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Dedicated to Marko Tadić on the occasion of his 70th birthday

Abstract. We present several results and conjectures pertaining to

parafermion vertex algebra and related logarithmic vertex algebras. Start-
ing from the tensor product of two copies of the singlet vertex algebra

M(2), we consider various subalgebras that appear in its decomposition
including N−1(sl(2)) and its Z2-fixed point algebra, and the S2-symmetric
orbifold of the singlet vertex algebra M(2). In particular, we show that
N−1(sl(2)) has an extension to a W -algebra of type (2, 3, 4, 5, 6, 7, 8). Fi-
nally we state some conjectures about singlet and triplet type W -algebras
of type sp(4) and their characters.

1. Introduction

The development of the parafermion conformal field theory was signifi-
cantly aided by the introduction of parafermion vertex algebras. These al-
gebras are initially defined as subalgebras of the generalized vertex algebras
generated by Z-operators that were needed for the vertex-operator-theoretic
interpretation of Rogers-Ramanujan partition identities [25],[24].

Over the last ten years, there has been extensive research on the
parafermion vertex operator algebras linked to rational affine vertex operator
algebras at positive integer levels, resulting in a comprehensive understanding
of their structure [10,15,16]. However, for other levels, such as generic levels,
their structure remains largely unknown.

For g = sl(2), much more is known due to recent breakthroughs in under-
standing affine W -algebras at admissible levels. At generic levels, it is known
that this vertex algebra is non-freely generated and is of type (2, 3, 4, 5). There
are two distinguished generic levels of interest here: k = − 3

2 and k = −1. It

can be easily seen that k = − 3
2 is the only level that admits an embedding

of the principal affine W algebra for g of type A2 inside the parafermion al-
gebra. This case was considered in our previous paper with Wang [6] where
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we obtained many structural results including results for related logarithmic
algebras.

In this paper we focus on the parafermion algebra at k = −1. This case
is interesting because k = −1 is the sole level that permits embedding of
the affine W -algebra associated to sp(4) inside the parafermion algebra. The
objective of this paper is to repeat the analysis conducted in our previous
paper [6], now involving the rank two symplectic Lie algebra.

The paper is structured as follows: Section 2 provides a review of no-
tation and basic facts related to the symplectic fermion vertex algebra and
its orbifold subalgebras. Section 3 focuses on the generic parafermion vertex
algebra Nk(sl2) of level k = −1. The singlet algebra M(2)¹2 is studied in
relation to N−1(sl2) including decomposition of the former in terms of irre-
ducible N−1(sl2)-modules. Several results are proven, including a new type
of character formula. Sections 4 and 5 primarily deal with decompositions
of N−1(sl2) and its orbifold subalgebra N−1(sl2)+ in terms of the affine W -
algebra W−5/2(sp(4)). Section 6 focuses on another automorphism of order

two of M(2)¹2, the symmetric orbifold. A structure theorem for the orb-
ifold subalgebra is presented in this section. In Section 7, the Virasoro vertex
algebra L(−2, 0) contained in M(2) is considered. The decomposition of
L(−2, 0)¹2 in terms of W−5/2(sp(4)) modules is explored in this section. The
last part of the paper contemplates on the existence of a series of singlet and
triplet type vertex algebras associated to sp(4). Motivated by the sl(3) singlet
type algebras, conjectural expressions for their q-characters are presented.

2. Preliminaries

In this part we setup some notation and summarize facts we need later.

• Let g be the simple Lie algebra with Cartan subalgebra h and triangular
decomposition g = n− + h + n+.

• Let ĝ be the associated affine Lie algebra, and ĥ be the associated
Heisenberg subalgebra.

• Let V k(g) be the universal affine vertex operator algebra of level k
associated to the simple Lie algebra g.

• Let Vk(g) be the simple quotient of V k(g).
• Let W k(g) be the universal principal affine W -algebra W k(g, fpr) of

level k.
• Let Wk(g) be the simple quotient of be the simple quotient of W k(g).
• Let Nk(g) = {v ∈ V k(g) | h(n)v = 0 h ∈ h, n ∈ Zg0} be the

parafermion subalgebra of V k(g).
• Let Nk(g) = {v ∈ Vk(g) | h(n)v = 0 h ∈ h, n ∈ Zg0} be the

parafermion subalgebra of Vk(g).
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• For a ¼ ∈ P+, let Vg(¼) be the irreducible finite-dimensional g–module
with the highest weight ¼, where P+ denotes the set of dominant in-
tegral weights for g.

• Let V k(¼) be the generalized Verma module for ĝ–module induced
from g–module Vg(¼). Let Lk(¼) be its simple quotient.

