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LOGARITHMIC VERTEX ALGEBRAS RELATED TO sp(4)

DRAZEN ADAMOVIC AND ANTUN MILAS

Dedicated to Marko Tadié on the occasion of his 70th birthday

ABSTRACT. We present several results and conjectures pertaining to
parafermion vertex algebra and related logarithmic vertex algebras. Start-
ing from the tensor product of two copies of the singlet vertex algebra
M(2), we consider various subalgebras that appear in its decomposition
including N_1(sl(2)) and its Zz-fixed point algebra, and the S2-symmetric
orbifold of the singlet vertex algebra M(2). In particular, we show that
N_1(sl(2)) has an extension to a W-algebra of type (2,3,4,5,6,7,8). Fi-
nally we state some conjectures about singlet and triplet type W-algebras
of type sp(4) and their characters.

1. INTRODUCTION

The development of the parafermion conformal field theory was signifi-
cantly aided by the introduction of parafermion vertex algebras. These al-
gebras are initially defined as subalgebras of the generalized vertex algebras
generated by Z-operators that were needed for the vertex-operator-theoretic
interpretation of Rogers-Ramanujan partition identities [25],[24].

Over the last ten years, there has been extensive research on the
parafermion vertex operator algebras linked to rational affine vertex operator
algebras at positive integer levels, resulting in a comprehensive understanding
of their structure [10,15,16]. However, for other levels, such as generic levels,
their structure remains largely unknown.

For g = s[(2), much more is known due to recent breakthroughs in under-
standing affine W-algebras at admissible levels. At generic levels, it is known
that this vertex algebra is non-freely generated and is of type (2, 3,4, 5). There
are two distinguished generic levels of interest here: k = f% and k= —1. It
can be easily seen that k = —% is the only level that admits an embedding
of the principal affine W algebra for g of type A, inside the parafermion al-
gebra. This case was considered in our previous paper with Wang [6] where
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260 D. ADAMOVIC AND A.MILAS

we obtained many structural results including results for related logarithmic

algebras.
In this paper we focus on the parafermion algebra at kK = —1. This case
is interesting because k = —1 is the sole level that permits embedding of

the affine W-algebra associated to sp(4) inside the parafermion algebra. The
objective of this paper is to repeat the analysis conducted in our previous
paper [6], now involving the rank two symplectic Lie algebra.

The paper is structured as follows: Section 2 provides a review of no-
tation and basic facts related to the symplectic fermion vertex algebra and
its orbifold subalgebras. Section 3 focuses on the generic parafermion vertex
algebra Nj(sly) of level K = —1. The singlet algebra M(2)®? is studied in
relation to N_q(sl2) including decomposition of the former in terms of irre-
ducible N_j(slz)-modules. Several results are proven, including a new type
of character formula. Sections 4 and 5 primarily deal with decompositions
of N_i(sly) and its orbifold subalgebra N_;(slz)™ in terms of the affine W-
algebra W_s/5(sp(4)). Section 6 focuses on another automorphism of order
two of M(2)®2, the symmetric orbifold. A structure theorem for the orb-
ifold subalgebra is presented in this section. In Section 7, the Virasoro vertex
algebra L(—2,0) contained in M(2) is considered. The decomposition of
L(—2,0)®? in terms of W_j5(sp(4)) modules is explored in this section. The
last part of the paper contemplates on the existence of a series of singlet and
triplet type vertex algebras associated to sp(4). Motivated by the s[(3) singlet
type algebras, conjectural expressions for their g-characters are presented.

2. PRELIMINARIES
In this part we setup some notation and summarize facts we need later.

e Let g be the simple Lie algebra with Cartan subalgebra § and triangular
decomposition g =n_ +h+n,.

e Let § be the associated affine Lie algebra, and 6 be the associated
Heisenberg subalgebra.

e Let V¥(g) be the universal affine vertex operator algebra of level k
associated to the simple Lie algebra g.

e Let Vi (g) be the simple quotient of V*(g).

e Let W¥(g) be the universal principal affine W-algebra W*(g, f,-) of
level k.

e Let Wy(g) be the simple quotient of be the simple quotient of W¥(g).

e Let N¥(g) = {v € V¥(g) | h(n)v = 0 h € h,n € Z>o} be the
parafermion subalgebra of V*(g).

o Let Ni(g) = {v € Vi(g) | h(n)v = 0 h € h,n € Zxo} be the
parafermion subalgebra of Vj(g).
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e Fora A € P, let V() be the irreducible finite-dimensional g-module
with the highest weight A, where P, denotes the set of dominant in-
tegral weights for g.

e Let V¥()\) be the generalized Verma module for g-module induced
from g-module Vy(A). Let Li(X) be its simple quotient.

e For \,p € Py, let Tff denotes the W¥(g)-module obtained as
Hps(VEX — (k+3)u) (cf. [9]).

e Let L(c,0) denotes the simple Virasoro vertex algebra of central charge
c.

e For k = -3 + % and g = sp(4), the universal affine vertex algebra
VE(sp(4)) is simple (cf. [21]), and therefore by [7] Hps(VF(sp(4)) =
WF(sp(4)) is simple. In particular, W=5/2(sp(4)) is a simple vertex
algebra of central cherge ¢ = —4.

e Let M(p) denotes the singlet vertex algebra of central charge 1 —
6@ (cf. [2]). The singlet vertex algebra M(2) is isomorphic to the
principal affine W-algebra W_g/5(sl(3)) of central charge ¢ = —2 (cf.
[30]).

