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Abstract
Given a prime power q and n � 1, we prove that every integer in a large subinterval
of the Hasse–Weil interval [(√q − 1)2n, (

√
q + 1)2n] is #A(Fq) for some ordinary

geometrically simple principally polarized abelian variety A of dimension n over Fq .
As a consequence, we generalize a result of Howe and Kedlaya for F2 to show that for
each prime power q, every sufficiently large positive integer is realizable, i.e., #A(Fq)

for some abelian variety A over Fq . Our result also improves upon the best known
constructions of sequences of simple abelian varieties with point counts towards the
extremes of the Hasse–Weil interval. A separate argument determines, for fixed n,
the largest subinterval of the Hasse–Weil interval consisting of realizable integers,
asymptotically as q → ∞; this gives an asymptotically optimal improvement of a
1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if
q ≤ 5, then every positive integer is realizable, and for arbitrary q, every positive
integer ≥ q3

√
q log q is realizable.

Mathematics Subject Classification Primary 11G10; Secondary 11G25 · 11Y99 ·
14G15 · 14K15 · 31A15

1 Introduction

1.1 Orders of abelian varieties over a finite field

Bywork ofWeil (a consequence of [19, pp. 70–71] and [20, pp. 137–138], generalizing
[4, p. 206]), if A is an abelian variety of dimension n over a finite fieldFq , then #A(Fq)
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lies in the interval
[(

q − 2q1/2 + 1
)n

,
(
q + 2q1/2 + 1

)n]
. (1)

We prove an almost-converse (compare (1) and (3)):

Theorem 1.1 Fix a prime power q. Let τ(x) = x+√
x2 − 1. Let I be a closed interval

contained in

Iattained := (
τ(q/2 − q1/2 + 3/2), τ (q/2 + q1/2 − 1/2)

)
. (2)

For n sufficiently large, if m is a positive integer with m1/n ∈ I , then there exists an
n-dimensional abelian variety A with #A(Fq) = m. Moreover, A can be chosen to be
ordinary, geometrically simple, and principally polarized.

We prove Theorem 1.1 in Sect. 7.

Corollary 1.2 Fix a prime power q. Then, for n sufficiently large, every integer in the
interval

[(
q − 2q1/2 + 3 − q−1

)n
,

(
q + 2q1/2 − 1 − q−1

)n]
(3)

is #A(Fq) for some ordinary geometrically simple principally polarized abelian vari-
ety A of dimension n over Fq .

The interval (3) in Corollary 1.2 contains [qn, qn+1] if n is large enough, so Corol-
lary 1.2 implies the following:

Corollary 1.3 Fix a prime power q. Every sufficiently large positive integer is #A(Fq)

for some ordinary geometrically simple principally polarized abelian variety A over
Fq .

Corollary 1.3 answers a question of Howe and Kedlaya, who proved that every
positive integer is the order of an ordinary abelian variety over F2 [7, Theorem 1]. For
effective versions, see Sect. 1.5.

Remark 1.4 Marseglia and Springer refined [7] to prove that every finite abelian group
is isomorphic to A(F2) for some ordinary abelian variety A over F2 [11]. Our Corol-
lary 1.3 combined with [11, Proposition 2.7] implies that for any fixed q, every cyclic
group of sufficiently large order is isomorphic to A(Fq) for some ordinary abelian
variety A over Fq .

Throughout, p denotes the characteristic of Fq .

Remark 1.5 Theorem 1.1 can be extended to produce non-ordinary abelian varieties.
First, define the p-rank of an n-dimensional abelian variety A over Fq to be the integer
dimFp A[p](Fq) in [0, n]. For example, A is ordinary if and only if the p-rank is n.
Then Theorem 1.1 holds with “ordinary” replaced by “of prescribed p-rank r” for any
r ∈ [0, n], provided that when r = 0, we assume m ≡ 1 (mod p); see Remark 5.9.

Remark 1.6 It may be that Theorem 1.1 holds for an interval larger than Iattained. There
is a largest open interval Itrue containing q for which Theorem 1.1 holds.
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Abelian varieties of prescribed order over finite fields 1169

1.2 Extreme point counts for simple abelian varieties

Other authors have studied the extreme values of #A(Fq)
1/ dim A without trying to

realize every order in between. Following [9], let Aq be the set of simple abelian
varieties over Fq up to isogeny and consider

Isimple := [
lim inf
A∈Aq

#A(Fq)
1/ dim A, lim sup

A∈Aq

#A(Fq)
1/ dim A]

.

(If one did not require simplicity and take lim sup and lim inf, then for square q the
minimum and maximum would be achieved by elliptic curves of order q ± 2q1/2 + 1
and their powers.) Then

Iattained ⊆ Itrue ⊆ Isimple ⊆ IWeil := [q − 2q1/2 + 1, q + 2q1/2 + 1].

Aubry, Haloui and Lachaud [1, Corollaries 2.2 and 2.14] and Kadets [9, Theorem 1.8]
found inner and outer bounds Iinner, Iouter for Isimple:

[
q − �2q1/2� + 3, q + �2q1/2� − 1 − q−1

]
⊆ Isimple ⊆

[
q − 
2q1/2� + 2, q + 
2q1/2�

]
. (4)

Our inner bound Iattained for Isimple improves upon Iinner, but careful consideration
shows that Kadets’s argument yields a better result than he claimed, an inner bound
matching our Iattained when q is a square.

The following diagram shows Iattained ⊂ Iouter ⊂ IWeil, bounded by open dots, solid
dots, and vertical bars, respectively. The endpoints of Itrue and Isimple are unknown,
but they lie somewhere in the (closed) dashed intervals.

q − 2q1/2 + 1 q + 2q1/2 + 1

q − 
2q1/2� + 2 q + 
2q1/2�
Iattained

1.3 Strategy of proof

Given an abelianvariety A over thefinitefieldFq , let f A(x) ∈ Z[x]be the characteristic
polynomial of the q-power Frobenius acting on a Tate module T�A. Then #A(Fq) =
f A(1). Honda–Tate theory implies that for f ∈ Z[x], we have f = f A for some
ordinary n-dimensional abelian variety A over Fq if and only if f is monic of degree
2nwith complex rootsα1, ᾱ1, . . . , αn, ᾱn satisfying |αi | = q1/2, and p does not divide
the coefficient of xn . Therefore, as in [7], we need to find a polynomial f satisfying
these conditions with a prescribed value of f (1).

One ingredient that lets us go beyond [7] is a lemma more general than [2,
Lemma 3.3.1] for constructing polynomials whose roots lie on the circle |z| = q1/2

(Lemma 3.1). Using this lemma alone, we can give a quick proof of Corollary 1.3, if
we omit “geometrically simple” and “principally polarized”: see Sect. 4.

To force A to be geometrically simple and principally polarized, we prove that it
suffices to impose certain congruence conditions on the coefficients of f (Proposi-
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1170 R. van Bommel et al.

tion 5.8); unlike [2, Lemma 3.3.1], our Lemma 3.1 is robust enough to permit a wide
enough range of values f (1) even when such congruence conditions are imposed. To
prove Theorem 1.1, we start with rescaled Chebyshev polynomials similar to those in
[9] (Proposition 6.2), but we improve on [9] by temporarily allowing non-integral real
coefficients, and later making adjustments to make the coefficients integral while pre-
serving f (1) and the bounds needed to apply Lemma 3.1. To obtain the widest interval
of realizable values, we must adjust differently in three different ranges of exponents,
and the adjustments do something more elaborate than changing one coefficient at a
time; see Sect. 7.

Although we do not know if the bounds in Theorem 1.1 are sharp, Appendix A
shows that the rescaled Chebyshev polynomials are asymptotically optimal for our
method.

1.4 Large q limit

So far we have discussed the possibilities for #A(Fq) for an n-dimensional abelian
variety over a fixed finite field Fq , as n → ∞. We also obtain a sharp asymptotic for
the possibilities for fixed n as q → ∞:

Theorem 1.7 Fix n ≥ 3. Let λ1 = 2n −
√

2n
n−1 . Then the largest interval in which

every integer is #A(Fq) for some n-dimensional abelian variety A over Fq has the
form

[
qn − λ1q

n−1/2 + o(qn−1/2), qn + λ1q
n−1/2 + o(qn−1/2)

]
(5)

as q → ∞ through prime powers.

Remark 1.8 The interval (5) is a fraction λ1/(2n) of the Hasse–Weil interval, approx-
imately.

Remark 1.9 For n = 1, if q is prime, then every integer in [q − 2q1/2+1, q+2q1/2+1]
is #A(Fq) for some elliptic curve A over Fq . This fails for q = pe with e ≥ 2 because
of Remark 2.2 below.

Remark 1.10 For n = 2, Theorem 1.7 holds if q tends to ∞ through primes only.
If instead q tends to ∞ through non-prime prime powers, then the constant λ1 = 2
(asymptotically 50% of the Hasse–Weil interval) must be replaced by λ2 := 4 − 2

√
2

(about 29% of the Hasse–Weil interval); see Remark 8.5.

Remark 1.11 If we allow only ordinary abelian varieties, then Theorem 1.7 remains
true for n ≥ 3, as the proof will show, but for n = 2 one must use λ2 in place of λ1,
even if q is prime.

Remark 1.12 DiPippo and Howe proved a result implying that for any n ≥ 2, all
integers in an interval of the form (5) with λ1 replaced by 1/2 are realized by ordi-
nary abelian varieties [2, Theorem 1.4]. Thus Theorem 1.7 and Remark 1.11 give an
asymptotically optimal improvement of their result.

Theorem 1.7 will be proved in Sect. 8.
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Abelian varieties of prescribed order over finite fields 1171

1.5 Effective bounds

The polynomial constructions we used to prove Theorems 1.1 and 1.7 are difficult to
analyze explicitly for specific values of q and n, even when q = 3. In Sect. 9, we give
another construction, and this one, combined with some computations with rigorous
error bounds, will allow us to prove the following theorem.

Theorem 1.13 Let q be a prime power.

(a) For each q ≤ 5, every positive integer is #A(Fq) for some abelian variety A over
Fq .

(b) For arbitrary q, every integer ≥ q3
√
q log q is #A(Fq) for some abelian variety A

over Fq .

Remark 1.14 Theorem 1.13(a) is best possible: As remarked in [7], if q ≥ 7, then 2
lies outside the union of the Hasse–Weil intervals (1).

Remark 1.15 Theorem 1.13(b) is best possible too, except for the constant 3, which
we have not attempted to optimize. It becomes false for large q if 3 is replaced by any
number δ < 1/4, because if n = (δ + o(1))

√
q log q, then

log
(
√
q − 1)2(n+1)

(
√
q + 1)2n

= log q + o(1) + 2n log
√
q − 1√
q + 1

= log q + o(1) + 2(δ + o(1))(q1/2 log q)(−2q−1/2 + o(q−1))

= (1 − 4δ + o(1)) log q,

which means that there is a large gap between the nth Hasse–Weil interval and the
(n + 1)st.

In Sect. 9, we will also prove the following remarks.

Remark 1.16 Suppose that we require A to be ordinary. Both statements in Theo-
rem 1.13 remain true, except that when q = 4 one must exclude order 3. (That 3 over
F4 must be excluded follows from [9, Theorem 3.2].)

Remark 1.17 For q = 7, the only positive integers not of the form #A(F7) are 2, 14,
and 17. If we require A to be ordinary, then 8 and 73 are the only additional integers
that must be excluded.

Remark 1.18 Suppose that we require the characteristic polynomial of Frobenius f A
to be squarefree. Then all the claims in this section remain true except that for q = 7,
the integer 16 is no longer realized.

2 Honda–Tate theory

Throughout the paper, if f is a polynomial, f [i] denotes the coefficient of its degree i
term.
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1172 R. van Bommel et al.