• For ¼, µ ∈ P+, let T k+3
¼,µ denotes the Wk(g)–module obtained as

HDS(V k(¼ − (k + 3)µ) (cf. [9]).
• Let L(c, 0) denotes the simple Virasoro vertex algebra of central charge

c.
• For k = −3 + 1

p and g = sp(4), the universal affine vertex algebra

V k(sp(4)) is simple (cf. [21]), and therefore by [7] HDS(V k(sp(4)) =
W k(sp(4)) is simple. In particular, W −5/2(sp(4)) is a simple vertex
algebra of central cherge c = −4.

• Let M(p) denotes the singlet vertex algebra of central charge 1 −

6 (p−1)2

p (cf. [2]). The singlet vertex algebra M(2) is isomorphic to the

principal affine W–algebra W−3/2(sl(3)) of central charge c = −2 (cf.
[30]).

We shall need the following facts which are well-known. Let g = sl(2) with a
Chevalley basis {e, f, h} and let k = −1. Then we have:

• V k(g) = Vk(g).
• V k(jÉ1) = Lk(jÉ1), j ∈ Zg0, where É1 is the fundamental dominant

weight for sl(2).
• Nk(j) := Nk(jÉ1) = Nk(jÉ1), j ∈ Zg0, where Nk(jÉ1) =

{v ∈ V k(jÉ1) | h(n)v = 0, ∀ n ∈ Zg0} and Nk(jÉ1) = {v ∈
Lk(jÉ1) | h(n)v = 0, ∀ n ∈ Zg0}.

We denote by ch[M ](q) := trM qL(0) the character of a V -module M ; from the
context it should be clear what the vertex algebra is. Also, for simplicity we
suppressed the conformal anomaly − c

24 . For a vertex algebra V , the vertex
algebra V ¹ V admits an S2-action permuting two tensor factors. The fixed
point subalgebra will be denoted by (V ¹ V )S2 . Its character is known to be

(2.1) ch[(V ¹ V )S2 ](q) =
1

2

(
ch[V ]2(q) + ch[V ](q2)

)
.

We will often use the q-Pochhammer symbol (a; q)n :=
∏n

i=1(1 − aqn−1) and
(q)n = (q; q)n.

2.1. The vertex algebra W k(sp(4)). Let W k(sp(4)) denotes the principal affine
W–algebra W k(sp(4), fpr) of level k and central charge

c = ck = −
2(12 + 5k)(13 + 6k)

3 + k
.
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It is generated by the Virasoro field L(z) =
∑

m∈Z
L(m)z−m−2 and another

field of conformal weight 4:

W (z) =
∑

m∈Z

W (m)z−m−4.

The bracket relations (i.e, the OPE) are well-known (see for instance [17,
Section 3.2]) and not needed here.

Let LW (c, h, hW ) denotes the irreducible highest weight W k(sp(4))–
module of the highest weight (h, hW ) with respect to (L(0), W (0)).

Note that for k = −3 + 1/p we have ck = 86 − 60
p − 30p. We expect that

this level is generic and the following conjecture holds:

Conjecture 2.1. Let k = −3 + 1/p and ck = 86 − 60
p − 30p. Then

T k+3
¼,0 is an irreducible W k(sp(4))–module and HDS(Lk(¼)) = T k+3

¼,0 for each

dominant integral weights ¼ for sp(4).

2.2. Symplectic fermion vertex algebra SF(d). The symplectic fermion vertex
algebra SF(d) (see [1] for more details) is the universal vertex superalgebra
generated by odd fields/vectors bi and ci (i = 1, . . . , n) with the following
non-trivial ¼–bracket

[(bi)¼cj ] = ¶i,j¼.

SF(d) can be realized on the irreducible level one module for the Lie super-
algebra with generators

{K, bi(n), ci(n), n ∈ Z}

and relations

{bi(n), bj(m)} = {ci(n), cj(m)} = 0, {bi(n), cj(m)} = n¶i,j¶n+m,0K.

Here K is central and other super-commutators are trivial. As a vector space,

SF(d) =
∧

span {bi(−m), ci(−m), m ∈ Z>0, i = 1, . . . , n} .

The fields bi, ci can be identified as formal Laurent series acting on SF(d).

bi(x) =
∑

n∈Z

bi(n)x−n−1, ci(x) =
∑

n∈Z

ci(n)x−n−1

The vertex algebra SF(d) has the following Virasoro element of central
charge c = −2d:

ÉSF(d) =
d∑

i=1

: bici : .

Let L(z) = Y (ÉSF(d), z). There is a charge operator J ∈ End(SF(d)) such
that

[J, bi(n)] = bi(n), [J, ci(n)] = −ci(n)
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which defines on SF(d) the Z–gradation:

SF(d) =
∑

ℓ∈Z

SF(d)(ℓ), SF(d)(ℓ) = {v ∈ SF(d) | Jv = ℓv}.

