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Abstract

Given a prime power g and n > 1, we prove that every integer in a large subinterval
of the Hasse-Weil interval [(,/q — )2, Vg + 2] is #A(F,) for some ordinary
geometrically simple principally polarized abelian variety A of dimension n over ;.
As a consequence, we generalize a result of Howe and Kedlaya for F, to show that for
each prime power ¢, every sufficiently large positive integer is realizable, i.e., #A(IF,)
for some abelian variety A over [F;. Our result also improves upon the best known
constructions of sequences of simple abelian varieties with point counts towards the
extremes of the Hasse—Weil interval. A separate argument determines, for fixed n,
the largest subinterval of the Hasse—Weil interval consisting of realizable integers,
asymptotically as ¢ — oo; this gives an asymptotically optimal improvement of a
1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if
g < 5, then every positive integer is realizable, and for arbitrary g, every positive
integer > ¢3v71°24 is realizable.

Mathematics Subject Classification Primary 11G10; Secondary 11G25 - 11Y99 -
14G15 - 14K15 - 31A15

1 Introduction

1.1 Orders of abelian varieties over a finite field

By work of Weil (a consequence of [19, pp. 70-71] and [20, pp. 137-138], generalizing
[4, p. 206]), if A is an abelian variety of dimension n over a finite field I, then #A(IF)
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lies in the interval
n n
[(q—2q1/2+1) : (q+2q1/2+1) ] )

We prove an almost-converse (compare (1) and (3)):

Theorem 1.1 Fix a prime power q. Let T(x) = x +~/x2 — 1. Let I be a closed interval
contained in

Luained := (1(q/2 — ¢"* +3/2), ©(q/2+q"* = 1/2)). 2)

For n sufficiently large, if m is a positive integer with m'/" € I, then there exists an
n-dimensional abelian variety A with#A(F,;) = m. Moreover, A can be chosen to be
ordinary, geometrically simple, and principally polarized.

We prove Theorem 1.1 in Sect. 7.

Corollary 1.2 Fix a prime power q. Then, for n sufficiently large, every integer in the
interval

[(q—2q”2+3—q_l)n, <q+2q”2—1—q‘l)n] 3)

is #A(IFy) for some ordinary geometrically simple principally polarized abelian vari-
ety A of dimension n over I,.

The interval (3) in Corollary 1.2 contains [¢", ¢"*']if n is large enough, so Corol-
lary 1.2 implies the following:

Corollary 1.3 Fix a prime power q. Every sufficiently large positive integer is #A(IF ;)
for some ordinary geometrically simple principally polarized abelian variety A over
F,.

Corollary 1.3 answers a question of Howe and Kedlaya, who proved that every
positive integer is the order of an ordinary abelian variety over F> [7, Theorem 1]. For
effective versions, see Sect. 1.5.

Remark 1.4 Marseglia and Springer refined [7] to prove that every finite abelian group
is isomorphic to A(IF,) for some ordinary abelian variety A over I, [11]. Our Corol-
lary 1.3 combined with [11, Proposition 2.7] implies that for any fixed g, every cyclic
group of sufficiently large order is isomorphic to A(F,) for some ordinary abelian
variety A over [Fy.

Throughout, p denotes the characteristic of IF,.
Remark 1.5 Theorem 1.1 can be extended to produce non-ordinary abelian varieties.
First, define the p-rank of an n-dimensional abelian variety A over I, to be the integer
dime A[p](Fq) in [0, n]. For example, A is ordinary if and only if the p-rank is n.
Then Theorem 1.1 holds with “ordinary” replaced by “of prescribed p-rank r” for any
r € [0, n], provided that when r = 0, we assume m = 1 (mod p); see Remark 5.9.

Remark 1.6 It may be that Theorem 1.1 holds for an interval larger than Iy ,ineq. There
is a largest open interval /iy containing g for which Theorem 1.1 holds.
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Abelian varieties of prescribed order over finite fields 1169

1.2 Extreme point counts for simple abelian varieties

Other authors have studied the extreme values of #A(IE‘q)l/ dim A" without trying to
realize every order in between. Following [9], let A, be the set of simple abelian
varieties over [, up to isogeny and consider

Lsimple := [lim inf #‘#A(Fq)l/dim"‘7 lim sup #A(Fq)l/dim A].
aed, AeA,

(If one did not require simplicity and take lim sup and lim inf, then for square g the
minimum and maximum would be achieved by elliptic curves of order ¢ +2¢'/% + 1
and their powers.) Then

Lattained € Tirue € Tsimple S Iweil :=[g — 2‘]1/2 +1, g+ 2q1/2 +11.

Aubry, Haloui and Lachaud [1, Corollaries 2.2 and 2.14] and Kadets [9, Theorem 1.8]
found inner and outer bounds finner, Zouter fOr Isimple:

[0 124"21 43, g+ 124" = 1= g7 | < Iympe € [4 = 12021+ 2.9+ 124" (@)

Our inner bound Iyained for Isimple improves upon Iipper, but careful consideration
shows that Kadets’s argument yields a better result than he claimed, an inner bound
matching our Iyiained When ¢ is a square.

The following diagram shows Iytained C louter C Iweil, bounded by open dots, solid
dots, and vertical bars, respectively. The endpoints of /irue and Isimple are unknown,
but they lie somewhere in the (closed) dashed intervals.

______________ -
Lyained

‘ q—12¢'71+2 q+2¢""
L J

q-2q"7+1 q+2¢"7+1

1.3 Strategy of proof

Givenan abelian variety A over the finite field IF;, let f4 (x) € Z[x] be the characteristic
polynomial of the g-power Frobenius acting on a Tate module Ty A. Then #A(FF;) =
fa(1). Honda-Tate theory implies that for f € Z[x], we have f = f4 for some
ordinary n-dimensional abelian variety A over I, if and only if f is monic of degree
2n with complex roots o1, &1, . . . , &y, &, satisfying |«; | = ¢ 172 and p does not divide
the coefficient of x". Therefore, as in [7], we need to find a polynomial f satisfying
these conditions with a prescribed value of f(1).

One ingredient that lets us go beyond [7] is a lemma more general than [2,
Lemma 3.3.1] for constructing polynomials whose roots lie on the circle |z| = g'/?
(Lemma 3.1). Using this lemma alone, we can give a quick proof of Corollary 1.3, if
we omit “geometrically simple” and “principally polarized”: see Sect.4.

To force A to be geometrically simple and principally polarized, we prove that it
suffices to impose certain congruence conditions on the coefficients of f (Proposi-
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1170 R.van Bommel et al.

tion 5.8); unlike [2, Lemma 3.3.1], our Lemma 3.1 is robust enough to permit a wide
enough range of values f (1) even when such congruence conditions are imposed. To
prove Theorem 1.1, we start with rescaled Chebyshev polynomials similar to those in
[9] (Proposition 6.2), but we improve on [9] by temporarily allowing non-integral real
coefficients, and later making adjustments to make the coefficients integral while pre-
serving f (1) and the bounds needed to apply Lemma 3.1. To obtain the widest interval
of realizable values, we must adjust differently in three different ranges of exponents,
and the adjustments do something more elaborate than changing one coefficient at a
time; see Sect.7.

Although we do not know if the bounds in Theorem 1.1 are sharp, Appendix A
shows that the rescaled Chebyshev polynomials are asymptotically optimal for our
method.

1.4 Large q limit

So far we have discussed the possibilities for #A(IF;) for an n-dimensional abelian
variety over a fixed finite field F,, as n — oo. We also obtain a sharp asymptotic for
the possibilities for fixed n as ¢ — oo:

Theorem 1.7 Fixn > 3. Let Ay = 2n — ,/ nzT"l Then the largest interval in which

every integer is #A(F,) for some n-dimensional abelian variety A over F, has the
form

47 = 214" +0@" ), g" +3ag" P + o(g" )] )

as q — oo through prime powers.

Remark 1.8 The interval (5) is a fraction A1 /(2n) of the Hasse—Weil interval, approx-
imately.

Remark 1.9 Forn = 1,if ¢ is prime, then every integerin [¢ — 2¢'/?>+1, g4+24¢'/*+1]
is#A(IF,) for some elliptic curve A over . This fails for g = p® with e > 2 because
of Remark 2.2 below.

Remark 1.10 For n = 2, Theorem 1.7 holds if ¢ tends to co through primes only.
If instead ¢ tends to oo through non-prime prime powers, then the constant A1 = 2
(asymptotically 50% of the Hasse—Weil interval) must be replaced by A :=4 — 2/2
(about 29% of the Hasse—Weil interval); see Remark 8.5.

Remark 1.11 If we allow only ordinary abelian varieties, then Theorem 1.7 remains
true for n > 3, as the proof will show, but for » = 2 one must use A; in place of A1,
even if g is prime.

Remark 1.12 DiPippo and Howe proved a result implying that for any n > 2, all
integers in an interval of the form (5) with A replaced by 1/2 are realized by ordi-
nary abelian varieties [2, Theorem 1.4]. Thus Theorem 1.7 and Remark 1.11 give an
asymptotically optimal improvement of their result.

Theorem 1.7 will be proved in Sect. 8.
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Abelian varieties of prescribed order over finite fields 171

1.5 Effective bounds

The polynomial constructions we used to prove Theorems 1.1 and 1.7 are difficult to
analyze explicitly for specific values of ¢ and n, even when ¢ = 3. In Sect. 9, we give
another construction, and this one, combined with some computations with rigorous
error bounds, will allow us to prove the following theorem.

Theorem 1.13 Let g be a prime power.

(a) Foreach q <5, every positive integer is #A(Fy) for some abelian variety A over
F,.

(b) For arbitrary q, every integer > q3¥11924 js #A () for some abelian variety A
over IF,.

Remark 1.14 Theorem 1.13(a) is best possible: As remarked in [7], if ¢ > 7, then 2
lies outside the union of the Hasse—Weil intervals (1).

Remark 1.15 Theorem 1.13(b) is best possible too, except for the constant 3, which
we have not attempted to optimize. It becomes false for large ¢ if 3 is replaced by any
number § < 1/4, because if n = (8 + 0(1)),/q log g, then

(ﬁ_ 1)2(n+l) ﬁ_ 1
log 1 7 _ 1)+ 2nl
og WD ogg +o(l)+ nog«/q_'_1
=1logq +o(1) +2(8 + o(1))(¢'*log ) (=2~ "% + o(g™"))
=(1—-456+o0(1))logg,

which means that there is a large gap between the nth Hasse—Weil interval and the
(n 4+ 1)st.

In Sect.9, we will also prove the following remarks.

Remark 1.16 Suppose that we require A to be ordinary. Both statements in Theo-
rem 1.13 remain true, except that when ¢ = 4 one must exclude order 3. (That 3 over
IF4 must be excluded follows from [9, Theorem 3.2].)

Remark 1.17 For g = 7, the only positive integers not of the form #A (IF;) are 2, 14,
and 17. If we require A to be ordinary, then 8 and 73 are the only additional integers
that must be excluded.

Remark 1.18 Suppose that we require the characteristic polynomial of Frobenius f4
to be squarefree. Then all the claims in this section remain true except that forg = 7,
the integer 16 is no longer realized.

2 Honda-Tate theory

Throughout the paper, if f is a polynomial, fli denotes the coefficient of its degree i
term.
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1172 R.van Bommel et al.

Theorem 2.1 (Honda-Tate, [5, 15, 16]) A polynomial f € Z[x] is the characteristic
polynomial of an ordinary abelian variety A of dimension n over ¥ if and only if

(a) f is monic of degree 2n;
(b) all complex roots of f have absolute value ¢'/?; and

) ptfin.