We shall need the following facts which are well-known. Let g = s[(2) with a
Chevalley basis {e, f, h} and let £ = —1. Then we have:
o V¥(g) = Vi(g).
e VF(jwi) = Li(jw1), j € Z>0, where w; is the fundamental dominant
weight for sl(2).
e N¥(j) = N¥(jwi) = Ni(jwi), 7 € Zso, where N¥(jw) =
{v € VF(jw) | h(n)v = 0, ¥ n € Zso} and Ni(jwi) = {v €
Li(jw1) | h(n)v =0, Vn € Z>o}.
We denote by ch[M](q) := tra;q™(®) the character of a V-module M; from the
context it should be clear what the vertex algebra is. Also, for simplicity we
suppressed the conformal anomaly —7. For a vertex algebra V, the vertex
algebra V ® V admits an Ss-action permuting two tensor factors. The fixed
point subalgebra will be denoted by (V ® V)2, Its character is known to be

(21) (V& V)*](a) = 5 (chlV] () + chV](e?))

We will often use the q-Pochhammer symbol (a;q), = [[}—,(1 — ag" ') and
(@n = (@ ¢)n-

2.1. The vertex algebra W*(sp(4)). Let W¥(sp(4)) denotes the principal affine
W-algebra W¥(sp(4), f,) of level k and central charge

| 2(12 + 5k)(13 + 6k)
3+k

C=C =
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It is generated by the Virasoro field L(z) = >
field of conformal weight 4:

W(z) = Z W (m)z=m"4,

mEeZ

mez L(m)z=™% and another

The bracket relations (i.e, the OPE) are well-known (see for instance [17,
Section 3.2]) and not needed here.

Let LW (c,h,hyw) denotes the irreducible highest weight W (sp(4))-
module of the highest weight (h, hy) with respect to (L(0), W(0)).

Note that for k = —3 + 1/p we have ¢, = 86 — % — 30p. We expect that
this level is generic and the following conjecture holds:

CONJECTURE 2.1. Let k = =3 + 1/p and ¢, = 86 — % — 30p. Then
Tfﬁgg is an irreducible W¥(sp(4))-module and Hps(Li()\)) = Tf"g‘? for each
dominant integral weights A for sp(4).

2.2. Symplectic fermion vertex algebra SF(d). The symplectic fermion vertex
algebra SF(d) (see [1] for more details) is the universal vertex superalgebra

generated by odd fields/vectors b; and ¢; (i = 1,...,n) with the following
non-trivial A-bracket

[(Bi)acs] = i .
SF(d) can be realized on the irreducible level one module for the Lie super-
algebra with generators

{Ka bz(n)a Ci(n)a ne Z}

and relations

{bi(n),b;(m)} = {ci(n), cj(m)} =0, {bi(n),c;(m)} = ndi;0nsm oK.
Here K is central and other super-commutators are trivial. As a vector space,

SF(d) = /\span {bi(=m),c;(—m), m € Zso,i=1,...,n}.
The fields b;, ¢; can be identified as formal Laurent series acting on SF(d).
bi(z) = Z bi(n)z " ci(z) = Z ci(n)x™ "1
nez neZ

The vertex algebra SF(d) has the following Virasoro element of central
charge ¢ = —2d:

d
wS}-(d) = Z : biCi M-
i=1

Let L(z) = Y(wsr(),2). There is a charge operator J € End(SF(d)) such
that

[J:bi(n)] = bi(n), [/ ci(n)] = —ci(n)
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which defines on SF(d) the Z—gradation:
SF(d) =Y _SFd)Y, SFd)" ={veSF(d) | Jv=lv}.

LEL

Let us recall few known facts on the vertex algebra SF(d):

e The automorphism group of SF(d) is Sp(2d,C) (cf. [1]) and the Lie
algebra g = sp(2d) acts on SF(d) by derivations.

e The vertex algebra SF(d)“H(4©) is a simple W-algebra of type
W(2,3,---,2d+ 1) (cf. [14], [8], [23]). In particular:

e The vertex algebra SF (1)GL(1) is isomorphic to the singlet vertex al-
gebra M(2) of central charge ¢ = —2 (cf. [30]).

e The vertex algebra SF (2)GL(2) is isomorphic to the parafermion vertex
algebra N_q(s1(2)).

e The vertex algebra SF(3)“F®) is isomorphic to the parafermion vertex
algebra of the Breshadsky-Polykov vertex algebra Wi (sl(3), fimin) at
level k = —5/2.

e The vertex algebra SF(d)°P(?*%C) is isomorphic to the simple principal
affine W-algebra Wy (sp(2d), fpr) at level k = —d — 1/2 (and central
charge ¢ = —2d). It is freely generated by fields:

d
m _ 1 b, m—2 . L. AMm—2p . . _
W™ (z)= =2 ;( bi(2)07 2ci(z) i +: 00 2bi(2)ci(2) 1), m=2,4,...,2d.
e SF(d) is a completely reducible as Wy (sp(2d), fpr) X sp(2d)-modules
have
(2.2) SF(d) = @D Vipay(n) ® B,

HeEPy

where E,, is an irreducible Wy, (sp(4))-module. The character of E,, is
given in [14]:
(2.3)
n2 = m n m-+n m-+n
b AT (1 g (1= g (1 g )L )
b = (4502 |

where 1 = nw; + mws € Py.

e Assume that G is any reductive Lie subgroup of Sp(2d,C). Then the
orbifold vertex algebra SF(d)€ is completely reducible as Wi (5poy, for) X
G-module:

