the

MARDRL agents. This CNN is responsible for classification,

using input matrices to assign action labels. These matrices

encapsulate information from our framework environment

related to MWT fleets, PDSs, and TS. The types of features

in the input matrices are detailed in Table I. These feature

information will be transformed into five matrices as input for

the CNN, with the feature data types presented in Table I.

TABLE I
ENVIRONMENT OUTPUT FEATURE INFORMATION IN INPUT MATRIX

Feature Type State Matrix Number

TS Feature 1

PDS Fault 2

Wind Speed Feature 3

Other MWT fleets Status 4

Other MWT fleets Location 4

Other MWT fleets Supplying Power 4

Other MWT fleets Action 4

MWT fleet Status 5

MWT fleet Location 5

MWT fleet Supplying Power 5

MWT fleet Action 5

In Table I, State Matrix 1 contains feature information on

the length of transportation paths following the occurrence of

faults due to disaster-induced damage. State Matrix 2 furnishes

information on the status of distribution lines, contributing to

the state’s understanding of the PDS. State Matrix 3 offers

wind speed features for each TN. State Matrix 4 presents fea-

tures of MWT fleets controlled by other agents, encompassing

MWT fleet status, location, supplied power, and action values.

State Matrix 5 provides feature information on the MWT fleet

controlled by the current agent. State Matrices 1 to 3 offer

general feature information, while the feature details provided

by State Matrices 4 and 5 aid the agent in understanding its

own situation and the status of other agents.

The CNN will provide the agent’s action label based on

the input state information. In CNN, there are two Convo-

lutional (Conv) layers, two Pooling (Pool) layers, and three

Fully Connected (FC) layers in total. The architecture of the

proposed CNN is: Input(5, 12×12) – Conv1(64, 10×10) –

Pool1(64, 5×5) – Conv2(128, 4×4) – Pool2(128, 2×2) –

FC1((64×2)×2×2, 144) – FC2(144, 72) – FC2(72, action

size). The learning rate ¸ is 5e-3, and the minimum exploration

rate ϵ is 1e-3.

C. Base Model Training

This paper employs two RL networks: DQL and DDQL.

Utilizing these networks, we investigate suitable reward strate-

gies and action transfer functions within this framework by

testing various algorithm combinations to identify the optimal

configuration for training. We calculate the total reward by

summing the episode rewards of four agents to assess training

performance. The moving reward represents the average value

of the total reward over the last 100 episodes. The moving

reward curve is shown in Fig. 7. In the legend label of Fig.

2, SR means applying system reward during the training, AR

means applying the agent reward during the training, and AL

means applying the action limitation in the action transfer

function. We utilize the episode number at which the network

achieves a moving reward of 1,500 as the benchmark for

evaluating the training speed. Details regarding the training

speed are provided in Table II.

Fig. 7. Training moving reward for different networks.

TABLE II
TRAINING EPISODE OF DIFFERENT MODELS

Model
Number

AR SR AL DQL DDQL
Episode
Number

1
√ √ √

9,065

2
√ √

11,208

3
√ √ √

9,364

4
√ √

9,188

5
√ √ √

9,673

6
√ √

11,214

In Fig. 7, when comparing the moving reward curve of

Model 2 and Model 4, it is evident that without the AL

in the action transfer function, the SR outperforms the AR.

The model using SR motivates agents to take actions that

increase the total episode reward, while the model using AR

prompts agents to choose actions that enhance their individual

rewards. Comparing the moving reward curve with those of

other models employing AR functions, it is evident that the

episode moving reward rises faster. This acceleration is due

to the system reward function, which allows individual agents

to make sacrifices for the benefit of the overall reward. In the

absence of AL, since AR leads agents to disregard the rewards

of others, training encourages agents to select the optimal

action for themselves, which may result in multiple agents

supplying the same island and thus not utilizing the maximum

wind power generation. Consequently, agents operating under

SR could achieve higher episode rewards during training

and converge sooner. However, agents that sacrifice their AR

value to achieve a higher total episode reward may lead the

MADRL model to converge to a suboptimal solution. This

occurs because actions with a higher AR are replaced by

those with a higher SR but lower AR during the MADRL

training process. Based on the training results, AL reduces

episode costs by 1.3% to 13.7%. Additionally, the final moving

reward of training with AR and AL is over 31.8% higher than

that of training with SR and AL. Considering the need for

the framework to deliver strategies as quickly as possible, we

incorporate AR and AL into the MADRL framework.

