

1      **Title**

2            HAIRY MERISTEM proteins regulate the WUSCHEL protein levels in mediating  
3            CLAVATA3 expression

4      **Running Title:** HAMs regulate the WUS protein

5      **Author List:**

6      Kevin Rodriguez<sup>1</sup>, Lloyd Kao<sup>1</sup>, Vincent E. Cerbantez-Bueno<sup>1</sup>, Christian Delgadillo<sup>1</sup>, Dorothy  
7      Nguyen<sup>1</sup>, Samin Ullah<sup>1</sup>, Cameron Delgadillo<sup>1</sup>, G. Venugopala Reddy<sup>1</sup>

9      **Affiliations:**

10       <sup>1</sup> Department of Botany and Plant Sciences, University of California Riverside,  
11       Riverside, CA 92521

12       Correspondence to: \* G. Venugopala Reddy (venug@ucr.edu)

14      **FUNDING:** This work was supported by the National Science Foundation Grant IOS-2055690  
15      and the RSAP-AES mission funding to GVR.

16  
17      **ABSTRACT:** The precise regulation of stem cells in the shoot apical meristems (SAMs)  
18      involves the function of the homeodomain transcription factor (TF)-WUSCHEL (WUS). WUS  
19      has been shown to move from the site of production-the rib-meristem (RM), into overlaying cells  
20      of the central zone (CZ), where it specifies stem cells and also regulates the transcription of  
21      *CLAVATA3* (*CLV3*). The secreted signaling peptide CLV3 activates a receptor kinase signaling  
22      that restricts *WUS* transcription and also regulates the nuclear gradient of WUS by offsetting  
23      nuclear export. WUS has been shown to regulate both *CLV3* levels and spatial activation,  
24      restricting its expression to a few cells in the CZ. The HAIRY MERISTEM (HAM), a GRASS-  
25      domain class of TFs, expressed in the RM, has been shown to physically interact with WUS and  
26      regulate *CLV3* expression. However, the mechanisms by which this interaction regulates *CLV3*  
27      expression non-cell autonomously remain unclear. Here we show that HAM function is required  
28      for regulating the WUS protein stability, and the *CLV3* expression responds to altered WUS  
29      protein levels in *ham* mutants. Thus, HAM proteins non-cell autonomously regulate *CLV3*  
30      expression.

33 **INTRODUCTION:** A spatiotemporal regulation of gene expression and growth patterns is  
34 critical for proper development across all multicellular organisms. In **flowering** plants, the shoot  
35 apical meristems (SAMs), located at the growing tip, harbor a set of stem cells that remain  
36 proliferative to provide cells for the development of all above-ground organs (Barton 2010). The  
37 SAM is a multilayered structure; the epidermal L1 and sub-epidermal L2 form monolayers. The  
38 underlying L3 forms a multilayered structure, which is also referred to as the corpus. Precise  
39 spatiotemporal control of gene expression sub-divides the multilayered SAM into functional  
40 zones. The stem cells are maintained in the central zone (CZ) located at the tip. The stem cell  
41 progeny displaced into the adjacent peripheral zone (PZ) differentiate as leaves or flowers in a  
42 specific spatiotemporal sequence. The rib meristem (RM) located beneath the CZ provides cues  
43 for stem cell maintenance, and the cells of the RM that are displaced basally differentiate as stem  
44 tissue.

45

46 In *Arabidopsis* SAMs, WUSCHEL (WUS), a homeodomain transcription factor (TF), is  
47 expressed in the RM and has been shown to specify stem cells in the overlying CZ (Mayer et al.,  
48 1998, Laux et al., 1996, Yadav et al., 2013). The non-autonomous regulation of stem cell  
49 specification requires WUS protein movement from the RM into the overlying cells of the CZ  
50 (Yadav et al., 2011). WUS protein accumulates at a higher level at the site of synthesis, the RM,  
51 then diffuses into neighboring cells, thus forming a concentration gradient (Mayer et al., 1998,  
52 Yadav et al., 2011, Rodriguez et al., 2016) (Fig. 1). WUS represses differentiation-promoting  
53 factors in the CZ stem cells (Yadav et al., 2013, Busch et al., 2010). As the stem cell descendants  
54 are displaced away from the influence of the WUS gradient, they differentiate into leaves/flowers  
55 in the PZ, and cells located beneath the RM differentiate into the stem (Barton 2010). The  
56 precise regulation of the WUS gradient is critical for stem cell homeostasis.

57

58 WUS protein gradient is controlled by CLAVATA3 (CLV3), a secreted peptide that activates  
59 receptor kinase signaling to repress *WUS* transcription and also offset nuclear export to regulate  
60 nuclear levels of WUS (Plong et al., 2021, Brand et al., 2000, Clark et al., 1997, Fletcher et al.,  
61 1999). WUS regulates *CLV3* transcription by directly binding a set of cis-elements located at the  
62 3' end of the gene. An earlier study found that WUS binds five closely spaced cis-elements  
63 (CRM) [high (970), intermediate (997 and 1007), and low affinity (950 and 1060)] in the 3'

64 CRM of *CLV3* (Perales et al., 2016). Progressively mutating the cis-elements within the CRM  
65 leads to a gradual downregulation of *CLV3* in the CZ (lower WUS) and upregulation in the RM  
66 (higher WUS), showing that the same cis-elements activate and repress *CLV3* (Perlases et al.,  
67 2016). *In vitro* biochemical experiments showed that WUS binds cis-elements as monomers at  
68 low concentrations and switches with increasing concentration to a dimeric state. It suggests a  
69 concentration-based model where WUS could bind cis-elements as dimers at high WUS levels  
70 and monomers at low WUS levels to repress and activate *CLV3* expression, respectively  
71 (Rodriguez et al., 2022).

72

73 Moreover, increasing the affinity of a cis-element in the CRM represses *CLV3* even at lower  
74 WUS concentrations in the CZ (Perales et al., 2016, Rodriguez et al., 2022). These results show  
75 that WUS binding to the CRM regulates *CLV3* expression through a WUS concentration-  
76 dependent switch. Consistent with the model, a partial depletion of WUS results in *CLV3*  
77 upregulation, while a severe depletion and very high WUS levels lead to *CLV3* downregulation  
78 (Plong et al., 2021, Perales et al., 2016). Therefore, the precise regulation of the WUS protein  
79 gradient is critical to maintaining both the levels and the spatial activation of *CLV3*, which in  
80 turn regulates the WUS protein gradient.

81

82 The regulation of the WUS protein gradient is controlled by both the intrinsic protein signatures  
83 and the extrinsic layer-specific signals. The ethylene-responsive element binding factor-  
84 associated amphiphilic repression (EAR-like) domain resembles nuclear export signals (NES),  
85 and it has been shown to bind EXPORTIN proteins (Rodriguez et al., 2016, Plong et al., 2021).  
86 Mutating the NES led to a higher nuclear accumulation of WUS. In addition, treatment with  
87 nuclear export blocker-Leptomycin-B (LEP-B) led to a nuclear enrichment of WUS both in the  
88 wild-type and in *clv3* null mutants (Plong et al., 2021). A similar nuclear enrichment of the WUS  
89 protein was observed upon treatment with bioactive *CLV3* peptide (Plong et al., 2021). These  
90 results suggested that *CLV3* signaling could offset nuclear export in maintaining the WUS  
91 nuclear gradient.