(2.4) SF(d)° = @ Vipay(m)? @ B,

nePy
e Let Gy =SL(2,C) x -+ x SL(2,C) C Sp(2d,C). Then
SF(d)% = L(-2,0)%"
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3. WEYL MODULES FOR Wi (sp(4))
Let oy and ay denote the positive simple roots of sp(4) with normalization
(alaal) = 17 (Oég,OéQ) = 27 (Oé]_,()(g) = -1

Let P; be the set of dominant integral weights for g = sp(4). Let

w1 =Oé1+§a2,w2 =a1 + Qs

denote the fundamental dominant weights. For pu € Py, let V(u) be the
irreducible, finite-dimensional g-module with highest weight u. Let P{"*" be
the subset of P, give by

PJerfuen _ {T‘UJ1 + S(,ugl r,Ss e 2220.}

Let 775“’33 denotes that Wy (sp(4))—module Hpg(Ly (1)) as defined in [9].

PROPOSITION 3.1. For A = nw; + mws € PT we have
ch[Ty§%)(q) =
2 n? z m n m+n m—+n
g rE AR (1= (1 = ¢ (A = ) (A - )
(4:9)%
PROOF. According to Arakawa-Frenkel [9],

>l

Ao

q )t .
ch[T357](g) = e 3 (—1) @) g w0+ eY)
T wew

where

<1
Ao =A+2p) +(p.p")
Plugging in A = nw; + mws immediately gives
9 n? v 7
A A+2p) =m” +mn+ o +3m+2n, (p,p") =5

2
Z (= 1)t g=wrte)p”)
weW

_ q—%—Qm—%n(l . qm+1>(1 _ qn+1)(1 o qm+n+2)(1 _ q2m+n+3)

which proves the formula. ]

CONJECTURE 3.2. Let k =1/2. Then T)j = E,,.

Proposition 3.1 and the character formula for E, from [14] imply that
this conjecture is true at the level of characters.
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4. STRUCTURE OF N_1(sl(2)) AND N_;(sl(2))"

In this section we present the decomposition of parafermion vertex algebra
N_1(sl(2)) and its Zy-orbifold N_;(s[(2))* as a W—%/2(sp(4))-module.

4.1. Structure of N_1(s[(2)). We need the following result which easily follows
from [22, Section 3].

LEMMA 4.1. V(M) s at most 1-dimensional. Moreover, dim V/(\)¢ =
1 if and only if X € P{Ue".

PROOF. We use the branching rules formula for the restriction GL(n) C
SP(2n) in Subsection 2.3.2 of [22], in the special case n = 2. Then for
every dominant integral weight A, the trivial representation appears in the
decomposition of SP(4)-module V(\) as GL(2)-module if and only if A\ €
P{oe™ and then multiplicity is one. 0

Using Lemma 4.1 and the decomposition (2.4) we get:

PROPOSITION 4.2. N_4(s[(2)) = @#epim E,.
4.2. Structure of N_1(sl(2))T. Ng(sl(2)) has an involution 6 induced by
Chevalley’s involution of s[(2). It acts on the standard generators as fol-
lows: e = f, f — e, and h — —h. This automorphism 6 is uniquely de-
termined by 8(W3) = —Wj3, where W3 is the weight 3 primary generator of
Ni(s1(2)). We focus on the generic case when Vi (sl(2)) = V¥(s[(2)), which
holds true for £k = —1. The fixed point sly-algebra under this automorphism
is denoted as Vi (s[(2))", and the fixed point parafermion (sub)algebra is de-
noted as N (sl(2))". Similarly, Vi (slz)~ and Nk (s[(2))~ represent their (—1)-
eigenspaces. Additionally, 6 refers to the Heisenberg Lie algebra associated
with Ch, where (h,h) = 2, and M(1) is the Heisenberg vertex superalgebra

contained in Vi (s((2)).

THEOREM 4.3. For any generic k, we have the following character for-
mula:

_1\n,n(n+1)/2 _1\n,.n>
ch[Nk(sr(2))+]<q):Z"21( Ve (q;q)ngM( D

PRrROOF. Denote by Vi (sl(2))(0) the zero weight subalgebra of Vj(s((2))
under the h-action. Then V;(s1(2))(0) = M (1) ® Ni(sl(2)). The zero weight
space is spanned by the monomials:

h(=ir) - h(=im)e(=j1) -~ e(=jn) f(=k1) - -~ f(=kn)1.
Then writing generating series for the fixed point algebra gives
(4.1)

n

VeI 0] = e 3 !

(@ @)oo 5 (Q)n> :CT‘"”(q;q)oo(qx;q)m(qxfl;q)m
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We get decompositions:
(42)  V(sI2)(0) = M(1)* @ Np(sl2)) @ M(1)” @ Ny(sl(2))",
(4.3) Vi(s1(2))(0)” = M(1)" @ Ni(sl(2))” @ M (1)~ ® Ni(s1(2))*.
We already know

4 1 1 1
(44 AMTI=3 ((q;q)oo e q)oo)

To compute Vi (s[(2))(0)" we first observe that the trace can be computed on
the associated graded algebra gr(Vi(s1(2))(0)) which is slightly more conve-
nient due to commutativity. For this computation we use again

(4.5) vi=h(=ia) - h(=im)e(=jr) -~ e(=gn) f(=F1) - f(=Fn)1

Observe that the automorphism 6 maps v to

(=D)"h(=i1) - - h(=im) f(=g1) - - f(=dn)e(=F1) - - e(=kn)1.