Theorem 2.1 (Honda–Tate, [5, 15, 16]) A polynomial f ∈ Z[x] is the characteristic
polynomial of an ordinary abelian variety A of dimension n over Fq if and only if

(a) f is monic of degree 2n;
(b) all complex roots of f have absolute value q1/2; and
(c) p � f [n].

Remark 2.2 Let v : Qp → Z ∪ {∞} be the p-adic valuation. If in Theorem 2.1 we
replace (c) by both of the conditions

(c1) the multiplicity μ of each Qp-irreducible factor g in f is such that
μv(g(0))/v(q) ∈ Z,

(c2) the multiplicity of q1/2 as a zero of f is even (possibly 0),

then we obtain the criterion for f to be the characteristic polynomial of a not-
necessarily-ordinary abelian variety A of dimension n over Fq . If q is prime, then
(c1) holds automatically.

Proof As summarized in [18, Chapter 2], if A is a simple abelian variety over Fq , then
f A = Pe for some monic irreducible polynomial P ∈ Z[x] whose complex roots
have absolute value q1/2 and some e ≥ 1; conversely, given such P , there exists a
unique e ≥ 1 such that Pe is f A for a simple abelian variety A over Fq . Moreover, the
last paragraph of [18, p. 527] describes e as the least common denominator of certain
rational numbers iν , together with 1/2 if P has a real root. For m ≥ 1, the polynomial
Pm satisfies (c1) if and only if m is a multiple of the denominator of v(g(0))/v(q) for
each Qp-irreducible factor g of P; these ratios match Waterhouse’s second definition
of iν . For f of even degree, (c2) is equivalent to the multiplicity of −q1/2 as a zero
being even (since the roots �= ±q1/2 come in complex conjugate pairs), so Pm satisfies
(c2) if and only if P has no real roots or m is even. Thus Pm satisfies (c1) and (c2) if
and only if e|m. This explains Remark 2.2.

Now suppose that (a), (b), (c) hold. Extend v to Qp � C. The theory of Newton
polygons implies that f has (at least) n rootsα of valuation 0, countedwithmultiplicity.
Their complex conjugates ᾱ = q/α are n roots of valuation v(q). These account for
all roots. For each g, the value g(0) is a product of roots, so v(g(0))/v(q) ∈ Z, so (c1)
holds. Also, the multiplicity of ±q1/2 is 0, so (c2) holds. By the previous paragraph,
there exists an abelian variety A over Fq with f A = f . Finally, for an n-dimensional
abelian variety A over Fq , the Newton polygon definition of ordinary shows that if A

is ordinary if and only if p � f [n]
A . This explains Theorem 2.1. ��

3 Roots on a circle

The following notation will be used throughout the paper:

• For r > 0, let C≤r be the closed disk {z ∈ C : |z| ≤ r}.
• Let D := C≤q−1/2 .
• For

h(z) = a0 + a1z + · · · + asz
s ∈ R[z]
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Abelian varieties of prescribed order over finite fields 1173

with s < 2n, define

ĥ(x) := x2nh(1/x) + qnh(x/q)

= a0x
2n + a1x

2n−1 + · · · + asx
2n−s

+ qn−sas x
s + · · · + qn−1a1x + qna0,

which is a polynomial of degree≤ 2n (the notation implicitly depends on a choice
of n).

To prove Theorem 1.1, we will eventually need ĥ for some polynomials h of degree
s > n, in which case the two ranges of exponents of x overlap.

Lemma 3.1 Let h(z) ∈ R[z] be a polynomial of degree < 2n such that h is nonvan-
ishing on D. Then all complex roots of ĥ(x) have absolute value q1/2.

Proof Since h is nonvanishing on D, the winding number of h(z) around 0 as z goes
around the boundary |z| = q−1/2 is 0. So the winding number of xnh(1/x) as x goes
around the circle |x | = q1/2 is n. Thus the real-valued function 2Re(xnh(1/x)) =
xnh(1/x) + qnx−nh(x/q) on the circle |x | = q1/2 crosses 0 at least 2n times. Multi-
plying by xn shows that ĥ(x) has at least 2n roots on the circle |x | = q1/2. It cannot
have more than 2n roots, since deg ĥ ≤ 2n. ��

Remark 3.2 If h(z) = 1+a1z+· · ·+anzn with
∑n

i=1 |ai |q−i/2 < 1, then h(D) ⊂ {z ∈
C : |z − 1| < 1}, so 0 /∈ h(D). Thus Lemma 3.1 subsumes [2, Lemma 3.3.1], which
appears also (with a different proof) as [7, Lemma 2]. The feature of Lemma 3.1 that
allowsus to obtain stronger results is that {h : 0 /∈ h(D)} is closedundermultiplication,
a natural property given that one can take products of abelian varieties.

Remark 3.3 The polynomials ĥ(x) produced by Lemma 3.1 are squarefree.

Remark 3.4 Applying Lemma 3.1 to h(r x) as r → 1− shows that the hypothesis could
be weakened to assume only that h is nonvanishing on the interior of D.

For use in the proof of Lemma 7.1, we record the following result.

Lemma 3.5 Let R ∈ C[z] be a polynomial with no zeros inside D. Then

|R(1)| ≤ q(deg R)/2|R(1/q)|. (6)

Proof Bymultiplicativity in R, wemay assume that R(z) = z−w for somew ∈ Cwith
|w| ≥ q−1/2.Wemust prove |(1−w)/(1/q−w)| ≤ q1/2. TheMöbius transformation
M(z) := (1 − z)/(1/q − z) maps the circle |z| = q−1/2 to a complex-conjugation-
invariant circle passing through M(±q−1/2) = ±q1/2, and it maps the exterior to the
interior since M(∞) = 1. ��
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1174 R. van Bommel et al.

4 Abelian varieties of all sufficiently large orders

As promised in the introduction, we now give a quick proof of Corollary 1.3 with
“geometrically simple” and “principally polarized” removed.

Theorem 4.1 Fix a prime power q and a closed interval I ⊂ R>0. For n � 1, each
integer m ∈ qn I is #A(Fq) for some ordinary abelian variety A of dimension n over
Fq whose characteristic polynomial is squarefree.

Proof For k ≥ 1, letJk be the set of power series of the form 1+akzk+ak+1zk+1+· · ·
with integer coefficients in [−q/2, q/2]. Choose k such that 1− ∑

r≥k�q/2�q−r/2 ≥
1/2; then | j(w)| ≥ 1/2 for all j ∈ Jk and w ∈ D. Writing real numbers in base q
using digits in [−q/2, q/2] shows that { j(1/q) : j ∈ Jk} contains a neighborhood of
1, say [1−ε, 1+ε] for some ε > 0. Choose N such that [(1−ε)N , (1+ε)N ] ⊃ I . Then,
given m ∈ qn I , we may choose j ∈ Jk with j(1/q)N = m/qn . Write j N = h0 + h1
such that h0 ∈ 1+ zkZ[z] is of degree ≤ n, and h1 ∈ zn+1

Z[[z]]. Let E = m− ĥ0(1).
Let

h = h0 + (E/2)zn + s(zn−1 − ((q + 1)/2)zn), (7)

where s ∈ {0, 1} is chosen so that p does not divide the coefficient of xn in

ĥ = ĥ0 + Exn + s(xn+1 − (q + 1)xn + qxn−1).

Then ĥ is a monic polynomial of degree 2n in Z[x] and ĥ(1) = ĥ0(1) + E = m. The
conclusion follows fromLemma 3.1, Theorem 2.1, andRemark 3.3 if we can show that
h is nonvanishing on D. We will do so by estimating the error in the approximations
h ≈ h0 ≈ j N .

Since j has bounded coefficients, induction on N shows that |( j N )[r ]| = O(r N−1)

as r → ∞, uniformly for j ∈ Jk . Thus

|h0(1)| =
∣∣∣∣

n∑
r=0

( j N )[r ]
∣∣∣∣ ≤

n∑
r=0

O(r N−1) = O(nN ),

|h1(1/q)| =
∣∣∣∣

∞∑
r=n+1

( j N )[r ]q−r
∣∣∣∣ ≤

∞∑
r=n+1

O(r N−1)q−r = O(nN−1q−n−1),

|h1(w)| = O(nN−1q−(n+1)/2) for all w ∈ D, similarly, and

|E | = |m − ĥ0(1)| = |qn j(1/q)N − (qnh0(1/q) + h0(1))|
≤ |qnh1(1/q)| + |h0(1)| = O(nN ).

Substituting h0 = j N − h1 into (7) yields

h(z) = j(z)N − h1(z) + (E/2)zn + s(zn−1 − ((q + 1)/2)zn),
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Abelian varieties of prescribed order over finite fields 1175

For w ∈ D, we proved | j(w)| ≥ 1/2 and |h1(w)| = O(nN−1q−(n+1)/2), so

|h(w)| ≥ 2−N − O(nN−1q−(n+1)/2) − O(nNq−n/2) − O(q · q−n/2) > 0

if n is large enough. ��
By [15, Theorem 2c], an abelian variety A over Fq has a squarefree character-

istic polynomial if and only if its endomorphism ring EndFq A is commutative. So
Theorem 4.1 implies the following.

Corollary 4.2 Fix a prime power q. Every sufficiently large positive integer is #A(Fq)

for some ordinary abelian variety A over Fq with commutative endomorphism ring.

Proof Apply Theorem 4.1 with I = [1, q]. ��

5 A congruence condition forcing geometric simplicity and the
existence of principal polarizations

The goal of this section is Proposition 5.8, which provides a congruence condition on
the characteristic polynomial of an abelian variety A over Fq which guarantees that
A is geometrically simple and isogenous to a principally polarized abelian variety.
Moreover, the congruence condition will be compatible with prescribing #A(Fq). The
lemmas in this section are used only to prove Proposition 5.8.

Lemma 5.1 For every prime power q, prime � ≥ 7 not dividing q, and integer n ≥ 1,
there exists j(x) ∈ F�[x] such that j(x) and xn j(q/x) are relatively prime irreducible
polynomials of degree n not vanishing at 1.

Proof If n = 1, choose j(x) = x − a where a ∈ F� − {0, 1, q,±√
q}. If n = 2, let

j(x) be the minimal polynomial of an element α ∈ F
×
�2

− F
×
� such that α �= q/α and

α� �= q/α; there are at least (�2 − �) − 2 − (� + 1) > 0 such elements α.
Now suppose that n ≥ 3. Let α be a generator of the multiplicative group F

×
�n . Let

j(x) be the minimal polynomial of α over F�. If j(x) and xn j(q/x) are not relatively
prime, then α�a = q/α for some a ∈ {0, 1, . . . , n−1}. Then α(�−1)(�a+1) = q�−1 = 1
in F�n , so �n − 1 divides (�− 1)(�a + 1), contradicting 0 < (�− 1)(�a + 1) < �n − 1.

��
Call a degree 2n polynomial f over a ring q-symmetric if f [i] = qn−i f [2n−i] for

i = 0, . . . , n − 1. Over a ring in which q is not a zerodivisor, f is q-symmetric if and
only if qn f (x) = x2n f (q/x). By work of Weil, the characteristic polynomial of an
abelian variety over Fq is q-symmetric.

Lemma 5.2 Let q be a prime power, let � ≥ 7 be a prime not dividing q, let n ∈ Z≥1,
and let m ∈ Z. Suppose that d1, . . . , dr are positive integers summing to n such that
1 appears exactly once or twice among d1, . . . , dr and every other positive integer
appears at most once. Then there exists amonic q-symmetric polynomial g(x) ∈ F�[x]
such that
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1176 R. van Bommel et al.

• g(1) = m mod �,
• the roots of g form n distinct multiset pairs {α, q/α}; and
• the Frobenius element of Gal(F�/F�) acts on these n pairs as a permutation con-
sisting of cycles of lengths d1, . . . , dr .