Remark2.2 Let v: Q, — Z U {oo} be the p-adic valuation. If in Theorem 2.1 we
replace (c) by both of the conditions

(c1) the multiplicity p of each Q-irreducible factor g in f is such that
nv(g0)/vig) € Z,

(c2) the multiplicity of ¢'/? as a zero of f is even (possibly 0),

then we obtain the criterion for f to be the characteristic polynomial of a not-
necessarily-ordinary abelian variety A of dimension n over F,. If g is prime, then
(c1) holds automatically.

Proof Assummarized in [18, Chapter 2], if A is a simple abelian variety over IF,, then
fa = P¢ for some monic irreducible polynomial P € Z[x] whose complex roots
have absolute value ql/ 2 and some ¢ > 1; conversely, given such P, there exists a
unique e > 1 such that P¢is f4 for a simple abelian variety A over IF,. Moreover, the
last paragraph of [18, p. 527] describes e as the least common denominator of certain
rational numbers i,,, together with 1/2 if P has a real root. For m > 1, the polynomial
P™ satisfies (c1) if and only if m is a multiple of the denominator of v(g(0))/v(g) for
each Q,-irreducible factor g of P; these ratios match Waterhouse’s second definition
of i,,. For f of even degree, (c,) is equivalent to the multiplicity of —g'/? as a zero
being even (since the roots # ¢ '/? come in complex conjugate pairs), so P”" satisfies
(cp) if and only if P has no real roots or m is even. Thus P satisfies (c1) and (cp) if
and only if e|m. This explains Remark 2.2.

Now suppose that (a), (b), (c) hold. Extend v to @p =~ C. The theory of Newton
polygons implies that f has (atleast) n roots « of valuation 0, counted with multiplicity.
Their complex conjugates @ = ¢/« are n roots of valuation v(q). These account for
all roots. For each g, the value g(0) is a product of roots, so v(g(0))/v(g) € Z, so (cy)
holds. Also, the multiplicity of 4-¢'/2 is 0, so (c2) holds. By the previous paragraph,
there exists an abelian variety A over IF, with f4 = f. Finally, for an n-dimensional
abelian variety A over [F, the Newton polygon definition of ordinary shows that if A

is ordinary if and only if p 1 ff[‘"]. This explains Theorem 2.1. O

3 Roots on a circle

The following notation will be used throughout the paper:
e Forr > 0, let C<, be the closed disk {z € C: |z| < r}.
e LetD ::(qufl/Z.

e For

h(z) =ap+ajz+---+az° €R[z]
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Abelian varieties of prescribed order over finite fields 1173

with s < 2n, define

h(x):=x>"h(1/x) + q"h(x/q)
:a0x2n +a1x2n—l _i_.“_i_axen—s

+¢"Sagx* + -+ ¢" larx + q"ao,

which is a polynomial of degree < 2n (the notation implicitly depends on a choice
of n).

To prove Theorem 1.1, we will eventually need 11 for some polynomials % of degree
s > n, in which case the two ranges of exponents of x overlap.

Lemma 3.1 Let h(z) € R[z] be a polynomial of degree < 2n such that h is nonvan-
ishing on D. Then all complex roots of h(x) have absolute value /2.

Proof Since & is nonvanishing on D, the winding number of /(z) around 0 as z goes
around the boundary |z| = g~ Y% is 0. So the winding number of x"&(1/x) as x goes
around the circle |x| = ¢!/? is n. Thus the real-valued function 2 Re(x*h(1/x)) =

x"h(1/x) + q”x’”h(x/q) on the circle |x| = ¢'/2 crosses 0 at least 2n times. Multi-
plying by x" shows that h(x) has at least 2n roots on the circle |x| = g'/%. It cannot
have more than 2n roots, since deg h<2n. O

Remark 3.2 1fh(z) = 1+ajz+- - -+a,z" with Y} i, la;lg~"/*> < 1,thenh(D) C {z €
C:lz—1| < 1},500 ¢ h(D). Thus Lemma 3.1 subsumes [2 Lemma 3.3.1], which
appears also (with a different proof) as [7, Lemma 2]. The feature of Lemma 3.1 that
allows us to obtain stronger results is that {& : 0 ¢ h(D)} is closed under multiplication,
a natural property given that one can take products of abelian varieties.

Remark 3.3 The polynomials ﬁ(x) produced by Lemma 3.1 are squarefree.

Remark 3.4 Applying Lemma3.1to 2 (rx) asr — 1~ shows that the hypothesis could
be weakened to assume only that % is nonvanishing on the interior of D.

For use in the proof of Lemma 7.1, we record the following result.

Lemma 3.5 Let R € C[z] be a polynomial with no zeros inside D. Then
IRMD| < ¢“EO2IR(1/g). ©)

Proof By multiplicativity in R, we may assume that R(z) = z—w forsome w € C with
lw| > ¢~ /2. We must prove |(1—w)/(1/g —w)| < g'/?. The Mdbius transformation
M(z):=( —z)/(1/q — z) maps the circle |z| = ¢~ '/? to a complex-conjugation-
invariant circle passing through M (¢ ~'/?) = +¢'/2, and it maps the exterior to the
interior since M (00) = 1. O
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1174 R.van Bommel et al.

4 Abelian varieties of all sufficiently large orders

As promised in the introduction, we now give a quick proof of Corollary 1.3 with
“geometrically simple” and “principally polarized” removed.

Theorem 4.1 Fix a prime power q and a closed interval I C R~g. For n > 1, each
integer m € q" I is #A(F,) for some ordinary abelian variety A of dimension n over
F, whose characteristic polynomial is squarefree.

Proof Fork > 1,let J be the set of power series of the form 1+akzk+ak+1zk+l +---
with integer coefficients in [—¢ /2, ¢ /2]. Choose k such that 1 — " _, lg/21q~ " >
1/2; then |j(w)| > 1/2 forall j € J; and w € D. Writing real numbers in base g
using digits in [—¢q /2, g /2] shows that {j(1/q) : j € Ji} contains a neighborhood of
1,say[1—e, 14€]forsomee > 0. Choose N suchthat[(1—€)V, (1+€)V] D I. Then,
given m € ¢" I, we may choose j € J; with j(1/q)N = m/q". Write j¥ = ho + hy
such that ig € 1 +7%7[z) is of degree < n,and h| € ZP7Z[[z]]. Let E = m —71\0(1).
Let

h=ho+ (E/2Z" + 5" = (g + 1)/2)z"), @)
where s € {0, 1} is chosen so that p does not divide the coefficient of x” in
h=ho+ Ex" +s@x"t — (g + Dx" +gx" 1.

Then 7 is a monic polynomial of degree 2n in Z[x] and ;z\(l) = 71\0(1) + E = m. The
conclusion follows from Lemma 3.1, Theorem 2.1, and Remark 3.3 if we can show that
h is nonvanishing on D. We will do so by estimating the error in the approximations
h~ ho ~ jN.

Since j has bounded coefficients, induction on N shows that |(j V)"l = 0N —1)
as r — oo, uniformly for j € Ji. Thus

o] = >N <Y 00V = omV),
r=0 r=0
/@l =| 3 Mg < 37 00N heT = 0wM g,

r=n+1
lhi(w)| = O(nN_lq_(”H)/z) for all w € D, similarly, and

|E| = Im — ho(D)| = 1¢" j(1/9)™ — (¢"ho(1/q) + ho(1))]
< |g"m (/)| + lho(1)| = O(n™).

r=n+1

Substituting g = j¥ — hy into (7) yields
h(z) = j@N —hi(@) + (E/D" + s = (g + D/2)"),
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Abelian varieties of prescribed order over finite fields 1175

For w € D, we proved | j(w)| > 1/2 and |k (w)| = O(nV~1g="*tD/2) 50
)] 227N = 0N "lg= V) — 0N — 0@ g7 > 0

if n is large enough. O

By [15, Theorem 2c], an abelian variety A over IF; has a squarefree character-
istic polynomial if and only if its endomorphism ring Endr, A is commutative. So
Theorem 4.1 implies the following.

Corollary 4.2 Fix a prime power q. Every sufficiently large positive integer is #A(F,)
for some ordinary abelian variety A over IFy with commutative endomorphism ring.

Proof Apply Theorem 4.1 with I = [1, q]. O

5 A congruence condition forcing geometric simplicity and the
existence of principal polarizations

The goal of this section is Proposition 5.8, which provides a congruence condition on
the characteristic polynomial of an abelian variety A over IF, which guarantees that
A is geometrically simple and isogenous to a principally polarized abelian variety.
Moreover, the congruence condition will be compatible with prescribing #A (I ). The
lemmas in this section are used only to prove Proposition 5.8.

Lemma 5.1 For every prime power q, prime £ > 7 not dividing q, and integer n > 1,
there exists j(x) € Fy[x]suchthat j(x) and x" j(q/x) are relatively prime irreducible
polynomials of degree n not vanishing at 1.

Proof If n = 1, choose j(x) = x —a wherea € Fy, — {0, 1,9, £, /q}. If n = 2, let
Jj (x) be the minimal polynomial of an element « € IE‘ZZ — I} such that o # ¢/ and
ol # g/a; there are at least (£2 — €) —2 — (£ 4+ 1) > 0 such elements a.
Now suppose that n > 3. Let « be a generator of the multiplicative group F;,. Let
Jj (x) be the minimal polynomial of « over Fy. If j(x) and x" j(g/x) are not relatively
prime, then at' = q/oforsomea € {0,1,...,n—1}. Then aE=DEHD g l=1
in Fgn, so £" — 1 divides (£ — 1)(€* + 1), contradicting 0 < (£ — 1)(£* +1) < £" — 1.
(]

Call a degree 2n polynomial f over a ring g-symmetric if fli1 = g~ f27=il for
i =0,...,n—1.0ver aring in which g is not a zerodivisor, f is g-symmetric if and
only if ¢" f(x) = x?" f(q/x). By work of Weil, the characteristic polynomial of an
abelian variety over IF; is g-symmetric.

Lemma5.2 Let g be a prime power, let £ > T be a prime not dividing q, letn € Z>1,
and let m € 7. Suppose that dy, . . ., d, are positive integers summing to n such that
1 appears exactly once or twice among dy, ..., d, and every other positive integer
appears at most once. Then there exists a monic q-symmetric polynomial g(x) € Fy[x]
such that
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1176 R.van Bommel et al.

e g(1) =m mod ¢,

e the roots of g form n distinct multiset pairs {«, q/a}; and

e the Frobenius element of Gal(F, /Fy) acts on these n pairs as a permutation con-
sisting of cycles of lengths dy, . . ., d;.

Proof For each i with d; > 2, let j;(x) be the polynomial of degree d; provided
by Lemma 5.1, and let g;(x) = ji(x) - xd"ji (g/x). For each i with d; = 1, let
gi(x) = x* —aix + q for some a; € [y to be determined. Each g; is g-symmetric.
Since each j; is irreducible, the g-symmetric polynomial g(x) := [];_, gi(x) gives
the correct cycle type, and its irreducible factors are distinct, except possibly for the
factors of the g; for which d; = 1.

If exactly one d; equals 1, then there is a unique choice of @; in I, that makes
g(1) = mmod £. If d; and d; both equal 1 (with i # j), then there are at least
£ — 1 choices for (g;, a;) that make g(1) = m mod £ and at most two of these satisfy
a; = aj; thus we can ensure g(1) = m mod £ while making g separable. O

Lemma 5.3 For every prime power q, integer m, prime £ > q +2./q + 1, and integer
n > 8,/q + 5, there exists a monic q-symmetric polynomial g(x) € F¢[x] of degree
2n such that g(1) = m mod £ and g(x) has no factor of the form x> — ax + q with
a € Zand|a| <2./q.