To compute the character we need

(16)  chlVi(sl(2))(0)*] = Seh[Vi(s1(2))(0)] % Jtrv, ooy

Notice that the last trace computed on the set of monomials (4.5) is non-
trivial if and only if i; = j1,...,Jn = kn. Counting monomials contributing
to non-zero trace gives

1
~4;0)00 (4% 6%)o0
Using this formula combined with (4.6) and plugging into character formulas

for (4.2)-(4.3) gives a 2 x 2 linear system for ch[Ny(s[(2))*]. It’s easy to see
that

v, (s1(2))(0) 07" = (

h([Vi.(s1(2))(0)F]ch[M (1)F] — ch[V4 (s1(2
o) SO D) o)
Using again (4.6) and (4.4) quickly gives:

ch[Nk(s1(2))"]

2 o (1 1 1 NErTT 1 1
= (¢*1q )OO(2 ((q;q)oo+(q; q)m> (2 hVi (st O+ 5 = q)m(QQ;qz)m>

(0)~Jeh[M (1)~]

1 1 1 1 1 1
2 <(q;q)oo - (—q;q)oo> ' (2Ch[Vk(5[(2))(0)] - 2(—q;q)oo(q2;q2)oo>)
_1(¢%¢%) 11
2 (g9 ch{Vi(sl)(O)] + (4% 42)
1 11
= 5(a59)ooch[Vi(s1(2))(0)] + 2
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as claimed. To prove the second formula observe that we can express the
character of N (s[(2)) using false theta series in the form

114255, (-1 g2 L (407 (4:0)ox
2 (¢:9)3% (¢:9)%

1 1 1 2
_ - 1= _1\n,n(n+l)/2 - _1\n,n
= 5t (1" +5 2 (-1

. 2
(;9)% = =,
1 2
= — [ Do (=D)L (-0 |,
(4 9)3
% 9)5% n>1 n>0

where in the penultimate line we used the Jacobi triple product identity.

d

The previous theorem has the following generalization: let g be a simple
Lie algebra and Ni(g) the associated parafermion algebras. Then

2 m
| 1 (Snez(-1a™)
ch[Ni(g)"] = Sch[Ni(g)] + 5
2 2 ()3
where m is the number of positive roots of g.
The following result concerning g-series is independent of representation
theory.

PRrROPOSITION 4.4. We have the following identities:

n>1
(4.7)
— Z qm2+§+mn+m+§(1 _ qm+1)(1 _ qn+1)(1 _ qm+n+2)(1 _ q2m+n+3)
m€2ZZO
news,
Z(_l)nqn(n+1)/2 + Z(_l)nqn2
n>1 n>0
(4.8)
— Z qm2+%+mn+m+g(1 _ q77l+1)(1 _ qn+1)<1 _ qm+n+2)(1 _ q2m+n+3).
mEZZZO
n€dzsg

PROOF. We prove the first identity only, the second identity can be de-
rived in a similar manner. To do this, we first perform the substitutions
m — 2m and n — 2n on the right-hand side of (4.7), which allows us to
rewrite the summations as over n > 0 and m > 0. Next, we simplify the
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exponent 4m? + 4mn + 2n? + 2m + n by completing the square, obtaining
2(n +m)? 4+ 2m? + (n +m) +m, and then let n +m — n. Expanding terms
in parentheses of (4.7) and completing squares in the exponents gives:

- 2 2 —m n n—+m--:<
Z Z q2n +2m +m+n(1 _ qm+1)(1 —q" +1)(1 —q +2)(1 —q + +3)
n>0 m=0

— Z Z i q2(n+a)2+2(m+b)2+(n+a)+(m+b)

(a,b)eS4 n>0m=0

. Z Ziq2(n+a)2+2(m+b)2+(n+a)+(m+b)7

(a,b)eS_ n>0m=0
where S = {(0,0), (%’ 1), (1, _%)v (%a %)} and S_ = {(0, %)v (%7 _%)7 (1,1),
(%, 0)} are shift vectors for the summations variables. Next we pair elements
from Sy with S_ so that differences between shift vectors are integral: (0,0)
with (1,1), (1,—3) with (0,3), (3,3) with (3,-3), and (1,1) with (2,0).
This pairing results in cancellation of terms among the corresponding double
sums:

Z zn: q2n2+2m2+n+m . Z zn: q2(n+1)2+2(m+1)2+(n+1)+(m+l)

n>0 m=0 n>0 m=0
n n+1
— Z Z q2n2+2m2+n+m _ Z Z q2n2+2m2+n+m — Z q2n2+n.
n>0m=0 n>1m=1 n>0
Similarly,
n n
3037 @R kD md) L § G et e2me ) e (mt )
n>0 m=0 n>0 m=0
2 2 2
DN
n>1 n>1
Z Z P27 F2mt ) (et H+(mtg) _ Z Z ST 2= e )+
n>0 m=0 n>0 m=0
2n+1 1
_ _Zq( n+1)(n+ )7
n>0
n n
Z Z q2(n+%)2+2(m+1)2+(n+%)+(m+1) . Z Z q2(n+%)2+2m2+(n+g)+m
n>0m=0 n>0m=0
1)? 2n+1 1).
:Zq(n-‘r) _Zq( n+1)(n+1)
n>1 n>1

Adding these four identities proves the assertion (4.7).
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Based on the previous result and formula (2.3), we get:

