
Comment to the Editor
In defense of Huxley
INTRODUCTION
Models of muscle contraction fall into two broad categories:
those that attempt to describe the molecules that power mus-
cle contraction and those that posit relationships between
macroscopic muscle properties. Huxley’s 1957 model is
an example of the former, where one keeps track of the
average states and extensions of a large ensemble of myosin
molecules interacting with an actin filament (1). A.V. Hill’s
1938 model is an example of the latter, where measurements
on frog muscle gave rise to relationships between muscle
heat production, shortening length, shortening rate, and
force (2). In the 1980s, as increased computer power drasti-
cally expanded how these models could be applied to mea-
surements, researchers studying how muscles drive human
or animal motion largely migrated to the macroscopic,
‘‘Hill’’ models. In parallel, as researchers learned more
about myosin’s biochemistry and single-molecule me-
chanics, researchers studying muscle (or myosin) function
largely migrated to the molecular, ‘‘Huxley’’ models.
More recently, as increased computing power continues to
expand how models can be applied to measurements, a
new class of ‘‘spatially explicit’’ models has emerged that
can model each molecule and include the random noise
inherent at the molecular scale (3), in contrast to Huxley
models that describe average molecular properties with dif-
ferential equations.

Over the years, there has been vigorous debate about
which modeling approach is best for which applications
(4). There are advantages and disadvantages to each
approach, and while some applications favor one approach
over another, it seems shortsighted to discount the results
of any one approach. So, for example, while one might
object that Hill models can show instabilities (5), they are
nevertheless able to describe muscle forces in complex
biomechanical tasks (6). The commentary from Prof. Josh
Baker on our recent paper (7) makes the claim that any
‘‘corpuscular’’ (i.e., molecular) muscle model is both un-
physical and cannot provide insight into human health.
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This criticism applies to our model as well as any Huxley
or spatially explicit model. On the contrary, we believe these
models do have a physical basis and have already provided
insights into human health. We therefore address the criti-
cism raised in the commentary.

To address Prof. Baker’s criticism, we first provide a sum-
mary of our understanding of his argument, which we
outline in the following four points.

(1) Models such as ours that attempt to span the molecular
to the macroscopic scale ignore entropic effects.

(2) Our model does not account for the laws of thermody-
namics and is, consequently, unconstrained.

(3) Our model is a mixed-scale model and is therefore un-
physical, assuming on the one hand that myosin’s force
is generated by a single degree of freedom spring and on
the other hand that the forces of all myosin molecules
are balanced by another spring.

(4) Myosin, when part of an ensemble, undergoes a ‘‘ther-
modynamic’’ power stroke consistent with the second
law of thermodynamics, and we assume a ‘‘molecular’’
power stroke.

In this response, we will provide evidence that our model
is based on current equilibrium and nonequilibrium statis-
tical mechanics of large, dilute molecules in solution. We
will explain how the model accounts for entropy, is natu-
rally constrained by the laws of thermodynamics, captures
the potentially large number of myosin’s degrees of
freedom, and includes emergent ensemble effects. At the
conclusion of our response, we will address Prof. Baker’s
final point that molecular muscle models, being based on
incorrect physics, cannot provide any insight into human
health.
THE PHYSICAL BASIS OF OUR MODEL

As a starting point for our model, suppose (like many mo-
lecular dynamics simulations) we consider myosin to be a
set of N interacting particles of mass m1;m2;.;mN with
viscous drag z1; z2;.; zN at position r1; r2;.; rN , all inter-
acting with each other according to potential Vðr1;r2;.;rNÞ.
Perhaps the most general governing equation for these
particles in solution is the Chandrasekhar equation, a
d similar technologies.
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generalization of Liouville’s theorem of the evolution of a
conservative mechanical system in phase space to include
Brownian motion (8). However, for large, dilute molecules
in solution over typical timescales we care about, the Chan-
drasekhar equation reduces to the Smoluchowski equation
(8,9), also called the Fokker-Planck equation (10):

vw

vt
¼ V$ðkBTGVwþGVVwÞ; (1)

where wðt; r1; r2;.; rNÞ is the probability density of finding
particle i at position ri at time t, kB is Boltzmann’s constant, T
is temperature, and G is a diagonal matrix whose entries are
the inverse of each particle’s viscous drag (Gij ¼ 1

zi
dij). Note

that when V ¼ 0 so that the particles do not interact, Eq. 1
reduces to Fick’s second law, with each particle’s diffusion
constant defined by the Einstein relation Di ¼ kBT= zi.