Let us recall few known facts on the vertex algebra SF(d):

• The automorphism group of SF(d) is Sp(2d,C) (cf. [1]) and the Lie
algebra g = sp(2d) acts on SF(d) by derivations.

• The vertex algebra SF(d)GL(d,C) is a simple W–algebra of type
W (2, 3, · · · , 2d + 1) (cf. [14], [8], [23]). In particular:

• The vertex algebra SF(1)GL(1) is isomorphic to the singlet vertex al-
gebra M(2) of central charge c = −2 (cf. [30]).

• The vertex algebra SF(2)GL(2) is isomorphic to the parafermion vertex
algebra N−1(sl(2)).

• The vertex algebra SF(3)GL(3) is isomorphic to the parafermion vertex
algebra of the Breshadsky-Polykov vertex algebra Wk(sl(3), fmin) at
level k = −5/2.

• The vertex algebra SF(d)Sp(2d,C) is isomorphic to the simple principal
affine W -algebra Wk(sp(2d), fpr) at level k = −d − 1/2 (and central
charge c = −2d). It is freely generated by fields:

W m(z)=
1

(m−2)!

d∑

i=1

(
: bi(z)∂m−2

z ci(z) :+: ∂m−2
z bi(z)ci(z) :

)
, m=2, 4, . . . , 2d.

• SF(d) is a completely reducible as Wk(sp(2d), fpr) × sp(2d)–modules
have

SF(d) ∼=
⊕

µ∈P+

Vsp(4)(µ) ¹ Eµ(2.2)

where Eµ is an irreducible Wk(sp(4))–module. The character of Eµ is
given in [14]:

(2.3)

ch[Eµ] =
qm2+ n2

2 +mn+m+ n
2 (1 − qm+1)(1 − qn+1)(1 − qm+n+2)(1 − q2m+n+3)

(q; q)2
∞

,

where µ = nÉ1 + mÉ2 ∈ P+.
• Assume that G is any reductive Lie subgroup of Sp(2d,C). Then the

orbifold vertex algebra SF(d)G is completely reducible as Wk(sp2d, fpr)×
G–module:

SF(d)G ∼=
⊕

µ∈P+

Vsp(4)(µ)G ¹ Eµ.(2.4)

• Let G0 = SL(2,C) × · · · × SL(2,C) ¢ Sp(2d,C). Then

SF(d)G0 = L(−2, 0)¹d.
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3. Weyl modules for Wk(sp(4))

Let ³1 and ³2 denote the positive simple roots of sp(4) with normalization

(³1, ³1) = 1, (³2, ³2) = 2, (³1, ³2) = −1.

Let P+ be the set of dominant integral weights for g = sp(4). Let

É1 = ³1 +
1

2
³2, É2 = ³1 + ³2

denote the fundamental dominant weights. For µ ∈ P+, let V (µ) be the
irreducible, finite-dimensional g–module with highest weight µ. Let P even

+ be
the subset of P+ give by

P even
+ = {rÉ1 + sÉ2| r, s ∈ 2Zg0.}

Let T k+3
µ,0 denotes that Wk(sp(4))–module HDS(Lk(µ)) as defined in [9].

Proposition 3.1. For ¼ = nÉ1 + mÉ2 ∈ P + we have

ch[T k+3
¼,0 ](q) =

qm2+ n2

2 +mn+m+ n
2 (1 − qm+1)(1 − qn+1)(1 − qm+n+2)(1 − q2m+n+3)

(q; q)2
∞

.

Proof. According to Arakawa-Frenkel [9],

ch[T k+3
¼,0 ](q) =

q∆̃
1
2
λ,0

(q; q)2
∞

∑

w∈W

(−1)ℓ(w)q−ïw(¼+Ä),Ä∨ð

where

∆̃
1
2

¼,0 = (¼, ¼ + 2Ä) + ïÄ, Ä(ð

Plugging in ¼ = nÉ1 + mÉ2 immediately gives

(¼, ¼ + 2Ä) = m2 + mn +
n2

2
+ 3m + 2n, ïÄ, Ä(ð =

7

2∑

w∈W

(−1)ℓ(w)q−ïw(¼+Ä),Ä∨ð

= q− 7
2 −2m− 3

2 n(1 − qm+1)(1 − qn+1)(1 − qm+n+2)(1 − q2m+n+3),

which proves the formula.

Conjecture 3.2. Let » = 1/2. Then T »
µ,0

∼= Eµ.

Proposition 3.1 and the character formula for Eµ from [14] imply that
this conjecture is true at the level of characters.
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4. Structure of N−1(sl(2)) and N−1(sl(2))+

In this section we present the decomposition of parafermion vertex algebra
N−1(sl(2)) and its Z2–orbifold N−1(sl(2))+ as a W −5/2(sp(4))–module.