THEOREM 4.5. With k = % and 1 = nwi + mwsy as before, we have
(4.9) N_i(sl2)t = > E,.
77162220
nedlsg

PRrROOF. Proposition 4.4 implies that

(4.10) ch[N_1(sl(2))T] = Y ch[E,].

me2ls
nedls

Since we know that N_;(s[(2))T € N_1(sl(2)) C SF(2) is a completely re-
ducible W~°/2(sp(4))-module, then Proposition 4.2 implies that

N_q(slp)t = Z a(n,m)E,,

meE2ZLx>
n€2Lsq

where a(n, m) € {0, 1} are multiplicities with a(0,0) = 1.
Observe that for n =2 mod 4 we have

ch[E,] = ¢* (1 + O(q)), o, € 2N —1,
while for n =0 mod 4 we have
ch[E,] = ¢**(1+O(q)), a, €2N,

so lowest conformal weights have different parity if n are incongruent modulo
4.

Let us reparametrize all lowest conformal weights with n = 0 mod 4 as
{1i}i>o such that a,, < a,, < ay, < ---. Clearly a,, = 0. Similarly we
reparametrize all lowest conformal weights with n =2 mod 4 as {v; };>0 such
that a,, <a,, <a,, <---.

Claim: a(n,m) =1 for n =0 mod 4 and a(n,m) =0 for n =2 mod 4.

To prove this claim, we will demonstrate that the right-hand side of (4.10)
is the only possible representation of the character of ch[N_j(slz)™]. In other
words if
(4.11) ch[N_1(sl(2))T] = Y a(n,m)ch[E,].

me2Zsg

n€2Lsg
we will prove that a(n,m) are as claimed. By checking the initial terms in
the g-expansion we se that only E,, (with n = 0 mod 4) contribute to the
character. Notice also that for every k such that a,, > a,, , from (4.10) we
get a congruence

(4.12) ch[N_1(sl(2))"] = ch[E,,] + -+ + ch[E,, ,] mod (g%*),
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because all coefficients up to ¢~ agree with the character of N_;(s[(2))*.

Suppose the aforementioned claim is false. Then we can find a decompo-
sition with the smallest £ > 1 in which E,,, does not appear in the character
decomposition. We can express it as follows

o —

Ch[N—1(5[(2))+} = Ch[EHO] +eee Ch[Elika + Ch[EMk] + Ch[EVj} +-

where E, is the first module with n =2 mod 4 that appears in the decompo-
sition and ~ indicates that the term is omitted. Assume first that pp > pug_1.
Then we clearly cannot have a,, < a,, because it would contradict (4.12).
Therefore we must have a,, = a,,. But this would contradict the fact that
a,, and a,, have different parity. If pi_1 = pi then again we would require

i

M = vj, a contradiction. O

Using the theorem and the fact that N_;(sl(2))" is generated by pri-
maries of degrees 2,4, 6,8, 10 [23], we can determine that the first non-trivial
occurrence arises at degree 14.

REMARK 4.6. The approach to Theorem 4.3 can be facilitated using a
result established with Wang in [6]. In that paper, we demonstrated the
following decomposition:

(4.13) N_3(sl(2)) = @ L(—10,2m(m —1),0)

m>0

where L(—10,2m(m — 1),0) denotes irreducible (Weyl) modules for the affine
W-algebra Wy (sl(3)), with k = f%. By employing the explicit construc-
tion described in [6], we observe that each module in the aforementioned
decomposition remains invariant under 6. Consequently, in order to com-
pute ch[N_s (sl(2))"], it suffices to determine ch[L(—10,2m(m —1),0)*]. To
achieve this, we rely on a BGG-type resolution for L(—10,2m(m — 1),0) as
outlined in [9]. We assume the applicability of the approach in [9] to our
modules, allowing us to obtain the following BGG-type resolution of the irre-
ducible module L(—10,2m(m — 1),0) using Verma modules:

0 = M2m(m+1)) — 1\4(2m(m+%))692 - M(zm(m—%))692 — M(2m(m—1)) — 0.

Considering that 6 induces a; <> a9 for simple roots, we observe that the

two direct summands in the resolution also interchange under 6. Utilizing this
2m(m—1) 71 _ _m\2/q_ _2m

fact, we can establish ch[L(—10,2m(m—1),0)"] = £ ((1q,qq)2 yi=a") By

summing over m, we then establish the claim presented in Theorem 4.3.

5. THE VERTEX ALGEBRA M(2)®? AS N_;(s[(2))-MODULE.

Our first result uses our previous work [4].



LOGARITHMIC VERTEX ALGEBRAS RELATED TO sp(4) 271

THEOREM 5.1. We have:

®2 = P N_1(29).
s=0

PROOF. By [4], M(2)®? is isomorphic to a parafermion algebra of a
charge zero component of two copies of 3 vertex algebra which is exactly
algebra denoted by V(l) [5]. Using decomposition

(1) @ L_1(2sw1),

and same arguments as in [6], we get M(2)®? = @2, N_1(2s). d

The character of M(2)®?2 appears as the constant term of the Schur’s index
of type (Al, DQ) (here D2 = A1 X Al)

COROLLARY 5.2. We have

anzo,ngeZ sgn(ng)(—l)"l q7"1<n21+1) +ninz+n3+na

(¢:9)%

ch[M(2)%")(q) =

ProoFr. Note that (see [12] for instance):

= # n 2n“+n — . > i
(5.1) AM@(@) = s 7% gn(n)q (q,q)mkz:0 o
We also have:
Ch[N_1(25>](q) — qs(s+1)CT (JS_S 4144 J:S)