In our view, Eq. 1 is the foundation for modern equilib-
rium and nonequilibrium statistical mechanics for classical
(i.e., nonquantum) systems. In particular, calculations
from equilibrium statistical mechanics follow from the
steady-state solution (see supporting materials and methods
for an example). Given some assumptions about the interac-
tions between particles, defined by the potential energy Vðr1;
r2;.;rNÞ, we can apply Kramers’ theory (11) and later gen-
eralizations (10) to derive chemical master equations whose
rate constants depend on local properties of Vðr1; r2;.; rNÞ
near the minima that define each state and the saddles that
define the transition states between them.

Criticism one is that attempts to span the molecular to
macroscopic scale ignore entropic effects. However, equa-
tions derived from steady-state and non-steady-state solu-
tions to Eq. 1 describe macroscopic effects with entropic
contributions, e.g., the condensation of vapor (10) and the
elasticity of a polymer (12). In the supporting materials
and methods, we show that the steady-state solution to Eq.
1 can be used to derive the force-extension curve for a freely
jointed chain, which is entirely due to entropy. Therefore, as
far as we are aware, there is no entropy missing in Eq. 1.

Derivation of Huxley models (1) starts with a chemical
master equation that accounts for the fact that when myosin
binds to a moving actin filament, the myosin molecule
stretches. Here, for example, is a two-state model describing
a single myosin molecule interacting with an actin filament,
where myosin is bound to actin in one state and unbound in
the other:

vn

vt
þ dx

dt

vn

vx
¼ kaðxÞ

�
1 �

Z N

�N

ndx

�
� kdðxÞn

dx dx
dt
¼

dt
; (2)

where nðx; tÞ is the probability density of finding the myosin
molecule bound with extension x at time t, xðtÞ is the posi-
tion of the actin filament, kaðxÞ is the rate density of myosin
attaching to actin with extension x, and kdðxÞ is the rate of
myosin detaching from actin with extension x. Being a
chemical master equation, it is possible to use Kramers’ the-
ory to derive Eq. 2, along with equations for kaðxÞ and kdðxÞ,
from a molecular-mechanical system defined by a potential
V (13). We can additionally write an equation for the ex-
pected force produced by this single molecule as a function
of time

CFðtÞD ¼
Z N

�N

f ðxÞnðx; tÞdx; (3)

where f ðxÞ is the force produced by a myosin molecule at
that value of x.

The derivation of Eq. 2 requires some simplifying as-
sumptions, e.g., that myosin may bind anywhere on actin,
that actin is rigid, and that actin moves along a single degree
of freedom. We concede that these assumptions are not cor-
rect and that violations of them may be important in under-
standing muscle, e.g., (3,14). However, to be tractable, every
model must make simplifications. For each simplification, a
modeler must balance, on the one hand, the likelihood the
simplification renders the model incapable of explaining
the data and, on the other hand, the complexity removed
by making the assumption. That is, if one wishes to under-
stand a particular observation, one must use a model that
is ‘‘as simple as possible, but not simpler’’ (this quote, attrib-
uted to Albert Einstein, appears in (15)). In our current work
(7), our model describes and predicts our measurements
with reasonable success, so we are justified in making the
assumptions. In future work, when our model is presented
with data it cannot describe, as is the fate for any model,
we will revisit these and other model assumptions. Though
potentially incorrect, the assumptions do not render our
model unphysical any more than neglecting friction and
deformation in writing the equations of a pendulum is un-
physical.