Proof For each i with di ≥ 2, let ji (x) be the polynomial of degree di provided
by Lemma 5.1, and let gi (x) = ji (x) · xdi ji (q/x). For each i with di = 1, let
gi (x) = x2 − ai x + q for some ai ∈ F� to be determined. Each gi is q-symmetric.
Since each ji is irreducible, the q-symmetric polynomial g(x) := ∏r

i=1 gi (x) gives
the correct cycle type, and its irreducible factors are distinct, except possibly for the
factors of the gi for which di = 1.

If exactly one di equals 1, then there is a unique choice of ai in F� that makes
g(1) = m mod �. If di and d j both equal 1 (with i �= j), then there are at least
� − 1 choices for (ai , a j ) that make g(1) = m mod � and at most two of these satisfy
ai = a j ; thus we can ensure g(1) = m mod � while making g separable. ��
Lemma 5.3 For every prime power q, integer m, prime � > q +2

√
q +1, and integer

n ≥ 8
√
q + 5, there exists a monic q-symmetric polynomial g(x) ∈ F�[x] of degree

2n such that g(1) = m mod � and g(x) has no factor of the form x2 − ax + q with
a ∈ Z and |a| ≤ 2

√
q.

Proof Since � > q + 2
√
q + 1, none of the polynomials x2 − ax + q vanish at

1 mod �. Lagrange interpolation provides a monic degree n polynomial j(x) ∈ F�[x]
such that j(0) = 1, j(1) = m, j(q) = 1, and j(α) = 1 for every root α ∈ F� of
the quadratic polynomials x2 − ax + q (the number of values to specify is at most
3 + 2(4

√
q + 1) ≤ n). Take g(x) := j(x) · xn j(q/x). ��

Lemma 5.4 Let n ≥ 3. A subgroup G of Sn containing an (n − 1)-cycle,
an (n − 2)-cycle, and a 2-cycle is either Sn or the stabilizer Sn−1 of the fixed point of
the (n − 1)-cycle.

Proof Without loss of generality, the fixed point of the (n − 1)-cycle is n. If G ≤
Sn−1, then G acts on {1, 2, . . . , n − 1} transitively (because of the (n − 1)-cycle) and
primitively (because of the (n − 2)-cycle); a primitive subgroup of Sn−1 containing a
2-cycle is the whole group Sn−1 [8, Theorem 8.17]. Otherwise G acts on {1, . . . , n}
transitively (because the orbit of 1 is larger than {1, 2, . . . , n − 1}) and primitively
(because of the (n − 1)-cycle), and then the 2-cycle forces G = Sn . ��
Lemma 5.5 Let n ≥ 5. Let A be an n-dimensional abelian variety over Fq . Write
fA(x) = xn R(x + q/x) for some monic degree n polynomial R(x) ∈ Z[x]. If the
Galois group of R is Sn or the stabilizer Sn−1 of a point, then A is either geometrically
simple or a product of geometrically simple abelian varieties over Fq of dimensions
n − 1 and 1.

Proof If A is isogenous to A1×A2 overFq , then R factors correspondingly into R1R2.
Since R is either irreducible or a product of irreducible polynomials of degrees 1 and
n − 1, the abelian variety A is either simple or a product of simple abelian varieties
of dimensions 1 and n − 1. Let A′ be the simple factor of dimension d ∈ {n, n − 1},
and define R′ accordingly.
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Suppose that A′ is not geometrically simple. Let r > 1 be such that A′
Fqr

is not

simple. Then f A′ has roots α, β ∈ Q giving rise to distinct roots α + q/α �= β + q/β

of R′ such that αr = βr . Now β = ζα for some root of unity ζ . Thus the extension
Q(α, ζ ) ⊃ Q(α + q/α), being the compositum of two abelian extensions, is abelian,
so its subfield Q(α +q/α, β +q/β) is Galois over Q(α +q/α), contradicting the fact
that Sd−2 is not normal in Sd−1. ��
Lemma 5.6 For every prime power q = pe, prime λ ≥ 7 such that q is a nonzero
square modulo λ, and integers n ≥ 5 and m, there exists a monic q-symmetric
degree 2n polynomial g(x) ∈ (Z/λ2Z)[x] with g(1) = m mod λ2 such that if A
is a simple abelian variety over Fq with fA mod λ2 equal to g, then the isogeny class
of A contains a principally polarized abelian variety.

Proof ByHensel’s lemma,we can choose s ∈ Z such that the discriminant of x2−sx+
q is 0 mod λ but nonzeromod λ2. Replace s by−s, if necessary, to make q+1−s �≡ 0
(mod λ). Choose a monic irreducible polynomial S(x) ∈ Fλ[x] of degree n − 3.
Choose a, b ∈ Fλ such that the polynomial R̄ := (x − s)(x − a)(x − b)S(x) ∈ Fλ[x]
is separable and R̄(q + 1) = m mod λ; this amounts to choosing two elements of Fλ

(namely, q+1−a and q+1−b) with prescribed product, not equal to q+1−s or each
other, which is possible because λ−1 > 4. Let R ∈ (Z/λ2Z)[x] be a lift of R̄ such that
R(s) = 0 and R(q + 1) = m in Z/λ2Z. Let g(x) = xn R(x + q/x) ∈ (Z/λ2Z)[x].

Suppose that A is a simple abelian variety overFq such that f A mod λ2 is g. Since A
is simple, f A is a power of an irreducible polynomial [18, Chapter 2], but its reduction
g mod λ has some simple roots (for example, the roots of xn−3S(x + q/x)), so f A
must be irreducible, of degree 2n. Let π ∈ Q be a root of f A. Let K = Q(π) and
K+ = Q(π + q/π), so K is a CM field and K+ is its maximal totally real subfield.
Since the minimal polynomial of π + q/π reduces to R̄, the extension K+/Q is
unramified above λ. On the other hand, K/K+ is ramified at the prime above λ

corresponding to the root s of g, because the discriminant of x2 − sx + q has odd
valuation 1.By [6, Theorem1.1], the isogeny class of A contains a principally polarized
abelian variety. ��
Lemma 5.7 For any prime power q = pe, there exists a prime λ such that 7 ≤ λ < q3

and q is a nonzero square mod λ.

Proof We will choose λ to be a prime factor of u2 − q for some integer u in [√q −
30,

√
q + 30] chosen so that u2 − q �= ±1 and u2 − q is not divisible by 2, 3, or

5. There are at least six integers u in [√q − 30,
√
q + 30] such that u2 − q is not

divisible by 2, 3, or 5. At most two of them satisfy u2 −q = ±1; among the other four
are two differing by 30, and one of them is prime to p. Thus u can be found. Then
λ �= 2, 3, 5, p, and λ ≤ (

√
q + 30)2 − q, which is less than q3, except for q < 11 for

which we instead compute an explicit λ. ��
Proposition 5.8 Given a prime power q, there exists a positive integer L such that
for any integers n � 1 and m, there exists a monic q-symmetric polynomial
g(x) ∈ (Z/LZ)[x] of degree 2n with g(1) = m mod L such that any n-dimensional
abelian variety A over Fq whose characteristic polynomial reduces modulo L to g(x)
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is ordinary, geometrically simple, and isogenous to a principally polarized abelian
variety. Moreover, we may choose L < q23.

Proof Let λ be as in Lemma 5.7. Let L = pλ2�0�1�2�3, where p is the characteristic,
and p, λ, �0, . . . , �3 are distinct primes such that �0 > q + 2

√
q + 1 and �i ≥ 7

for i = 1, . . . , 3. Suppose that n ≥ 8
√
q + 5. Let γ (x) ∈ Fp[x] be a monic q-

symmetric polynomial of degree 2n such that γ (1) = m mod p; add xn+1 − xn , if
necessary, to make γ [n] �= 0 mod p (here q-symmetry means only that γ [i] = 0 for
i < n). Let gλ(x) ∈ (Z/λ2Z)[x] be as in Lemma 5.6. Apply Lemma 5.3 to produce a
polynomial g0(x) ∈ F�0 [x]. Apply Lemma 5.2 to produce polynomials gi (x) ∈ F�i [x]
for i = 1, 2, 3 corresponding to the partitions

• (n − 1, 1)
• (n − 2, 1, 1)
• (n − 3, 2, 1) if n is even; and (n − 4, 2, 1, 1) n is odd,

respectively. Let g ∈ (Z/LZ)[x] be the monic q-symmetric polynomial of degree 2n
reducing to γ , the gi , and gλ.

Suppose that A is an n-dimensional abelian variety over Fq such that f A(x) mod
L = g(x). Write f A(x) = xn R(x + q/x). Let G ≤ Sn be the Galois group of R,
which encodes the action of Gal(Q/Q) on the pairs {α, q/α} of roots of F . By choice
of g1, g2, g3, the group G contains permutations σ1, σ2, σ3 whose cycle types are
given by the partitions above. Raising σ3 to the power n − 3 or n − 4, whichever is
odd, produces a 2-cycle. By Lemma 5.4, G is Sn or Sn−1. By Lemma 5.5, A is either
geometrically simple or a product of geometrically simple abelian varieties over Fq

of dimensions n−1 and 1. In the second case, f A(x) would have a factor x2 −ax +q
for some integer a with |a| ≤ 2

√
q , which is ruled out by the choice of g0. Thus A

is geometrically simple. Since γ [n] �= 0 mod p, A is ordinary. By Lemma 5.6, A is
isogenous to a principally polarized abelian variety.

In proving L < q23, the worst case is q = 2, in which case we take
L = 2 · 72 · 11 · 13 · 17 · 19 < 223. ��

Remark 5.9 It is not hard to adapt Proposition 5.8 for the purpose of constructing
abelian varieties of prescribed order that have prescribed p-rank. Namely, one can
prove that it suffices to impose congruences modulo pq2 on the coefficients of a q-
symmetric monic degree 2n polynomial f to guarantee that its Newton polygon is the
lowest Newton polygon corresponding to p-rank r and that its segments of slope in
[−1/2, 0] correspond to Qp-irreducible factors, in which case the other segments do
too by q-symmetry, so that (c1) in Remark 2.2 is satisfied; moreover one can make
these congruences compatible with f (1) ≡ m (mod pq2), provided that, in the case
r = 0, one has m ≡ 1 (mod p). This last hypothesis is necessary: if A has p-rank 0,
then all roots of f A have positive p-adic valuation, so #A(Fq) ≡ 1 (mod p).
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6 Chebyshev polynomials

Choose the branch of
√
z2 − 1 on C − [−1, 1] that is z + o(1) as z → ∞. Let

τ(z) = z + √
z2 − 1. Define the dth Chebyshev polynomial

Td(z) = 1

2

((
z +

√
z2 − 1

)d +
(
z −

√
z2 − 1

)d) = (τ (z)d + τ(z)−d)/2. (8)

Lemma 6.1 For a suitable choice of dth root, the functions Td(z)1/d/z and τ(z)/z
extend to holomorphic functions on P

1(C)\[−1, 1], and Td(z)1/d/z → τ(z)/z uni-
formly on any compact subset of that domain as d → ∞.

Proof Since τ is nonvanishing with a simple pole at ∞, the maximum modulus prin-
ciple applied to 1/τ shows that |τ(z)| is minimized as z approaches [−1, 1], in which
case |τ(z)| → 1. Thus |τ(z)| > 1 on P

1(C)\[−1, 1], so Td(z) �= 0 on C − [−1, 1].
Also, as z → ∞, we have Td(z) = zd + (lower order terms), so we can choose a dth
root with Td(z)1/d = z + (lower order terms). The uniform convergence claim now
follows from Td(z)/zd = 1

2 z
−d(τ (z)d + τ(z)−d). ��

Recall from Sect. 3 that D is the closed disk C≤q−1/2 of radius q−1/2.