Proof Since £ > g + 2,/q + 1, none of the polynomials x? — ax + g vanish at
1 mod £. Lagrange interpolation provides a monic degree n polynomial j(x) € Fy[x]
such that j(0) = 1, j(1) = m, j(g) = 1, and j(o) = 1 for every root o € F, of
the quadratic polynomials x> — @x + ¢ (the number of values to specify is at most
3424 /q+ 1) <n). Take g(x) :=j(x) - x" j(q/x). O

Lemma5.4 Let n > 3. A subgroup G of S, containing an (n — 1)-cycle,
an (n — 2)-cycle, and a 2-cycle is either S, or the stabilizer S,_1 of the fixed point of
the (n — 1)-cycle.

Proof Without loss of generality, the fixed point of the (n — 1)-cycle is n. If G <
Snu—1,then G actson {1, 2, ..., n — 1} transitively (because of the (n — 1)-cycle) and
primitively (because of the (n — 2)-cycle); a primitive subgroup of S,_; containing a
2-cycle is the whole group S, _1 [8, Theorem 8.17]. Otherwise G acts on {1, ..., n}
transitively (because the orbit of 1 is larger than {1,2,...,n — 1}) and primitively
(because of the (n — 1)-cycle), and then the 2-cycle forces G = Sj,. O

Lemma5.5 Let n > 5. Let A be an n-dimensional abelian variety over F,. Write
fa(x) = x"R(x 4+ q/x) for some monic degree n polynomial R(x) € Z[x]. If the
Galois group of R is S,, or the stabilizer S,_1 of a point, then A is either geometrically
simple or a product of geometrically simple abelian varieties over ¥, of dimensions
n—1and]l.

Proof If A isisogenousto A| x Ay over IF,, then R factors correspondingly into Ry R>.
Since R is either irreducible or a product of irreducible polynomials of degrees 1 and
n — 1, the abelian variety A is either simple or a product of simple abelian varieties
of dimensions 1 and n — 1. Let A’ be the simple factor of dimensiond € {n,n — 1},
and define R’ accordingly.
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Abelian varieties of prescribed order over finite fields 1177

Suppose that A" is not geometrically simple. Let » > 1 be such that A = is not
q

simple. Then £, has roots , 8 € Q giving rise to distinct roots & + g /a # B+ q/B
of R’ such that o = B". Now B = ¢« for some root of unity ¢. Thus the extension
Q(a, ¢) D Q(a + g/a), being the compositum of two abelian extensions, is abelian,
so its subfield Q(a + g /«, B+ q/pB) is Galois over Q(« + g /), contradicting the fact
that S;_5 is not normal in S;_. 0O

Lemma 5.6 For every prime power q = p°, prime A > 7 such that q is a nonzero
square modulo A, and integers n > 5 and m, there exists a monic q-symmetric
degree 2n polynomial g(x) € (Z/A\*Z)[x] with g(1) = m mod A> such that if A
is a simple abelian variety over Fy with fa mod A2 equal to g, then the isogeny class
of A contains a principally polarized abelian variety.

Proof By Hensel’slemma, we can choose s € Z such that the discriminant of xZ—sx+
g is 0 mod A but nonzero mod A%. Replace s by —s, if necessary, tomake g +1—s % 0
(mod 1). Choose a monic irreducible polynomial S(x) € F;[x] of degree n — 3.
Choose a, b € T, such that the polynomial R:=(x —s)(x —a)(x —b)S(x) € Fy[x]
is separable and R(g + 1) = m mod A; this amounts to choosing two elements of I;,
(namely, g +1—a and g + 1 — b) with prescribed product, not equal to g + 1 —s or each
other, which is possible because A—1 > 4. Let R € (Z/ 227)[x] be alift of R such that
R(s) =0and R(g + 1) = m in Z/A2Z. Let g(x) = x" R(x + q/x) € (Z/A\*Z)[x].
Suppose that A is a simple abelian variety over IF;, such that 4 mod A2 1is g. Since A
is simple, f4 is a power of an irreducible polynomial [18, Chapter 2], but its reduction
g mod A has some simple roots (for example, the roots of X" 3S(x + ¢/x)), so fa
must be irreducible, of degree 2n. Let m € Q be a root of fa.Let K = Q(r) and
KT =Q(r +¢q/m), so K isa CM field and K is its maximal totally real subfield.
Since the minimal polynomial of 7 + ¢/ reduces to R, the extension K+/Q is
unramified above A. On the other hand, K /K™ is ramified at the prime above A
corresponding to the root s of g, because the discriminant of x> — sx + ¢ has odd
valuation 1. By [6, Theorem 1.1], the isogeny class of A contains a principally polarized
abelian variety. O

Lemma 5.7 For any prime power q = p¢, there exists a prime A such that7 < A < ¢>
and q is anonzero square mod \.

Proof We will choose A to be a prime factor of u? — g for some integer u in [Va —
30, /q + 30] chosen so that u> — q # %1 and u?> — ¢ is not divisible by 2, 3, or
5. There are at least six integers u in [,/g — 30, ,/g + 30] such that u? — g is not
divisible by 2, 3, or 5. At most two of them satisfy u? — g = =£1; among the other four
are two differing by 30, and one of them is prime to p. Thus u can be found. Then
A#2,3,5 p,and A < (/g + 30)2 — g, which is less than q3, except for g < 11 for
which we instead compute an explicit A. O

Proposition 5.8 Given a prime power q, there exists a positive integer L such that
for any integers n > 1 and m, there exists a monic q-symmetric polynomial
g(x) € (Z/LZ)|x] of degree 2n with g(1) = m mod L such that any n-dimensional
abelian variety A over IFy, whose characteristic polynomial reduces modulo L to g(x)
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is ordinary, geometrically simple, and isogenous to a principally polarized abelian
variety. Moreover, we may choose L < q*.

Proof Let A beasinLemma5.7.Let L = pkzéoﬂlﬁzﬁg, where p is the characteristic,
and p, A, £, ..., £3 are distinct primes such that &y > ¢ +2,/g + 1 and ¢; > 7
fori = 1,...,3. Suppose that n > 8,/q + 5. Let y(x) € F,[x] be a monic g-
symmetric polynomial of degree 21 such that y (1) = m mod p; add x"*! — x", if
necessary, to make ™ % 0 mod p (here g-symmetry means only that il = 0 for
i <n).Letgy(x) € (Z/)\QZ) [x] be as in Lemma 5.6. Apply Lemma 5.3 to produce a
polynomial go(x) € Fy,[x]. Apply Lemma 5.2 to produce polynomials g; (x) € Fy,[x]
fori =1, 2, 3 corresponding to the partitions

e (n—1,1)
e (n—2,1,1)
e n—3,2,1)ifniseven;and (n — 4,2, 1, 1) nis odd,

respectively. Let g € (Z/LZ)[x] be the monic g-symmetric polynomial of degree 2n
reducing to y, the g;, and g;.

Suppose that A is an n-dimensional abelian variety over IF;, such that f4(x) mod
L = g(x). Write fa(x) = x"R(x + g/x). Let G < §, be the Galois group of R,
which encodes the action of Gal(Q/Q) on the pairs {, g/} of roots of F. By choice
of g1, g2, g3, the group G contains permutations oy, 02, 03 whose cycle types are
given by the partitions above. Raising o3 to the power n — 3 or n — 4, whichever is
odd, produces a 2-cycle. By Lemma 5.4, G is S, or S,—1. By Lemma 5.5, A is either
geometrically simple or a product of geometrically simple abelian varieties over I,
of dimensions n — 1 and 1. In the second case, f4(x) would have a factor x2 — ax +g¢
for some integer a with |a| < 2./q, which is ruled out by the choice of go. Thus A
is geometrically simple. Since !l £ 0 mod p, A is ordinary. By Lemma 5.6, A is
isogenous to a principally polarized abelian variety.

In proving L < ¢23, the worst case is ¢ = 2, in which case we take
L=2-7>-11-13-17-19 < 2%, o

Remark 5.9 1t is not hard to adapt Proposition 5.8 for the purpose of constructing
abelian varieties of prescribed order that have prescribed p-rank. Namely, one can
prove that it suffices to impose congruences modulo pg? on the coefficients of a g-
symmetric monic degree 2n polynomial f to guarantee that its Newton polygon is the
lowest Newton polygon corresponding to p-rank r and that its segments of slope in
[—1/2, 0] correspond to Q,-irreducible factors, in which case the other segments do
too by g-symmetry, so that (c1) in Remark 2.2 is satisfied; moreover one can make
these congruences compatible with £ (1) = m (mod pg?), provided that, in the case
r =0,one hasm =1 (mod p). This last hypothesis is necessary: if A has p-rank 0,
then all roots of f4 have positive p-adic valuation, so #A(F,) =1 (mod p).
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6 Chebyshev polynomials

Choose the branch of v/z2 —1 on C — [—1, 1] that is z + o(1) as z — oo. Let
7(z) = z + v/z% — 1. Define the dth Chebyshev polynomial

Ti(z) = % ((z +vz2 - l)d + (z — vz - 1)d> =@ +1@/2. 8

Lemma 6.1 For a suitable choice of dth root, the functions T;(z)"/?/z and t(z)/z
extend to holomorphic functions on PY(C)\[—1, 11, and T;(z)"/? )z — ©(2)/z uni-
formly on any compact subset of that domain as d — ©o.

Proof Since t is nonvanishing with a simple pole at oo, the maximum modulus prin-
ciple applied to 1/t shows that |7(z)| is minimized as z approaches [—1, 1], in which
case |1(z)| — 1. Thus |z(z)| > 1 on PY(C)\[—1, 1], s0 Ty(z) # 0on C — [—1, 1].
Also, as 7 — 00, we have Ty(z) = z¢ + (lower order terms), so we can choose a dth
root with T;(z)'/¢ = z 4+ (lower order terms). The uniform convergence claim now
follows from T;(z)/z¢ = 3274 (z () + t(2)79). o

Recall from Sect. 3 that D is the closed disk C_,-1/2 of radius g /2.

Proposition 6.2 Let I be a closed interval contained in Iyinea (see (2)). Then for
even d > 1, there exists a degree d polynomial P(z) € R[z] such that

(@ PO)=1;

(b) P is positive on R;

) |[P(w)|? > g~V forallw € D; and
) (gP(1/q)*?, qP(—1/9)*?) contains I.

Remark 6.3 In Appendix A, we use potential theory to prove that Proposition 6.2 is
optimal in the sense that it fails if Iyaineq 1S enlarged.

Proof For € > 0 to be specified later, let

€)= @2z — @"* - 1),
fa@) =272 Ty Uz 4 1/2)),
P(2) = fa((1 — e)q"*2).

(a) The leading coefficient of T/ is 2%/~ s0 f,4(0) = 2g=4/424/2=1(g1/2/2)d/2 =
land P(0) = fz(0) = 1.

(b) The roots of Ty4/2 are in [—1, 1), and 2~ 1([—1, 1)) C (-2, 2), so all the roots of
fa(z) are on the unit circle and not at +1. Thus f; does not change sign on R.
Since f;(0) > 0, the sign is positive. Thus P is positive on R.