92

93 Moreover, the conserved WUS-box domain has been shown to function as a nuclear retention  
94 signal (Rodriguez et al., 2016). The same WUS-box is also required for sensing the plant

95 hormone cytokinin (CK), which is active in the RM, suggesting that the CK acts as a positional  
96 signal to maintain higher nuclear levels (Snipes et al., 2018). Thus, the two opposing processes  
97 of nuclear export and the nuclear retention regulated by the two extrinsic signals maintain the  
98 nucleo-cytoplasmic (N-C) ratio of WUS. The N-C partitioning, in turn, regulates WUS protein  
99 diffusion into adjacent cells, thus the spatial gradient of the WUS protein (Plong et al., 2021).

100

101 Another class of RM-localized factors, HAIRY MERISTEM (HAM) (Engstrom et al., 2011)  
102 /LOST MERISTEM (LOM) (Schulze et al., 2010) class of putative DNA binding factors, has  
103 been shown to regulate *CLV3* expression. The double mutants of *lom1;lom2* have been shown to  
104 alter SAM structure subtly. The *lom1;lom2;lom3* triple mutants produced an extremely  
105 disorganized SAM with multiple tunica layers instead of the two observed in the wild type  
106 (Engstrom et al., 2011, Schulze et al., 2010). These defects were also accompanied by the  
107 misexpression of the *CLV3* in deeper cell layers, which overlapped with the *WUS* expression  
108 domain. Later studies showed that WUS physically interacted with the LOM proteins (Zhou et  
109 al., 2015). Among the three family members, LOM1/HAM1 and LOM2/HAM2 are expressed in  
110 the RM, and LOM3/HAM3 is expressed in the PZ (Schulze et al., 2010, Zhou et al., 2018).  
111 Moreover, the LOM/HAM proteins have been shown to accumulate in the same cells where  
112 these genes are expressed (Han et al., 2020). Therefore, how the physical interaction between  
113 WUS and HAM protein that occurs outside the CZ non-cell autonomously influences *CLV3*  
114 expression and growth patterns remains unclear.

115

116 By employing the reporter analysis, hormone-inducible fluorescently labeled WUS protein, and  
117 the structure-function analysis, we show that HAM proteins are required for maintaining the  
118 WUS protein stability. The low-level WUS accumulation in *ham* mutants leads to higher *CLV3*  
119 activation. The higher affinity WUS-binding *CLV3* cis-element mutant repressed in the wild-type  
120 background is reactivated in the *ham* mutant background, showing the switch from repression to  
121 activation at lower WUS levels. Deleting the HAM binding domain destabilizes the WUS protein  
122 while increasing its diffusivity. However, the lower WUS is sufficient to rescue the SAM growth  
123 defect in the *wus* mutant phenotype and activate *CLV3*, showing that WUS could function at  
124 undetectable levels. Taken together, our results showing the requirement of HAM proteins in

125 regulating the WUS protein gradient provide an explanation for their non-cell autonomous  
126 regulation of *CLV3* expression.

127

128 **MATERIAL AND METHODS:**

129 **Genotypes, plant growth, and Plant preparation for microscopy:** The *Arabidopsis* plants  
130 were grown under continuous light in a plant growth room maintained at 22° Celsius. *ham1-1*  
131 and *ham2-1* have been described in earlier studies (Engstrom et al., 2011, Schulze et al., 2010,  
132 Zhou et al., 2015). *wus1-1* mutant allele has been described in an earlier study (Laux et al., 1996).  
133 The *pCLV3::H2b-mYFP* and *pCLV3 (970M1)::H2b-mYFP* reporters were generated in  
134 Landsberg *erecta* (*Ler*) background (Perales et al., 2016), and they were introduced into *ham1-1*  
135 *;ham2-1* double mutants through repeated back crossing, and genotyped to select for *ham1-1*  
136 *;ham2-1* double mutants carrying the reporters. *35S::eGFP-WUS-GR* was previously described  
137 (Rodriguez et al., 2016) and it was introduced into *ham1-1;ham2-1* mutants. The progeny from  
138 stable homozygous lines were treated with either mock or 10uM Dexamethasone (Dex) for 3  
139 hours before imaging. Inflorescence meristems were dissected and planted in a clear plastic box  
140 containing solidified agarose. The meristems were stabilized by pouring molten agarose at the  
141 base of the stem. The older flower buds were removed, and the meristems were stained with a  
142 plasma membrane dye-FM 4-64.

143

144 **DNA Constructs:**

145 The previously described N'-terminal GFP-WUS translational fusion (Rodriguez et al., 2016)  
146 was used to introduce deletions of the HAM-binding domain (203 to 236) by employing  
147 appropriately-designed primers (Table S1) and expressed from the *WUS* promoter to create  
148 *pWUS::eGFP-WUS(ΔHAM)*. This construct and the wild type *pWUS::eGFP-WUS* were  
149 introduced into *wus1-1* mutants. *wus1-1* allele was followed by PCR genotyping as described in  
150 earlier studies (Gross-Hardt et al., 2002). The complemented *wus1-1* mutant lines were  
151 transformed with *pCLV3::H2b-mYFP* construct to follow the *CLV3* expression pattern.

152

153 **RT-PCR analysis**

154 For the semi-quantitative RT-PCR analysis, inflorescences of the lines *35S::eGFP-WUS-GR WT*;  
155 *35S::eGFP-WUS-GR;ham1-1;ham2-1*; *pWUS::eGFP-WUS(WT)* and *pWUS::eGFP-*

156 *WUS*(ΔHAM) were collected. RNA was extracted using TRIzol (Invitrogen) and Direct-zol RNA  
157 Microprep Kit (Cat. No. R2060), by including the DNaseI treatment, according to the  
158 manufacturer's instructions. cDNA was prepared using ProtoScript® II Reverse Transcriptase  
159 according to the manufacturer's instructions. The amplification of eGFP gene was done using  
160 specific designed oligos 5'- AGAACGGCATCAAGGTGAAC -3' and 5'-  
161 CTCAGGTAGTGGTTGTCGGG – 3' in triplicates. PCR product was run in an agarose gel (1.2%)  
162 and stained with ethidium bromide. Gel images were taken using the UV GelSolo Gel  
163 Documentation System (Analytik Jena). *ACTIN2* gene amplicons were used as a control of the  
164 expression levels. Each PCR was done at least two times.