Proposition 6.2 Let I be a closed interval contained in Iattained (see (2)). Then for
even d � 1, there exists a degree d polynomial P(z) ∈ R[z] such that

(a) P(0) = 1;
(b) P is positive on R;
(c) |P(w)|1/d ≥ q−1/4 for all w ∈ D; and
(d) (qP(1/q)2/d , qP(−1/q)2/d) contains I .

Remark 6.3 In Appendix A, we use potential theory to prove that Proposition 6.2 is
optimal in the sense that it fails if Iattained is enlarged.

Proof For ε > 0 to be specified later, let

�(z) = (q1/2/2)z − (q1/2 − 1),

fd(z) = 2q−d/4zd/2 Td/2(�(z + 1/z)),

P(z) = fd((1 − ε)q1/2z).

(a) The leading coefficient of Td/2 is 2d/2−1, so fd(0) = 2q−d/42d/2−1(q1/2/2)d/2 =
1 and P(0) = fd(0) = 1.

(b) The roots of Td/2 are in [−1, 1), and �−1([−1, 1)) ⊂ (−2, 2), so all the roots of
fd(z) are on the unit circle and not at ±1. Thus fd does not change sign on R.
Since fd(0) > 0, the sign is positive. Thus P is positive on R.

(c) The function (1 − ε)q1/2z maps D to C≤1−ε , so we need to prove that | fd |1/d ≥
q−1/4 on C≤1−ε . First, zTd/2(�(z + 1/z))2/d is the product of the polynomial
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z �(z+1/z) and holomorphic function Td/2(�(z+1/z))2/d/�(z+1/z) onC≤1−ε ,
so Lemma 6.1 implies that

| fd(z)|1/d → q−1/4|z|1/2 |τ(�(z + 1/z))|1/2 (9)

uniformly for z ∈ C≤1−ε . The function z τ(�(z + 1/z)) is holomorphic, noncon-
stant, and nonvanishing on C<1, and it extends to a continuous function on C≤1
having absolute value ≥ 1 on the boundary, so the maximum modulus principle
applied to its inverse shows that there existsM > 1 such that |z τ(�(z+1/z))| > M
for all z ∈ C≤1−ε . The lower bound on | fd | follows for d � 1.

(d) It suffices to prove that limε→0+ limd→∞ qP(1/q)2/d equals the left endpoint of
Iattained, and likewise at the other end. In fact, (9) implies that limd→∞ qP(1/q)2/d

is a continuous function of ε ∈ [0, 1], so we may simply substitute ε = 0. Then

lim
d→∞ qP(1/q)2/d = lim

d→∞ q fd(q
−1/2)2/d

= q · q−1/2q−1/2 |τ(�(q−1/2 + q1/2))|
= τ(q/2 − q1/2 + 3/2).

Similarly, limε→0+ limd→∞ qP(−1/q)2/d = |τ(−q/2 − q1/2 + 1/2)|
= τ(q/2 + q1/2 − 1/2). ��

7 Construction of polynomials

We now begin the proof of Theorem 1.1, using the notation introduced in Sect. 3. Let
I be a closed interval in Iattained. Let P(z) be as in Proposition 6.2 and let d = deg P;
we may assume that d ≥ 53.

The polynomial P was optimized to have a small value at 1/q and large value at

−1/q. Lemma 7.1 below shows that this makes Pb̂(1) small and P(−z)b̂(1) large,
where b is chosen to make Pb of degree close to 2n. The polynomial Q in Lemma 7.2

interpolates between P(z) and P(−z) to make Qb̂(1) equal a prescribed intermediate
value.

Lemma 7.1 Let b = b(n) and � = �(n) be functions of n tending to ∞ such that
deg Pb = 2n − 2� and � = o(n). Then

Pb̂(1)1/n −→ qP(1/q)2/d and P(−z)b̂(1)1/n −→ qP(−1/q)2/d

as n → ∞. (Recall that Pb̂(1) := qn Pb(1/q) + Pb(1), which depends on n.)

Proof We have

Pb̂(1) = qn Pb(1/q) + Pb(1) = (qn + O(qn−�))Pb(1/q)
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by Lemma 3.5 applied to Pb. Taking nth roots yields the left endpoint limit, since
� → ∞ and b/n = (2n−2�)/(dn) → 2/d. The right endpoint limit follows similarly.

��
Choose integers � = �(n) and b = b(n) such that � = 4 logq n + O(1) and

bd = 2n−2�. The statements in the rest of this sectionwill hold ifn is sufficiently large.
Given m ∈ Z such that m1/n ∈ I , we want to construct an n-dimensional, ordinary,
geometrically simple, principally polarized abelian variety A with #A(Fq) = m.

Lemma 7.2 There exists Q(z) ∈ 1 + zR[z] of degree ≤ d such that Q is positive on

R, Qb̂(1) = m, and |Q(w)|1/d ≥ q−1/4 for all w ∈ D = C≤q−1/2 .

Proof Because n is sufficiently large, Proposition 6.2(d) and Lemma 7.1 show that

(Pb̂(1)1/n, P(−z)b̂(1)1/n) ⊃ I � m1/n . (10)

By the intermediate value theorem, there exists s ∈ [−1, 1] such that the polynomial

Q(z) := P(sz) ∈ 1 + zR[z]

satisfies Qb̂(1)1/n = m1/n . Thus Qb̂(1) = m. Moreover, Q is positive on R, and
|Q(w)|1/d = |P(sw)|1/d ≥ q−1/4 for all w ∈ D by Proposition 6.2(b,c). ��

In the rest of this section, the implied constant in big-O notation may depend on q,
L , d, P , and Q, but not on n.

The polynomial Qb has real coefficients.We could round them to the nearest integer
to produce apolynomialh ∈ Z[x] and adjust themiddle coefficients tomake ĥ(1) = m,
as in Sect. 4, but it turns out that we cannot guarantee that such an h is nonvanishing
on D, as required for Lemma 3.1. So instead we adjust the coefficients of Q (inside

the bth power) by only O(1/n) each to make the first d coefficients of Qb̂ integral
(and to make them satisfy the congruences in Proposition 5.8), and then, to correct the
later coefficients, we add correction polynomials designed to be small on D, because
as we go along, we need to bound the difference between Qb and the final h to ensure
that h is still nonvanishing on D.

Let us outline the entire construction; then, in a series of lemmas, we will prove
that the steps make sense.

Construction 7.3 Recall the choices of � and b in the paragraph before Lemma 7.2.

1. Let Q ∈ 1 + zR[z] be as in Lemma 7.2.
2. Let g ∈ (Z/LZ)[x] be as in Proposition 5.8.
3. Let Q0 = Q.
4. For i = 1, . . . , d−1 in turn, let ai ∈ [0, L/b) and Qi := Qi−1+ai zi and hi := Qb

i

be such that ĥ[2n−i]
i ∈ Z and ĥ[2n−i]

i ≡ g[2n−i] (mod L).
5. Let Q̃ = Qd−1 − czd and hd = Q̃b, where c ∈ R is chosen so that ĥd(1) = m.
6. Define “correction polynomials” as follows:

• For i = d, . . . , � − 1, let ki = zi Q̃(z)b.
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• For i = �, . . . , n − 1, let ki = zi Q̃(z)a , where a ∈ Z≥0 is chosen as large as
possible such that deg ki < 2n − i .

• Define kn = zn/2.

The definitions are so that k̂i is monic of degree 2n − i for all integers i ∈ [d, n].
7. For i = d, . . . , n − 1, let ri ∈ [0, L) and si+1 ∈ R≥0 and hi+1 := hi + ri ki −

si+1ki+1, where ri is such that ĥ[2n−i]
i+1 ∈ Z and ĥ[2n−i]

i+1 ≡ g[2n−i] (mod L), and
si+1 is such that ĥi+1(1) = m.

8. Let A be an abelian variety over Fq with f A = ĥn .

Lemma 7.4 The ai can be chosen as specified in Step 4, and they are O(1/n).

Proof In Step 4, once a1, . . . , ai−1 have been fixed, ĥ[2n−i]
i as a function of ai is a

linear polynomial with leading coefficient b, so ai ∈ [0, L/b) can be found. Then
ai = O(L/b) = O(1/n). ��
Lemma 7.5

(a) The real number c can be chosen as specified in Step 5, and c is O(1/n).
(b) We have Q̃(1) > 0 and Q̃(1/q) > 0.
(c) The values Q̃(1) and Q̃(1/q) are O(1).

Proof

(a) Since ai ≥ 0, we have Qd−1 ≥ · · · ≥ Q0 = Q > 0 on R≥0, so

Qb
d−1̂(1) ≥ Qb̂(1) = m. (11)

Let

c′ := qd−1a1 + qd−2a2 + . . . + qad−1.

Let R = Qd−1 − c′zd . Then

R(1) = Qd−1(1) − c′ = Q(1) − (qd−1 − 1)a1 − · · · − (1 − 1)ad−1 ∈ (0, Q(1)],

for large n, by Lemma 7.4, and

R(1/q) = Qd−1(1/q) − c′/qd

= (Q(1/q) + a1q
−1 + · · · + ad−1q

−(d−1)) − (a1q
−1 + · · · + ad−1q

−(d−1))

= Q(1/q) > 0,

so

Rb̂(1) ≤ Qb̂(1) = m. (12)

By (11) and (12) and the intermediate value theorem, there exists c ∈ [0, c′] such
that (Qd−1 − czd)b̂(1) = m. Moreover, c = O(c′) = O((d − 1)qd−1(1/n)) =
O(1/n).
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(b) We have Q̃(1) ≥ R(1) > 0 and Q̃(1/q) ≥ R(1/q) > 0.
(c) For w ∈ {1, 1/q}, we have Q̃(w) = Q(w) + O(1/n), and Q(w) ∈ P([−1, 1]),

an interval independent of n. ��
Lemmas 7.6 through 7.9 show that Q̃b is large enough on D and the corrections

are small enough that hn is nonvanishing on D.

Lemma 7.6 We have |Q̃(w)| ≥ q−d/4 − O(1/n) for every w ∈ D.

Proof By Lemma 7.2, |Q(w)| ≥ q−d/4, and |Q̃(w)| differs from |Q(w)| by at most
|a1w + · · · + ad−1w

d−1 − cwd | = O(1/n), by Lemmas 7.4 and 7.5. ��
Lemma 7.7 We have ki (1) > 0 and ki (1/q) > 0.

Proof These follow from Lemma 7.5(b). ��
Lemma 7.8 The ri ∈ [0, L) and si+1 can be chosen as specified in Step 7, and si+1 is
O(1). For i = d, . . . , � − 2, we have the more precise bound si+1 ∈ [0, qL].

Proof This is similar to the proof of Lemma 7.5. The value ĥ[2n−i]
i+1 is ri plus terms that

have already been fixed, so there is a unique choice ri ∈ [0, L) such that ĥ[2n−i]
i+1 ∈ Z

and ĥ[2n−i]
i+1 ≡ g[2n−i] (mod L).

We seek si+1 making the value ĥi+1(1) = m + ri k̂i (1) − si+1 k̂i+1(1) equal to m.
By Lemma 7.7,

m + ri k̂i (1) ≥ m. (13)

Let V = ki/ki+1 and v = max{V (1), V (1/q)}. By Lemma 7.7, k̂i (1) ≤ v k̂i+1(1),
so

m + ri k̂i (1) − vri k̂i+1(1) ≤ m. (14)

Now (13), (14), and the intermediate value theorem yield si+1 ∈ [0, vri ] ⊆ [0, vL]
making ĥi+1(1) = m.