(¢) The function (1 — e)ql/zz maps D to C<j_., so we need to prove that |fd|1/d >
g~ Y% on C<y_. First, zTy/2(£(z + 1/2))*? is the product of the polynomial
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z£(z+1/z) and holomorphic function T /> (£(z + 1/2)%/?/¢(z+1/z) on C<i—,
so Lemma 6.1 implies that

| fa @1V = g7 2 e ez + 1721 ©)

uniformly for z € C<;_.. The function z 7 (¢(z + 1/z)) is holomorphic, noncon-
stant, and nonvanishing on C_y, and it extends to a continuous function on C<;
having absolute value > 1 on the boundary, so the maximum modulus principle
applied toits inverse shows that there exists M > 1suchthat |z T (£(z+1/2))| > M
for all z € C<j_c. The lower bound on | f;| follows for d > 1.

It suffices to prove that lim,_, o+ limy_, oo ¢ P(1/q)*'¢ equals the left endpoint of
ILyttained, and likewise at the other end. In fact, (9) implies that limg_, oo g P (1/ q)z/ d
is a continuous function of € € [0, 1], so we may simply substitute ¢ = 0. Then

lim gP(1/g)*" = lim qfs(q"/***

d— 00 d— 00
=q-q V272 |Teg™V? 4 ¢
=1(q/2—q"*+3)2).

Similarly, lim._ o+ limy oo gP(=1/¢)*? = |t(—q/2 — q'* + 1/2)]
=1(q/2+4q'? - 1)2). o

7 Construction of polynomials

We now begin the proof of Theorem 1.1, using the notation introduced in Sect. 3. Let
I be a closed interval in Iyained- Let P(z) be as in Proposition 6.2 and let d = deg P;
we may assume that d > 53.

The polynomial P was optimized to have a sm/all value at 1/¢g and large value at
—1/q. Lemma 7.1 below shows that this makes P?(1) small and P(—z)”(1) large,
where b is chosen to make P? of degree close to/%n. The polynomial Q in Lemma 7.2

interpolates between P (z) and P(—z) to make Qb (1) equal a prescribed intermediate
value.

Lemma7.1 Let b = b(n) and £ = £(n) be functions of n tending to oo such that

deg

PY =2n —2¢ and ¢ = o(n). Then

PPV — qP(1/g 4 and  P(—2P()'" — qP(~1/)¥4

as n — oo. (Recall that P (1) :=q¢" P*(1/q) + P?(1), which depends on n.)

Proof We have

PP(1) = ¢"PP(1/q) + PP(1) = (¢" + O(¢"~) P*(1/q)
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by Lemma 3.5 applied to P”. Taking nth roots yields the left endpoint limit, since
£ — oocandb/n = (2n—2¢)/(dn) — 2/d. Theright endpoint limit follows similarly.
O

Choose integers £ = £(n) and b = b(n) such that £ = 4 logq n+ O(1) and
bd = 2n—2¢. The statements in the rest of this section will hold if n is sufficiently large.
Given m € Z such that m'/" € I, we want to construct an n-dimensional, ordinary,
geometrically simple, principally polarized abelian variety A with #A(F,) = m.

Lenlrlla 7.2 There exists Q(z) € 1 4+ zR[z] of degree < d such that Q is positive on
R, Q°(1) = m, and |Qw)|"/* = q='/* forallw € D = C_-112.

Proof Because n is sufficiently large, Proposition 6.2(d) and Lemma 7.1 show that
A ——
PPV, P(—P()V™) > 15 m', (10)
By the intermediate value theorem, there exists s € [—1, 1] such that the polynomial
Q@) :=P(sz) € 1 + zR[z]

satisfies Q?(HY/" = m'/". Thus Q?(1) = m. Moreover, Q is positive on R, and
[Q(w)|/? = |P(sw)|"/? > ¢g~'/4 for all w € D by Proposition 6.2(b,c). o

In the rest of this section, the implied constant in big- O notation may depend on ¢,
L,d, P,and Q, but not on n.

The polynomial Q has real coefficients. We could round them to the nearest integer
to produce a polynomial & € Z[x]and adjust the middle coefficients to make iz\(l) =m,
as in Sect. 4, but it turns out that we cannot guarantee that such an % is nonvanishing
on D, as required for Lemma 3.1. So instead we adjust the coefficients OE\Q (inside
the bth power) by only O(1/n) each to make the first d coefficients of Q integral
(and to make them satisfy the congruences in Proposition 5.8), and then, to correct the
later coefficients, we add correction polynomials designed to be small on D, because
as we go along, we need to bound the difference between Q7 and the final & to ensure
that £ is still nonvanishing on D.

Let us outline the entire construction; then, in a series of lemmas, we will prove
that the steps make sense.

Construction 7.3 Recall the choices of £ and b in the paragraph before Lemma 7.2.
Let Q € 1 + zR[z] be as in Lemma 7.2.
Let g € (Z/LZ)[x] be as in Proposition 5.8.

Let Qg = Q.

Fori =1,...,d—1linturn,leta; € [0, L/b) and Q; := Q;_1 +a;7 and h; = Qf
be such that il\l[.zn_i] € 7 and iz\?"_"] = gl?"=il (mod L).

Let é = Qu_1—cz%and hy = éb, where ¢ € R is chosen so that ﬁd(l) =m.
Define “correction polynomials” as follows:

e Fori=d,....0—1,1letk; = 7' O(z)".

b

o
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e Fori=4¢,....,.n—1,letk; =7 @(z)“, where a € Z>¢ is chosen as large as
possible such that degk; < 2n —i.
e Define k,, = 7" /2.

The definitions are so thatE is monic of degree 2n — i for all integers i € [d, n].
7. Fori =d,...,n—1,letr; € [0,L) and s;4+1 € R and h;y1:=h; + riki —
Si+1kit+1, where r; is such that ’};ﬁ"f” € Z and iz\ﬁff” = g[zn_i] (mod L), and
Si+1 1s such that ;1 (1) = m. R
8. Let A be an abelian variety over F, with fa = h,.

Lemma 7.4 The a; can be chosen as specified in Step 4, and they are O (1/n).

Proof In Step 4, once ay, ..., a;— have been fixed, 71\?"_” as a function of g; is a
linear polynomial with leading coefficient b, so a; € [0, L/b) can be found. Then
a; = O(L/b) = O(1/n). O
Lemma7.5

(@) The real number ¢ can be chosen as specified in Step 5, and ¢ is O(1/n).
(b) We have Q(l) > Oangin(l/q) > 0.
(¢) The values Q(1) and Q(1/q) are O(1).

Proof

(a) Since a; > 0, we have Qg—1 > --- > Qp = Q > 0 on R>g, so

0l (1) = Q" (1) = m. an
Let
=q% ay + ¢ Par + ..+ qag_.
Let R = Q41 — ¢’z%. Then
R() = Qa1(1) = = Q) — (¢ = Day — -+ = (1 — Dag—1 € (0, Q(D],

for large n, by Lemma 7.4, and

R(1/q) = Qu—1(1/q) — ¢ /q°

=QU/g)+aig + - +ai-1g7 ) —(@qg + - +ag1g™ )

=Q0(/q) >0,
SO
RA(1) < QP(1) = m. (12)

By (11) and (12) and the intermediate value theorem, there exists ¢ € [0, ¢] such
that (Qy—1 — cz?)?(1) = m. Moreover, c = 0(¢') = 0((d — 1)¢g*~'(1/n)) =
O(1/n).
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(b) We have O(1) = R(1) > 0 and O(1/q) = R(1/) > 0.
(c) Forw € {1, 1/q}, we have Q(w) = Q(w) + O(1/n), and Q(w) € P([—1, 1]),
an interval independent of 7. O

Lemmas 7.6 through 7.9 show that 0 is large enough on D and the corrections
are small enough that %,, is nonvanishing on D.

Lemma 7.6 We have |§(w)| > q~4* — 0(1/n) for every w € D.

Proof By Lemma 7.2, |Q(w)| > q_d/4, and |§(w)| differs from | Q(w)| by at most
lajw +--- + ag_ w1 — cwdl = O(1/n), by Lemmas 7.4 and 7.5. O

Lemma 7.7 We have k; (1) > 0 and k;(1/q) > 0.
Proof These follow from Lemma 7.5(b). O

Lemma 7.8 Ther; € [0, L) and s;+1 can be chosen as specified in Step 7, and sy is
O(Q). Fori =d, ..., L — 2, we have the more precise bound s;+1 € [0, gL].
have already been fixed, so there is a unique choice r; € [0, L) such that iz\l[-%fl_” ez
and 7111.3:117” = gl2"=il (mod L).

We seek s;+1 making the value h;+1(1) = m + ri ki (1) — si4+1 ki4+1(1) equal to m.
By Lemma 7.7,

Proof This is similar to the proof of Lemma 7.5. The value is r; plus terms that

m+riki(1) > m. (13)

Let V = ki /ki4+1 and v = max{V (1), V(1/q)}. By Lemma 7.7, k; (1) < vki41(1),
SO

m+ri ki (1) — vr; ki1 (1) < m. (14)

Now (13), (14), and the intermediate value theorem yield 5,41 € [0, vr;] € [0, vL]
making ﬁiH(l) =m.

To bound s;41, we need to bound v. The function V is 1/z, é(z)/z, or 2/z; accord-
ingly, v is g, O (1), or 2q, with the middle case following from Lemma 7.5(b,c). In
every case, v = O(1),sos;41 = O(1).Ifi e [d,€ —1),thenV =1/z,s0v = ¢, so
si+1 € [0,qL]. O

Lemma 7.9 The polynomial h,, is nonvanishing on D.
Proof By construction,
n—1

hn = O+ (riki — sipikiz),
| =d
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so it suffices to prove that

n—1 n

}",'kl' S,‘ki
> |t X | <! (135)
i=d i=d+1
on D. We claim that

'k—’ (16)

éb

a7 ifield o,
O(n=2) ifiele,n],

on D. Thecasei € [d, £) follows since k; /éb = z'. In particular, fori € [£—d/2, (),
we have |k; /Qb| < q_(z 4/2/2 — O(q_[/z) = O(n_z) From then on, changing i to
i +d/2 multiplies [ki/ 8% by [=/2/01 < q~/*/(g=4/* — O(1/m) = 1 + O(1/n)
by Lemma 7.6 (or, at the last step with i +d/2 = n, by |(z"/2)/z'| = |z29/%/2| < 1);
this happens fewer than n times, and (1 + O(1/n))* = O(1), so (16) fori € [£, n]
follows.

By Lemma 7.8 and (16), the left hand side of (15) is at most

-1 -1
> LgT ZL O™+ > qLq >+ Z o) on™?
i=d i=0 i=d+1 i=t
2Lg~d-D/2
<——> +0/n) <1
1—g 172
if n is large, since L < ¢*3 and d > 53. O

Lemma 7.10 The polynomial 7’1\,1 is monic of degree 2n. Also, 71\,1 € Z[x] and 71\,1 =g
(mod L).

Proof InSteps 4 and 7, adjusting h; to produce h; 11 does not change the coefficients of

22 =1 227~ inh;, which are integers congruent modulo L to the correspondmg
coefﬁ01ents of g; by g-symmetry, the same holds for the coefficients of 1, z, ..., z'.

Thus £, is monic and has integer coefficients congruent to the coefficients of g, except
perhaps the coefficient of z"*; actually it holds for this coefficient too since 4,,(1) is an
integer (namely, m) and h, (1) = m = g(1) (mod L). O

End of proof of Theorem 1.1

e The polynomial T is monic of degree 2n, with integer coefficients, by Lemma7.10.
e All complex roots of &, have absolute Value g'/?, by Lemmas 7. 9 and 3.1.

e The charactenstlc p does notdivide h,, ,because by Lemma 7.10, i n Vis congruent
modulo L to g1, which is nonzero modulo p, and p | L, by construction of g.