Criticism two is that our model is unconstrained by the
laws of thermodynamics. The laws of thermodynamics are
defined in terms of bulk properties and so do not directly
apply to molecular models; however, they have molecular-
scale analogs. For example, implicit in Eq. 1 are relation-
ships between molecular fluctuations and energy dissipation
(the fluctuation-dissipation theorem) and between the
steady-state probability distribution and the potential energy
(detailed balance), which are molecular-scale manifesta-
tions of the second law of thermodynamics (16). Note also
that it is sometimes reasonable to violate these laws to
simplify a model. For example, derivation of the Michae-
lis-Menten equation includes the assumption that the release
of product from the enzyme is irreversible, which violates
detailed balance. That is, while it is technically correct
that product must rebind to the enzyme to satisfy detailed
balance, neglecting this rare event is both mathematically
Biophysical Journal 123, 3648–3652, October 15, 2024 3649
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convenient and introduces only a small error. Similarly, in
the current study (7), we assume that some reactions are
irreversible. In our experiments, the concentration of hydro-
lysis products (ADP and inorganic phosphate) is sufficiently
small such that reactions involving their release are rarely
reversed. In neglecting these reversals, we simplify the
model by decreasing the number of unknown parameters.

Part of criticism three is that we assume myosin’s force is
generated by a single degree of freedom spring. It is true that
the function f ðxÞ in Eq. 3 defines how myosin produces
force and, if this relationship were linear, could be thought
of as a one-degree-of-freedom spring. However, this is a
one-degree-of-freedom system because actin is assumed to
move along one degree of freedom, not because myosin is
assumed to have a single degree of freedom. In fact, we
could use the expression for the force generated from a
freely jointed chain to define f ðxÞ (17, 18) so that we
make no assumptions about whether or not the spring is
entropic or the number of myosin’s degrees of freedom.
Moreover, for small displacement, a linear relationship
reasonably approximates f ðxÞ for a freely jointed chain, so
our model’s assumption of a linear relationship for f ðxÞ is
similarly general. Finally, there is nothing unphysical about
approximating a high-dimensional potential Vðr1; r2;.; rNÞ
with a low-dimensional free energy; this is the idea of a po-
tential of mean force, e.g., (19,20).

As described above, Eq. 2 applies to a single myosin
molecule interacting with a single actin filament. When
simulating a myosin ensemble, it is useful to assume that
the myosin molecules are sufficiently far apart that they
do not attract or repel each other to an appreciable extent
(more specifically, we mean that if the potential of one
myosin is V1ðr1; r2;.Þ and the other is V2ðs1; s2; .Þ,
then we can approximate the overall potential Vðr1; r2;.;
s1; s2; .ÞzV1 þ V2). Then, each molecule obeys Eq. 2,
and since the equations are linear, we can write the average
binding probability density of an ensemble of M myosin,
n ¼ 1

M

PM
i¼ 1 ni, as

vn

vt
þ dx

dt

vn

vx
¼ kaðxÞ

�
1 �

Z N

�N

ndx

�
� kdðxÞn

dx dx
dt
¼

dt
: (4)

Similarly, we can write the ensemble force F ¼PM
i CFiðtÞD as

F ¼ M

Z N

�N

f ðxÞnðx; tÞdx: (5)

In writing these expressions, we assume that each myosin
molecule is the same as any other (so that, e.g., they could not
be at different distances from the actin filament, they start in
the same initial distribution, niðx;0Þ ¼ njðx;0Þ, etc.).
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Since the myosin molecules do not directly interact, they
influence each other only through the motion of the actin
filament. If, like Huxley (1), we assume that actin speed is
constant (dxdt ¼ v), then the myosin molecules are indepen-
dent. Solutions are then generally unique (21). Moreover, if
we average together the simulation of M single molecules
from Eq. 2, then we obtain the same solution as the
ensemble average (Eq. 4). Thus, single-molecule measure-
ments exactly predict ensemble measurements, and
ensemble force scales linearly in myosin number. We
believe this is what Prof. Baker calls a ‘‘molecular’’ power
stroke, in that a molecule working as part of an ensemble
generates the same work as a single molecule working in
isolation.

Alternatively, if force on actin is constant, we must
solve Eq. 4 subject to the constraint that Eq. 5 is a constant.
Actin speed can then vary with time. Such a system can
exhibit nonlinear behavior, including multiple stable solu-
tions, oscillations, and hysteresis (22). We generally observe
ensemble size effects, where the average velocity produced
by a single molecule is not the same as the velocity pro-
duced by an ensemble (23). We believe this is what Prof.
Baker calls a ‘‘thermodynamic’’ power stroke, in that a
molecule working as part of an ensemble does not generate
the same work as a single molecule working in isolation.