4.1. Structure of N−1(sl(2)). We need the following result which easily follows
from [22, Section 3].

Lemma 4.1. V (¼)GL(2) is at most 1-dimensional. Moreover, dim V (¼)G =
1 if and only if ¼ ∈ P even

+ .

Proof. We use the branching rules formula for the restriction GL(n) ¢
SP (2n) in Subsection 2.3.2 of [22], in the special case n = 2. Then for
every dominant integral weight ¼, the trivial representation appears in the
decomposition of SP (4)–module V (¼) as GL(2)–module if and only if ¼ ∈
P even

+ and then multiplicity is one.

Using Lemma 4.1 and the decomposition (2.4) we get:

Proposition 4.2. N−1(sl(2)) =
⊕

µ∈P even
+

Eµ.

4.2. Structure of N−1(sl(2))+. Nk(sl(2)) has an involution ¹ induced by
Chevalley’s involution of sl(2). It acts on the standard generators as fol-
lows: e → f , f → e, and h → −h. This automorphism ¹ is uniquely de-
termined by ¹(W3) = −W3, where W3 is the weight 3 primary generator of
Nk(sl(2)). We focus on the generic case when Vk(sl(2)) = V k(sl(2)), which
holds true for k = −1. The fixed point sl2-algebra under this automorphism
is denoted as Vk(sl(2))+, and the fixed point parafermion (sub)algebra is de-
noted as Nk(sl(2))+. Similarly, Vk(sl2)− and Nk(sl(2))− represent their (−1)-

eigenspaces. Additionally, ĥ refers to the Heisenberg Lie algebra associated
with Ch, where ïh, hð = 2, and M(1) is the Heisenberg vertex superalgebra
contained in Vk(sl(2)).

Theorem 4.3. For any generic k, we have the following character for-
mula:

ch[Nk(sl(2))+](q) =

∑
ng1(−1)nqn(n+1)/2 +

∑
ng0(−1)nqn2

(q; q)2
∞

.

Proof. Denote by Vk(sl(2))(0) the zero weight subalgebra of Vk(sl(2))
under the h-action. Then Vk(sl(2))(0) = M(1) ¹ Nk(sl(2)). The zero weight
space is spanned by the monomials:

h(−i1) · · · h(−im)e(−j1) · · · e(−jn)f(−k1) · · · f(−kn)1.

Then writing generating series for the fixed point algebra gives
(4.1)

ch[Vk(sl(2))(0)] =
1

(q; q)∞

∑

ng0

(
qn

(q)n

)2

= CTx
1

(q; q)∞(qx; q)∞(qx−1; q)∞
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We get decompositions:

Vk(sl(2))(0)+ = M(1)+ ¹ Nk(sl(2))+ · M(1)− ¹ Nk(sl(2))−,(4.2)

Vk(sl(2))(0)− = M(1)+ ¹ Nk(sl(2))− · M(1)− ¹ Nk(sl(2))+.(4.3)

We already know

(4.4) ch[M(1)±] =
1

2

(
1

(q; q)∞
±

1

(−q; q)∞

)

To compute Vk(sl(2))(0)+ we first observe that the trace can be computed on
the associated graded algebra gr(Vk(sl(2))(0)) which is slightly more conve-
nient due to commutativity. For this computation we use again

(4.5) v := h(−i1) · · · h(−im)e(−j1) · · · e(−jn)f(−k1) · · · f(−kn)1

Observe that the automorphism ¹ maps v to

(−1)mh(−i1) · · · h(−im)f(−j1) · · · f(−jn)e(−k1) · · · e(−kn)1.

To compute the character we need

(4.6) ch[Vk(sl(2))(0)±] =
1

2
ch[Vk(sl(2))(0)] ±

1

2
trVk(sl(2))(0)¹qL(0).

Notice that the last trace computed on the set of monomials (4.5) is non-
trivial if and only if i1 = j1, . . . , jn = kn. Counting monomials contributing
to non-zero trace gives

trVk(sl(2))(0)¹qL(0) =
1

(−q; q)∞(q2; q2)∞
.

Using this formula combined with (4.6) and plugging into character formulas
for (4.2)-(4.3) gives a 2 × 2 linear system for ch[Nk(sl(2))±]. It’s easy to see
that

ch[Nk(sl2)+] =
ch[Vk(sl(2))(0)+]ch[M(1)+] − ch[Vk(sl(2))(0)−]ch[M(1)−]

ch[M(1)+]2 − ch[M(1)−]2

Using again (4.6) and (4.4) quickly gives:

ch[Nk(sl(2))+]

= (q2; q
2)∞

(
1

2

(
1

(q; q)∞

+
1

(−q; q)∞

)
·

(
1

2
ch[Vk(sl(2))(0)]+

1

2

1

(−q; q)∞(q2; q2)∞

)