By Theorem 2 1, there exists an ordinary n-dimensional abelian variety A over

F, with f4 = h,. Then #A(F,) = fa(l) = h (1) = m. By Proposition 5.8, A
is geometrlcally s1mple and principally polarized after replacing A by an isogenous
abelian variety. O
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Fig.1 For g = 11 and g = 9, respectively, the graph shows all the points (#A(IF4), c1), where A ranges
over abelian surfaces over Fy, and ¢ = Gln=1 = f/gzn_l] with n = 2; see (17)

8 Large g limit

In this section, we prove Theorem 1.7, which for fixed n and large g determines the
largest subinterval of the Hasse—Weil interval in which all integers are realizable as
#A(F,) for an n-dimensional abelian variety A over IF,. Throughout this section, in
big- O notation, the implied constant depends on n but not g.

First let us explain the idea. For any n-dimensional abelian variety A over I, we
have f4(x) = x" G(x + ¢/x) for some polynomial

2

Gx)=x"+c1x" " +ex" 2+ 4y € Z[x] (17)

all of whose roots lie in [—2q1/2, 2q1/2]. Then ¢; = 0(qi/2), and
#AF) = fa(D=G@+D =@+ D" +ci(g+ D" +ealg+ D" 24+

For each integer ¢ in the possible range [—anl/ 2 2nq1/ 21, let I, be the smallest
interval containing the possible values of c2(g + 1)~ + - - - 4 ¢,,; then we prove that
the ranges for c3, ..., ¢, are large enough that all integers in /., are realized, possibly
ignoring a negligible fraction of the interval at the ends. The interval /., has width
0(g"~") and does not change much when ¢ is incremented by 1 — its endpoints move
by 0(¢""). The big-O constant matters: for ¢ close to the extremes of its range (with

|c1| greater than about <2n -/ %) g'/?), it turns out that I, has length significantly

less than ¢!, so that there is a gap between the intervals (g + 1)" +c; (g + 1"+ 1,
and (¢ + D" + (c1 + D(g + D" + Ic; 11, a gap in which #A(FF;) cannot lie; see
Lemma 8.2. On the other hand, for the ¢| towards the middle of the range, I, has
width significantly greater than ¢” ', so the intervals (¢ + 1)" +ci1(g + )"~ ! + I,
overlap to cover a large interval in the middle of the Hasse—Weil interval. Figure 1
shows these overlapping intervals when n = 2 and ¢ € {11, 9}; for the non-prime 9,
there is an additional phenomenon explained in Remark 8.5.

As the previous paragraph indicates, the coefficients of x”~! and x" 2 are what
matter most. After using the normalization g (x) := ¢ ~"/?G (¢'/?x), we are led to study

G:={g € R[x]: g is monic of degree n with all roots in [—2, 2]}
S:={(g" " g" ) eR*:geg},
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equipped with the Euclidean topology. Let A = 2n — ./ nz%l and Ap =2n — n4Tn1'
Lemma 8.1 Ifn > 2, then there exist continuous functions Bmin, Bmax : [—2n, 2n] —
R such that

(@) Wehave S = {(a,b) € [—2n,2n] x R: Bpin(a) < b < Bmax(a) }.
(b) The difference Bgifr(a) := Bmax(a@) — Bmin(a) is

e nonnegative on [—2n, 2n], positive on (—2n, 2n),
e lessthan 1 if A\ < |a| < 2n, greater than 1 if |a| < Ay,
e lessthan 2 if Ay < |a| < 2n, and greater than 2 if |a| < Aj.

(c) There exists a compact subset Gy C G surjecting onto S such that any g € Gy
mapping into the interior of S has distinct roots in (=2, 2).

Proof 1f ¢ = TTi_;(x — r;), then (g1, gl"=2)) = (= 3"r;, 3", rirj). Given
a € [—2n, 2n], let

Ca=A{(r1,....mn) €[=2,2]": }ori = —a}.

Since C, is compact and connected, (a) holds with Bp;, and Bpax being the minimum
and maximum of Zi< jrirj on C,. If any two of the r; are different, then we can
increase ), _ jrirj by replacing both by their average; thus the maximum occurs
when the r; are all equal, sO Bpax(a) = (g) (a/n)?. If there are two r; in (=2, 2),
then we can decrease ), _ j rirj by subtracting € from the smaller and adding € to the

larger, for some € > 0; thus the minimum occurs when all but one r; are at 2. Given

a, there is at most one such (r1, . .., r,) with ) r; = —a up to permuting coordinates:
as a increases, the roots move linearly from 2 to —2 one at a time. S0 Bpp is the
piecewise-linear continuous function such that for each k € {0, ..., n — 1},

Bin(@) = (4k — 2n +2)a — 8k + 8k(n — 1) — 2(n — D)n
for a € [4k — 2n, 4k — 2n + 4].

The minimum value of Bgisf on [4k — 2n, 4k — 2n + 4] is
Baiff(4k —2n +4k/(n — 1)) =8k(n — 1 —k)/(n — 1),

which fork € {1,...,n — 2} is atleast 8(n — 2)/(n — 1) > 4. On the other hand, for
t € [0, 4], we have Bgisf(2n —t) = Bygigr(—2n+1) = %tz. The claims in (b) follow.

Givena, let [/, (x —r;) and [];_, (x — /) be the polynomials realizing Bmin(a)
and Bpax(a), each with roots listed in increasing order. (So all but one r; are £2,
and r/’ = —a/n for all i.) Let € > 0 be the distance from —a/n to the boundary of
[—2,2], and let r{, ..., r; be an arithmetic progression with r{ = —a/n — €/2 and
r), = —a/n+e€/2.Foreachs € [0, 1], consider the monic degree n polynomial whose
roots are (1 — s)r; + sr/ fori = 1, ..., n and the analogous polynomial with roots
(1 —s)r] 4 sr/'. These depend continuously on (a, s) € [—2n, 2n] x [0, 1], so the set
of all such polynomials is a compact subset Gg of G. For fixed a, the coefficients of
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x"~2 in these polynomials vary continuously from Bpin(a) to Bmax(a), so Go — S'is
surjective. Finally, by construction, all polynomials in Gy except for the ones realizing
Bmin(a) and Bpax (@) have distinct roots in (—2, 2). O

Lemma 8.2 Suppose n > 2. For A € R satisfying »1 < || < 2n, there exists € > 0
such that if q is sufficiently large and r = |Aq'/? |, then the interval

[(@ + D" +r(g+ D" + Buax () + €)¢" ",

@+ D"+ 0+ D@+ D" + Buin) —e)g" '] (18)

has width > 1 and does not contain #A(F,) for any n-dimensional abelian variety A
over IF,.

Proof By Lemma 8.1(b), Bgifrf(A) < 1. Choose € > 0 such that Bgig(X) < 1 — 2e.
Then the width of the interval (18) is (¢ + 1)"~! — (Baifr(A) + 2€)g" ' > 1.

Let A be an n-dimensional abelian variety over ;. Then fa(x) = x" G(x +¢q/x)
for some G(x) = x" + c;x" "1 + ... + ¢, € Z[x] with all roots in [—2¢'/%, 2¢4'/?].
We have ¢; = O(q'/?) and (a, b) := (¢~ "?c1, g7 ¢2) € S. Now

#AF) = fa(D=Gg+ D =@+ 1D)"+ci(g+ D" +bg" 1 + 0" ).
(19)

Since b = O(1), if #A(F,) lies in the interval (18), then ¢ = r + O(1), so a =
g "2¢; = 1+ 0(g~"/?). Then

b € [Bmin(@), Bmax(@)] C [Bmin(A) — €/2, Bmax (1) + €/2]

by continuity, if ¢ is large enough. If ¢; < r, then the right side of (19) is too small to
liein (18). If ¢y > r + 1, then it is too large. O

Lemma 8.3 Suppose that n > 3 and 1 € R satisfies 0 < L < A1. Then for sufficiently
large q, every integer in

is #A(F,) for some n-dimensional abelian variety A over F.

Proof By Lemma 8.1(b), Bgiff > 1 on [—A, A]. Choose € > 0 so that Bgjff > 1 + 2¢
n[—A, A]. Let

Se ={(a,b) € [-2n,2n] x R : Bnin(a) +€ < b < Bnax(a) —€}.
Then S, is a compact subset of the interior of S. Let G be the inverse image of S,
under Gp — S. By Lemma 8.1(c), G, is compact and consists of polynomials with

distinct real roots in (—2, 2), so we can choose § > 0 such that any polynomial whose
coefficients are within § of some g € G, again has distinct real roots in (-2, 2).
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Suppose that m is an integer in [¢" — Ag" /%, ¢ + Ag"~'/?]. The rest of the proof
relies on the following construction.

Construction 8.4

1.

Leta € [—A, A] be such that m = ¢" + aq"~'/2.

2. Write m = (q+ 1"+ (c1 +b)(g+1)""! with ¢; € Z and b € [Bmin(a) +e€,

AN B~ W

7.

Bmax (a) — €] (possible since [Bmin(a) + €, Bmax(a) — €] has length > 1). Then
(a,b) € S.

. Choose g € G, mapping to (a, b).

. Let G(x) = ¢"? g(q7"?x) = x" + ¢ ?ax""' 4 gbx"" + ... € R[x].

. Let G be the same as G except with the coefficient of x"~! changed to ci.

. Fori =2,...,n,let G; be the same as G;_ except with the coefficient of xn-i

changed to the integer c; that makes Gi(g + 1) —m € [0, (¢ + Hr—iy.
Let Gfinal = G, + s(x — (¢ + 1)), where s € {0, 1} is chosen so that p t Ggil]al.

Continuation of proof of Lemma 8.3. We now bound the coefficients of Ggpa — G
in order to prove that for g large enough, the roots of Ggpq are still distinct and all
in [—2¢'/?, 2¢'/?]. Since (a, b) lies in S, which is compact, b is O(1). By Steps 1

and 2,
" tag" P =m=(q+ D"+ +b@+ )" =¢"+ g + 0@,
ci =q"%a+0Q). Q1)
Now
Gilg+ D =@+ )" +ci(g+ 1" +gbg+ 1)
+ 0@ @+ D"+ 4+ 0@ P +1)°
=@+ D"+ (1 +bg+ D"+ 0@
=m+ 0(g" %),
SO
0 =G" 2 =0@" /(g +1)"?=0@""). (22)
Similarly, fori =3, ..., n, we have
i — G =0@(qg+ 1" D)/ (g + 1" = 0(g). (23)

Equations (21), (22), and (23) imply that

G][qnfij _ gl = O(q(ifl)ﬂ)

for all i > 1. Since n > 3, the same holds with G, replaced by Gfpa. Thus the
coefficients of gfina1(x) = ¢ ~"/? Gfinal(g'/*x) are within O(¢~'/?) < § of the corre-
sponding coefficients of g if g is sufficiently large, so gfna has all its roots in [—2, 2].
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Thus Gfina has all its roots in [—2q1/ 2 2q1/ 2. By construction, Gfipa € Z[x]. Also
Gfinai(g +1) —m = G,(q + 1) —m € [0, 1), 50 Gfinai(q + 1) = m.