Upon incorporating AL with SR in Model 1, the episode

cost of increasing the moving reward is lower compared to that

in Model 4. Similarly, when comparing Models 2 and 3, as

well as Models 5 and 6, within each pair of models sharing the

same DRL structure and reward function, it becomes evident

that AL significantly accelerates the training speed. After

implementing AL, agents will assign different actions to each

MWT fleet, directing them to various destination TNs. Since
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(a) Model 1. (b) Model 2.

(c) Model 3. (d) Model 4.

(e) Model 5. (f) Model 6.

Fig. 8. The moving reward and the episode reward standard deviation for models with different combinations.

wind speed at each TN is randomly generated, the reward

for the same action will vary with changes in wind power.

In the absence of AL, actions by the agents can result in

multiple MWT fleets supplying power to the same TN. This

concentration on a single node can lead to greater fluctuations

in wind speed and reduce the overall episode reward. The agent

with SR allows some cases to achieve a higher episode reward,

which means that the restoration policy is more efficient for

the cases of the current episode. However, the experience

from these episodes may cause some agents’ replay buffers

to accumulate experiences with high system rewards but low

individual agent rewards. When there are changes in fault

settings and wind power, these agents lack experiences with

high individual rewards, which can reduce the total reward for

the episode. This defect leads to the final moving reward of

Model 1 being lower than that of Model 3. Compared to the

moving reward curve of Models 3 and 5, the training speed

and the moving reward do not have obvious differences. Due

to the random fault settings in both the PDS and TS during

the disaster, the reward for each episode fluctuates based on

these settings, resulting in a non-zero standard deviation in

Fig. 8. To compare the performance of Model 3 and Model 5,

we use these models as the base model for training with the

same fault setting.

D. Case Model Training

In our framework, the second stage of training, known as

case model training, is focused on developing a restoration

strategy for the PDS to handle emergency natural disasters.

This stage is designed to produce a time-sensitive restoration

solution that effectively meets emergency challenges within a

limited training period. To enhance performance and speed up

the training process, we utilized the model trained during the

first stage as the foundation for the second stage. For the case

model training, each training episode used a single fixed fault

setting. In our test scenarios, the PDS fault configuration is

detailed in Table III, while the TS fault setting involves three

fault paths: 6 − 8, 8 − 16, and 14 − 23. The reward curves

for various agent model configurations are presented in Fig.

9. In the second stage of training, the MADRL agents retain

the same structure as used during the base training phase.

To compare and evaluate the effectiveness of our two-stage

training approach, we conducted multiple additional training

runs using identical agent configurations. These additional runs

utilized only the replay buffer from the first stage, without

loading the network weights of the base model. In this second

stage of training, we adjusted the value of ϵ to enhance

exploration, helping agents identify actions that perform better

for the current scenario. Two initial ϵ-values were considered:

(i) 1.0, to encourage greater exploration of models without

prior experience, and (ii) 0.15. Furthermore, since models 3

and 5 in Fig. 7 exhibit similar levels of training reward, we

incorporated both into the case training for further comparison.

These models were treated as base models for the case training

phase to determine which could deliver a more effective

restoration strategy.

Fig. 9. Moving reward during model training with varying initial model
settings.

In Fig. 9, training sessions utilizing base models, trained

with various fault cases in the environment, attain higher

moving rewards. Due to the sufficient experience possessed

by the base model, high-reward actions can be achieved from

the beginning of the training process. This prior experience en-

ables rapid acquisition of high-reward actions. Consequently,

the base model enhances the efficiency of developing transport

strategies for MWT fleets. Comparing the two trainings with

base models, the agent’s performance using the DDQL net-
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

(e) Case 5. (f) Case 2.

Fig. 10. The training moving reward in different cases.

TABLE III
FAULT SETTING IN FOUR PDSS IN CASE 1

PDS Fault Line Fault Line Fault

# Endpoint Node 1 Endpoint Node 2 time step

I

2 3 24

3 23 34

6 26 28

II

1 2 33

7 8 23

2 19 33

6 26 34

III

4 5 28

14 15 34

2 19 30

20 21 23

31 32 31

IV

1 2 26

7 8 34

6 26 25

27 28 30

31 32 25

work outperforms that of the agent using the DQL network.