−
1

2

(
1

(q; q)∞

−
1

(−q; q)∞

)
·

(
1

2
ch[Vk(sl(2))(0)] −

1

2

1

(−q; q)∞(q2; q2)∞

))

=
1

2

(q2; q2)∞

(−q; q)∞

ch[Vk(sl(2))(0)] +
1

2

1

(q2; q2)

=
1

2
(q; q)∞ch[Vk(sl(2))(0)] +

1

2

1

(q2; q2)
,
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as claimed. To prove the second formula observe that we can express the
character of Nk(sl(2)) using false theta series in the form

1

2

(
1 + 2

∑
ng1(−1)nqn(n+1)/2

(q; q)2
∞

+
(q; q2)∞(q; q)∞

(q; q)2
∞

)

=
1

(q; q)2
∞


1

2
+
∑

ng1

(−1)nqn(n+1)/2 +
1

2

∑

n∈Z

(−1)nqn2




=
1

(q; q)2
∞


∑

ng1

(−1)nqn(n+1)/2 +
∑

ng0

(−1)nqn2


 ,

where in the penultimate line we used the Jacobi triple product identity.

The previous theorem has the following generalization: let g be a simple
Lie algebra and Nk(g) the associated parafermion algebras. Then

ch[Nk(g)+] =
1

2
ch[Nk(g)] +

1

2

(∑
n∈Z

(−1)qn2
)m

(q; q)2m
∞

where m is the number of positive roots of g.
The following result concerning q-series is independent of representation

theory.

Proposition 4.4. We have the following identities:

1 + 2
∑

ng1

(−1)nqn(n+1)/2

=
∑

m∈2Z≥0
n∈2Z≥0

qm2+ n2

2 +mn+m+ n
2 (1 − qm+1)(1 − qn+1)(1 − qm+n+2)(1 − q2m+n+3),

(4.7)

∑

ng1

(−1)nqn(n+1)/2 +
∑

ng0

(−1)nqn2

=
∑

m∈2Z≥0
n∈4Z≥0

qm2+ n2

2 +mn+m+ n
2 (1 − qm+1)(1 − qn+1)(1 − qm+n+2)(1 − q2m+n+3).

(4.8)

Proof. We prove the first identity only, the second identity can be de-
rived in a similar manner. To do this, we first perform the substitutions
m → 2m and n → 2n on the right-hand side of (4.7), which allows us to
rewrite the summations as over n g 0 and m g 0. Next, we simplify the
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exponent 4m2 + 4mn + 2n2 + 2m + n by completing the square, obtaining
2(n + m)2 + 2m2 + (n + m) + m, and then let n + m → n. Expanding terms
in parentheses of (4.7) and completing squares in the exponents gives:

∑

ng0

n∑

m=0

q2n2+2m2+m+n(1 − qm+1)(1 − qn−m+1)(1 − qn+2)(1 − qn+m+3)

=
∑

(a,b)∈S+

∑

ng0

n∑

m=0

q2(n+a)2+2(m+b)2+(n+a)+(m+b)

−
∑

(a,b)∈S−

∑

ng0

n∑

m=0

q2(n+a)2+2(m+b)2+(n+a)+(m+b),

where S+ = {(0, 0), ( 1
2 , 1), (1, − 1

2 ), ( 3
2 , 1

2 )} and S− = {(0, 1
2 ), ( 1

2 , − 1
2 ), (1, 1),

( 3
2 , 0)} are shift vectors for the summations variables. Next we pair elements

from S+ with S− so that differences between shift vectors are integral: (0, 0)
with (1, 1), (1, − 1

2 ) with (0, 1
2 ), ( 3

2 , 1
2 ) with ( 1

2 , − 1
2 ), and ( 1

2 , 1) with ( 3
2 , 0).

This pairing results in cancellation of terms among the corresponding double
sums:

∑

ng0

n∑

m=0

q2n2+2m2+n+m −
∑

ng0

n∑

m=0

q2(n+1)2+2(m+1)2+(n+1)+(m+1)

=
∑

ng0

n∑

m=0

q2n2+2m2+n+m −
∑

ng1

n+1∑

m=1

q2n2+2m2+n+m =
∑

ng0

q2n2+n.

Similarly,

∑

ng0

n∑

m=0

q2(n+1)2+2(m− 1
2 )2+(n+1)+(m− 1

2 ) −
∑

ng0

n∑

m=0

q2n2+2(m+ 1
2 )2+n+(m+ 1

2 )

=
∑

ng1

q2n2+n −
∑

ng1

qn2

,

∑

n≥0

n∑

m=0

q
2(n+ 3

2
)2+2(m+ 1

2
)2+(n+ 3

2
)+(m+ 1

2
) −
∑

n≥0

n∑

m=0

q
2(n+ 1

2
)2+2(m− 1

2
)2+(n+ 1

2
)+(m− 1

2
)

= −
∑

ng0

q(2n+1)(n+1),

∑

ng0

n∑

m=0

q2(n+ 1
2 )2+2(m+1)2+(n+ 1

2 )+(m+1) −
∑

ng0

n∑

m=0

q2(n+ 3
2 )2+2m2+(n+ 3

2 )+m

=
∑

ng1

q(n+1)2

−
∑

ng1

q(2n+1)(n+1).