Let f(x) = X" Gfinal(x + ¢/x) € Z[x]. We have f"l = GI) 0 (mod p).
By Theorem 2.1, f = f4 for some n-dimensional ordinary abelian variety over IF,.
Finally, #A(F;) = f(1) = Gfina(g + 1) = m. O

Proof of Theorem 1.7 Lemma 8.3 shows that all integers in [¢" — Ag"~'/%, ¢" +
*q"~1/2] are realizable for A that can approach A from below as ¢ — 0o. Lemma 8.2
shows, on the other hand, that for any p with || > Aq, there are unrealizable inte-
gers within O(¢"~") of (g + 1)" + ug" /% if q is sufficiently large. These imply
Theorem 1.7. O

Remark 8.5 Suppose n = 2. Theorem 1.7 holds without change if ¢ tends to oo
through primes only: the proof of Lemma 8.3 works if we omit Step 7, because of the
last sentence of Remark 2.2.

On the other hand, if ¢ tends to oo through non-prime prime powers, then The-
orem 1.7 holds with A; replaced by the smaller value A, = 4 — 2\/5, as we now
explain. In Lemma 8.3, if 0 < A < Ap, then Bgiif > 2 on [—AX, A], so there are at
least rwo consecutive integer possibilities for ¢y, and at least one of them will lead
to a polynomial f for which (c) in Theorem 2.1 holds. Meanwhile, in Lemma 8.2,
if Ao < || < 2n, so that Bgiff(t) < 2, then there exists € > 0 such that if g is
sufficiently large, and r is the multiple of p nearest ;g '/?, then any integer of the
formm = (g + 1)>4+r(g+1) + 2 in

[(@+ D>+ = D@+ 1D+ Bmax () + €)q,
@+ D>+ + D@+ 1D+ Bmin(k) — €)q]

with p | ¢2 and p? { ¢z is not #A(F,) for any abelian surface A over I, because the
only monic quadratic polynomial G(x) € Z[x] with roots in [—2¢ '/, X 24'/2] such
that G(g + 1) = m is x> + rx + c2, which is Eisenstein at p, which implies that the
polynomial f(x):= x2G(x + q/x) fails condition (c1) in Remark 2.2.

9 Effective bounds

Given g and n, we have given three ways to construct polynomials that realize a large
interval of integers as #A(IF;) for A of dimension n over [F:

e Sect.4 gave a quick construction that realized intervals wide enough to cover all
sufficiently large integers as n varies, but not wide enough to be asymptotically
close to optimal.

e Sect.7 gave a more subtle construction that gave a much wider interval, but it is
too complicated to analyze explicitly to make all the big-O constants explicit.

e Sect. 8 gave a method that again is asymptotically good, but only when ¢ is large
compared to n.
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In this section, we present a fourth construction that, while not asymptotically as good
as the construction of Sect. 7, realizes a wide interval for any ¢ and sufficiently large
n, and is still simple enough to analyze fully.

Given ¢, n > 2, and an integer m in [¢" /2, ¢"+1/?), the plan is to find a power
series j(z) € zR[[z]] such that j(1/q) = log(m/q") and exp(j(z)) € Z[[z]]; then we
truncate exp(j(z)) to a degree n polynomial and adjust the coefficients of x"~! and
x™ to produce a polynomial %(z) such that 71\(1) =mand p ﬁ{[”]. This should work
well, since exp(j(z)) is automatically nonvanishing on D, and if its coefficients are
not too large, then the nonvanishing should persist after truncating and adjusting.

Construction 9.1

1. Fori =1,2,...,n— linturn, let ¢; be the real number such that
log(m/q™) — Clq_l . Ciq_i c [—q_i/Z, q_i/Z)

and such that the coefficient of z' in the power series exp(ciz + - - - + ¢;z%) is an
integer; for the existence and uniqueness of ¢;, see the proof of Lemma 9.2.

. Let ¢, € R be such that log(m/q") —c1g™' — - — g™ =0.

. Let ho(z) € R[z] be the degree n Taylor polynomial of exp(c1z + - - - + cn2").

. Let hi(z) = ho(z) + k2" /2, where k € R is chosen to make 71](1) =m.

. Lethbehyorhy +z""' — ((g + 1)/2)7", whichever makes p )(717"].

. Let A be an abelian variety with f4 = ;z\, if one exists. (If 4 is nonvanishing on D,
then such an A is guaranteed to exist and his squarefree by Remark 3.3.)

AN AW

Lets = L%qlogq—i—%J.
Lemma9.2 We have |c1| < s and |ci| < (q+ 1)/2fori =2,...,n.

Proof Since m € [¢"~ /%, q"t1/?), we have log(m/q") € [—%logq, %10gq), and
Step 1 says that ¢ is the integer in the interval g log(m/q") + (—%, %], so |cq| <'s.
Fori <n —1,lete; =log(m/q") — clq_1 — = ciq_i, SO€ =€_1 — ciq_i;
then ¢;_1 € [—¢~ "D /2,47 /2), so the condition ¢; € [—g~/2,¢7/2) in
Step 1 constrains ¢; to a half-open interval of length 1 contained in [—(q + 1)/2,
(g + 1)/2], while the integer coefficient condition in Step 1 constrains ¢; to a coset
of Z in R; thus a unique ¢; exists, and |¢;| < (¢ + 1)/2. Finally, ¢, = ¢q"€,—1 €

q"[—q= V2,477V /2) = [—q/2,q/2). O
Let j(z) =ciz+ -+ cp2". Let

1 2
J(2):= exp (sz + %12—_1) =J<(2) + Jon(z) € Rxollzll,

where J<, is the degree n Taylor polynomial, and J-., is the remainder power series
consisting of terms of degree > n. By Lemma 9.2, |(exp j (z))[!] < Jlil,

Proposition 9.3 Let g be a prime power. Forn > 2 and m € [¢q"~'/2, ¢q"*t1/2) if

qfn/Z (q1/2+ 1)2q7n/2 1

n/2
g™+ Tt + L va + R
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then Construction 9.1 produces an ordinary n-dimensional A over Fy with#A(F,) =
m.

Proof By Step 2, exp j(¢~') =m/q", so
Im —q"ho(q™")| = q"lexp j(g™") — holg™")I < " Jon(q™D),

lho(D] < J<n (1),
k| = [R(1) = ho(D)] < Im —q"ho(g™") — ho(D] < ¢" Jon(q™") + J<a(D).

On D,

lexp j(z)| = exp(Re j(2))

qg+1 _ qg+1 _ 1
4= 4T 2 >
2 2 J(g~1/?)

lho(2)] > lexp j(2)] — J-n(g~ "),

k
lh1(2)] > |ho(z)| — Eq—"ﬂ,

> exp (—sq_

- g+1 _ G'"?+1? _
@] = @] =g~ "2 = g™ = ()] = =™

Combining the previous five inequalities yields

|h(2)| = TG Jonlg™ ") 2 Jonlg™) > J<n(D) > g,
so (24) implies that & is nonvanishing on D. Theorem 2.1 produces A. O

The following weaker statement has the advantage that if any hypothesis holds for one
n, it clearly holds for all larger n (since J has nonnegative coefficients):

Corollary 9.4 Let g be a prime power. Forn > 2 and m € [¢q"~'/?, ¢"+1/?), if any of

1/2 1)2 1
—1/2 -1/2 1(4 -12\" ;.3 (¢" + —n/2
(I+q 77/2)J-n(q )+2(3q ) J(4)+—2 q <—J(q_1/2),
(25)
g>7 and 2"' > J(g7"HI2q7?), or (26)
g =16 and n > 3¢"%logq —1/2 (27)

hold, then Construction 9.1 produces an ordinary n-dimensional A over F, with
#A[F,) =m.

Proof In (24), J-,(g7") < ¢~ "*tD/2J_,(g~/?) (this holds termwise for any
power series with nonnegative coefficients). Similarly J<,(1) < (%)” J<n(3/4) <
(%)”J(3/4). Hence the left side of (24) is at most the left side of (25). Thus, if (25)
holds, Proposition 9.3 applies.
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Now suppose that ¢ > 7 and 271 > J(g71?)J(2¢71/?). First,
2" > J(g7 VA T2q7 ) = exp(BsqT ) = exp(3g*(qlogq — 1)/2) = 2'°,
son > 11. We use

Jon(q™V?) < 270D g 2g= 1/,
Jon(g™h) < gD J(2g7 12,
Jen(1) <14 (q'2/2"(J (29717 = 1),
@+ 1< @"?/2)" - 1;

(28)

the first three are proved termwise, and the last follows from the inequality (2u+1)% <
u'l — 1 foru:=q'/?/2 > 772 /2. By (28), the left side of (24) is at most

2
20D J(2g7112) 4 ‘1'; (241201 (24112
q—n/2 _ —n/2
(@2 eq " +1- ") + T
— 2—(n+1)(2+q—1/2/2) J(zq—l/z)
<21772q7')
1

< —1

J(q=1/?)

+ (@272 = 1)

by hypothesis, so Proposition 9.3 applies.
Finally, suppose that ¢ > 16 and n > 3¢'/>logg — 1/2. Then

s < (qlogg +1)/2,

_ _ glogg + 1\ _ q+1 q~! 4g7!
log(/(q~"")7297') = 3(#)" vt 2 (1 gt 1—Zq—1/2)
< (3q'"?logg —3/2)log?2 (29)
< (n—1)log2,

so (26) holds; to prove (29), check numerically for 16 < g < 100 and for ¢ > 100
use
3

3 _p
29 T

g+1, q7! 4g7! 3
(1 g2 T IC 2q—1/2> 5 le2
-1 -1

3 9 4q 3 12
200 +q(T— +2 ) 1 21002 _ 2logq.
<30 +g(5 + ) + Slog2 < 8 < Blog2 ~3/2)¢ P logg. o

Corollary 9.4 proves Theorem 1.13(b) for g > 16. Also, for each g < 16 it provides

an n such that all integers > q"’l/ 2 are realizable, but too many integers remain to
be checked one at a time. Therefore we describe a construction allowing us to realize
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larger intervals of integers all at once. The plan is to start with A such that "= fa for
some A with #A(F;) = m, and then to replace & by h + Z clz’ for some r and
small ¢; (and then adjust to make p { & Rl again); as the ¢; vary, we realize all integers
in an interval.

Construction 9.5 SuEPose that we are given ¢, n, m, and a polynomial & € 1 4 xZ[x]
of degree < 2n with (1) = m (given by Construction 9.1 or otherwise).

1. Compute the complex zeros of & and check that none of them are in D. (More
precisely: Compute small balls containing the zeros, and check that none of them
intersect D.)

2. Compute the complex zeros « of the derivative of h(z)h(1/(gz)), evaluate |h| at

each o on the boundary 9D, and let u be the minimum of these values; see the

proof of Lemma 9.6. (More precisely: Compute small balls around these zeros, and
let 1« be a lower bound for || on all these balls that intersect 0 D; if & = 1, then let
u=1)

Let pora = o — g~ "V/2 — ((g + 1)/2)g™"/; abort if pera < O.

Let r be the smallest positive integer < n + 1 such that ) 7 g/ 21g7% < porg.

Let N = 1g/2) ¥, (q" 7 + 1) = la/2) (L5 + e —r + D).
Return the interval [h(l) — N,h(1) + N].

Ilr

AU S

Lemma 9.6 In Construction 9.5, if Steps 1 and 3 succeed, then every integer in the
interval of Step 5 is #A(IFy) for some ordinary abelian variety of dimension n over
F,.

Proof Suppose that 4 has no zeros in D. Then the minimum of || occurs on d D, where
|h|2 = h(z) h(1/(gz)), and this minimum occurs at a point where the derivative of
h(z) h(1/(gz)) is 0. Thus || > @ on D.

