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Abstract: α-substituted ketones are important chemical
targets as synthetic intermediates as well as function-

alities in natural products and pharmaceuticals. We

report the α-acetylation of C(sp3)�H substrates R�H

with arylmethyl ketones ArC(O)Me to provide α-
alkylated ketones ArC(O)CH2R at RT with

tBuOOtBu

as oxidant via copper(I) b-diketiminato catalysts. Pro-

ceeding via alkyl radicals R*, this method enables α-
substitution with bulky substituents without competing

elimination that occurs in more traditional alkylation

reactions between enolates and alkyl electrophiles. DFT

studies suggest the intermediacy of copper(II) enolates

[CuII](CH2C(O)Ar) that capture alkyl radicals R* to

give R�CH2C(O)Ar outcompeting dimerization of the

copper(II) enolate to give the 1,4-diketone ArC-

(O)CH2CH2C(O)Ar.

Ketones with multiple substituents on the α-carbon repre-
sent important targets for chemical synthesis. The value of

this structural motif stems from their prevalence in both

natural products and bioactive compounds[1] as well as the

ability of α-substituted ketones to participate in olefinations,
stereoselective 1,2-additions and enolate reactions.[2–4] While

stoichiometric a-alkylation of enolates with electrophiles

such as alkyl halides represents a common approach,[5]

competing side reactions such as elimination with hindered

electrophiles, aldol condensations or even O-alkylations can

lead to a range of byproducts.[6] a-alkylation of ketones with

alcohols have been widely investigated with a number of

heterogeneous and homogeneous catalysts.[7] This approach

employs a hydrogen borrowing process where the alcohol is

converted to the aldehyde and is coupled with the

corresponding ketone to give the alkylated product.

Transition metal-catalyzed processes may proceed

through metal-enolate intermediates in the coupling of aryl

halides to ketones by Pd with bulky, unidentate ligands

(Scheme 1a).[8] Alternatively, ketones have been oxidatively

coupled with an olefin using a bifunctional catalyst that

simultaneously activates the a-C�H bonds of the ketone and

olefin as described by the Dong group (Scheme 1b).[9]

Transition metal free routes can convert cinnamic acids to

alkyl-substituted acetophenones ArC(O)CH2�R under oxi-

dative conditions with substrates R�H.[10] Not all transition

metal enolates intermediates, however, are stable. Addition
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of preformed enolates to copper(II) salts is a well-estab-

lished method for the C�C coupling of enolates to 1,4-diones

(Scheme 1c).[11]

The direct use of substrates that possess sp3 C�H bonds

for C�C bond formation[12–13] represents an attractive route

for the a-functionalization of ketones. Studies with FeCl2
and tBuOOtBu revealed that PhCH2Ph undergoes C�H

functionalization to deliver the corresponding C�C cross-

coupling product (Scheme 1d).[14] Powell reported in 2008

that 1,3-diketones undergo C�H functionalization when

catalyzed by copper with a phenanthroline ligand and
tBuOOBz as oxidant.[15] As these conditions appear familiar

to those employed in the Kharasch–Sosnovsky reaction,[16]

we considered the possibility that copper(II) enolates could

serve as intermediates in a copper catalyzed radical relay

protocol[13] for C�H α-acetylation to functionalize substrate
R�H to R�CH2C(O)Ar.

Inspired by the ability of copper β-diketiminate catalysts
to generate reactive copper(II) species [CuII]�R’ (R’=

alkynyl,[17] methyl,[18] and alkenyl[19]) that function in radical

relay catalysis, we sought to explore the possibility that

copper(II) enolate intermediates [CuII]�CH2C(O)Ph, even if

transient, could similarly lead to C�C bond formation

(Scheme 2).[13] In related radical relay reactions, tBuOOtBu

reacts swiftly with the copper(I) β-diketiminate [Cl2NN]Cu
to give [CuII]�OtBu and the t-butoxy radical (Scheme 2a)[20]

that readily reacts via H-atom abstraction with sp3 C�H

bonds in substrates R�H to generate the C-based radical R*

(Scheme 2b).[21] Since facile acid-base exchange occurs with

terminal acetylenes,[17] we hypothesized that reaction be-

tween [CuII]�OtBu and the ketone could form [CuII]-enolate

species capable of efficient capture of organic radicals R* to

form a new C�C bond (Scheme 2).