Adding these four identities proves the assertion (4.7).
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Based on the previous result and formula (2.3), we get:

Theorem 4.5. With » = 1
2 and µ = nÉ1 + mÉ2 as before, we have

N−1(sl(2))+ =
∑

m∈2Z≥0
n∈4Z≥0

Eµ.(4.9)

Proof. Proposition 4.4 implies that

ch[N−1(sl(2))+] =
∑

m∈2Z≥0
n∈4Z≥0

ch[Eµ].(4.10)

Since we know that N−1(sl(2))+ ¢ N−1(sl(2)) ¢ SF(2) is a completely re-
ducible W −5/2(sp(4))–module, then Proposition 4.2 implies that

N−1(sl2)+ =
∑

m∈2Z≥0
n∈2Z≥0

a(n, m)Eµ,

where a(n, m) ∈ {0, 1} are multiplicities with a(0, 0) = 1.
Observe that for n ≡ 2 mod 4 we have

ch[E¿ ] = qaν (1 + O(q)), ³¿ ∈ 2N − 1,

while for n ≡ 0 mod 4 we have

ch[Eµ] = qaµ(1 + O(q)), aµ ∈ 2N,

so lowest conformal weights have different parity if n are incongruent modulo
4.

Let us reparametrize all lowest conformal weights with n ≡ 0 mod 4 as
{µi}ig0 such that aµ0

f aµ1
f aµ2

f · · · . Clearly aµ0
= 0. Similarly we

reparametrize all lowest conformal weights with n ≡ 2 mod 4 as {¿i}ig0 such
that a¿1

f a¿2
f a¿3

f · · · .
Claim: a(n, m) = 1 for n ≡ 0 mod 4 and a(n, m) = 0 for n ≡ 2 mod 4.
To prove this claim, we will demonstrate that the right-hand side of (4.10)

is the only possible representation of the character of ch[N−1(sl2)+]. In other
words if

ch[N−1(sl(2))+] =
∑

m∈2Z≥0
n∈2Z≥0

a(n, m)ch[Eµ].(4.11)

we will prove that a(n, m) are as claimed. By checking the initial terms in
the q-expansion we se that only Eµi

(with n ≡ 0 mod 4) contribute to the
character. Notice also that for every k such that aµk

> aµk−1
from (4.10) we

get a congruence

(4.12) ch[N−1(sl(2))+] ≡ ch[Eµ0
] + · · · + ch[Eµk−1

] mod (qaµk ),
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because all coefficients up to qaµk agree with the character of N−1(sl(2))+.
Suppose the aforementioned claim is false. Then we can find a decompo-

sition with the smallest k > 1 in which Eµk
does not appear in the character

decomposition. We can express it as follows

ch[N−1(sl(2))+] = ch[Eµ0
] + · · · + ch[Eµk−1

] + ̂ch[Eµk
] + ch[E¿j

] + · · · ,

where E¿j is the first module with n ≡ 2 mod 4 that appears in the decompo-
sition and ·̂ indicates that the term is omitted. Assume first that µk > µk−1.
Then we clearly cannot have a¿j

< aµk
because it would contradict (4.12).

Therefore we must have a¿j
= aµk

. But this would contradict the fact that
a¿i

and aµk
have different parity. If µk−1 = µk then again we would require

µk = ¿j , a contradiction.

Using the theorem and the fact that N−1(sl(2))+ is generated by pri-
maries of degrees 2, 4, 6, 8, 10 [23], we can determine that the first non-trivial
occurrence arises at degree 14.

Remark 4.6. The approach to Theorem 4.3 can be facilitated using a
result established with Wang in [6]. In that paper, we demonstrated the
following decomposition:

(4.13) N− 3
2
(sl(2)) =

⊕

mg0

L(−10, 2m(m − 1), 0)

where L(−10, 2m(m − 1), 0) denotes irreducible (Weyl) modules for the affine
W -algebra Wk(sl(3)), with k = − 5

2 . By employing the explicit construc-
tion described in [6], we observe that each module in the aforementioned
decomposition remains invariant under ¹. Consequently, in order to com-
pute ch[N− 3

2
(sl(2))+], it suffices to determine ch[L(−10, 2m(m − 1), 0)+]. To

achieve this, we rely on a BGG-type resolution for L(−10, 2m(m − 1), 0) as
outlined in [9]. We assume the applicability of the approach in [9] to our
modules, allowing us to obtain the following BGG-type resolution of the irre-
ducible module L(−10, 2m(m − 1), 0) using Verma modules:

0 → M(2m(m+1)) → M(2m(m+
1

2
))⊕2 → M(2m(m−

1

2
))⊕2 → M(2m(m−1)) → 0.