Suppose that H = h + > ;. i7" where |c;| < g/2 for all i, and ¢; € Z for all
i exceptn, and ¢, € Z The choice of r guarantees that |H| > 0 on D, even if we
add z"~! — ((¢ + 1)/2)z to H if necessary to make p { H["] SO H(l) is realizable.
To realize an integer h(l) + M with |M| < N, write M as Z Lci(q" —J 4+ 1) with
lcjl < lg/2],cj € Zforall j #n,andc, € %Z, by greedily choosing ¢,, ¢y41, ---,
one at a time. O

Proof of Theorem 1.13 and Remarks 1.16, 1.17, and 1.18 1In this proof, given g, a posi-
tive integer is called realizable if it equals #A(IF,) for some ordinary abelian variety
A over [F; with f4 squarefree. The case g = 2 is done by [7]. Criterion (27) of Corol-
lary 9.4 proves Theorem 1.13(b) for ¢ > 16. For each ¢ < 16, we numerically find
n > 2 such that (25) holds; then we check smaller values of n to find the smallest ng
such that (24) holds for all n > ng. (It turns out that ng < 25 for each ¢ < 16.) For
q € {11, 13}, it turns out that q?’ﬁlogq > ¢"0~1/2 which proves Theorem 1.13(b) for
these gq.

For 3 < g <9, we use variants of Construction 9.1 and 9.5 to realize all integers
in an interval [Mg, q"O’]/z]. For g € {8,9}, we have M, < q3~/‘7]°g‘1, which proves
Theorem 1.13(b) for these g. For g € {3, 4, 5, 7}, we use the algorithm of [10] (imple-
mented at https://github.com/kedlaya/root-unitary) to exhaust over the polynomials
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fa for abelian varieties A of dimension < 4 to realize all integers < M, with the
exception of those listed in Remarks 1.16, 1.17, and 1.18. Neither are these excep-
tions realized by abelian varieties of dimension > 5, because they are all less than
WVg—-1 10 The calculations in this paragraph took 7.19 CPU hours on an Intel Core
i7-9750H CPU @ 2.60GHz. See https://github.com/edgarcosta/abvar-fq-orders for
the code and further details. m]

Some calculations were checked against the database of isogeny classes of abelian
varieties over finite fields in the L-functions and Modular Forms Database [3, 17].
Appendix A. Optimality of a potential function
A.1. Polynomials

The goal of this appendix is to prove the following.

Proposition A.1 Choose c in the interval (0, 1). For d > 1, let % (d, c) be the set of
complex polynomials f of degree d satisfying f(0) = 1 and | f(w)|'/? > c for all
w € C<1. On (—o0, 1] define the decreasing continuous function

1—r 4+ =r)2+4rc

M(r):= 5
(a) Forany f € #(d, c), we have

[ F)Y9 > M) forallr €0, 1], (30)

| F ()Y < M(—r) forallr € [0, o). (31)

(b) There exist polynomials fi, fa, ... with fg € %#(d, ¢) such that for every r €
(_OO, l]r

Jim | far)IV4 = M(r). (32)

(Thus (30) is asymptotically sharp, and (31) is too since fy(—z) € % (d, ¢).)

Remark A.2 Forr > 1,(30)is not always true: If r > landc < (1 — r=d)1/d the best
lower bound in (30) is simply O since the function f(z):=1— (z/r) is in Z(d, c).

Remark A.3 1If f is in . % (d, c), then so is f(uz) for any u € C with |u| = 1. Thus
Proposition A.1 implies that (30) and (31) still hold if f(r) on the left is replaced by
f () for any complex number r’ satisfying |r'| = r.

Outside the trivial case » = 0 and the case r = 1, which was handled in detail in
[13], Proposition A.1 appears to be new.
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Remark A.4 Choose a prime power ¢, and take ¢ = ¢~/ and r = ¢~'/%. Let
I, I, ... be an increasing sequence of closed intervals with union Iyined. For each
positive integer k, let P; be a polynomial constructed as in Proposition 6.2 from the
interval ;. Then the polynomials Py (ql/ 2 e F (deg P, c) have limits as in (32). In
the other direction, Proposition A.1(a) shows that we could not hope to construct poly-
nomials satisfying the conditions of Proposition 6.2 for intervals larger than Iyyained-

A.2. Potential functions

Given a nonconstant polynomial f, let u be the uniform probability measure on the set
of zeros of f, counted with multiplicity. Then log | f (z)| 1/d equals f log |w—z| du(w)
minus a constant, so Proposition A.1 can be reformulated in terms of 1. This suggests
a generalization in which pu is allowed to be any compactly supported probability
measure on C-1. In fact, this generalization, formalized as Proposition A.6 below, is
equivalent to Proposition A.1.

Definition A.5 ([14, I.1]) Let X be a compact subset of C. Let M(X) be the set of

(Borel) probability measures on C with support contained in . For u € M(X),
define the potential function U*: C — R U {oo} by

UM(z):= / —log|w — z| du(w).
C

For a polynomial F with nonzero constant term, the polynomial f (z) := F(z)/F (0)
satisfies f(0) = 1, as required in the definition of .% (d, ¢). Analogously, we will
consider U*(z) — U*(0).

Proposition A.6 Choose c in (0, 1), and let .# (c) be the set of probability measures
W with compact support contained in Cs1 such that

U*(z) — U*(0) < —logc forallz € C<y. (33)
(a) Forany u € . (c),

Uk (r)y —U*0) < —logM(r) forallr € [0, 1], (34)
UM (r)y — U*(0) > —logM(—r) forallr € [0, 00). (35)

(b) Let T, be the arc {z € C : |z| = 1and |z — 1| < 2c}. There exists a measure
e € A (c) supported on X such that for every r € (—oo, 1],

Ute(r) — UM (0) = —log M (r).
Proof that Proposition A.6 implies Proposition A.1 1f Proposition A.6(a) holds, apply it
to the uniform probability measure p on the zeros of f € .%#(d, ¢) counted with

multiplicity, and apply x — e~ to (34) and (35) to get Proposition A.1(a).
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Now suppose in addition that Proposition A.6(b) holds. Fix r € [0, 1]. For A €
(0, 1), Proposition A.6(a) (and rotational symmetry) shows that for z € C<y,

Ute(z) — UM< (0) < —log M (1), (36)

which is strictly less than — log c. For s € C, let §5 be the Dirac probability measure
supported at 5. Since X, is compact, we can find subsets S; C X, such that #S; = d
and % ZseSd 3 converges weakly to . as d — oco. Let pg = ]_[Sesd(l —z/5), 80

e py has degree d, has all roots in C~1, and satisfies p;s(0) = 1; and
e on each compact subset of C\ ., the sequence — log | ps(z)|'/? converges uni-
formly to U< (z) — U"<(0).

By (36) and uniform convergence, for any A < 1, if d is sufficiently large, then
—log |pa(z)|'/¢ < —logcon C<y, sothe polynomial f;(z) := pq(Az) liesin # (d, ).
Then | f3(r)|"/? — exp(—(U*<(Ar)—U"(0))) = M (Ar) uniformly on each compact
subset of (—o0, 1]. By repeating the argument for each A € (0, 1) to obtain fz ,, and
then letting A tend to 1 sufficiently slowly with d, we obtain polynomials satisfying
Proposition A.1(b). O

The proof of Proposition A.6 occupies the rest of the appendix: (b) is proved in
Section A.4, and the two inequalities of (a) are proved in Section A.5.

If 1 is supported on the unit circle, then U#(0) = 0 by definition. In proving
Proposition A.6(a), the following lets us assume that y is supported on the unit circle.

Lemma A.7 Given a compactly supported probability measure . on Cs1, there is a
probability measure [ supported on the unit circle ¥ such that

Ut (z) — U*0) = Uﬁ(z) whenever |z] <1
and
UM(z) — U*(0) > U™ (z) whenever |z] > 1.

Proof Write 1 as a sum of nonnegative measures uy + ', where wy is supported on
the circle and 1 (£) = 0. Apply “balayage” ([14, Theorem 11.4.7]) to u' to produce
w' supported on the circle, and let & = us + u'. O

A.3. Equilibrium measures

Definition A.8 Suppose that X is of positive capacity, as defined in [14, (I.1.5)]; this
holds if ¥ contains a line segment or circular arc of positive length, for example.
The energy of u € M(X) is fz U"(z) du(z). There is a unique energy-minimizing
measure u € M(X), called the equilibrium measure on X. More generally, for any
continuous function Q: X — R, there is a unique measure x in M(X) minimizing
the weighted energy

Eo(n):= /): (UM (2) +20()) du(z).
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and this u is called the weighted equilibrium measure for Q on X.

From now on, ¥ denotes the unit circle, and «: C* — C denotes the rational
function x (z) ==z + z~!, which maps X onto the interval [—2, 2].

LemmaA.9

(a) The map | — Kk Sending measures to their pushforwards under « is a bijection
from the set of complex-conjugation-invariant probability measures on the unit
circle ¥ to M([-2,2]).

(b) For w asin (a), we have U*" (k(z)) = 2U"(z) + log |z| for all z € C*.

(¢) Let X' be a positive-capacity complex-conjugation-invariant compact subset of X.
Let o € Rand r € R*\X'. Under k, the equilibrium measure on X' for weight
0(z) :=alog|z —r| corresponds to the equilibrium measure on k (X') for weight
R(z):=walog|z — k(r)].

Proof

(a) The map « induces an isomorphism from the o -algebra of complex-conjugation-
invariant Borel subsets of X to the o-algebra of Borel subsets of [—2, 2].
(b) For w, z € C* we have

K(w) — k(z) = —%(w—z)(ufl —2). (37)

The claim follows by applying —log| | and integrating against du(w); the

integrals of log |w — z| and log |[w™! — z| are equal since j is invariant under

ww=w

(c) Renaming variablesin (37) yields R(k (z)) = 2 Q(z) —« log |r|. By symmetry, the
only measures on ¥’ we need to consider are those that are complex-conjugation-
invariant. For such .,

ER(kuit) = fz (UK (@) +2 Rk (2))) dpn(2)

=/ 2U"(2) +4 Q(z) — 2alog|r]) du(z)
E/

(by (b), since [zl =1lon X' C X)
=2Eg(n) —2aloglr|,

so the p that minimizes Eg (k) is the same as the p that minimizes Eg(u). O

A.4.The extreme measure

Let ¢ and X, be as in Proposition A.6. Let i, be the equilibrium measure on X..
Lemma A.10 below shows that p. satisfies the requirements of Proposition A.6(b).
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Lemma A.10

(a) We have U< (0) = 0.

—logc forz € X,

< —logc forz ¢ X..

(c) Forallr € (—o0, 1], we have U*<(r) = —log M (r).

(b) The function UM<(z) is

Proof

(a) This holds for any measure supported on the unit circle, by definition of the
potential.

(b) By[12, Table 5.1], the capacity of the equilibrium measure on the circular arc X is
¢, so its energy is — log c. The inequality outside X follows from [14, pp. 53-54].
The equality on X, follows from the fact that the points on X, are regular points
for the Dirichlet problem on C\ X, as can be checked from [14, Theorem 1.4.6].

(c) By similar right triangles, the real part of either endpoint of X is at distance 2¢>
from 1, so k() = 2[1 — 2¢2, 1] = [2 — 4¢2,2]. Let £(z) :=c%z + 2 — 2¢2,
so £([-2,2]) = [2 — 4¢? 2], Let wy be the uniform probability measure on
¥, so U*%(z) = 0 on C<; [14, Example 0.5.7]. By Lemma A.9(c), k« it and
k«/y, are the equilibrium measures on [2 — 4¢?, 2] and [—2, 2], respectively,
SO Kxpte = Lyksxuy. Given r € (0, 1], define v’ € (0, 1] by k(r) = Lk (r')).
Applying U*+te = U2 yields

U*ste (1 (r)) = UME k(")) — log ¢ (since ¢ scales distances by ¢?)
20 (r) +logr = QUM (') +logr’) —logc®>  (by Lemma A.9(b) twice)
Ute(r) = %log(r//r) —logc (since U**(z) =0 on C<j)

= —log M(r) (algebraic computation yields r’ M(r)2 = rcz).