165

#### 166 **Fluorescent microscopy and image analysis:**

167 Imaging was performed on the Zeiss 880 upright (AIRYSCAN) microscope through a 40X  
168 objective lens as previously described (Rodriguez et al., 2022). eGFP-WUS was excited with the  
169 488 nm laser, and the fluorescence emission was collected between 495-550 nm. H2B-mYFP  
170 was excited with the 514 nm laser, filtered through a main beam splitter (MBS)  
171 458/514/561/633, and the emission was collected between 495-550 nm. FM4-64 was excited  
172 with the 561 nm laser and the emission was collected between 570-620 nm. Images were  
173 quantified using ZEN software. The nuclear fluorescence accumulation was quantified for  
174 multiple nuclei that were manually selected using a circle tool. The mean nuclear fluorescence  
175 was determined from the ten brightest cells in each cell layer. Two-tailed t-tests were applied  
176 across genotypes for each cell layer to determine the statistical significance. The source data is  
177 presented in the additional data files. This includes the means, N (number of samples), and P  
178 values.

179

180 **RESULTS AND DISCUSSION:** To test the function of the RM-localized HAM proteins, we  
181 analyzed the *CLV3* expression in *ham1-1;ham2-1* double mutants. The *pCLV3::H2b-mYFP*  
182 reporter expression revealed an elevated expression of *CLV3* in the CZ, and its expression  
183 domain also extended into the deeper cell layers of the RM (**Fig. 1A-D**). In addition, the double  
184 mutant SAMs were slightly flatter and wider than the wild-type SAMs. These results reveal a  
185 non-cell autonomous effect of the RM-localized HAM proteins on *CLV3* expression.

186

187 WUS has been shown to regulate *CLV3* expression in a non-cell autonomous fashion. Therefore,  
188 we analyzed the WUS protein levels in *ham1-1;ham2-1* double mutants. The pWUS::eGFP-  
189 WUS reporter failed to accumulate at detectable levels in the SAMs, while the floral meristems  
190 (FMs) revealed WUS protein accumulation (**Fig 2A and B**). These results suggest that HAM  
191 proteins play a role in regulating WUS protein levels either by regulating *WUS* transcription or  
192 by regulating the WUS protein stability. In dissecting these two possibilities, we analyzed the  
193 expression of the WUS transcriptional reporter-*pWUS::H2b-mYFP* in *ham1-1;ham2-1* double  
194 mutants (**Fig. 2C and D**). The WUS promoter was expressed at extremely low levels in the  
195 SAMs, which is attributable to elevated levels and misexpression of *CLV3* in the double mutants  
196 (**Fig 1C**).

197

198 However, the *CLV3* negative regulation of the *WUS* transcription does not rule out the  
199 possibility of the role of HAM proteins in regulating WUS protein stability post-translationally.  
200 To analyze the effect of HAM proteins on the WUS protein, we analyzed the behavior of the  
201 WUS protein expressed from the heterologous promoter by using the 35S::eGFP-WUS-GR, a  
202 Dexamethasone (Dex)-inducible form of eGFP-WUS expressed from the ubiquitous promoter,  
203 which allows analysis of WUS protein behavior both in the cytoplasm and the nucleus upon  
204 Dex-induced nuclear translocation (Rodriguez et al., 2016). The eGFP-WUS-GR accumulated at  
205 much lower levels in mock-treated *ham1-1;ham2-1* double mutant SAMs than in the wild-type  
206 background (**Fig. 3A and C and Fig. S1**). The 3-hour Dex-treatment led to a strikingly  
207 detectable accumulation of eGFP-WUS-GR in the nuclei of wild type SAMs (**Fig. 3B**).  
208 However, *ham1-1;ham2-1* double mutants failed to accumulate detectable levels of the eGFP-  
209 WUS-GR protein in the nuclei of most cells in the SAM except for a scattered accumulation in  
210 few cells located in the periphery of the SAMs and in the deeper cell layers of the RM (**Fig. 3D**).  
211 To test the possible silencing of the 35S::eGFP-WUS-GR transgene in *ham* double mutants, we  
212 performed RT-PCR analysis by using the eGFP specific primers. The results revealed  
213 comparable levels of transgene expression both in wild type and *ham1-1;ham2-1* mutant  
214 backgrounds (**Fig. S2**). Taken together, these results suggested that HAM proteins regulate both  
215 the cytoplasmic and the nuclear levels of the WUS protein.

216

217 HAM proteins have been shown to interact with the C-terminal region of the WUS protein,  
218 spanning amino acids 203-236 (Zhou et al., 2015). To test the importance of this region in  
219 regulating WUS protein levels, we introduced deletions of this region to create *pWUS::eGFP-*  
220 *WUS(ΔHAM)*. The *pWUS::eGFP-WUS(ΔHAM)* failed to accumulate at detectable levels in the  
221 outer cell layers of the SAM. At the same time, the deeper cell layers revealed an extremely low  
222 level of protein accumulation over an expanded domain (**Fig. 4B** and **D-G**). The RT-PCR  
223 analysis by using the eGFP specific primers revealed that the WUS protein lacking the HAM  
224 binding domain was expressed at similar levels to that of the wild type WUS protein ruling out  
225 the possibility of transgene silencing (Fig. S2). Moreover, *pWUS::eGFP-WUS(ΔHAM)* protein  
226 also accumulated at lower levels in *clv3-2* null mutant background (**Fig. 4 I-K** and **I'-K'**)  
227 compared to the wild type-*pWUS::eGFP-WUS* (**Fig 4H** and **H'**), ruling out the possibility of the  
228 repression of the *WUS* promoter due to the *CLV3*-mediated negative feedback loop. These  
229 results show the importance of the HAM-binding region in stabilizing the WUS protein and  
230 possibly restricting its diffusion.

231

232 To test the importance of the HAM binding region in the WUS function, we introduced  
233 *pWUS::eGFP-WUS(ΔHAM)* and *pWUS::eGFP-WUS* into the *wus-1* null mutant background.  
234 Five independent lines were generated for each construct and genotyped for *wus-1*  
235 homozygosity. Four lines carrying the *pWUS::eGFP-WUS(ΔHAM)* showed complete rescue and  
236 produced leaves and flowers resembling the wild type plants, and one line segregated *wus-1*  
237 mutant phenotypes in 4 of the 25 progeny screened. Our analysis showed that the WUS protein  
238 lacking the HAM binding domain was able to largely rescue the *wus-1* mutant phenotype. The  
239 SAMs of rescued *wus-1* null mutants resembled wild type SAMs (**Fig. 4C**). To test the  
240 importance of the HAM binding region in regulating the *CLV3* expression, we transformed  
241 rescued homozygous *pWUS::eGFP-WUS(ΔHAM);wus-1* and *pWUS::eGFP-WUS;wus-1*, with  
242 the *pCLV3::H2b-mYFP* reporter construct. In *wus-1* SAMs rescued with the *pWUS::eGFP-WUS*,  
243 the *CLV3* expression was detected in the CZ (Fig. 4L). Similarly, in the *wus-1* mutants rescued  
244 with the *pWUS::eGFP-WUS(ΔHAM)*, the *CLV3* expression was detected in the CZ; however,  
245 expression levels and the domain of expression varied widely, which could be grouped into two  
246 categories: one characterized by higher levels and a broader domain (**Fig. 4M**), and the other by  
247 lower levels (**Fig. 4N**). Notably, in none of these cases was the *CLV3* expression uncoupled from

248 the CZ similar to the *ham1-1;ham2-1* double mutants (**Fig. 1A-D**) and upon transient depletion  
249 of WUS levels as shown in an earlier study (Perales et al., 2016). The variable *CLV3* expression  
250 in *pWUS::eGFP-WUS(ΔHAM);wus-1* suggests that *CLV3* expression could be maintained over a  
251 broad range of WUS levels and consistent with the earlier work, which showed a higher *CLV3*  
252 expression upon partial depletion of WUS (Perales et al., 2016). In contrast, the severe depletion  
253 of WUS decreased *CLV3* expression (Perales et al., 2016). These results reiterate the requirement  
254 of HAM binding of the WUS protein in non-cell autonomous regulation of the *CLV3* expression  
255 in the CZ.