The final moving reward of the DDQL network is 5.5% higher

than that of the DQL network, and the DDQL network’s

moving reward converges earlier than the DQL network’s. This

is because DDQL helps avoid the excessive optimism in Q-

value estimation seen with DQL, allowing the agent to reduce

training costs per episode and achieve higher rewards through

more frequent Q-value iterations. However, since the base

model already possesses substantial experience from initial

training, the agent with the DDQL network can secure higher

rewards consistently from the beginning to the end of the

training in a specific environment setting.

Additionally, the final performance of training without the

base models and using an epsilon value of 1.0 exceeds that

of training with an epsilon value of 0.15. The higher epsilon

value prolongs the exploration phase, allowing the training

to cover more episodes and accumulate more experience.

This increases the likelihood of achieving better actions and

rewards, particularly for agents with an epsilon value of

1.0. When comparing the training without the base model,

the agent utilizing the DQL network secures better moving

rewards by the end of the training process than those using the

DDQL network. The caution of DDQL in avoiding excessive

optimism means that 2,000 episodes may not be adequate to

iterate the network towards achieving high moving rewards.

Thus, the performance between DQL and DDQL presents

a contrast to that observed in agents trained with the base

model. Figure 10 illustrates various cases depicting the training

moving reward curve and the disparity in different fault

settings in TSs and PDSs. In various scenarios with different

environment settings, the agent’s moving reward consistently

demonstrates the superiority of the DDQL model. Once train-

ing converges, the DDQL model consistently achieves higher

rewards compared to the DQL model.

TABLE IV
TRAINING EPISODE TIME COST

Basic
Model

Initial ϵ
Value

DDQL DQL
Episode
Cost (s.)

√

0.15
√

2.79015
√

0.15
√

2.69349

0.15
√

2.91075

0.15
√

2.72304

1.00
√

2.90691

1.00
√

2.72928

Table IV displays the training time cost for each episode.

When comparing episodes with identical base models and ϵ-
values, training with the DDQL network requires more time

than the DQL network due to the differences in the target

loss values. Using the base training model reduces the time

required for each episode. The CPU for training is i7−12700,

and the GPU is NV IDIA− 3060T i. Based on our previous

training comparisons of reward functions, DRL algorithms,

and action transfer functions, we have opted for AR as the

reward setting for our environment. Each agent utilizes the

DDQL algorithm, and we apply AL in the action transfer

function to maximize rewards during training.

As indicated by the training results in Figure 9 and Table
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IV, our two-stage training approach enhances the restora-

tion strategy’s performance within defined constraints. This

framework allows training to occur before natural disasters

strike, enabling the development of time-sensitive restoration

strategies to effectively address emergency challenges. By

leveraging pre-training during the initial stage, our two-stage

method improves emergency response performance when a

disaster occurs. This approach mitigates the impact of limited

training time during emergencies, making the framework more

efficient, straightforward to manage, and easier to implement.

E. MWT Fleets Restoration Strategy

To demonstrate the restoration strategy derived from the

proposed framework, we present the MWT fleets restoration

strategy based on the training results from Case 1. The

environment fault setting in Case 1 is identical to that used in

the training, as shown in Fig. 9. Figure 11 provides detailed

information on the fault settings and restoration strategy of the

MWT fleets. The upper section shows the fault locations in

the distribution lines across four PDSs, while the lower section

illustrates the transportation road faults in the TS and the

MWT fleets’ actions for movement and power supply during

the restoration process. The PDSs fault duration information

is provided in Table III.

In Fig. 11, MWT fleet 1 first moves to TN 4 and supplies

power to PDS 1 from Bus 9 between time steps 4 and 23.