(245 @)oo (7165 @) o
@Gt (Do(q) + P _1(q) — 2@ _5_1(q))
(4:9)% '
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(x—$_|_...+1+...+x8)
(%45 ¢)oo (7145 @)oo

ch[M(2)](q)* = D ¢*“TVeT,

s=0
s+1/2 _ _—s—1/2
_ ot Yoo Saimem Y
Y (@)t 0)so
1
= W Z Z qs(s+1) (Pin(q) = Pm-1(q))
10 mMEZ s> |m)|
1 ny(ni+1) 2
— ( Z (_l)nqu+nln2+n2+n2
.2
(@ a)% ", =,
_ Z (_1)n1qw—n1(nz+l)+n§+nz)
n1,n2>0

3 1
n1q%+mn2+n§+nz

an >0,n2€% sgn(nz)(—1)
(9%

Using the same arguments as in [6] we get:

COROLLARY 5.3. M(2)®? is generated by N_1(sla) + N_1(2w1). In other
words, it is generated by N_1(sly) and a primary field W? of conformal weight
2.

REMARK 5.4. This decomposition is an analog of the decomposition from
[6] :

WO(2)a, = N_32(s1(3)) = €D N_3/2(24).
j=0

6. S2-PERMUTATION ORBIFOLD OF M (2)

In this part we consider the So-permutation orbifold of W¥(s[(3)) of level

k and central charge c(k) =2 — 24(12123)2. We denote the usual generators of
Wk (sl(3)) by T (Virasoro) and W (primary generator of degree 3) satisfying
the usual OPE with central charge ¢ = c(k) (we will use parametrization
by the central charge). We denote by W3 = W ® 1, W = 1@ W, and
T, =T®R1+1R7T,7T, =T®1-1Q7T,and wealsolet W, =W ®1+1W
and W,, = W ®1—1® W. Then W, := W,(sl(3))®? is strongly and freely
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generated by T, T,,, W, and W,,. For brevity we introduce
Ula,b) :=: WDW® .
V(a,b) == T
Z(a,b) = T\DW®

elements fixed by the Ss-automorphism switching tensor factors.
Next result was recently proven by M. Penn and one of us.

THEOREM 6.1. [27] For all but finitely many values of ¢, which includes
c = —2, the orbifold subalgebra W52 is strongly generated by the set
{TP7 WP? U(07 0)’ U(27 0)7 U(4’ 0)’ V(O’ 0)7 V(27 0)7
V(4,0),2(0,0),2(1,0), Z(2,0), Z(3,0)}.
Moreover, this set is minimal and generators can be modified so that the
orbifold is a W -algebra of type (2,3,4,5,6%,7,8%,9).

6.1. The Sy-orbifold of M(2). We can further reduce the set of generators
in the theorem by taking into account null vectors at central charge ¢ = —2.
A straightforward computation yields the following expressions (using OPE
notation for simplicity):

19 14 16 4T7@)
wingl = —— 2 T'T" : —— :T"'"T: ——=:TTT : +: :
Vsingl 51 57 97 +:WW .+ ]
3 w®
vsmggz—ng'W:—i-:TW':— 3

which are two linearly independent null vectors in M(2). Thus, they belong
to the maximal ideal of W~3/2(sl(3)). Applying the symmetrization map, the
Ss-fixed vectors:

SVUsingl ‘= Usingl + 0<Using1); SUsing2 ‘= Usingl + U(vsingﬂ)v

where o is the non-trivial element in S, are now null vectors in WCS=2_2_ This
allows us to eliminate two generators Z(3,0), V(2,0) from the set in Theorem
6.1 and keep only U(2,0). Using descendants of svging1 and svsinge allows
to eliminate two generators of degree 8 and also generators of degree 9. This
keeps us with generators up to degree 8. We can now conclude

THEOREM 6.2. The vertex algebra (M(2) @ M(2))%2 is a W-algebra of
type (2,3,4,5,6,7,8) with a minimal strong set of generators

{T,,,W,,V(0,0),Z(0,0),V(2,0), Z(2,0),U(2,0)}.
All generating vectors (except T,,) can be modified to be primary.

Of course this vertex algebra is not generated by the degree 3 generator
W, so it cannot be analyzed using universal W[\] algebra as in [26].
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REMARK 6.3. One can prove Theorem 6.2 directly using symplectic
fermion construction without going through Theorem 6.1 and singular vectors.

PROPOSITION 6.4. The verter algebra (M(2) @ M(2))% is completely
reducible as N_1(sl(2))-module with the following decomposition:

(6.1) (M(2) © M(2)% = EBN (4jn).

PRroor. If we prove
(6.2) ch[(M(2) @ M(2 = ch[N_; (4jw1)](q)-
3>0

it implies that (6.1) holds. This is because N_1(s((2)) is fixed under the
automorphism group, and thus we have

(M(2) ® = D al2i)N-1(2jen).

=0
where a(m) € {0,1}, and a(0) = 1. Observe ch[N_;(2jw;)] = ¢UTV(1 +
0(q)), so the lowest conformal weight of N_1(2jwq)] is j5(j +1). If a(45) =0
for some j, then because of (6.2), it is easy to see that the character (M(2) ®
M(2))%2 agree with > j>0 @(27)ch[N_1(2jw1)].
We are left to prove relation (6.2). We require (2.1):
(M(2) ® M(2))*] = h[M(2)](0)” + 5b[M(2)](a").