256

257 The elevated *CLV3* expression and the expansion of the *CLV3* expression domain observed in  
258 *ham1-1;ham2-1* double mutants reveal the non-cell autonomous effect of the HAM proteins on  
259 *CLV3* expression, which could be attributed to extremely low levels of the WUS protein  
260 accumulation in the double mutants. Such an increase in *CLV3* expression has been observed  
261 upon dilution of WUS through RNAi-mediated partial downregulation of WUS (Perales et al.,  
262 2016), revealing the concentration-dependent regulation of *CLV3* expression. To further test the  
263 WUS-concentration-dependent effect on *CLV3* expression, we analyzed the behavior of higher  
264 affinity cis-element mutants of *CLV3* reporters in *ham1-1;ham2-1* double mutants. Earlier work  
265 has shown that increasing the affinity of WUS binding to the cis-elements through point  
266 mutations-M1 and M4 induced WUS dimerization at much lower WUS concentrations (Perales  
267 et al., 2016). Moreover, the introduction of these mutants into the *CLV3* reporter revealed  
268 repression of *CLV3* expression, showing WUS concentration-dependent regulation of *CLV3* (**Fig.**  
269 **1E**). Since WUS accumulated at a much lower level in *ham1;ham2* double mutants, we  
270 hypothesized that the higher affinity mutant reporter-*pCLV3 (970M1)::H2b-mYFP* may be  
271 reactivated. Consistent with this hypothesis, the *ham1-1;ham2-1* double mutants revealed  
272 reactivation of the mutant promoter, including in the outer cell layers of the CZ (**Fig. 1F**). The  
273 earlier studies have shown that HAM proteins are not detected in the outermost cell layers of the  
274 CZ (Han et al., 2020). Therefore, these results show the non-autonomous function of HAM  
275 proteins in regulating *CLV3* expression, likely by controlling the WUS protein stability.

276

277 WUS has been shown to activate and repress *CLV3* expression at lower and higher levels,  
278 respectively, leading to the maintenance of expression over a window bound by the activation

279 and repression thresholds (Perales et al., 2016). In this context, the current work reveals that the  
280 RM-localized HAM proteins that physically interact with WUS are required to maintain the  
281 WUS protein gradient by stabilizing the protein and restricting diffusion. The overall lower WUS  
282 protein levels found in *ham1-1;ham2-1* mutants can explain higher levels and expansion of the  
283 *CLV3* expression domain. Therefore, providing a mechanism for the non-cell autonomous effect  
284 of the HAM protein function in regulating *CLV3* expression in all cell layers, including the outer  
285 cell layers where HAM proteins do not accumulate. Moreover, Perales et al., 2016, showed that  
286 the *CLV3* promoter can be repressed in the outer cell layers by increasing the WUS binding  
287 affinity, which promotes WUS dimerization at lower WUS protein levels, suggesting that HAM  
288 proteins may not directly participate in the transcriptional repression of *CLV3* in the CZ. Our  
289 work also shows that the *ham1-1;ham2-1* double mutants maintain SAM organization and  
290 continue producing leaves and flowers at extremely low WUS protein levels. An earlier study  
291 revealed that *ham1-1;ham2-1* double mutants maintain SAM structure compared to a severe  
292 reorganization of the SAM structure observed in the *ham1;ham2;ham3* triple mutants (Schulze et  
293 al., 2010). It has been shown that *HAM3* is expressed in the PZ (Schulze et al., 2010), and the  
294 *HAM3* protein was found to be localized to the PZ cells (Han et al., 2010). Taken together, these  
295 observations also argue for the non-cell autonomous roles of HAM proteins in maintaining the  
296 SAM structure and gene expression. Furthermore, the WUS protein, which lacks the HAM  
297 binding domain, accumulates at lower levels, can rescue the WUS null mutants and produce a  
298 functional SAM. These results show that SAM growth can be maintained over a wide range of  
299 WUS concentrations similar to the *CLV3* expression. Future studies to understand the underlying  
300 WUS concentration-mediated growth regulation may provide insights into the robustness  
301 associated with stem cell maintenance.

302

303 **AUTHOR CONTRIBUTIONS:** KR and GVR conceptualized and designed experiments. KR,  
304 GVR, VEC, LK, CD, DN, CD, and SU performed experiments. KR, GVR, LK, and SU analyzed  
305 the data. KR and GVR wrote the manuscript.

306

307

308 **ACKNOWLEDGMENTS:** We thank Klauss Theres and Eric Engstrom for sharing *ham* mutant  
309 seeds. We thank members of Reddy Laboratory for their comments on the manuscript.

310

311 **DATA AND MATERIAL AVAILABILITY:** Data sharing is not applicable to this article as all  
312 new created data is already contained within this article.

313

314 **SUPPORTING INFORMATION:** A separate file has been uploaded.

315

316 **REFERENCES:**

317 Barton, MK (2010) Twenty years on: The inner workings of the shoot apical meristem, a  
318 developmental dynamo. *Dev Biol* **341**:95–113.

319 Busch, W, Miotk, A, Ariel, FD, Zhao, Z, Forner, J, Daum, G, Suzuki, T, Schuster, C,  
320 Schultheiss, SJ, Leibfried, A, Haubeiss, S, Ha, N, Chan, RL, Lohmann, JU (2010)  
321 Transcriptional control of a plant stem cell niche. *Dev Cell* **18**:849–861.

322 Brand, U, Fletcher, JC, Hobe, M, Meyerowitz, EM, Simon, R (2000) Dependence of Stem  
323 Cell Fate in Arabidopsis on a Feedback Loop Regulated by CLV3 Activity. *Science*  
324 **289**:617–619.

325 Clark, SE, Williams, RW, Meyerowitz, EM (1997) The CLAVATA1 gene encodes a  
326 putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. *Cell*  
327 **89**:575–585.

328 Engstrom, EM, Andersen, CM, Gumulak-Smith, J, Hu, J, Orlova, E, Sozzani, R, Bowman,  
329 JL (2011) Arabidopsis homologs of the petunia hairy meristem gene are required for  
330 maintenance of shoot and root indeterminacy. *Plant Physiol* **155**:735–750.