To bound si+1, we need to bound v. The function V is 1/z, Q̃(z)/z, or 2/z; accord-
ingly, v is q, O(1), or 2q, with the middle case following from Lemma 7.5(b,c). In
every case, v = O(1), so si+1 = O(1). If i ∈ [d, � − 1), then V = 1/z, so v = q, so
si+1 ∈ [0, qL]. ��
Lemma 7.9 The polynomial hn is nonvanishing on D.

Proof By construction,

hn = Q̃b +
n−1∑
i=d

(ri ki − si+1ki+1),
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so it suffices to prove that

n−1∑
i=d

∣∣∣∣
ri ki
Q̃b

∣∣∣∣ +
n∑

i=d+1

∣∣∣∣
si ki
Q̃b

∣∣∣∣ < 1 (15)

on D. We claim that

∣∣∣∣
ki
Q̃b

∣∣∣∣ ≤
{
q−i/2 if i ∈ [d, �),

O(n−2) if i ∈ [�, n], (16)

on D. The case i ∈ [d, �) follows since ki/Q̃b = zi . In particular, for i ∈ [�−d/2, �),
we have |ki/Q̃b| ≤ q−(�−d/2)/2 = O(q−�/2) = O(n−2). From then on, changing i to
i + d/2 multiplies |ki/Q̃b| by |zd/2/Q̃| ≤ q−d/4/(q−d/4 − O(1/n)) = 1 + O(1/n)

by Lemma 7.6 (or, at the last step with i + d/2 = n, by |(zn/2)/zi | = |zd/2/2| ≤ 1);
this happens fewer than n times, and (1 + O(1/n))n = O(1), so (16) for i ∈ [�, n]
follows.

By Lemma 7.8 and (16), the left hand side of (15) is at most

�−1∑
i=d

Lq−i/2 +
n−1∑
i=�

L O(n−2) +
�−1∑

i=d+1

qL q−i/2 +
n∑

i=�

O(1) O(n−2)

≤ 2Lq−(d−1)/2

1 − q−1/2 + O(1/n) < 1

if n is large, since L < q23 and d ≥ 53. ��
Lemma 7.10 The polynomial ĥn is monic of degree 2n. Also, ĥn ∈ Z[x] and ĥn ≡ g
(mod L).

Proof In Steps 4 and 7, adjusting hi to produce hi+1 does not change the coefficients of
z2n , z2n−1,…, z2n−i in ĥi , which are integers congruentmodulo L to the corresponding
coefficients of g; by q-symmetry, the same holds for the coefficients of 1, z, …, zi .
Thus ĥn is monic and has integer coefficients congruent to the coefficients of g, except
perhaps the coefficient of zn ; actually it holds for this coefficient too since ĥn(1) is an
integer (namely, m) and ĥn(1) = m ≡ g(1) (mod L). ��
End of proof of Theorem 1.1

• Thepolynomial ĥn ismonic of degree 2n,with integer coefficients, byLemma7.10.
• All complex roots of ĥn have absolute value q1/2, by Lemmas 7.9 and 3.1.
• The characteristic p does not divide ĥ[n]

n , because byLemma7.10, ĥ[n]
n is congruent

modulo L to g[n], which is nonzero modulo p, and p | L , by construction of g.

By Theorem 2.1, there exists an ordinary n-dimensional abelian variety A over
Fq with f A = ĥn . Then #A(Fq) = f A(1) = ĥn(1) = m. By Proposition 5.8, A
is geometrically simple, and principally polarized after replacing A by an isogenous
abelian variety. ��
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Abelian varieties of prescribed order over finite fields 1185

Fig. 1 For q = 11 and q = 9, respectively, the graph shows all the points (#A(Fq ), c1), where A ranges

over abelian surfaces over Fq , and c1 = G[n−1] = f [2n−1]
A with n = 2; see (17)

8 Large q limit

In this section, we prove Theorem 1.7, which for fixed n and large q determines the
largest subinterval of the Hasse–Weil interval in which all integers are realizable as
#A(Fq) for an n-dimensional abelian variety A over Fq . Throughout this section, in
big-O notation, the implied constant depends on n but not q.

First let us explain the idea. For any n-dimensional abelian variety A over Fq , we
have f A(x) = xn G(x + q/x) for some polynomial

G(x) = xn + c1x
n−1 + c2x

n−2 + · · · + cn ∈ Z[x] (17)

all of whose roots lie in [−2q1/2, 2q1/2]. Then ci = O(qi/2), and

#A(Fq ) = f A(1) = G(q + 1) = (q + 1)n + c1(q + 1)n−1 + c2(q + 1)n−2 + · · · + cn .

For each integer c1 in the possible range [−2nq1/2, 2nq1/2], let Ic1 be the smallest
interval containing the possible values of c2(q + 1)n−2 + · · · + cn ; then we prove that
the ranges for c2, …, cn are large enough that all integers in Ic1 are realized, possibly
ignoring a negligible fraction of the interval at the ends. The interval Ic1 has width
O(qn−1) and does not changemuchwhen c1 is incremented by 1— its endpointsmove
by o(qn−1). The big-O constant matters: for c1 close to the extremes of its range (with

|c1| greater than about
(
2n −

√
2n
n−1

)
q1/2), it turns out that Ic1 has length significantly

less than qn−1, so that there is a gap between the intervals (q+1)n+c1(q+1)n−1+ Ic1
and (q + 1)n + (c1 + 1)(q + 1)n−1 + Ic1+1, a gap in which #A(Fq) cannot lie; see
Lemma 8.2. On the other hand, for the c1 towards the middle of the range, Ic1 has
width significantly greater than qn−1, so the intervals (q + 1)n + c1(q + 1)n−1 + Ic1
overlap to cover a large interval in the middle of the Hasse–Weil interval. Figure1
shows these overlapping intervals when n = 2 and q ∈ {11, 9}; for the non-prime 9,
there is an additional phenomenon explained in Remark 8.5.

As the previous paragraph indicates, the coefficients of xn−1 and xn−2 are what
mattermost. After using the normalization g(x) := q−n/2G(q1/2x), we are led to study

G := { g ∈ R[x] : g is monic of degree n with all roots in [−2, 2] }
S := { (g[n−1], g[n−2]) ∈ R

2 : g ∈ G },
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1186 R. van Bommel et al.

equipped with the Euclidean topology. Let λ1 = 2n −
√

2n
n−1 and λ2 = 2n −

√
4n
n−1 .

Lemma 8.1 If n ≥ 2, then there exist continuous functions Bmin, Bmax : [−2n, 2n] →
R such that

(a) We have S = { (a, b) ∈ [−2n, 2n] × R : Bmin(a) ≤ b ≤ Bmax(a) }.
(b) The difference Bdiff(a) := Bmax(a) − Bmin(a) is

• nonnegative on [−2n, 2n], positive on (−2n, 2n),
• less than 1 if λ1 < |a| ≤ 2n, greater than 1 if |a| < λ1,
• less than 2 if λ2 < |a| ≤ 2n, and greater than 2 if |a| < λ2.

(c) There exists a compact subset G0 ⊂ G surjecting onto S such that any g ∈ G0
mapping into the interior of S has distinct roots in (−2, 2).

Proof If g = ∏n
i=1(x − ri ), then (g[n−1], g[n−2]) = (−∑

ri ,
∑

i< j ri r j ). Given
a ∈ [−2n, 2n], let

Ca = {(r1, . . . , rn) ∈ [−2, 2]n : ∑
ri = −a}.

Since Ca is compact and connected, (a) holds with Bmin and Bmax being the minimum
and maximum of

∑
i< j ri r j on Ca . If any two of the ri are different, then we can

increase
∑

i< j ri r j by replacing both by their average; thus the maximum occurs

when the ri are all equal, so Bmax(a) = (n
2

)
(a/n)2. If there are two ri in (−2, 2),

then we can decrease
∑

i< j ri r j by subtracting ε from the smaller and adding ε to the
larger, for some ε > 0; thus the minimum occurs when all but one ri are at ±2. Given
a, there is at most one such (r1, . . . , rn)with

∑
ri = −a up to permuting coordinates:

as a increases, the roots move linearly from 2 to −2 one at a time. So Bmin is the
piecewise-linear continuous function such that for each k ∈ {0, . . . , n − 1},

Bmin(a) = (4k − 2n + 2)a − 8k2 + 8k(n − 1) − 2(n − 1)n

for a ∈ [4k − 2n, 4k − 2n + 4].

The minimum value of Bdiff on [4k − 2n, 4k − 2n + 4] is

Bdiff(4k − 2n + 4k/(n − 1)) = 8k(n − 1 − k)/(n − 1),

which for k ∈ {1, . . . , n − 2} is at least 8(n − 2)/(n − 1) ≥ 4. On the other hand, for
t ∈ [0, 4], we have Bdiff(2n− t) = Bdiff(−2n+ t) = n−1

2n t2. The claims in (b) follow.
Given a, let

∏n
i=1(x − ri ) and

∏n
i=1(x − r ′′

i ) be the polynomials realizing Bmin(a)

and Bmax(a), each with roots listed in increasing order. (So all but one ri are ±2,
and r ′′

i = −a/n for all i .) Let ε ≥ 0 be the distance from −a/n to the boundary of
[−2, 2], and let r ′

1, . . . , r
′
n be an arithmetic progression with r ′

1 = −a/n − ε/2 and
r ′
n = −a/n+ε/2. For each s ∈ [0, 1], consider the monic degree n polynomial whose
roots are (1 − s)ri + sr ′

i for i = 1, . . . , n and the analogous polynomial with roots
(1− s)r ′

i + sr ′′
i . These depend continuously on (a, s) ∈ [−2n, 2n] × [0, 1], so the set

of all such polynomials is a compact subset G0 of G. For fixed a, the coefficients of
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Abelian varieties of prescribed order over finite fields 1187

xn−2 in these polynomials vary continuously from Bmin(a) to Bmax(a), so G0 → S is
surjective. Finally, by construction, all polynomials in G0 except for the ones realizing
Bmin(a) and Bmax(a) have distinct roots in (−2, 2). ��
Lemma 8.2 Suppose n ≥ 2. For λ ∈ R satisfying λ1 < |λ| < 2n, there exists ε > 0
such that if q is sufficiently large and r = �λq1/2�, then the interval

[
(q + 1)n + r(q + 1)n−1 + (Bmax(λ) + ε)qn−1,

(q + 1)n + (r + 1)(q + 1)n−1 + (Bmin(λ) − ε)qn−1] (18)

has width > 1 and does not contain #A(Fq) for any n-dimensional abelian variety A
over Fq .

Proof By Lemma 8.1(b), Bdiff(λ) < 1. Choose ε > 0 such that Bdiff(λ) < 1 − 2ε.
Then the width of the interval (18) is (q + 1)n−1 − (Bdiff(λ) + 2ε)qn−1 > 1.

Let A be an n-dimensional abelian variety over Fq . Then f A(x) = xn G(x + q/x)
for some G(x) = xn + c1xn−1 + · · · + cn ∈ Z[x] with all roots in [−2q1/2, 2q1/2].
We have ci = O(qi/2) and (a, b) := (q−1/2c1, q−1c2) ∈ S. Now

#A(Fq) = f A(1) = G(q + 1) = (q + 1)n + c1(q + 1)n−1 + bqn−1 + O(qn−3/2).

(19)

Since b = O(1), if #A(Fq) lies in the interval (18), then c1 = r + O(1), so a =
q−1/2c1 = λ + O(q−1/2). Then

b ∈ [Bmin(a), Bmax(a)] ⊂ [Bmin(λ) − ε/2, Bmax(λ) + ε/2]

by continuity, if q is large enough. If c1 ≤ r , then the right side of (19) is too small to
lie in (18). If c1 ≥ r + 1, then it is too large. ��
Lemma 8.3 Suppose that n ≥ 3 and λ ∈ R satisfies 0 < λ < λ1. Then for sufficiently
large q, every integer in

[
qn − λqn−1/2, qn + λqn−1/2] (20)

is #A(Fq) for some n-dimensional abelian variety A over Fq .