To extend to (—oo, 1], observe that U< (r) and — log M (r) are real analytic on
(=00, 1). O

A.5. Proof of optimality

The idea for proving inequality (34) is that it should be a nonnegative linear com-
bination (really an integral) of the inequalities (33). The “coefficients” of the linear
combination are given by a measure v, belonging to a family that we describe now.
The r = 0 and r = 1 cases of (34) follow from M(0) = 1 and M (1) = ¢, so we
assume r € (0, 1). For o € Rx, let v, be the equilibrium measure on ¥ for weight

Qu(z):=aloglz —r|.
LemmaA.11

(a) For every a > 0, there exists 6(a) € (0, 7] such that supp(vy) is the arc
{e': 1] < 0()}.

(b) The function 0 is decreasing and continuous. Also, 6(0) = w and limy— ~ 0 () =
0.
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(c) Let a be such that supp(vy) = X.. Then there is a constant C such that

. C forall z € X,
UV (z) + is 38
@FQul@ IS 1 0 forallz e B\ (38)

Proof The literature contains similar results for an interval; to use them, we push

forward by «. By Lemma A.9(c), vy is the equilibrium measure on [—2, 2] for

weight Q1(z) :=alog|z — k()]

(a) We need to prove that supp(k4vy) = [2cos(f(x)), 2] for some 6 () € (0, ]
Pushing forward vy by z = 2 — z gives the equilibrium measure on [0, 4] for
weight 0>(z) :=a log |k (r) — 2 + z|. The function

’ )_ ax
Y= T s

is increasing on [0, 4], so [14, Theorem IV.1.10(c)] implies that the support is an
interval. The corresponding interval for kv, is contained in [—2, 2], and must con-
tain 2 since otherwise we could translate the measure right to reduce the weighted
energy.

(b) By [14, Theorem IV.1.6(f)], supp(vy) is decreasing and continuous,' so 6 is too.
Since vy is the uniform measure on X, we have (0) = 7. For fixed e > ¢’ > 0, if
Kk«Vy has any mass to the left of 2 — €, redistributing it according to the equilibrium
measure on [2 —¢’, 2] increases the energy by O (1) but decreases the contribution
from the weight by at least a positive constant times «, so if « is sufficiently
large, K4V, cannot have such mass; in other words, supp(k,vy) C [2 — €, 2] for
sufficiently large «. This holds for every €, so limy—, o 6 () = 0.

(c) The number « exists by (b). Let C be the modified Robin constant for Q, [14,
p. 27]. By [14, Theorem 1.1.3(d,f)], (38) holds outside a zero-capacity subset of
3. On the other hand, the points in X are regular points for the Dirichlet problem
in @\Z by Wiener’s theorem [14, Theorem 1.4.6], so [14, Theorem 1.5.1(iv")]
implies that U"* is continuous on X, as is Q4. Thus (38) holdson allof ¥. O

Proof of (34) By Lemma A.7, we may assume that w is supported on the unit circle X,
so U*(0) = 0. Givenr € (0, 1), let « be as in Lemma A.11(c). Then

-U"(r) = é/): Qu(2)du(z) (since Qy(z) = aloglz —r|)
> é <C - f UY(2) d,u(z)) (by the inequality in (38))
by

c 1
—+ - / / log |z — w|du(z) dvy(w) (by definition of U")
aJs. Jx

2l 8

1
- —/ UM (w) dvg (w) (by definition of U")
o e

1 Although [14, Theorem IV.1.6(f)] claims only right continuity, it can be applied with Q replaced by —Q
to get left continuity.
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=

c 1 .
— + —logc (by (33) with U*(0) = 0).
a o«

When p is u., Lemmas A.11(c) and A.10(b) show that both inequalities in this
sequence are sharp, so

c 1
—UM(r)y = — + —logc < —U*(r).
o o

Thus U#*(r) — U*(0) = U (r) < UM<(r) = —log M (r), by Lemma A.10(c). m|

Proofof (35) For f € R, let v}} be the equilibrium measure on X for weight
Rg(z):= — Blog|z + r|. As in Lemma A.11, there exists § > 0 and a real con-
stant D such that supp(v/’s) = X, and

D forall z € X,

U (z) + R is
(2) + Rp(2) >D forallz e Z\X..

We may replace i by the iz given by Lemma A.7, which implies that U (r) — U (0) >

U™ (r) for every r € [0, 0o). The rest of the proof is entirely analogous to the proof
of (34). O

Acknowledgements We thank Francesc Fité, Everett Howe, and Stefano Marseglia for discussions, and
an anonymous referee for suggestions. We also thank Everett Howe and Felipe Voloch for suggesting the
Weil references in the first sentence.

Funding Open Access funding provided by the MIT Libraries.

Data availability All computed data can be found at https://github.com/edgarcosta/abvar-fq-orders.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aubry, Y., Haloui, S., Lachaud, G.: On the number of points on abelian and Jacobian varieties over
finite fields. Acta Arith. 160(3), 201-241 (2013)

@ Springer


https://github.com/edgarcosta/abvar-fq-orders
http://creativecommons.org/licenses/by/4.0/

Abelian varieties of prescribed order over finite fields 1201

W

10.

11.

12.

13.

15.
16.

17.

19.

20.

. DiPippo, S.A., Howe, E.W.: Real polynomials with all roots on the unit circle and abelian varieties

over finite fields. J. Number Theory 73(2), 426-450 (1998) [Corrigendum in J. Number Theory 83(1),
182 (2000)]

. Dupuy, T., Kedlaya, K., Roe, D., Vincent, C.: Isogeny classes of abelian varieties over finite fields in the

LMFDB. In: Arithmetic Geometry, Number Theory, and Computation, Simons Symp., pp. 375-448.
Springer, Cham (2021)

. Hasse, H.: Zur Theorie der abstrakten elliptischen Funktionenkorper III. Die Struktur des Meromor-

phismenrings. Die Riemannsche Vermutung. J. Reine Angew. Math. 175, 193-208 (1936)

. Honda, T.: Isogeny classes of abelian varieties over finite fields. J. Math. Soc. Japan 20, 83-95 (1968)
. Howe, E.W.: Kernels of polarizations of abelian varieties over finite fields. J. Algebr. Geom. 5(3),

583-608 (1996)

. Howe, E.-W., Kedlaya, K.S.: Every positive integer is the order of an ordinary abelian variety over F;.

Res. Number Theory (2021). arXiv:2103.16530v2

. Isaacs, I.LM.: Finite group theory, Graduate Studies in Mathematics, vol. 92. American Mathematical

Society, Providence, pp. xii+350 (2008)

. Kadets, B.: Estimates for the number of rational points on simple abelian varieties over finite fields.

Math. Z. 297(1-2), 465473 (2021)

Kedlaya, K.S.: Search techniques for root-unitary polynomials. In Computational Arithmetic Geome-
try, Contemp. Math., vol. 463. Amer. Math. Soc., Providence, pp. 71-81 (2008)

Marseglia, S., Springer, C.: Every finite abelian group is the group of rational points of an ordinary
abelian variety over F;, 3 and [F5. Proc. Am. Math. Soc. 151(2), 501-510 (2023)

Ransford, T.: Potential theory in the complex plane, London Mathematical Society Student Texts, vol.
28, pp. x+232. Cambridge University Press, Cambridge (1995)

Ruscheweyh, S., Varga, R.S.: On the minimum moduli of normalized polynomials with two prescribed
values. Constr. Approx. 2(4), 349-368 (1986)

. Saff, E.B., Totik, V.: Logarithmic potentials with external fields (Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences]), vol. 316, pp. xvi+505. Springer,
Berlin. Appendix B by Thomas Bloom (1997)

Tate, J.: Endomorphisms of abelian varieties over finite fields. Invent. Math. 2, 134-144 (1966)

Tate, J.: Classes d’isogénie des variétés abéliennes sur un corps fini (d’apres T. Honda). In: Séminaire
Bourbaki. Vol. 1968/69: Exposés 347-363, Lecture Notes in Math., vol. 175. Springer, Berlin, Exp.
No. 352, pp. 95-110 (1971)

The LMFDB Collaboration. The L-functions and modular forms database. https://www.lmfdb.org
[Online; accessed 25 June 2021] (2021)

. Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. Ecole Norm. Sup. 4(2), 521-560

(1969)

Weil, A.: Sur les courbes algébriques et les variétés qui s’en déduisent (Actualités Scientifiques et
Industrielles [Current Scientific and Industrial Topics], No. 1041). Hermann et Cie., Paris, 1948,
pp. iv+85. Publ. Inst. Math. Univ. Strasbourg, vol. 7 (1945)

Weil, A.: Variétés abéliennes et courbes algébriques (Actualités Scientifiques et Industrielles [Current
Scientific and Industrial Topics], No. 1064). Hermann & Cie., Paris, 1948, p. 165. Publ. Inst. Math.
Univ. Strasbourg, vol. 8 (1946)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Raymond van Bommel'2@ - Edgar Costa'® - Wanlin Li>*@ -
Bjorn Poonen'(® - Alexander Smith'”

B Edgar Costa

edgarc @mit.edu
https://edgarcosta.org

@ Springer


http://arxiv.org/abs/2103.16530v2
https://www.lmfdb.org
http://orcid.org/0000-0003-3767-1740
http://orcid.org/0000-0003-1367-7785
http://orcid.org/0000-0002-2587-1107
http://orcid.org/0000-0002-8593-2792
http://orcid.org/0000-0002-7694-6754

1202 R.van Bommel et al.

Raymond van Bommel
r.vanbommel @bristol.ac.uk
https://www.raymondvanbommel.nl/

Wanlin Li
wanlin@wustl.edu
https://www.math.wustl.edu/~wanlin/

Bjorn Poonen
poonen@math.mit.edu
https://math.mit.edu/~poonen/

Alexander Smith
asmith13@math.ucla.edu
http://www.asmith-math.org/

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA
02139-4307, USA
2 Present Address: School of Mathematics, Fry Building, Woodland Road, Bristol BS8 1UG, UK

Centre de Recherches Mathématiques, Université de Montréal, 2920 Chemin de la tour,
Montréal, QC H3T 1J4, Canada

Present Address: Department of Mathematics, Washington University in St. Louis, St. Louis,
MO 63130, USA

Present Address: Department of Mathematics, University of California Los Angeles, Los
Angeles, CA 90095, USA

@ Springer



	Abelian varieties of prescribed order over finite fields
	Abstract
	1 Introduction
	1.1 Orders of abelian varieties over a finite field
	1.2 Extreme point counts for simple abelian varieties
	1.3 Strategy of proof
	1.4 Large q limit
	1.5 Effective bounds

	2 Honda–Tate theory
	3 Roots on a circle
	4 Abelian varieties of all sufficiently large orders
	5 A congruence condition forcing geometric simplicity and the existence of principal polarizations
	6 Chebyshev polynomials
	7 Construction of polynomials
	8 Large q limit
	9 Effective bounds
	Appendix A. Optimality of a potential function
	A.1. Polynomials
	A.2. Potential functions
	A.3. Equilibrium measures
	A.4. The extreme measure
	A.5. Proof of optimality

	Acknowledgements
	References