331 Fletcher, JC, Brand, U, Running, MP, Simon, R, Meyerowitz, EM (1999) Signaling of Cell  
332 Fate Decisions by CLAVATA3 in Arabidopsis Shoot Meristems. *Science* **283**: 1911–1914.

333 Gross-Hardt, R, Lenhard, M, Laux, T (2002) WUSCHEL signaling functions in  
334 interregional communication during Arabidopsis ovule development. *Genes Dev* **16**:1129–  
335 1138.

336 Han, H, Geng, Y, Guo, L, Yan, A, Meyerowitz, EM, Liu, X, Zhou, Y (2020) The

337 Overlapping and Distinct Roles of HAM Family Genes in Arabidopsis Shoot Meristems.  
338 *Front Plant Sci* **11**:1375.

339 Laux, T, Mayer, KF, Berger, J, Jürgens, G (1996) The WUSCHEL gene is required for  
340 shoot and floral meristem integrity in Arabidopsis. *Development* **122**:87–96.

341 Mayer, KF, Schoof, H, Haecker, A, Lenhard, M, Jürgens, G, Laux, T (1998) Role of  
342 WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. *Cell* **95**:805–  
343 815.

344 Perales, M, Rodriguez, K, Snipes, S, Yadav, RK, Diaz-Mendoza, M, Reddy, GV (2016)  
345 Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. *Proc  
346 Natl Acad Sci USA* **113**:E6298–E6306.

347 Plong, A, Rodriguez, K, Alber, M, Chen, W, Reddy, GV (2021) CLAVATA3 mediated  
348 simultaneous control of transcriptional and post-translational processes provides robustness  
349 to the WUSCHEL gradient. *Nat Commun* **12**:1–13..

350 Rodriguez, K, Perales, M, Snipes, S, Yadav, RK, Diaz-Mendoza, M, Reddy, GV (2016)  
351 DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization  
352 control WUSCHEL levels and spatial patterning. *Proc Natl Acad Sci USA* **113**:E6307–  
353 E6315.

354 Rodriguez, K, Do, A, Senay-Aras, B, Perales, M, Alber, M, Chen, W, Reddy, GV (2022)  
355 Concentration-dependent transcriptional switching through a collective action of cis-  
356 elements. *Sci Adv* **8**:eab06157.

357 Schulze, S, Schäfer, BN, Parizotto, EA, Voinnet, O, Theres, K (2010) LOST MERISTEMS  
358 genes regulate cell differentiation of central zone descendants in Arabidopsis shoot  
359 meristems. *Plant J* **64**: 668–678.

360 Snipes, SA, Rodriguez, K, DeVries, AE, Miyawaki, KN, Perales, M, Xie, M, Reddy, GV  
361 (2018) Cytokinin stabilizes WUSCHEL by acting on the protein domains required for  
362 nuclear enrichment and transcription. *PLoS Genet* **14**:e1007351.

363 . Yadav, RK, Perales, M, Gruel, J, Ohno, C, Heisler, M, Girke, T, Jönsson, H, Reddy, GV  
364 (2013) Plant stem cell maintenance involves direct transcriptional repression of  
365 differentiation program. *Mol Syst Biol* **9**:654.

366 Yadav, RK, Perales, M, Gruel, J, Girke, T, Jönsson, H, Reddy, GV (2011) WUSCHEL  
367 protein movement mediates stem cell homeostasis in the *Arabidopsis* shoot apex. *Genes*  
368 *Dev* **25**:2025–2030..

369 Zhou, Y, Liu, X, Engstrom, EM, Nimchuk, ZL, Pruneda-Paz, JL, Tarr, PT, Yan, A, Kay,  
370 SA, Meyerowitz, EM (2015) Control of plant stem cell function by conserved interacting  
371 transcriptional regulators. *Nature* **517**:377–380.

372 Zhou, Y, Yan, A, Han, H, Li, T, Geng, Y, Liu, X, Meyerowitz, EM (2018) HAIRY  
373 MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical  
374 meristem layers. *Science* **361**: 502–506.