Considering that ¹ induces ³1 ´ ³2 for simple roots, we observe that the
two direct summands in the resolution also interchange under ¹. Utilizing this

fact, we can establish ch[L(−10, 2m(m−1), 0)+] = q2m(m−1)(1−qm)2(1−q2m)
(q;q)2

∞
. By

summing over m, we then establish the claim presented in Theorem 4.3.

5. The vertex algebra M(2)¹2 as N−1(sl(2))3module.

Our first result uses our previous work [4].
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Theorem 5.1. We have:

M(2)¹2 =

∞⊕

s=0

N−1(2s).

Proof. By [4], M(2)¹2 is isomorphic to a parafermion algebra of a
charge zero component of two copies of ´µ vertex algebra which is exactly

algebra denoted by V
(1)
0 in [5]. Using decomposition

V
(1)
0 =

∞⊕

s=0

L−1(2sÉ1),

and same arguments as in [6], we get M(2)¹2 =
⊕∞

s=0 N−1(2s).

The character of M(2)¹2 appears as the constant term of the Schur’s index
of type (A1, D2) (here D2 = A1 × A1).

Corollary 5.2. We have

ch[M(2)¹2

](q) =

∑
n1g0,n2∈Z

sgn(n2)(−1)n1q
n1(n1+1)

2 +n1n2+n2
2+n2

(q; q)2
∞

.

Proof. Note that (see [12] for instance):

(5.1) ch[M(p)](q) =
1

(q; q)∞

∑

n∈Z

sgn(n)q2n2+n = (q; q)∞

∞∑

k=0

qk

(q)2
k

.

We also have:

ch[N−1(2s)](q) = qs(s+1)CT
(x−s + · · · + 1 + · · · + xs)

(xq; q)∞(x−1q; q)∞

=
qs(s+1) (Φ0(q) + Φ−1(q) − 2Φ−s−1(q))

(q; q)2
∞

.
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ch[M(2)](q)2 =

∞∑

s=0

qs(s+1)CTx
(x−s + · · · + 1 + · · · + xs)

(xq; q)∞(x−1q; q)∞

= CTx

∑∞
s=0

xs+1/2−x−s−1/2

x1/2−x−1/2 qs(s+1)

(xq; q)∞(x−1q; q)∞

=
1

(q; q)2
∞

∑

m∈Z

∑

sg|m|

qs(s+1) (Φm(q) − Φm−1(q))

=
1

(q; q)2
∞

(
∑

n1,n2g0

(−1)n1q
n1(n1+1)

2 +n1n2+n2
2+n2

−
∑

n1,n2g0

(−1)n1q
n1(n1+1)

2 −n1(n2+1)+n2
2+n2)

=

∑
n1g0,n2∈Z

sgn(n2)(−1)n1q
n1(n1+1)

2 +n1n2+n2
2+n2

(q; q)2
∞

.

Using the same arguments as in [6] we get:

Corollary 5.3. M(2)¹2 is generated by N−1(sl2) + N−1(2É1). In other
words, it is generated by N−1(sl2) and a primary field W 2 of conformal weight
2.

Remark 5.4. This decomposition is an analog of the decomposition from
[6] :

W0(2)A2
= N−3/2(sl(3)) =

∞⊕

j=0

N−3/2(2j).

6. S2-permutation orbifold of M(2)

In this part we consider the S2-permutation orbifold of W k(sl(3)) of level

k and central charge c(k) = 2 − 24 (k+2)2

k+3 . We denote the usual generators of

W k(sl(3)) by T (Virasoro) and W (primary generator of degree 3) satisfying
the usual OPE with central charge c = c(k) (we will use parametrization
by the central charge). We denote by W1 = W ¹ 1, W2 = 1 ¹ W , and
Tp = T ¹1+1¹T , Tm = T ¹1−1¹T , and we also let Wp = W ¹1+1¹W
and Wm = W ¹ 1 − 1 ¹ W . Then Wc := Wc(sl(3))¹2 is strongly and freely
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generated by Tp, Tm, Wp and Wm. For brevity we introduce

U(a, b) :=: W (a)
m W (b)

m :

V (a, b) :=: T (a)
m T (b

m :

Z(a, b) :=: T (a)
m W (b)

m :

elements fixed by the S2-automorphism switching tensor factors.
Next result was recently proven by M. Penn and one of us.