Once the distribution line between Bus 2 and Bus 3 in PDS 1

is repaired, the island supplied by MWT fleet 1 is reconnected

to the main grid. MWT fleet 1 then moves to TN 6 of the

TS to supply power to PDS 2 until all distribution line faults

are repaired. MWT fleet 2 moved to supply power in PDS 2,

initially providing power to TN 15 from Bus 32. After the

distribution line fault in PDS 2 between Bus 7 and Bus 8 is

repaired, MWT fleet 2 moves to TN 23 and supplies power

from Bus 12 in PDS 2. According to the load information

in Fig 6, the repair of the distribution line makes the island

containing Bus 12 significantly more valuable than the one

with Bus 32, as the new island has a higher load demand and

greater output value. MWT fleet 3 first moves to TN 3 and

supplies power from Bus 32 in PDS 1 between time steps 7

and 20. With the PDS 1 distribution line faults between Bus

2 and Bus 3, and between Bus 6 and Bus 26 scheduled to be

repaired at time step 28, MWT fleet 3 relocates to TN 1 at

time step 24 to supply power from Bus 25 until all distribution

line faults are repaired. MWT fleet 4 moves directly to TN

18 and continues supplying power to Bus 9 in PDS 4. The

island containing Bus 9 in PDS 4 remains disconnected from

the main grid until all distribution line faults are repaired.

According to Fig. 6, the high outage cost due to the load

demand ensures that the agent receives a significant reward.

Figure 12 illustrates the power contribution of each MWT

fleet and compares the total supplied power to the four PDSs

with and without the restoration strategy. The restoration

strategies are generated by the trained model shown in Fig.

10. Comparing the green and the black lines in each case,

it is evident that the trained models effectively supply power

to the loads and reduce power outages at each time step in

the PDSs. In each case, MWT fleets provided 8% to 10% of

the load power. The reward function guides the agent to direct

MWT fleets to supply power to higher-priority loads, reducing

economic losses on the PDS load side by 12% to 16%.

F. Development Training

To address the temporal and spatial variability in MWT fleet

power output, we incorporated additional HSS units as backup

power sources. The HSS unit can store electrical energy and

supply power to the PDS during emergency events. It consists

of a water electrolyzer, hydrogen storage, and a fuel cell.

The system stores electrical energy by electrolyzing water to

produce hydrogen, which is later utilized by the fuel cell to

generate power. Figure 13 illustrates the operational statuses

of the MWT fleets, HSS units, and PDS, with each section

representing different power supply scenarios. Part 1 shows

that when the load and HSS units are connected to the main

grid, the main grid supplies power to the load and charges

the HSS units. Part 2 describes the situation when the island

is disconnected from the main grid and no MWT fleet is

supplying power, in which case the HSS units will provide

power if their storage tanks contain hydrogen. Parts 3 and 4

depict the collaboration between MWT fleets and HSS units,

where both supply power to the load, and the power output of

the HSS units depends on the output of the MWT fleets and

the island’s load demand. Parts 5 and 6 illustrate scenarios

where the MWT fleets generate sufficient power for the load.

If the MWT fleets produce excess power beyond the HSS

units’ demand and the storage tanks are not full, the surplus

Fig. 11. The fault setting and the MWT fleets restoration action in Case 1.
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(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

(e) Case 5. (f) Case 6.

Fig. 12. The assignment of MWT fleets in different cases.

energy is used to charge the HSS units, with the stored energy

available for use when the MWT fleets cannot supply power to

the island. Four HSS units were added to the PDS in Buses 11,

19, 23, and 26, as shown in Fig. 14. Based on commercially

available products, we consider HSS units with a nominal

power output of 100kW [41] in this study. The HSS units

can be charged using an electrolyzer when surplus power is

available on the island [42]. For the hydrogen storage tanks, we

assume they have sufficient capacity to store hydrogen capable

of generating a total of 200kWh of energy. The power output

of HSS unit and the variations in the energy storage level of

HSS unit are formulated as follows:

Ph2p
i = ph2pi µh2p

i ¸h2pi (19)

EH
i = EH

i−1 − Ph2p
i (20)

where Ph2p
i represents the power output of a single HSS

unit, ph2pi indicates the hydrogen consumption by the HSS

Fig. 13. PDS restoration status with HSS units and MWT fleets.

unit, µh2p
i denotes the H2P conversion factor, and ¸h2pi is the

H2P efficiency of the HSS unit. EH
i and EH

i−1 refer to the

energy storage levels of HSS unit at the current and previous

time steps, respectively. At the start of each training episode,

the HSS unit begins with its storage fully charged and can

supply power to islands disconnected from the main grid until

the stored energy is exhausted. If MWT fleet generates more

power than the island load demands and the connected HSS

unit still has storage capacity available, the excess MWT fleet

power is used to recharge the HSS unit. The relationships

governing the charging power and energy storage of HSS unit

are described by the following equations.