375

376

377

378

379

380

381

382

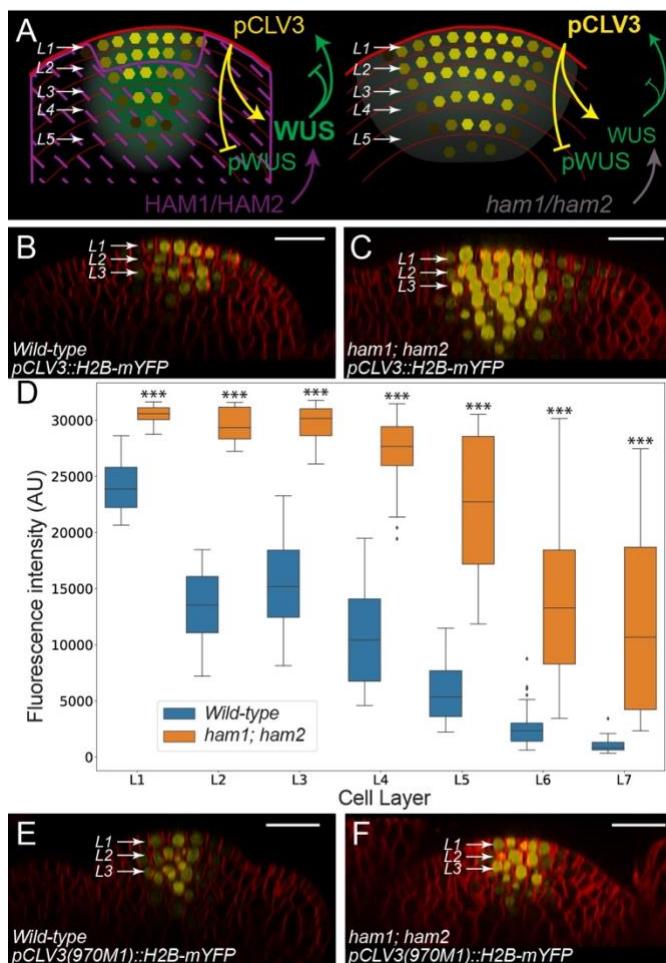
383

384

385

386

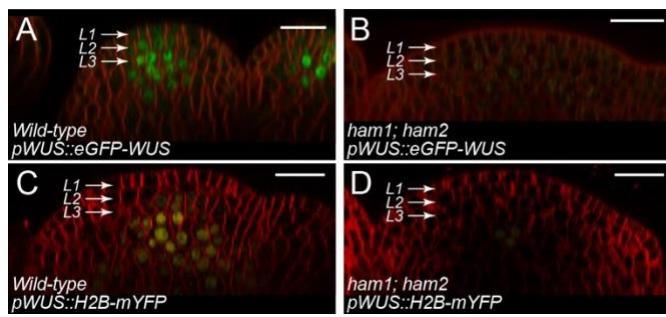
387


388

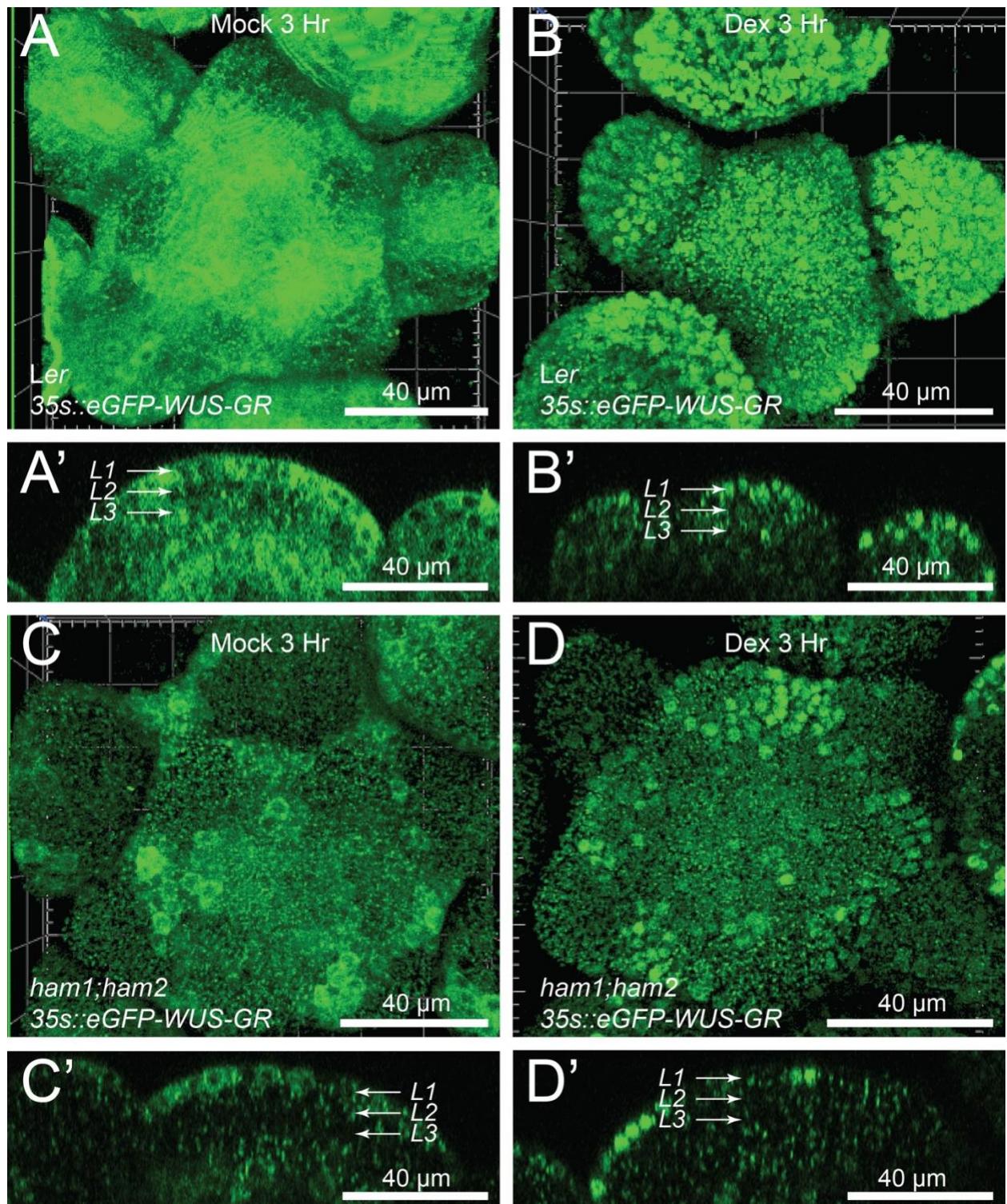
389

390

391


392

393 **Figures and legends:**


394

**Fig. 1. HAM1 and HAM2 are critical to maintaining levels and spatial CLV3 expression in the central zone. (A)** A schematic showing the *CLV3* expression pattern in the wild-type (left) and *ham1-1;ham2-1* double mutants (right). In the wild-type background, the HAM1 and HAM2 proteins (purple) help maintain the WUS protein gradient (green). WUS at lower levels activates *CLV3* (*pCLV3::H2b-mYFP*) [yellow] in the outer layers and, at higher levels, represses *CLV3* in the inner layers. In the *ham1-1;ham2-1* homozygous background (grey), the WUS protein accumulates at much lower levels and possibly over a larger spatial domain, leading to higher activation of *CLV3* across all cell layers. Side views of the SAMs showing *pCLV3::H2b-mYFP* expression [yellow] in the *wild-type* (B) and *ham1-1;ham2-1* homozygous mutants (C). (D) Quantification of the *pCLV3::H2b-mYFP* fluorescence from 10 cells per layer from 4 independent SAMs of wild-type and *ham1-1;ham2-1* homozygous mutants. The central

407 box depicts the range of the central 50% of the data, the central line represents the  
408 median, and the extended lines represent the rest of the data, excluding outliers shown as  
409 black dots.  $P < 0.001$  \*\*\*. *pCLV3::H2b-mYFP* expression in *CLAVATA3 promoter*  
410 containing a higher affinity WUS binding cis-element (970M1) in wild-type (E) and in  
411 *ham1-1; ham2-1* homozygous mutants (F). In all images, FM-4-64 stained plasma-  
412 membrane [red]. In all images, the scale bar = 20  $\mu$ m.  
413