Proof By Lemma 8.1(b), Bdiff > 1 on [−λ, λ]. Choose ε > 0 so that Bdiff > 1 + 2ε
on [−λ, λ]. Let

Sε = { (a, b) ∈ [−2n, 2n] × R : Bmin(a) + ε ≤ b ≤ Bmax(a) − ε }.

Then Sε is a compact subset of the interior of S. Let Gε be the inverse image of Sε

under G0 � S. By Lemma 8.1(c), Gε is compact and consists of polynomials with
distinct real roots in (−2, 2), so we can choose δ > 0 such that any polynomial whose
coefficients are within δ of some g ∈ Gε again has distinct real roots in (−2, 2).
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1188 R. van Bommel et al.

Suppose that m is an integer in [qn − λqn−1/2, qn + λqn−1/2]. The rest of the proof
relies on the following construction.

Construction 8.4

1. Let a ∈ [−λ, λ] be such that m = qn + aqn−1/2.
2. Write m = (q + 1)n + (c1 + b)(q + 1)n−1 with c1 ∈ Z and b ∈ [Bmin(a)+ ε,

Bmax(a)−ε] (possible since [Bmin(a) + ε, Bmax(a) − ε] has length > 1). Then
(a, b) ∈ Sε .

3. Choose g ∈ Gε mapping to (a, b).
4. Let G(x) = qn/2 g(q−1/2x) = xn + q1/2axn−1 + qbxn−2 + · · · ∈ R[x].
5. Let G1 be the same as G except with the coefficient of xn−1 changed to c1.
6. For i = 2, . . . , n, let Gi be the same as Gi−1 except with the coefficient of xn−i

changed to the integer ci that makes Gi (q + 1) − m ∈ [0, (q + 1)n−i ).
7. Let Gfinal = Gn + s(x − (q + 1)), where s ∈ {0, 1} is chosen so that p � G[0]

final.

Continuation of proof of Lemma 8.3. We now bound the coefficients of Gfinal − G
in order to prove that for q large enough, the roots of Gfinal are still distinct and all
in [−2q1/2, 2q1/2]. Since (a, b) lies in Sε , which is compact, b is O(1). By Steps 1
and 2,

qn + aqn−1/2 = m = (q + 1)n + (c1 + b)(q + 1)n−1 = qn + c1q
n−1 + O(qn−1),

c1 = q1/2a + O(1). (21)

Now

G1(q + 1) = (q + 1)n + c1(q + 1)n−1 + qb(q + 1)n−2

+ O(q3/2)(q + 1)n−3 + · · · + O(qn/2)(q + 1)0

= (q + 1)n + (c1 + b)(q + 1)n−1 + O(qn−3/2)

= m + O(qn−3/2),

so

c2 − G[n−2] = O(qn−3/2)/(q + 1)n−2 = O(q1/2). (22)

Similarly, for i = 3, . . . , n, we have

ci − G[n−i] = O((q + 1)n−(i−1))/(q + 1)n−i = O(q). (23)

Equations (21), (22), and (23) imply that

G[n−i]
n − G[n−i] = O(q(i−1)/2)

for all i ≥ 1. Since n ≥ 3, the same holds with Gn replaced by Gfinal. Thus the
coefficients of gfinal(x) = q−n/2 Gfinal(q1/2x) are within O(q−1/2) < δ of the corre-
sponding coefficients of g if q is sufficiently large, so gfinal has all its roots in [−2, 2].
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Thus Gfinal has all its roots in [−2q1/2, 2q1/2]. By construction, Gfinal ∈ Z[x]. Also
Gfinal(q + 1) − m = Gn(q + 1) − m ∈ [0, 1), so Gfinal(q + 1) = m.

Let f (x) = xn Gfinal(x + q/x) ∈ Z[x]. We have f [n] ≡ G[0]
final �≡ 0 (mod p).

By Theorem 2.1, f = f A for some n-dimensional ordinary abelian variety over Fq .
Finally, #A(Fq) = f (1) = Gfinal(q + 1) = m. ��

Proof of Theorem 1.7 Lemma 8.3 shows that all integers in [qn − λqn−1/2, qn +
λqn−1/2] are realizable for λ that can approach λ1 from below as q → ∞. Lemma 8.2
shows, on the other hand, that for any μ with |μ| > λ1, there are unrealizable inte-
gers within O(qn−1) of (q + 1)n + μqn−1/2 if q is sufficiently large. These imply
Theorem 1.7. ��

Remark 8.5 Suppose n = 2. Theorem 1.7 holds without change if q tends to ∞
through primes only: the proof of Lemma 8.3 works if we omit Step 7, because of the
last sentence of Remark 2.2.

On the other hand, if q tends to ∞ through non-prime prime powers, then The-
orem 1.7 holds with λ1 replaced by the smaller value λ2 = 4 − 2

√
2, as we now

explain. In Lemma 8.3, if 0 < λ < λ2, then Bdiff > 2 on [−λ, λ], so there are at
least two consecutive integer possibilities for c1, and at least one of them will lead
to a polynomial f for which (c) in Theorem 2.1 holds. Meanwhile, in Lemma 8.2,
if λ2 < |μ| < 2n, so that Bdiff(μ) < 2, then there exists ε > 0 such that if q is
sufficiently large, and r is the multiple of p nearest μq1/2, then any integer of the
form m = (q + 1)2 + r(q + 1) + c2 in

[
(q + 1)2 + (r − 1)(q + 1) + (Bmax(μ) + ε)q,

(q + 1)2 + (r + 1)(q + 1) + (Bmin(μ) − ε)q
]

with p | c2 and p2 � c2 is not #A(Fq) for any abelian surface A over Fq , because the
only monic quadratic polynomial G(x) ∈ Z[x] with roots in [−2q1/2, 2q1/2] such
that G(q + 1) = m is x2 + r x + c2, which is Eisenstein at p, which implies that the
polynomial f (x) := x2 G(x + q/x) fails condition (c1) in Remark 2.2.

9 Effective bounds

Given q and n, we have given three ways to construct polynomials that realize a large
interval of integers as #A(Fq) for A of dimension n over Fq :

• Sect. 4 gave a quick construction that realized intervals wide enough to cover all
sufficiently large integers as n varies, but not wide enough to be asymptotically
close to optimal.

• Sect. 7 gave a more subtle construction that gave a much wider interval, but it is
too complicated to analyze explicitly to make all the big-O constants explicit.

• Sect. 8 gave a method that again is asymptotically good, but only when q is large
compared to n.
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In this section, we present a fourth construction that, while not asymptotically as good
as the construction of Sect. 7, realizes a wide interval for any q and sufficiently large
n, and is still simple enough to analyze fully.

Given q, n ≥ 2, and an integer m in [qn−1/2, qn+1/2), the plan is to find a power
series j(z) ∈ zR[[z]] such that j(1/q) = log(m/qn) and exp( j(z)) ∈ Z[[z]]; then we
truncate exp( j(z)) to a degree n polynomial and adjust the coefficients of xn−1 and
xn to produce a polynomial h(z) such that ĥ(1) = m and p � ĥ[n]. This should work
well, since exp( j(z)) is automatically nonvanishing on D, and if its coefficients are
not too large, then the nonvanishing should persist after truncating and adjusting.

Construction 9.1

1. For i = 1, 2, . . . , n − 1 in turn, let ci be the real number such that

log(m/qn) − c1q
−1 − · · · − ciq

−i ∈ [−q−i/2, q−i/2)

and such that the coefficient of zi in the power series exp(c1z + · · · + ci zi ) is an
integer; for the existence and uniqueness of ci , see the proof of Lemma 9.2.

2. Let cn ∈ R be such that log(m/qn) − c1q−1 − · · · − cnq−n = 0.
3. Let h0(z) ∈ R[z] be the degree n Taylor polynomial of exp(c1z + · · · + cnzn).
4. Let h1(z) = h0(z) + kzn/2, where k ∈ R is chosen to make ĥ1(1) = m.
5. Let h be h1 or h1 + zn−1 − ((q + 1)/2)zn , whichever makes p � ĥ[n].
6. Let A be an abelian variety with f A = ĥ, if one exists. (If h is nonvanishing on D,

then such an A is guaranteed to exist and ĥ is squarefree by Remark 3.3.)

Let s = � 1
2q log q + 1

2�.
Lemma 9.2 We have |c1| ≤ s and |ci | ≤ (q + 1)/2 for i = 2, . . . , n.

Proof Since m ∈ [qn−1/2, qn+1/2), we have log(m/qn) ∈ [− 1
2 log q, 1

2 log q), and
Step 1 says that c1 is the integer in the interval q log(m/qn) + (− 1

2 ,
1
2 ], so |c1| ≤ s.

For i ≤ n − 1, let εi = log(m/qn) − c1q−1 − · · · − ciq−i , so εi = εi−1 − ciq−i ;
then εi−1 ∈ [−q−(i−1)/2, q−(i−1)/2), so the condition εi ∈ [−q−i/2, q−i/2) in
Step 1 constrains ci to a half-open interval of length 1 contained in [−(q + 1)/2,
(q + 1)/2], while the integer coefficient condition in Step 1 constrains ci to a coset
of Z in R; thus a unique ci exists, and |ci | ≤ (q + 1)/2. Finally, cn = qnεn−1 ∈
qn[−q−(n−1)/2, q−(n−1)/2) = [−q/2, q/2). ��

Let j(z) = c1z + · · · + cnzn . Let

J (z) := exp

(
sz + q + 1

2

z2

1 − z

)
= J≤n(z) + J>n(z) ∈ R≥0[[z]],

where J≤n is the degree n Taylor polynomial, and J>n is the remainder power series
consisting of terms of degree > n. By Lemma 9.2, |(exp j(z))[i]| ≤ J [i].

Proposition 9.3 Let q be a prime power. For n ≥ 2 and m ∈ [qn−1/2, qn+1/2), if

J>n(q
−1/2) + qn/2

2
J>n(q

−1) + q−n/2

2
J≤n(1) + (q1/2 + 1)2

2
q−n/2 <

1

J (q−1/2)
, (24)
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then Construction 9.1 produces an ordinary n-dimensional A over Fq with #A(Fq) =
m.

Proof By Step 2, exp j(q−1) = m/qn , so

|m − qnh0(q
−1)| = qn|exp j(q−1) − h0(q

−1)| ≤ qn J>n(q
−1),

|h0(1)| ≤ J≤n(1),

|k| = |̂h(1) − ĥ0(1)| ≤ |m − qnh0(q
−1) − h0(1)| ≤ qn J>n(q

−1) + J≤n(1).

On D,

|exp j(z)| = exp(Re j(z))

≥ exp

(
−sq−1/2 − q + 1

2
q−2/2 − · · · − q + 1

2
q−n/2

)
≥ 1

J (q−1/2)
,

|h0(z)| ≥ |exp j(z)| − J>n(q
−1/2),

|h1(z)| ≥ |h0(z)| − k

2
q−n/2,

|h(z)| ≥ |h1(z)| − q−(n−1)/2 − q + 1

2
q−n/2 = |h1(z)| − (q1/2 + 1)2

2
q−n/2.

Combining the previous five inequalities yields

|h(z)| ≥ 1

J (q−1/2)
− J>n(q

−1/2) − qn/2

2
J>n(q

−1) − q−n/2

2
J≤n(1) − (q1/2 + 1)2

2
q−n/2,

so (24) implies that h is nonvanishing on D. Theorem 2.1 produces A. ��
The following weaker statement has the advantage that if any hypothesis holds for one
n, it clearly holds for all larger n (since J has nonnegative coefficients):

Corollary 9.4 Let q be a prime power. For n ≥ 2 and m ∈ [qn−1/2, qn+1/2), if any of

(1 + q−1/2/2)J>n(q
−1/2) + 1

2

(
4
3q

−1/2
)n

J ( 34 ) + (q1/2 + 1)2

2
q−n/2 <

1

J (q−1/2)
,

(25)

q ≥ 7 and 2n−1 > J (q−1/2)J (2q−1/2), or (26)

q ≥ 16 and n > 3q1/2 log q − 1/2 (27)

hold, then Construction 9.1 produces an ordinary n-dimensional A over Fq with
#A(Fq) = m.