We already know that

%ch[/\/l( BRCIE g* sty ( - (I)—s—l(Q))
s>0

OO

and it is not hard to see that
1 1 ,50(-1)"g" "+
—ch[M(2)](¢%) = - === =
2(3 [M(2)](q7) 5 (% %) oo
2
1 (Suso-10ma" ) - (Sen(-1)"a)
2 (9)3 '
The right-hand side of (6 2) equals

o Zq23(2s+1) —2P_9,1(q)).
X >0

To finish the proof we have to show that

B Z e, 1 (q) + Z q(2s+1)(23+2)q)72872(q)
s>0 520
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— Z(_l)nqn(nJrl) . Z(_l)nqn2 :

n>0 n>1
or equivalently

St+m s(s —(s m@ n _mn(n ’VLTL2
D (g ‘(Zu)q””)'(ZH” )

s,m>0 n>0 n>1
To prove the last identity we rewrite the left-hand side as
Z (_1)s+m+1qs<s+1)7<s+1)m+m2% _ Z (_1)s+m+1q(%)2+(57%)(57%+1)’
s,m>0 5,m>0

and introduce let t = s — m, so that the summation is over m and ¢t. Then it
can be easily shown that the resulting double sum agrees with the one on the
right-hand side. a

COROLLARY 6.5. Vertex algebra (M(2) ® M(2))%2 is generated by
N_1(sl(2)) + N_1(4w1). In particular, V is generated by N_1(sl(2)) and a
primary field W6 of conformal weight 6.

ProOF. From Theorem 6.2 and Proposition 6.4, we see that all genera-
tors of (M(2) ® M(2))% are within N_;(s[(2)) + N_; (4w ). Through direct
computation we see that the Ss-orbifold subalgebra is generated by a pri-
mary vector of degree 6. However, any such vector necessarily belongs to
N_1(s1(2)) + N_1(4w1). Hence, we can conclude our argument. d

6.2. Further W-algebras and Schur’s indices. We use the decomposition from
[5] (see also [3]):

Vép) = @ L_2+1/p(28w1).
s=0

Let U%(p) := Com(M (1), ép)). The character of U°(p) is given by the
following result:

PROPOSITION 6.6. We have:
nq(n )
S somcz sgn(ng)(—1)m g 5 4D 4 ning4p(n24ns)
(¢ 9%
where sgn(n) =1 for n > 0 and 0 otherwise.

ch(p)] =

b

It is not hard to see using the same approach as in [12] or [11]

PROPOSITION 6.7.

2p+2

q =% ch[U’(p)] = n(7)*n(pr)* - CT¢

V(z1; p1)0 (225 pT)0 (21 + 22; pT)
1,62 (213 7)0(20; 57)0(21 + 225 57)

where

Dz 7) = —ig" 3¢ 241 9) 00 (C @)oo (€105 @) oo
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is the Jacobi theta function with ¢ := e>™¥, and CT denotes the constant term
with respect to the Fourier expansion in ;.

We end with a conjecture that generalizes a character identity for

ch[M(2)®"] from Section 3. Observe that Corollary 5.2 together with (5.1)
gives

Zn1>0 na€l sgn(ng)(—l)nlq +n1n2+(n§+n2) ( )2 Z qn1+n2
— = (49 S
(4:9)% - (@)% (@)%

n1\q)n2
ni,n2>0

ni(ni+1)
2

Some clues from 4d/2d dualities in physics suggest that the following identity
should hold (for k£ > 0):

ni(n )
2y >0,npcz 580 (n2) (—1)™ g e (e D (g 4n2)
(¢:9)%

= (q)2k+2 Z qn.AD"’k‘*'?'nT+n1+“'+n2k+2
- @2, @2, (@2,

where n = (n1,...,nox42) and Ap,, , is the adjacency matrix of the Dynkin
diagram of type Daog1o (for k = 0, we have Dy = A; x Ay, whose Dynkin
diagram consists of two nodes with no edges).

7. THE SYMMETRIC ORBIFOLD (L(—2,0) ® L(—2,0))%2

Let SF(d) be the vertex algebra of symplectic fermion. The symmetric
group Sy acts naturally on SF(d).
Recall that Aut(SF(d)) = Sp(2d,C). Let

Go=SL(2,C) x --- x SL(2,C).
The action of S; and Gy commutes, so we have the of the group Gy acts on
(SF(d))%.
Here we consider the case d = 2.
We use the decomposition

SF(d) = @ Vep(a)(A) ® Ex
AePy

where V;,4)(A) is irreducible finite-dimensional sp(4)-module, with highest
weight \, and E) is irreducible W=/2(sp(4)) = (SF(d))**™®-module. Next
we notice that dim V;p(4)()\)G0 < 1, and dim Vgp(4)()\)G0 = 1 if and only if
A = mwsy for certain m € Z>q. (This result follows from [20] or [22]). This
proves the first half of the following result.

THEOREM 7.1. We have

L(727 0) & L(7270) = é Emwz

m=0
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(L(-2,0) ® L(—2,0))% = é Esmuwss

m=0

PROOF. We only have to prove the second relation. Using (2.1) and the
Jacobi triple product identity, it is easy to prove

1 1 1\ (=) X, 5o(-1)"q"
<(q2;q)§o " (q4;q2)> (9%

2

ch[(L(~2,0)® L(~2,0))%] =

2

holds. Also, using
q4m2+2m(1 _ q)(l _ qm“)(l _ qm+2)(1 _ q2m+3)
(¢ 9)%
one easily demonstrates that ch[(L(—2,0) ® L(—2,0))%2] =" ch[Eane,].
Therefore the second relation in the theorem holds at the level of characters.