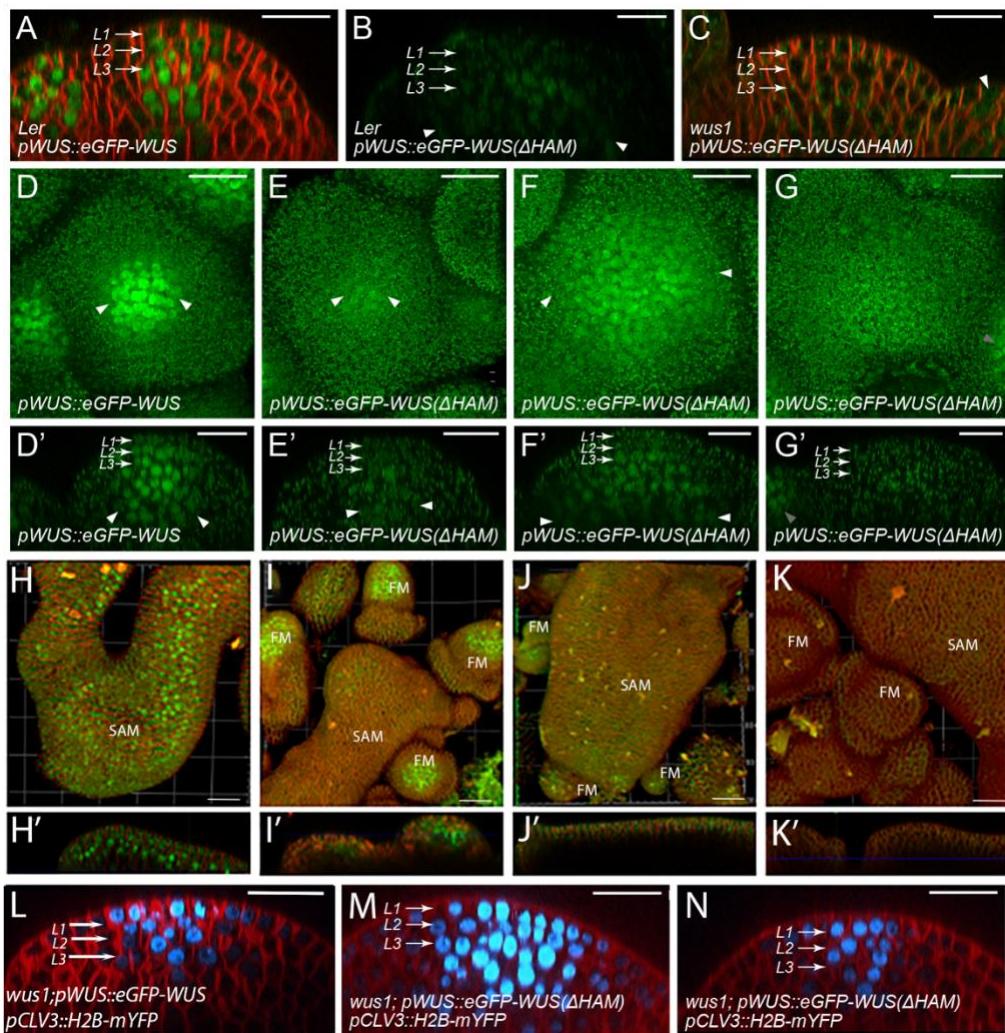


**Fig. 2. HAM1 and HAM2 are critical to maintaining proper WUS levels.** Side views of the *wild-type* (A and C) and *ham1-1; ham2-1* homozygous mutants (B and D). (A, B) GFP N'terminus- fused to the WUSCHEL protein expressed from the *WUSCHEL promoter* (*pWUS::eGFP-WUS*)[green]. (C, D) *WUSCHEL promoter* expressing a transcriptional reporter *Histone2b-modifiedYFP* (*pWUS::H2b-mYFP*)[yellow]. In all images, FM-4-64 stained plasma-membrane [red] and scale bar = 20  $\mu$ m.



423

424

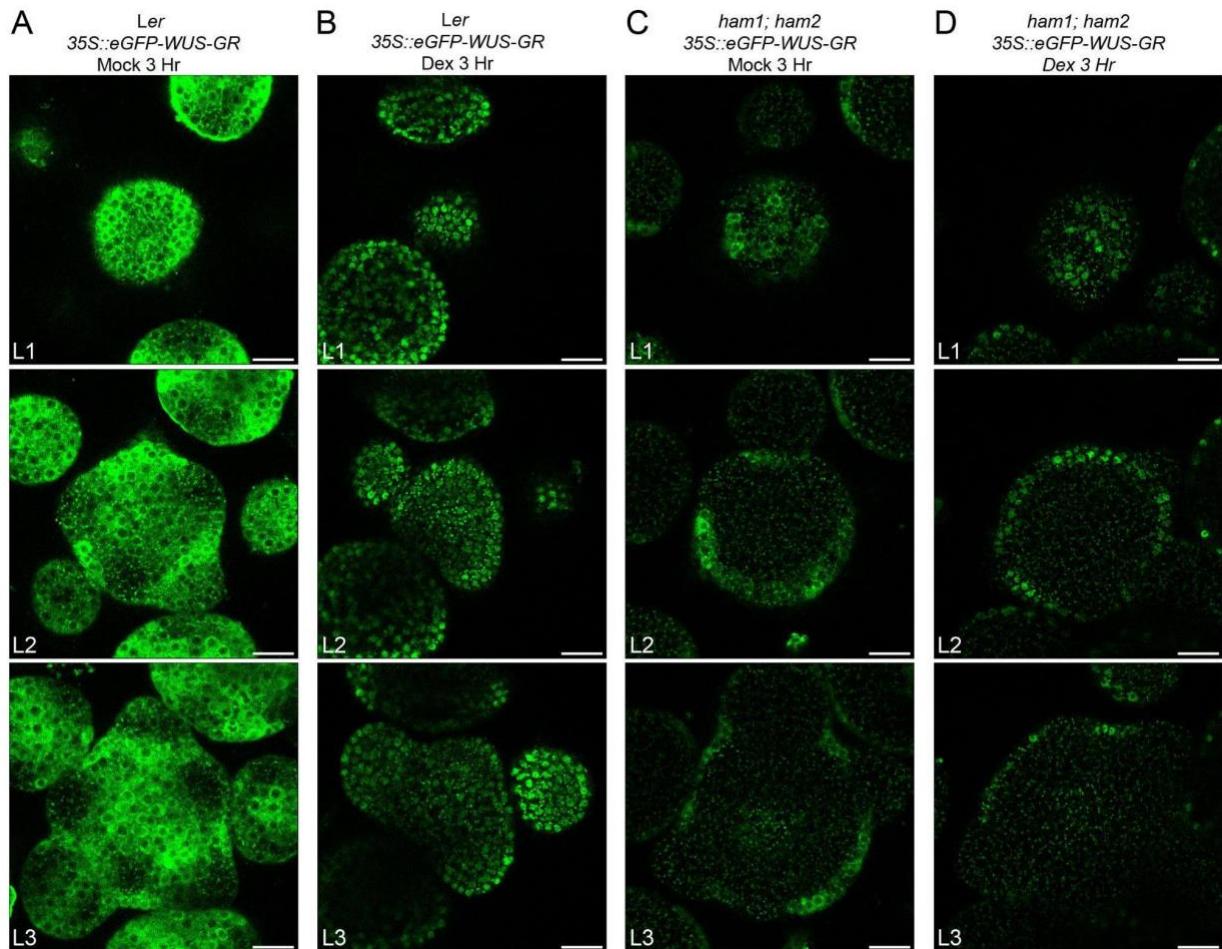

425

426

427

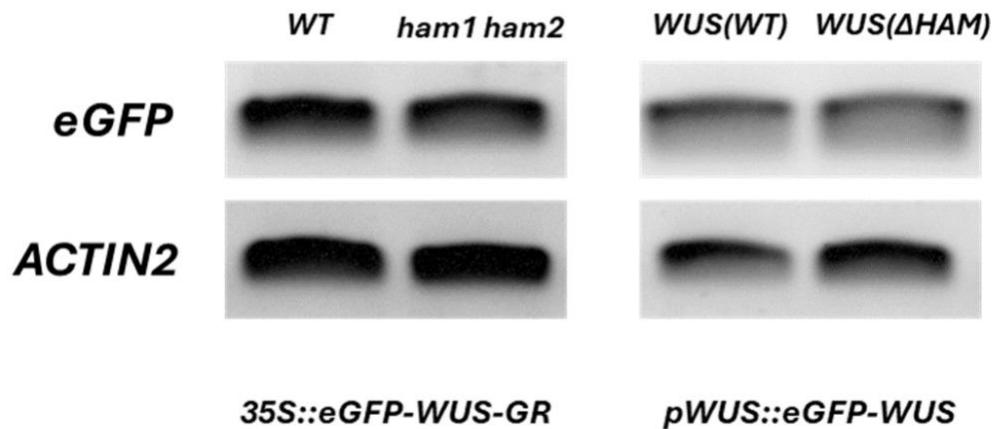
**Fig. 3. HAM1 and HAM2 are critical for stable WUS protein accumulation.** Top-view 3D reconstruction of SAM containing a translational fusion of GFP, WUS, and Glucocorticoid Receptor expressed from the *35s* promoter (*p35S::eGFP-WUS-GR*) in