We were delighted to observe that mixing acetophenone

and ethylbenzene in the presence of [Cl2NN]Cu as catalyst

with tBuOOtBu as oxidant at 90 °C afforded the a-alkylated

ketone 3a in 54% isolated yield with ca. 30% recovered

ketone (Table 1). Subsequent screening identified that the

reaction is most efficient at room temperature along with

5 mol% [Cl2NN]Cu, 2 equiv.
tBuOOtBu and chlorobenzene

as solvent (Table 1). Conditions involving lower or higher

concentrations of tBuOOtBu, C�H substrates, or catalyst

loading did not improve the yield of the α-alkylated product

3a. A modest screening of other β-diketiminato catalyst
structures did not lead to improved yields or conditions

(Table 1).

Following initial optimization, we investigated the scope

and effectiveness of our methodology on several sp3 C�H

substrates (Table 2). Substrates with benzylic sp3 C�H bonds

(1a–1h) gave good to excellent yields under our protocol

(Table 2).

Heteroaromatic C�H substrates such as ethylfuran (1 i)

and ethylthiophene (1 j) gave moderate to good yields of

alkylated products. Tetramethylethylene (1 j) also undergoes

α-acetylation at an allylic C�H bond. We find that

Scheme 2. Catalytic C�H functionalization via radical relay.

Table 1: Optimization of reaction conditions.

Table 2: Catalytic sp3 C�H acetylation with acetophenone.
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cyclohexane, however, provides poor conversion to the

desired functionalization product. Instead, Cy�OtBu is the

primary product, likely a result of C�H etherification of

cyclohexane via [CuII]�OtBu (Figure S1).[20]

Propiophenone also undergoes functionalization with

benzylic and allylic R�H substrates (1 l–1p), generating a

mixture of diastereomer products upon C�H functionaliza-

tion by 2° benzylic substrates (1 l, 1n, 1o; dr=1 :1). Notably,

4-ethyltoluene (1o) undergoes selective functionalization at

the 2° benzylic position. The use of N-heteoaromatic

substrates such as 8-methylquinoline or ethylpyrazine led to

the unexpected α-etherification product PhC(O)CH-

(OtBu)Me (Figure S2).

We then examined the ketone substrate scope with

(hetero)aryl methyl ketones which provide C�C coupling

products as single diastereomers with prochiral 2° and 3°

alkyl radicals (Table 3). Using ethylbenzene as the sp3 C�H

substrate, substituted aryl ketones (2a–2g) gave moderate

to good yields of the α-alkylated products. Some substrates
required heating to encourage higher yields (2g–2k). For

instance, 3-acyl pyridine (2c) gave a trace amount of product

at RT, but afforded an isolable amount (22%) when the

reaction was run at 90 °C. We suspect that binding of the

pyridyl substrate to the [CuI] catalyst may hinder peroxide

activation by the [CuI] center.[20] Ortho-disubstituted aryl

methyl ketones react sluggishly at RT but gave the C�H

functionalized products when the reaction was heated to 90
°C. Electron withdrawing ketones such as dichloroacetophe-

none (2 i) and pentafluoroacetophenone (2 j) gave moderate

yields while the electron releasing trimethylacetophenone

(2k) gave only a trace amount of product. In fact,

competition experiments between acetophenone and 4-Cl or

4-Me substituted acetophenones show a mild preference for

C�H functionalization with the more electron-poor ketone

(Scheme S2). Importantly, the simple ketone acetone (2 l)

may be used in C�H functionalization with ethylbenzene,

providing the C�H α-acetylation product in 41% yield.

We anticipated that this radical route to C�C bonds

could potentially overcome challenges inherent in construct-

ing quaternary carbon centers[22] that are common features

in natural products and biologically active small

molecules.[23] As sp3 carbon-based radicals are reasonably

stable towards elimination or isomerization,[24] several recent

reports demonstrate the construction of quaternary C�C

bonds from carbon radicals.[25] For instance, Liu and co-

workers recently disclosed a C-arylation protocol that forms

quaternary carbons via tertiary radicals derived from α-
substituted acrylamides that are proposed to undergo

capture by CuII-aryl intermediates.[26]

Quaternary carbons form in the reaction of acetophe-

none with C�H substrates that possess 3° C�H bonds

(Table 4). Cumene, sec-butylbenzene, cymene and 2-isopro-

pylnaphthalene coupled effectively with acetophenone giv-

ing quaternary carbon-containing products 5a–5d in 51–

76% yield. We observed a low yield (28%), however, in the

coupling of cyclohexylbenzene with acetophenone (5e),

perhaps due to competing side reactions that involve the

cyclohexyl C�H bonds.