P p2h
i =

pp2hi

µp2h
i ¸p2hi

(21)

EH
i = EH

i−1 + P p2h
i (22)

where P p2h
i is the hydrogen power input to a single HSS unit;

pp2hi is the supply power from PDS to HSS unit; µp2h
i is P2H

conversion factor of the HSS unit; ¸p2hi is the P2H efficiency

of the HSS unit.
In Subsection III-C, we showed that integrating AL and

AR enhanced training performance, enabling the framework

to produce more effective restoration strategies. Compared to

the agent model using the DQL algorithm, the agent model

utilizing the DDQL algorithm further improved the overall

performance of the framework. To further benchmark our

approach against other established methods, we substituted the

DDQL algorithm in our MADRL agents with three alternative
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Fig. 14. The modified PDS integrated with HSS units.

DRL algorithms: AC algorithm, DDPG algorithm, IPPO algo-

rithm. We then evaluated the performance of the framework

in terms of reward and time cost. Each agent used the AL

and AR, and the training reward curves are presented in Fig.

15. The details of the converged rewards and the episode time

costs are shown in Table V.

Fig. 15. The training reward for different DRL algorithms.

TABLE V
THE CONVERGE REWARD AND EPISODE COST FOR DIFFERENT DRL

MODELS IN THE DRLBRE FRAMEWORK

Model
Name

Converge
Reward

Episode
Time(s)

Converge
Episode

AC 1408 2.76589 7868

DDPG 2268 3.25455 7105

IPPO 2685 2.78373 7655

DDQL 3248 2.79016 7685

Based on the training results in Table V, the training episode

time cost for the frameworks using AC, IPPO, and DDQL is

similar, while the framework with DDPG agents requires more

time per episode. This is because DDPG consists of two AC

networks, resulting in a total of four DNNs per agent, whereas

the other three algorithms have only two DNNs per agent.

The additional DNNs in DDPG increase the time required for

agents to compute actions and calculate target values during

training. As illustrated in Fig. 15, the framework that employs

agents based on DDQL achieves notably higher rewards than

those that use other DRL algorithms. This difference arises

from the action space design for agents in the environment.

Agents utilizing algorithms like AC, DDPG, and IPPO, which

are based on PG methods, are well-suited for continuous action

spaces due to the activation functions in their networks. In

these algorithms, the agent action space is limited by the

activation functions of the network to a continuous range

between -1 and 1. However, in our research, the agent action

corresponds to a target TS node, which must be selected

from a discrete set of 24 values. To address this, we partition

the continuous action space into 24 equal intervals, each

corresponding to a specific TS node number. These small

intervals make it more challenging for the agent to distinguish

subtle differences in action values, increasing the probability

of the agent selecting incorrect actions for restoration. In

previous research [25], the authors utilized Proximal Policy

Optimization, a PG algorithm. To address the challenge of

continuous agent action spaces, the authors choose to establish

a model using two agents that separate the direct moving

information of a single MPS and the information of the

power supply. One group of agents provides data on possible

movement paths from the current TS node, while another set

supplies details on the MPS power status. This method can de-

compose a single complex action into two simple actions and

use two agents to provide two-action information. However,

more agents mean that the model needs more networks and

will increase the training time cost. With the limitation of the

training time caused by the emergency natural disaster, we use

a single agent to direct the MWTs action in our framework.

Compared to the TS used in previous research [25], our TS

is significantly more complex. This complexity leads to much

smaller intervals when using a PG-based algorithm. Therefore,

we opted to use the DDQL algorithm in our agents. The DDQL

algorithm, being a value-based approach, naturally aligns with

discrete action spaces, eliminating the need for action space

conversions from continuous to discrete. Consequently, our

framework, utilizing DDQL agents, achieves higher rewards

and can address the restoration problem in more complex TS

scenarios with reduced time costs.
TABLE VI

AVERAGE REWARD FOR 30 TEST CASES USING DIFFERENT MODELS

Method AC DDPG IPPO DDQL MILP

Average re-
ward

960.16 2384.57 2653.48 3193.696 3566.303

Computation
(s)

83.1 97.5 83.4 83.7 2169.3

After obtaining the initially trained model, we use the

DRL agent for testing and compare its performance with

a traditional MILP-based optimization approach. The test is

conducted across 30 distinct fault scenarios with randomized

wind speeds to simulate rapid response conditions following

a natural disaster. The results, presented in Table VI, are

evaluated using the agent’s reward function, which assesses

the effectiveness of each mitigation action step by step. The

comparison shows that our framework, which integrates AL

and AR with DDQL, significantly enhances response speed

while maintaining competitive performance. Figure 16 illus-

trates the reward values across 30 test cases, representing

the performance of models employing different algorithms.