428 wild-type (**A** and **B**) and *ham1-1; ham2-1* homozygous lines (**C** and **D**). Plants were  
429 mock-treated (**A** and **C**) or Dex-treated for 3 hours (**B** and **D**). Corresponding side views  
430 of the SAM are shown below each 3D reconstruction and labeled as **A'** - **D'**. In all  
431 images, the scale bar = 40  $\mu$ m.  
432




435 **Fig. 4. The HAM binding domain is required to maintain WUS protein stability and**  
 436 **CLV3 expression.** (A) Side view of the SAM in wild-type background with *WUSCHEL*  
 437 *promoter* expressing a GFP N'terminus- fused to the WUSCHEL protein *pWUS::eGFP-*  
 438 *WUS* [green]. Side view of the SAM in wild-type (B) and *wus1-1* (C) mutant background  
 439 complemented with *WUSCHEL promoter* expressing a GFP N'terminus- fused to the  
 440 WUSCHEL protein containing a deletion of amino acids (203 aa to 236 aa) [HAM-  
 441 binding domain] *pWUS::eGFP-WUS(ΔHAM)* [green] (B and C). (B) In the wild-type  
 442 background, WUS(ΔHAM) accumulates in a broader domain in the deeper layers of the  
 443 SAM [arrowheads]. (C) WUS protein fails to accumulate visible levels in SAMs.  
 444 However, WUS protein is visible in the floral meristem (FM) [arrowhead]. (D - G) 3D  
 445 reconstructions of wild type SAMs showing the *WUSCHEL promoter* driving a eGFP-

446 WUS protein *pWUS::eGFP-WUS* [green] (**D**) and eGFP-WUS carrying deletions in the  
447 HAM binding domain *pWUS::eGFP-WUS(ΔHAM)* (**E-G**). (**E-G**) Shows images from  
448 three independent transgenic lines. In all images, white arrowheads denote the outer  
449 limits of the WUS protein accumulation in space, and gray arrowhead denotes the WUS  
450 protein in the floral meristem. (**D-G**) Images were acquired at a higher digital gain to  
451 highlight low WUS protein accumulation. (**D'-G'**) 3D reconstructed side views of 15  
452 neighboring slices from images presented in (**D-G**). (**H-K**) 3D reconstructed top views of  
453 *clv3-2* shoot apex showing *pWUS::eGFP-WUS* [green] [n=5] (**H**) and three different  
454 shoot apex showing *pWUS::eGFP-WUS(ΔHAM)* [green] [n=5] (**I-K**). (**H'-K'**)  
455 Corresponding side views of images shown in (**H-K**). In all images, FM-4-64 stained  
456 plasma-membrane [red]. Side views of the SAMs showing *pCLV3::H2b-mYFP*  
457 expression (pseudo colored in Cyan) in the in *wus1-1* mutants complemented with the  
458 wild type WUS (**L**), WUS lacking the HAM-binding domain (**M** and **N**). *CLV3*  
459 expression was either higher [Bright, n=12] (**M**) or lower [Dim, n=7] (**N**) than the *wus1-1*  
460 mutants complemented with the wild type WUS [n=5] (**L**). Scale bar = 20  $\mu$ m for (**A-G**)  
461 and (**L-N**). 25  $\mu$ m for (**H-K**). SAM=Shoot apical meristem. FM=Floral meristem.  
462 Arrows point to different cell layers-L1, L2 and L3.  
463


464  
465  
466

**SUPPLEMENTARY MATERIALS:**



**Fig. S1. HAM1 and HAM2 are critical for stable WUS protein accumulation. (A - D)**  
Transverse sections of the SAMs showing translational fusion of eGFP-WUS with the  
hormone binding domain of the Glucocorticoid Receptor expressed from the 35s  
*promoter* (p35S::eGFP-WUS-GR) [green] in wild-type (A and B) and *ham1; ham2*  
homozygous lines (C and D). Plants were mock-treated (A and C) or Dex-treated (B and  
D) for 3 hours before imaging. Sections corresponding to different cell layers-L1, L2, and  
L3 are shown. In all images, the scale bar = 20  $\mu$ m.

467  
468  
469  
470  
471  
472  
473  
474  
475  
476



477  
 478 **Fig. S2. Amplification of *eGFP* gene by semiquantitative RT-PCR.** Samples represent the  
 479 RNA extracted from inflorescences of the lines 35S::*eGFP-WUS-GR* in wild type  
 480 (*WT*); 35S::*eGFP-WUS-GR* in *ham1-1*; *ham2-1* [left panel]; *pWUS::eGFP-*  
 481 *WUS(WT)*; *pWUS::eGFP-WUS(ΔHAM)* [right panel]. The *ACTIN2* gene amplicon was used as a  
 482 control.  
 483  
 484  
 485  
 486  
 487  
 488  
 489  
 490  
 491  
 492  
 493  
 494  
 495  
 496  
 497  
 498  
 499  
 500  
 501  
 502  
 503  
 504

505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518

**Table S1. Primers used in this study.**

| Genotype mutants        | Modification | Sequence                                  |
|-------------------------|--------------|-------------------------------------------|
| <b>HAM1 Fwd</b>         |              | 5'-<br>CAGATTCTCAGAAAATCTGG<br>TCC-3'     |
| <b>HAM1 Rev</b>         |              | 5'-<br>CGGTGTGGTCGCCGTTGTTG<br>TTTC-3'    |
| <b>HAM2 Fwd</b>         |              | 5'-<br>GGAGGTCAATGGGCGTCTCT<br>G-3'       |
| <b>HAM2 Rev</b>         |              | 5'-<br>GGCGCGTCGTTGTTACGGTC<br>G-3'       |
| <b>wus1-1 F</b>         |              | 5' TTGAATTAATGAATTATAG<br>TTTGATACG       |
| <b>wus1-1 R</b>         |              | 5' TTGAAGTTATGGATCTTG<br>ATTGG            |
| <b>dHAM (WUS 237 F)</b> | 5' Phospho   | 5'CATCAAGACGAAGAAGAAT<br>GTGGTG           |
| <b>dHAM (WUS 202 R)</b> | 5' Phospho   | 5'<br>ATTCATAGAACAGTCTTGTTC<br>CCATAGATCC |

519  
520  
521