Criticism four is that our model assumes a ‘‘molecular’’
power stroke, which violates the second law of thermody-
namics. It is true that specifying the velocity of actin violates
the second law since its thermal fluctuations are ignored.
However, we believe that it is still useful to consider how
a myosin ensemble behaves as actin velocity is held constant
in the same way it is useful to consider, say, the behavior of
an ensemble of gas molecules as the volume of a piston
changes at a constant rate. Regardless, we do not make
this assumption in our model. Instead, to match the force
produced immediately after a rapid stretch, our model re-
quires a series elastic element (see also (24)). This series
spring acts as a constraint on force, i.e., the force produced
by myosin’s interaction with actin must balance the force of
the series spring, so that the model is in the ‘‘thermody-
namic’’ power stroke regime.

The above provides at least a sketch of the physical basis
of molecular muscle models, both Huxley and spatially
explicit. For example, myosin in spatially explicit models
typically obey an equation like Eq. 2, but the models include
more complex coupling between myosin molecules than in
Eq. 4, accounting for, e.g., actin elasticity, the position of
binding sites, and so on (3, 14). Similar effects could also
be included in Huxley models if, rather than assuming
molecules do not interact, one applies a mean-field approx-
imation. Alternatively, when the mean-field approximation
does not hold, as is the case for submaximal activation
where the system’s behavior depends on the spacing be-
tween the attached myosin and not just the number, methods
can be developed to generalize Eq. 4 (25). Thus, as far as we
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are aware, there is no particular assumption in the above
description that renders our model unphysical, but if there
is, it seems likely that we could adapt our approach to ac-
count for it.
THE UTILITY OF MOLECULAR MUSCLE MODELS

Independent of this physical basis, our model and related
molecular scale models successfully relate muscle function
at one scale to another. We have shown, for example, that a
model like Eq. 2 can explain single-molecule measurements
in the laser trap, simulations of � 10 molecules coupled
through a thermally fluctuating bead-actin-bead assembly
can explain small ensemble force-velocity relations in the
laser trap, simulations of � 100 molecules coupled through
an actin filament can explain motility measurements, and
these simulations converge to differential equations like
Eq. 4 in the limit of large ensembles (23). These results
are notable since the measurements, being constrained to
have an average force, are in the ‘‘thermodynamic’’ power
stroke regime so that molecules behave differently when
isolated than when part of an ensemble (26). In fact, we
do the same in our current study (7), but rather than deter-
mining model parameters based on fitting molecular-scale
experiments, model parameters were determined from fits
to our skinned fiber measurements. We show that better
fits to the cellular data more successfully describe our mo-
lecular-scale data, supporting our claim that the model is
predictive.

Such connections between the molecular and cellular
scales of muscle contraction have clear implications for
human health. Indeed, previous molecular models have ex-
plained the counterintuitive behavior of the heart drug ome-
camtiv mecarbil (27,28), successfully predicted that the
drug mavacamten would improve function in cardiomyocytes
from a patient with heart disease (29), explained how a small
increase in 20-deoxy-ATP can produce a large increase in
ejection fraction in failing hearts (30), and related cellular
force measurements to the molecular function of myosin
binding protein C, a protein mutated in about a third of pa-
tients with familial hypertrophic cardiomyopathy (31). These
are only a few examples of the insights molecular-scale
modeling has already provided into human health.
CONCLUSIONS