Proof In (24), J>n(q−1) ≤ q−(n+1)/2 J>n(q−1/2) (this holds termwise for any
power series with nonnegative coefficients). Similarly J≤n(1) ≤ ( 43 )

n J≤n(3/4) ≤
( 43 )

n J (3/4). Hence the left side of (24) is at most the left side of (25). Thus, if (25)
holds, Proposition 9.3 applies.
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Now suppose that q ≥ 7 and 2n−1 > J (q−1/2)J (2q−1/2). First,

2n−1 > J (q−1/2)J (2q−1/2) ≥ exp(3sq−1/2) ≥ exp(3q−1/2(q log q − 1)/2) ≥ 210,

so n ≥ 11. We use

J>n(q
−1/2) ≤ 2−(n+1) J (2q−1/2),

J>n(q
−1) ≤ (2q1/2)−(n+1) J (2q−1/2),

J≤n(1) ≤ 1 + (q1/2/2)n(J (2q−1/2) − 1),

(q1/2 + 1)2 ≤ (q1/2/2)n − 1;

(28)

the first three are proved termwise, and the last follows from the inequality (2u+1)2 ≤
u11 − 1 for u := q1/2/2 ≥ 71/2/2. By (28), the left side of (24) is at most

2−(n+1) J (2q−1/2) + qn/2

2
(2q1/2)−(n+1) J (2q−1/2)

+ q−n/2

2

(
(q1/2/2)n J (2q−1/2) + 1 − (q1/2/2)n

)
+ q−n/2

2

(
(q1/2/2)n − 1

)

= 2−(n+1)(2 + q−1/2/2) J (2q−1/2)

≤ 21−n J (2q−1/2)

<
1

J (q−1/2)
,

by hypothesis, so Proposition 9.3 applies.
Finally, suppose that q ≥ 16 and n > 3q1/2 log q − 1/2. Then

s ≤ (q log q + 1)/2,

log
(
J (q−1/2)J (2q−1/2)

) ≤ 3
(q log q + 1

2

)
q−1/2 + q + 1

2

( q−1

1 − q−1/2 + 4q−1

1 − 2q−1/2

)

≤ (3q1/2 log q − 3/2) log 2 (29)
< (n − 1) log 2,

so (26) holds; to prove (29), check numerically for 16 ≤ q ≤ 100 and for q > 100
use

3

2
q−1/2 + q + 1

2

( q−1

1 − q−1/2 + 4q−1

1 − 2q−1/2

)
+ 3

2
log 2

≤ 3

2
(0.1) + q

(q−1

0.9
+ 4q−1

0.8

)
+ 3

2
log 2 < 8 < (3 log 2 − 3/2)q1/2 log q. ��

Corollary 9.4 proves Theorem 1.13(b) for q ≥ 16. Also, for each q < 16 it provides
an n such that all integers ≥ qn−1/2 are realizable, but too many integers remain to
be checked one at a time. Therefore we describe a construction allowing us to realize
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larger intervals of integers all at once. The plan is to start with h such that ĥ = f A for
some A with #A(Fq) = m, and then to replace h by h + ∑n

i=r ci z
i for some r and

small ci (and then adjust to make p � ĥ[n] again); as the ci vary, we realize all integers
in an interval.

Construction 9.5 Suppose that we are given q, n, m, and a polynomial h ∈ 1+ xZ[x]
of degree < 2n with ĥ(1) = m (given by Construction 9.1 or otherwise).

1. Compute the complex zeros of h and check that none of them are in D. (More
precisely: Compute small balls containing the zeros, and check that none of them
intersect D.)

2. Compute the complex zeros α of the derivative of h(z)h(1/(qz)), evaluate |h| at
each α on the boundary ∂D, and let μ be the minimum of these values; see the
proof of Lemma 9.6. (More precisely: Compute small balls around these zeros, and
let μ be a lower bound for |h| on all these balls that intersect ∂D; if h = 1, then let
μ = 1.)

3. Let μord = μ − q−(n−1)/2 − ((q + 1)/2)q−n/2; abort if μord ≤ 0.
4. Let r be the smallest positive integer ≤ n + 1 such that

∑n
i=r�q/2�q−i/2 < μord.

5. Let N = �q/2�∑n
j=r (q

n− j + 1) = �q/2�
(
qn−r+1−1

q−1 + (n − r + 1)
)
.

6. Return the interval
[
ĥ(1) − N , ĥ(1) + N

]
.

Lemma 9.6 In Construction 9.5, if Steps 1 and 3 succeed, then every integer in the
interval of Step 5 is #A(Fq) for some ordinary abelian variety of dimension n over
Fq .

Proof Suppose that h has no zeros in D. Then theminimumof |h| occurs on ∂D, where
|h|2 = h(z) h(1/(qz)), and this minimum occurs at a point where the derivative of
h(z) h(1/(qz)) is 0. Thus |h| ≥ μ on D.

Suppose that H = h + ∑n
i=r ci z

i where |ci | ≤ q/2 for all i , and ci ∈ Z for all
i except n, and cn ∈ 1

2Z. The choice of r guarantees that |H | > 0 on D, even if we
add zn−1 − ((q + 1)/2)zn to H if necessary to make p � Ĥ [n], so Ĥ(1) is realizable.
To realize an integer ĥ(1) + M with |M | ≤ N , write M as

∑n
j=r c j (q

n− j + 1) with

|c j | ≤ �q/2�, c j ∈ Z for all j �= n, and cn ∈ 1
2Z, by greedily choosing cr , cr+1, …,

one at a time. ��
Proof of Theorem 1.13 and Remarks 1.16, 1.17, and 1.18 In this proof, given q, a posi-
tive integer is called realizable if it equals #A(Fq) for some ordinary abelian variety
A over Fq with f A squarefree. The case q = 2 is done by [7]. Criterion (27) of Corol-
lary 9.4 proves Theorem 1.13(b) for q ≥ 16. For each q < 16, we numerically find
n ≥ 2 such that (25) holds; then we check smaller values of n to find the smallest n0
such that (24) holds for all n ≥ n0. (It turns out that n0 ≤ 25 for each q < 16.) For
q ∈ {11, 13}, it turns out that q3√q log q > qn0−1/2, which proves Theorem 1.13(b) for
these q.

For 3 ≤ q ≤ 9, we use variants of Construction 9.1 and 9.5 to realize all integers
in an interval [Mq , qn0−1/2]. For q ∈ {8, 9}, we have Mq ≤ q3

√
q log q , which proves

Theorem 1.13(b) for these q. For q ∈ {3, 4, 5, 7}, we use the algorithm of [10] (imple-
mented at https://github.com/kedlaya/root-unitary) to exhaust over the polynomials

123

https://github.com/kedlaya/root-unitary


1194 R. van Bommel et al.

f A for abelian varieties A of dimension ≤ 4 to realize all integers < Mq with the
exception of those listed in Remarks 1.16, 1.17, and 1.18. Neither are these excep-
tions realized by abelian varieties of dimension ≥ 5, because they are all less than
(
√
q − 1)10. The calculations in this paragraph took 7.19 CPU hours on an Intel Core

i7-9750H CPU @ 2.60GHz. See https://github.com/edgarcosta/abvar-fq-orders for
the code and further details. ��

Some calculations were checked against the database of isogeny classes of abelian
varieties over finite fields in the L-functions and Modular Forms Database [3, 17].

Appendix A. Optimality of a potential function

A.1. Polynomials

The goal of this appendix is to prove the following.

Proposition A.1 Choose c in the interval (0, 1). For d ≥ 1, let F (d, c) be the set of
complex polynomials f of degree d satisfying f (0) = 1 and | f (w)|1/d ≥ c for all
w ∈ C≤1. On (−∞, 1] define the decreasing continuous function

M(r) := 1 − r + √
(1 − r)2 + 4rc2

2
.

(a) For any f ∈ F (d, c), we have

| f (r)|1/d ≥ M(r) for all r ∈ [0, 1], (30)

| f (r)|1/d ≤ M(−r) for all r ∈ [0,∞). (31)

(b) There exist polynomials f1, f2, . . . with fd ∈ F (d, c) such that for every r ∈
(−∞, 1],

lim
d→∞ | fd(r)|1/d = M(r). (32)

(Thus (30) is asymptotically sharp, and (31) is too since fd(−z) ∈ F (d, c).)

Remark A.2 For r > 1, (30) is not always true: If r > 1 and c ≤ (1−r−d)1/d , the best
lower bound in (30) is simply 0 since the function f (z) := 1 − (z/r)d is inF (d, c).

Remark A.3 If f is in F (d, c), then so is f (uz) for any u ∈ C with |u| = 1. Thus
Proposition A.1 implies that (30) and (31) still hold if f (r) on the left is replaced by
f (r ′) for any complex number r ′ satisfying |r ′| = r .

Outside the trivial case r = 0 and the case r = 1, which was handled in detail in
[13], Proposition A.1 appears to be new.
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Remark A.4 Choose a prime power q, and take c = q−1/4 and r = q−1/2. Let
I1, I2, . . . be an increasing sequence of closed intervals with union Iattained. For each
positive integer k, let Pk be a polynomial constructed as in Proposition 6.2 from the
interval Ik . Then the polynomials Pk(q1/2z) ∈ F (degPk, c) have limits as in (32). In
the other direction, Proposition A.1(a) shows that we could not hope to construct poly-
nomials satisfying the conditions of Proposition 6.2 for intervals larger than Iattained.

A.2. Potential functions

Given a nonconstant polynomial f , letμ be the uniform probability measure on the set
of zeros of f , countedwithmultiplicity. Then log | f (z)|1/d equals ∫

log |w−z| dμ(w)

minus a constant, so Proposition A.1 can be reformulated in terms of μ. This suggests
a generalization in which μ is allowed to be any compactly supported probability
measure on C≥1. In fact, this generalization, formalized as Proposition A.6 below, is
equivalent to Proposition A.1.

Definition A.5 ([14, I.1]) Let � be a compact subset of C. Let M(�) be the set of
(Borel) probability measures on C with support contained in �. For μ ∈ M(�),
define the potential function Uμ : C → R ∪ {∞} by

Uμ(z) :=
∫

C

− log |w − z| dμ(w).

For a polynomial F with nonzero constant term, the polynomial f (z) := F(z)/F(0)
satisfies f (0) = 1, as required in the definition of F (d, c). Analogously, we will
consider Uμ(z) −Uμ(0).

Proposition A.6 Choose c in (0, 1), and let M (c) be the set of probability measures
μ with compact support contained in C≥1 such that

Uμ(z) −Uμ(0) ≤ − log c for all z ∈ C≤1. (33)

(a) For any μ ∈ M (c),

Uμ(r) −Uμ(0) ≤ − logM(r) for all r ∈ [0, 1], (34)

Uμ(r) −Uμ(0) ≥ − logM(−r) for all r ∈ [0,∞). (35)

(b) Let �c be the arc {z ∈ C : |z| = 1 and |z − 1| ≤ 2c}. There exists a measure
μc ∈ M (c) supported on �c such that for every r ∈ (−∞, 1],

Uμc(r) −Uμc(0) = − logM(r).