The purple line indicates the performance achieved by the

MILP-based optimization approach. Compared to the MILP

model, our framework, which implements DDQL, provides

equivalent restoration performance in 10 test cases. Among the

frameworks utilizing various DRL algorithms, our approach
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achieves the best performance in 16 test cases. In contrast, the

AC algorithm provides the best restoration strategy in only one

test case, the DDPG algorithm leads in 6 test cases, and the

IPPO algorithm performs best in 7 test cases. Our framework,

leveraging DDQL, outperforms frameworks that implement

other DRL algorithms, achieving the highest performance in

the majority of test scenarios. Additionally, it demonstrates

stable and competitive results compared to the traditional

MILP optimization method, underscoring its effectiveness in

diverse fault conditions within power-transport systems.

Fig. 16. The training reward curve for different DRL algorithms.

Figure 17 shows the results of three different test cases for

PDS restoration with MWT fleets and HSS units. The left

section of Fig.17 illustrates the movement of MWT fleets

within the TS affected by road damage. The right section

presents the power output of each MWT fleet, the total power

output of the HSS units, and the system load restoration

information. Using the information in the left section of

Fig.17, our framework can generate a restoration strategy to

identify the shortest path free from road damage. Based on the

HSS units configuration in our PDS, each HSS unit can deliver

100kW power for 2 hours, with a total maximum power

output of 1600kW . When comparing the total power output

of HSS units in three scenarios, with MWT fleet charging and

the primary energy storage in HSS units, the HSS units can

sustain the power supply to the PDS for a longer duration.

During hours 8, 9, and 10 in Fig. 17(b), MWT fleet 2 and

MWT fleet 3 are in motion within the TS and are unable to

supply power to the PDS. As a result, the power supply from

HSS unit increases, preventing a decline in PDS restoration

power compared to hour 7. This demonstrates that HSS unit

enhances the performance of the PDS restoration strategy in

our framework. The inclusion of HSS unit also highlights the

scalability of our framework in integrating additional energy

resources.

IV. CONCLUSION

This paper introduces an innovative MADRL framework

to tackle the coordinated dispatch of MWT fleets for PDS

service restoration following extreme disasters. The proposed

MADRL framework consists of two training stages: initially,

the base model is trained using a variety of random environ-

mental scenarios. Subsequently, this model undergoes further

training with specific scenario settings to develop a scheduling

strategy tailored to the current scenario. The MADRL neural

network in the framework offers discrete actions with sensible

transfer functions to devise scheduling restoration strategies

(a) Case 1 MWT fleet movement. (b) Case 1 PDS Restoration.

(c) Case 2 MWT fleet movement. (d) Case 2 PDS Restoration.

(e) Case 3 MWT fleet movement. (f) Case 3 PDS Restoration.

Fig. 17. The test case result of restoration with MWT fleets and HSS units
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for PDSs with MWT fleets, ensuring the supply of power to

loads isolated from the main grid. To develop a more efficient

restoration policy and shorten training time for emergency

restoration tasks, we implement a DDQL network to establish

the agent within the framework. We integrate AL into the

action transfer function to accelerate the training process,

reducing training episodes by 1.3% to 13.7%. Additionally,

AR is used as the reward function for each agent, improving

the training reward by 31.8% and enhancing the restoration

policy. Numerical analyses with six different fault scenarios

in a power-transport system, consisting of four IEEE 33-bus

test systems and one Sioux Falls TS, demonstrated that the

framework can provide efficient restoration strategies, supply

power to loads separated from the main grid, and enhance

the resilience of the PDS. The results from various cases

with different power-transport system fault settings show that

the restoration policy provided by our framework directs

MWT fleets to supply 8% to 10% of the PDS load power.

Additionally, our framework takes load value into account,

guiding the MWTs to prioritize high-value loads within limited

power, reducing economic losses by 12% to 16%.
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