On the other hand, using the fact that W~=°/2(sp(4)) is fixed under the non-
trivial element of Ss we obtain decomposition

Ch [EQmwl] =

(L(=2,0) ® L(=2,0))% = @D a(m) B,
m=0
where the multiplicities a(m) € {0,1}, and a(0) = 1. Therefore, it suffices to
show that a(2m — 1) = 0 for all m > 1. It is easy to see that a(1) = 0 and
a(2) = 1. Then we observe

Coeff 12 20 (g3 Q)% <@ a(m)ch[Emw2]> =a(2m —1) —a(2m — 3).
m=0

nnz

But q4m2_2m7 m > 2, does not appear as term in (1 —q)>. ~,(—=1)"q
because 4m? — 2m = n? and 4m? — 2m = n? + 1 does not have integral
solutions except for m = n = 0, and m = n = 1, respectively. We conclude
that a(2m — 1) = a(2m — 3) for every m > 2, which together with a(1) =0
gives a(2m — 1) = 0 for every m and completes the proof. 0

REMARK 7.2. One can easily demonstrate that the aforementioned de-
composition is essentially the only case in which a W*(sp(4))-algebra can be
embedded within the tensor product of two Virasoro vertex operator algebras
L(c1,0) ® L(ea,0). Specifically, aside from the case where ¢; = ca = —2, we
can also observe two degenerate cases that arise due to the presence of singular
vectors of degree 4: ¢; =0 or ca =0, and, ¢; = —22/5 or co = —22/5.

8. CONJECTURAL SINGLET AND TRIPLET TYPE W-ALGEBRAS FOR sp(4)

In this section, we present a conjecture regarding the existence of a sp(4)
singlet and triplet type vertex algebra, based on the work of Feigin and
Tipunin [18], [29] (see also [13]).
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As previously mentioned, Vg, 4)(A) denoted an irreducible highest weight
representation of sp(4) of highest weight A\. We observe that for A € PLNQ =
2Z>ow1 + Z>owa, the zero weight subspace V5p(4)()\)0 is non-zero. Moreover,
using the Weyl character formula we have:

m n mn

dim%p(4)(nw1 + mwg)o =1+ ) + 5 + 5 n e 2220, m € ZZZO
and
(n+1)(m+1)

2

For an even p > 2, we define two g-series:

dimVsp(4)(nw1 + mwg)o = , neE QZZ(),TTL S QZZO + 1.

P (2 n2 3n

— } : : 2(m? 4% +mnt-3m+2n)—2m— 32

Sp(q) = dlm‘/vsp(4) (nwl —+ mwz>0q2(m 5~ tmn+3m n)—2m >
mGZZO,nGQZEO

X (1=g™ ) (1= g" (1= g2 (1 = g?mF7 ).

__3n
2

T,(q) = Z dimVEp(4) (nwr + mwz)qg(m2+§+mn+3m+2n)72m
mMEZ>0,n€2Z 50
X (1—g™ ™)1 —g" ) (1 — ¢ (1 = ?m ),
where
(m+1)(n+1)(m+n+2)2m+n+3)

(8.1)  dimVgp(a)(nwi + mws) = c .

CONJECTURE 8.1. There exist simple vertez algebras We, (p)° and We, (p),
of central charge ¢ = 86 — % — 30p whose characters are given by

respectively.

Using [14,19], it is not hard to see that for p = 2 two vertex algebras
in question are M(2)®" < W(2)®" where W(2) is the (1,2)-triplet vertex
algebra. For p = 4, we anticipate the existence of vertex algebras with central
charge ¢ = —49 and of types (2,4,6,9%, 11) and (2,4, 65,919, 11°), respectively.

Regarding the modular properties of the proposed characters (after
adding the ¢—¢/24 term) it is worth noting that by utilizing the properties
of the Weyl group as described in [13], the T)-series can be expressed as a
summation over a full lattice, taking into account the number of Weyl cham-
bers. Thus, we can represent T,(q) = éZmEZ,nE2Z(') (observe that (8.1)
makes sense for all n and m). This summation corresponds to a collection of
derivatives of rank two theta functions, whose modular properties have been
thoroughly studied (see [13]). Consequently, this observation suggests that
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We, (p) is expected to be lisse. (Non)-modular properties of S,(g) series are
more complicated and can be accessed using the methods developed in [11].
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Logaritamske verteks algebre vezane za sp(4)

Drazen Adamovié © Antun Milas

SAZETAK. U ¢lanku navodimo nekoliko rezultata i slutnji
vezanih za parafermionske verteks-algebre i s njima povezane lo-
garitamske verteks-algebre. Kretemo od tenzorskog produkta
dvije kopije singlet verteks-algebre M(2), te promatramo raz-
licite podalgebre koje se pojavljuju u njezinoj dekompoziciji,
ukljuéujuéi N_1(sl(2)) i pripadni Zs-orbifold N_1(sl(2))", te
Sa-simetriéni orbifold singlet verteks-algebre M(2). Posebno,
pokazujemo da se N_1(sl(2)) moze prosiriti do W-algebre tipa
(2,3,4,5,6,7,8). Na kraju iznosimo neke slutnje o egzistenciji
W—-algebri koje generaliziraju triplet i singlet algebru, te anali-
ziramo njihove potencijalne karaktere.
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