Proof that Proposition A.6 implies Proposition A.1 If Proposition A.6(a) holds, apply it
to the uniform probability measure μ on the zeros of f ∈ F (d, c) counted with
multiplicity, and apply x �→ e−x to (34) and (35) to get Proposition A.1(a).
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Now suppose in addition that Proposition A.6(b) holds. Fix r ∈ [0, 1]. For λ ∈
(0, 1), Proposition A.6(a) (and rotational symmetry) shows that for z ∈ C≤λ,

Uμc (z) −Uμc (0) ≤ − logM(λ), (36)

which is strictly less than − log c. For s ∈ C, let δs be the Dirac probability measure
supported at s. Since �c is compact, we can find subsets Sd ⊂ �c such that #Sd = d
and 1

d

∑
s∈Sd δs converges weakly to μc as d → ∞. Let pd = ∏

s∈Sd (1 − z/s), so

• pd has degree d, has all roots in C≥1, and satisfies pd(0) = 1; and
• on each compact subset of C\�c, the sequence − log |pd(z)|1/d converges uni-
formly to Uμc (z) −Uμc(0).

By (36) and uniform convergence, for any λ < 1, if d is sufficiently large, then
− log |pd(z)|1/d ≤ − log c onC≤λ, so the polynomial fd(z) := pd(λz) lies inF (d, c).
Then | fd(r)|1/d → exp(−(Uμc (λr)−Uμc(0))) = M(λr) uniformly on each compact
subset of (−∞, 1]. By repeating the argument for each λ ∈ (0, 1) to obtain fd,λ, and
then letting λ tend to 1 sufficiently slowly with d, we obtain polynomials satisfying
Proposition A.1(b). ��

The proof of Proposition A.6 occupies the rest of the appendix: (b) is proved in
Section A.4, and the two inequalities of (a) are proved in Section A.5.

If μ is supported on the unit circle, then Uμ(0) = 0 by definition. In proving
Proposition A.6(a), the following lets us assume that μ is supported on the unit circle.

Lemma A.7 Given a compactly supported probability measure μ on C≥1, there is a
probability measure μ̂ supported on the unit circle � such that

Uμ(z) −Uμ(0) = U μ̂(z) whenever |z| < 1

and

Uμ(z) −Uμ(0) ≥ U μ̂(z) whenever |z| ≥ 1.

Proof Write μ as a sum of nonnegative measures μ� + μ′, where μ� is supported on
the circle and μ′(�) = 0. Apply “balayage” ([14, Theorem II.4.7]) to μ′ to produce
μ̂′ supported on the circle, and let μ̂ = μ� + μ̂′. ��

A.3. Equilibriummeasures

Definition A.8 Suppose that � is of positive capacity, as defined in [14, (I.1.5)]; this
holds if � contains a line segment or circular arc of positive length, for example.
The energy of μ ∈ M(�) is

∫
�
Uμ(z) dμ(z). There is a unique energy-minimizing

measure μ ∈ M(�), called the equilibrium measure on �. More generally, for any
continuous function Q : � → R, there is a unique measure μ in M(�) minimizing
the weighted energy

EQ(μ) :=
∫

�

(
Uμ(z) + 2 Q(z)

)
dμ(z),
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and this μ is called the weighted equilibriummeasure for Q on �.

From now on, � denotes the unit circle, and κ : C
× → C denotes the rational

function κ(z) := z + z−1, which maps � onto the interval [−2, 2].

Lemma A.9

(a) The map μ �→ κ∗μ sending measures to their pushforwards under κ is a bijection
from the set of complex-conjugation-invariant probability measures on the unit
circle � toM([−2, 2]).

(b) For μ as in (a), we have U κ∗μ(κ(z)) = 2Uμ(z) + log |z| for all z ∈ C
×.

(c) Let�′ be a positive-capacity complex-conjugation-invariant compact subset of�.
Let α ∈ R and r ∈ R

×\�′. Under κ∗, the equilibrium measure on �′ for weight
Q(z) := α log |z− r | corresponds to the equilibrium measure on κ(�′) for weight
R(z) := α log |z − κ(r)|.

Proof

(a) The map κ induces an isomorphism from the σ -algebra of complex-conjugation-
invariant Borel subsets of � to the σ -algebra of Borel subsets of [−2, 2].

(b) For w, z ∈ C
× we have

κ(w) − κ(z) = −1

z
(w − z)(w−1 − z). (37)

The claim follows by applying − log | | and integrating against dμ(w); the
integrals of log |w − z| and log |w−1 − z| are equal since μ is invariant under
w �→ w̄ = w−1.

(c) Renaming variables in (37) yields R(κ(z)) = 2 Q(z)−α log |r |. By symmetry, the
only measures on �′ we need to consider are those that are complex-conjugation-
invariant. For such μ,

ER(κ∗μ) =
∫

�′

(
U κ∗μ(κ(z)) + 2 R(κ(z))

)
dμ(z)

=
∫

�′

(
2Uμ(z) + 4 Q(z) − 2α log |r |) dμ(z)

(by (b), since |z| = 1 on �′ ⊆ �)

= 2 EQ(μ) − 2α log |r |,

so the μ that minimizes ER(κ∗μ) is the same as the μ that minimizes EQ(μ). ��

A.4. The extrememeasure

Let c and �c be as in Proposition A.6. Let μc be the equilibrium measure on �c.
Lemma A.10 below shows that μc satisfies the requirements of Proposition A.6(b).
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Lemma A.10

(a) We have Uμc (0) = 0.

(b) The function Uμc(z) is

{
− log c for z ∈ �c,

≤ − log c for z /∈ �c.

(c) For all r ∈ (−∞, 1], we have Uμc(r) = − logM(r).

Proof

(a) This holds for any measure supported on the unit circle, by definition of the
potential.

(b) By [12, Table 5.1], the capacity of the equilibriummeasure on the circular arc�c is
c, so its energy is− log c. The inequality outside�c follows from [14, pp. 53-54].
The equality on �c follows from the fact that the points on �c are regular points
for the Dirichlet problem on C\�c, as can be checked from [14, Theorem I.4.6].

(c) By similar right triangles, the real part of either endpoint of �c is at distance 2c2

from 1, so κ(�c) = 2[1 − 2c2, 1] = [2 − 4c2, 2]. Let �(z) := c2z + 2 − 2c2,
so �([−2, 2]) = [2 − 4c2, 2]. Let μ� be the uniform probability measure on
�, so Uμ� (z) = 0 on C≤1 [14, Example 0.5.7]. By Lemma A.9(c), κ∗μc and
κ∗μ� are the equilibrium measures on [2 − 4c2, 2] and [−2, 2], respectively,
so κ∗μc = �∗κ∗μ� . Given r ∈ (0, 1], define r ′ ∈ (0, 1] by κ(r) = �(κ(r ′)).
Applying U κ∗μc = U �∗κ∗μ� yields

U κ∗μc (κ(r)) = U κ∗μ� (κ(r ′)) − log c2 (since � scales distances by c2)

2Uμc (r) + log r = (2Uμ� (r ′) + log r ′) − log c2 (by Lemma A.9(b) twice)

Uμc (r) = 1
2 log(r

′/r) − log c (since Uμ� (z) = 0 on C≤1)

= − logM(r) (algebraic computation yields r ′ M(r)2 = rc2).

To extend to (−∞, 1], observe that Uμc (r) and − logM(r) are real analytic on
(−∞, 1). ��

A.5. Proof of optimality

The idea for proving inequality (34) is that it should be a nonnegative linear com-
bination (really an integral) of the inequalities (33). The “coefficients” of the linear
combination are given by a measure να belonging to a family that we describe now.
The r = 0 and r = 1 cases of (34) follow from M(0) = 1 and M(1) = c, so we
assume r ∈ (0, 1). For α ∈ R≥0, let να be the equilibrium measure on � for weight
Qα(z) := α log |z − r |.
Lemma A.11

(a) For every α ≥ 0, there exists θ(α) ∈ (0, π ] such that supp(να) is the arc
{eit : |t | ≤ θ(α)}.

(b) The function θ is decreasing and continuous. Also, θ(0) = π and limα→∞ θ(α) =
0.
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(c) Let α be such that supp(να) = �c. Then there is a constant C such that

U να (z) + Qα(z) is

{
C for all z ∈ �c,

≥ C for all z ∈ �\�c.
(38)

Proof The literature contains similar results for an interval; to use them, we push
forward by κ . By Lemma A.9(c), κ∗να is the equilibrium measure on [−2, 2] for
weight Q1(z) := α log |z − κ(r)|.
(a) We need to prove that supp(κ∗να) = [2 cos(θ(α)), 2] for some θ(α) ∈ (0, π ].

Pushing forward κ∗να by z �→ 2 − z gives the equilibrium measure on [0, 4] for
weight Q2(z) := α log |κ(r) − 2 + z|. The function

x Q′
2(x) = αx

κ(r) − 2 + x

is increasing on [0, 4], so [14, Theorem IV.1.10(c)] implies that the support is an
interval. The corresponding interval for κ∗να is contained in [−2, 2], andmust con-
tain 2 since otherwise we could translate the measure right to reduce the weighted
energy.

(b) By [14, Theorem IV.1.6(f)], supp(να) is decreasing and continuous,1 so θ is too.
Since ν0 is the uniformmeasure on�, we have θ(0) = π . For fixed ε > ε′ > 0, if
κ∗να has anymass to the left of 2−ε, redistributing it according to the equilibrium
measure on [2−ε′, 2] increases the energy by O(1) but decreases the contribution
from the weight by at least a positive constant times α, so if α is sufficiently
large, κ∗να cannot have such mass; in other words, supp(κ∗να) ⊂ [2 − ε, 2] for
sufficiently large α. This holds for every ε, so limα→∞ θ(α) = 0.

(c) The number α exists by (b). Let C be the modified Robin constant for Qα [14,
p. 27]. By [14, Theorem I.1.3(d,f)], (38) holds outside a zero-capacity subset of
�. On the other hand, the points in � are regular points for the Dirichlet problem
in C\� by Wiener’s theorem [14, Theorem I.4.6], so [14, Theorem I.5.1(iv′)]
implies that U να is continuous on �, as is Qα . Thus (38) holds on all of �. ��

Proof of (34) By Lemma A.7, we may assume that μ is supported on the unit circle �,
so Uμ(0) = 0. Given r ∈ (0, 1), let α be as in Lemma A.11(c). Then

−Uμ(r) = 1

α

∫

�

Qα(z) dμ(z) (since Qα(z) = α log |z − r |)

≥ 1

α

(
C −

∫

�

U να (z) dμ(z)

)
(by the inequality in (38))

= C

α
+ 1

α

∫

�c

∫

�

log |z − w| dμ(z) dνα(w) (by definition of U να )

= C

α
− 1

α

∫

�c

Uμ(w) dνα(w) (by definition of Uμ)

1 Although [14, Theorem IV.1.6(f)] claims only right continuity, it can be applied with Q replaced by −Q
to get left continuity.
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≥ C

α
+ 1

α
log c (by (33) with Uμ(0) = 0).

When μ is μc, Lemmas A.11(c) and A.10(b) show that both inequalities in this
sequence are sharp, so

−Uμc (r) = C

α
+ 1

α
log c ≤ −Uμ(r).

Thus Uμ(r) −Uμ(0) = Uμ(r) ≤ Uμc (r) = − logM(r), by Lemma A.10(c). ��
Proof of (35) For β ∈ R≥0, let ν′

β be the equilibrium measure on � for weight
Rβ(z) := − β log |z + r |. As in Lemma A.11, there exists β > 0 and a real con-
stant D such that supp(ν′

β) = �c and

U ν′
β (z) + Rβ(z) is

{
D for all z ∈ �c,

≥ D for all z ∈ �\�c.

Wemay replaceμ by the μ̂ given by LemmaA.7, which implies thatUμ(r)−Uμ(0) ≥
U μ̂(r) for every r ∈ [0,∞). The rest of the proof is entirely analogous to the proof
of (34). ��
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