In response to Prof. Baker’s four criticisms, we have pre-
sented our view that 1) the ‘‘corpuscular’’ view of muscle
contraction is based, not on the work of Boyle in the 17th
century, but on the work of Chandrasekhar (8), Smoluchow-
ski (9), Kramers (11), and others (10) in the 20th century
and does not neglect entropy; 2) thermodynamic constraints,
e.g., detailed balance and fluctuation-dissipation, exist in
these models; 3) the models do not necessarily approximate
myosin as having one degree of freedom (though such an
approximation need not be unphysical); and 4) there is value
in modeling situations both where actin’s velocity is fixed
and where the force on actin is fixed. We then addressed
the criticism that molecular muscle models cannot provide
insight into human health by presenting a few examples
where they have done so. Connecting the molecular scale
of muscle contraction to the function of a heart or the motion
of a limb is an imposingly complex problem. Progress to-
ward its solution has been made using a range of experi-
mental and theoretical techniques. It is correct, but trivial,
to claim that a modeling approach is wrong (since all
models are wrong) or an experiment differs from the un-
modified system (since one modifies a system by observing
it). It is unfair to ignore the insights of one modeling
approach because it is ‘‘more wrong’’ than another or one
experimental approach because it is ‘‘more modified’’ than
another. Though each approach has its benefits and draw-
backs, continued success depends on using all techniques
and integrating all results.

Though we disagree with Prof. Baker, we are grateful to
him to have afforded us the opportunity to explain the phys-
ical basis of our model. Physical and mathematical aspects
of muscle contraction have been relegated to the supplemen-
tary material of journal articles and private discussions at the
sidelines of conferences. But muscle contraction is an inter-
esting physical system, a large ensemble of molecules with
local and global coupling between molecules (25), and an
interesting mathematical system, with unique solutions at
constant velocity (21) and classically nonlinear behavior
at constant force (22). Open discussion of these and other
physical/mathematical aspects of muscle contraction will
broaden its appeal beyond the biology community, generate
new modeling approaches, and provide new biological,
physical, and mathematical insights.
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The purpose of this Supplement is to apply the Smoluchowski equation (Eq. 1 in the main text) to a physical
system with multiple “molecules” and derive an equation governing its “macroscopic” behavior. We choose a freely
jointed chain as our physical molecular system, and the force-extension relationship as the macroscopic property we
wish to derive. We chose this system for two reasons: first, the force-extension relationship for a freely jointed chain
is entirely entropic, so if we can derive this relationship then the Smoluchowski equation presumably is not missing
any entropy; second, the analysis presents some interesting points that we wish to highlight.

Suppose we have a freely jointed chain of N links in 3D. We anchor the first link, and define that point in 3D
space to be (0, 0, 0). We apply a force, F = F î, directed along the x-axis and applied to the N th molecule. To
understand how this system will behave after it has settled into its final configurations, we apply the steady-state
solution to the Smoluchowski equation:

w(r1, r2, . . .) = C exp

(
−V 0(r1, r2, . . .)− F î · rN

kBT

)
where V 0(r1, r2, . . .) is the potential that defines the interactions between each link in the chain (the overall potential
is V = V 0 − F î · rN ), and the normalization constant

C =
1∫

B
exp

(
−V 0(r1,r2,...)−F î·rN

kBT

)
dV

(1)

where B is the 3N -dimensional space in which r1, r2, . . . reside.
Then, the expected stretch of the molecule, which we define as the position of rN along the x-axis, is

⟨x⟩ =

∫
B
î · rN exp

(
−V 0(r1,r2,...)−F î·rN

kBT

)
dV∫

B
exp

(
−V 0(r1,r2,...)−F î·rN

kBT

)
dV

At some distance r1 from the anchoring point at (0, 0, 0), we have the first molecule. The potential energy for
this molecule is 0 if ∥r1∥ = ℓ and infinity otherwise. The potential energy for the next molecule is 0 if ∥r1 − r2∥ = ℓ
and infinity otherwise, and so on. Given this definition, we get that

exp

(
−V 0(r1, r2, . . .)− F î · rN

kBT

)
= exp

(
−V 0(r1, r2, . . .)

kBT

)
exp

(
−F î · rN

kBT

)

=

(
N∑
i=1

δ(∥ri−1 − ri∥ − ℓ)

)
exp

(
−F î · rN

kBT

)
where we define r0 = 0.