Based on previous radical relay catalysis by copper

b-diketiminates, we believe that the copper(II) enolate

[Cl2NN]Cu(CH2C(O)Ph) (6) serves as a key intermediate

(Scheme 3).[17–20,27] Despite a number of synthetic ap-

proaches, we have not been able to isolate such a copper(II)

enolate intermediate. Indeed, we are only aware of a

recently reported copper(II) enolate {[NNN]Cu(OC=

C(Me)Ph)}� derived from 2-phenylpropionaldehyde and

supported by a tridentate, dianionic pyridine dicarboxamide

ligand.[28] Nonetheless, addition of excess acetophenone to

[Cl2NN]Cu�O
tBu results in second order decay of the

otherwise stable copper(II) t-butoxide (Figures S3–S4). GC/

MS analysis of the resulting solution reveals the homo-

coupled diketone product PhC(O)CH2CH2C(O)Ph in 82%

yield (Scheme 3). Based on these observations, it is likely

that Keq is small for acid-base exchange between

[CuII]�OtBu and H�CH2C(O)Ph to form the copper(II)

enolate [CuII](CH2C(O)Ph) while the rate of bimolecular

coupling of the copper(II) enolate is fast.

Table 3: C�H acetylation of ketones with ethylbenzene.

Table 4: Quaternary carbon formation via sp3 C�H acetylation.
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We employed DFT calculations at the BP86-D3BJ/6-311

+G(d,p)/SMD-benzene//BP86/6-311+G(d,p) level of

theory to illuminate the nature of the reactive intermediates

in this C�C coupling reaction. Indeed, the reaction between

[CuII]�OtBu and PhC(O)CH3 to give the most stable copper-

(II) enolate [CuII](k1�CH2C(O)Ph) is endergonic by

5.2 kcal/mol at 298 K corresponding to an equilibrium

constant Keq=1.5�10
�4 for acid-base exchange.

Three different enolate binding modes were considered

that reveal the k1�C isomer to be 2.0 and 2.6 kcal/mol lower

in free energy than η3�CCO and k
1
�O conformations,

respectively (Figure S5 and Table S3). DFT analysis suggests

that reaction of [CuII]�OtBu initally proceeds with a barrier

of 20.0 kcal/mol through a k
1
�O isomer that converts with

low barriers to the lowest energy k
1
�C species via the

η3�CCO isomer (Figure S7). Consistent with copper(II)

enolate formation occuring via acid-base reaction between

the acetophenone and [CuII]�OtBu, acetophenones with

electron-withdrawing substituents favor formation of the

copper(II) enolate. This mirrors competiton studies that

show electron-withdrawing acetophenones preferentially

participate in C�H functionalization in the presence of more

electron-rich ketones (Scheme S2).

While the Cu center in these T-shaped copper(II)

enolates [CuII](k1�CH2C(O)Ar
X) (X=CF3, Cl, H, OMe)

represents the site of largest unpaired electron density

(0.43–0.46 e�), significant unpaired electron density also

exists at the α-C atom (0.17–0.19 e�) that identifies the

enolate α-carbon as a site for C�C coupling (Scheme 3,

Table S5). Accordingly, bimolecular dimerization of [CuII]-

(k1�CH2C(O)Ph) (ΔG=�37.0 kcal/mol) competes with cap-

ture of the ethylbenzene radical PhCH(*)Me (ΔG=

�33.8 kcal/mol) (Scheme 3). Nonetheless, these endergonic

formation of the copper(II) enolates from acetophenone

with [CuII]�OtBu combined with low barriers for radical

capture or enolate coupling (Figure S7) suggests that

copper(II) intermediates would not be directly observable

by UV/Vis spectroscopy.

We have developed a novel intermolecular copper

catalyzed sp3 C�H α-acetylation for the construction of C�C
bonds via copper catalyzed C�H functionalization of

benzylic and allylic substrates with acetophenones. This

approach that features readily available sp3 C�H substrates

and alkyl aryl ketones, as well as acetone, offers a

complementary catalytic Csp3�Csp3 disconnection strategy

to prepare small molecules that may be building blocks for

the assembly of biologically active and/or other synthetically

useful products.

Supporting Information

Detailed experimental methods and characterization of all

products is given in the Supporting Information. The authors
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