We can then switch to spherical coordinates to eliminate the delta functions and the radial integrals to get

⟨x⟩ =

∫ 2π

0

∫ π

0
· · ·
∫ 2π

0

∫ π

0
ℓ
(∑N

i=1 cos(θi) sin(ϕi)
)
exp

(
−Fℓ

∑N
i=1 cos(θi) sin(ϕi)

kBT

)
sin(ϕ1)dϕ1dθ1 · · · sin(ϕN )dϕNdθN∫ 2π

0

∫ π

0
· · ·
∫ 2π

0

∫ π

0
exp

(
−Fℓ

∑N
i=1 cos(θi) sin(ϕi)

kBT

)
sin(ϕ1)dϕ1dθ1 · · · sin(ϕN )dϕNdθN

(2)

We can turn the sum in the exponential in the denominator into a product of exponentials, then collect all the terms
into independent integrals to obtain

⟨x⟩ =

∫ 2π

0

∫ π

0
· · ·
∫ 2π

0

∫ π

0
ℓ
(∑N

i=1 cos(θi) sin(ϕi)
)
exp

(
−Fℓ

∑N
i=1 cos(θi) sin(ϕi)

kBT

)
sin(ϕ1)dϕ1dθ1 · · · sin(ϕN )dϕNdθN(∫ 2π

0

∫ π

0
exp

(
−Fℓ cos(θ) sin(ϕ)

kBT

)
sin(ϕ)dϕdθ

)N
1



Similarly, in the numerator we can turn the sum in the exponential into a product of exponentials and multiply each
term in the sum, then collect all the terms into independent integrals:∫ 2π

0

∫ π

0

· · ·
∫ 2π

0

∫ π

0

ℓ

(
N∑
i=1

cos(θi) sin(ϕi)

)
exp

(
−
Fℓ
∑N

i=1 cos(θi) sin(ϕi)

kBT

)
sin(ϕ1)dϕ1dθ1 · · · sin(ϕN )dϕNdθN

=

∫ 2π

0

∫ π

0

· · ·
∫ 2π

0

∫ π

0

ℓ (cos(θ1) sin(ϕ1) + · · ·+ cos(θN ) sin(ϕN ))× · · ·

· · · × exp

(
−Fℓ cos(θ1) sin(ϕ1)

kBT

)
· · · exp

(
−Fℓ cos(θN ) sin(ϕN )

kBT

)
sin(ϕ1)dϕ1dθ1 · · · sin(ϕN )dϕNdθN

= N

∫ 2π

0

∫ π

0

ℓ cos(θ) sin(ϕ) exp

(
−Fℓ cos(θ) sin(ϕ)

kBT

)
sin(ϕ)dϕdθ

(∫ 2π

0

∫ π

0

exp

(
−Fℓ cos(θ) sin(ϕ)

kBT

)
sin(ϕ)dϕdθ

)N−1

With these, the integral (Eq. 2) simplifies to

⟨x⟩ =
ℓN
∫ 2π

0

∫ π

0
(cos(θ) sin(ϕ)) exp

(
−Fℓ cos(θ) sin(ϕ)

kBT

)
sin(ϕ)dϕdθ∫ 2π

0

∫ π

0
exp

(
−Fℓ cos(θ) sin(ϕ)

kBT

)
sin(ϕ)dϕdθ

(3)

Some comments:

1. Numerical integration yields a result that is identical, to within numerical error tolerance, of the classical result,

⟨x⟩ = ℓN
(
coth

(
Fℓ
kBT

)
− kBT

Fℓ

)
[1, 2].

2. This equivalence between our results and classical results is not surprising. Each term in the equations relate
to standard quantities from statistical mechanics. For example, Eq. 1 is the isothermal-isotension partition
function [2].

3. We have calculated the average extension ⟨x⟩ (ξ when describing a myosin molecule) under a constant force
field. If myosin were a freely jointed chain, this calculation would be approximately the inverse of the function
relating force at a given extension, f(ξ). However, the relation is only approximate because, if myosin were a
freely jointed chain, then the end of the chain is constrained (unlike in the calculation above) [2, 3].

4. From a comparison between Eq. 2 and Eq. 3, we see that an N -link freely jointed chain is exactly equivalent to
a single link of length Nℓ or, equivalently, N independent single links. This is not surprising, as force balance
would suggest that each link in the chain experiences the same forces and should therefore behave identically.
However, it’s worth noting that a system with millions of degrees of freedom behaves exactly as a system with
a single degree of freedom.
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