Theorem 6.1. [27] For all but finitely many values of c, which includes
c = −2, the orbifold subalgebra WS2

c is strongly generated by the set

{Tp, Wp, U(0, 0), U(2, 0), U(4, 0), V (0, 0), V (2, 0),

V (4, 0), Z(0, 0), Z(1, 0), Z(2, 0), Z(3, 0)}.

Moreover, this set is minimal and generators can be modified so that the
orbifold is a W -algebra of type (2, 3, 4, 5, 63, 7, 83, 9).

6.1. The S2-orbifold of M(2). We can further reduce the set of generators
in the theorem by taking into account null vectors at central charge c = −2.
A straightforward computation yields the following expressions (using OPE
notation for simplicity):

vsing1 = −
19

54
: T ′T ′ : −

14

27
: T ′′T : −

16

27
: TTT : + : WW : +

4T (4)

81

vsing2 = −
3

2
: T ′W : + : TW ′ : −

W (3)

8

which are two linearly independent null vectors in M(2). Thus, they belong
to the maximal ideal of W −3/2(sl(3)). Applying the symmetrization map, the
S2-fixed vectors:

svsing1 := vsing1 + Ã(vsing1), svsing2 := vsing1 + Ã(vsing2),

where Ã is the non-trivial element in S2, are now null vectors in WS2
c=−2. This

allows us to eliminate two generators Z(3, 0), V (2, 0) from the set in Theorem
6.1 and keep only U(2, 0). Using descendants of svsing1 and svsing2 allows
to eliminate two generators of degree 8 and also generators of degree 9. This
keeps us with generators up to degree 8. We can now conclude

Theorem 6.2. The vertex algebra (M(2) ¹ M(2))S2 is a W -algebra of
type (2, 3, 4, 5, 6, 7, 8) with a minimal strong set of generators

{Tp, Wp, V (0, 0), Z(0, 0), V (2, 0), Z(2, 0), U(2, 0)}.

All generating vectors (except Tp) can be modified to be primary.

Of course this vertex algebra is not generated by the degree 3 generator
Wp so it cannot be analyzed using universal W∞[¼] algebra as in [26].
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Remark 6.3. One can prove Theorem 6.2 directly using symplectic
fermion construction without going through Theorem 6.1 and singular vectors.

Proposition 6.4. The vertex algebra (M(2) ¹ M(2))S2 is completely
reducible as N−1(sl(2))–module with the following decomposition:

(6.1) (M(2) ¹ M(2))S2 =

∞⊕

j=0

N−1(4jÉ1).

Proof. If we prove

(6.2) ch[(M(2) ¹ M(2))S2 ](q) =
∑

jg0

ch[N−1(4jÉ1)](q).

it implies that (6.1) holds. This is because N−1(sl(2)) is fixed under the
automorphism group, and thus we have

(M(2) ¹ M(2))S2 =
∞⊕

j=0

a(2j)N−1(2jÉ1),

where a(m) ∈ {0, 1}, and a(0) = 1. Observe ch[N−1(2jÉ1)] = qj(j+1)(1 +
O(q)), so the lowest conformal weight of N−1(2jÉ1)] is j(j + 1). If a(4j) = 0
for some j, then because of (6.2), it is easy to see that the character (M(2) ¹
M(2))S2 agree with

∑
jg0 a(2j)ch[N−1(2jÉ1)].

We are left to prove relation (6.2). We require (2.1):

ch[(M(2) ¹ M(2))S2 ] =
1

2
ch[M(2)](q)2 +

1

2
ch[M(2)](q2).

We already know that

1

2
ch[M(2)](q)2 =

1

(q)2
∞

∑

sg0

qs(s+1)

(
1

2
− Φ−s−1(q)

)

and it is not hard to see that

1

2
ch[M(2)](q2) =

1

2

∑
ng0(−1)nqn(n+1)

(q2; q2)∞
=

1

2

(∑
ng0(−1)nqn(n+1)

)
·
(∑

n∈Z
(−1)nqn2

)

(q)2
∞

.

The right-hand side of (6.2) equals

1

(q)2
∞

∑

sg0

q2s(2s+1) (1 − 2Φ−2s−1(q)) .

To finish the proof we have to show that

−
∑

sg0

q2s(2s+1)Φ−2s−1(q) +
∑

sg0

q(2s+1)(2s+2)Φ−2s−2(q)
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=


∑

ng0

(−1)nqn(n+1)


 ·


∑

ng1

(−1)nqn2


 ,

or equivalently

∑

s,m≥0

(−1)s+m+1
q

s(s+1)−(s+1)m+ m2+m
2 =

(
∑

n≥0

(−1)n
q

n(n+1)

)
·

(
∑

n≥1

(−1)n
q

n2

)
.

To prove the last identity we rewrite the left-hand side as
∑

s,m≥0

(−1)s+m+1
q

s(s+1)−(s+1)m+ m2+m
2 =

∑

s,m≥0

(−1)s+m+1
q( m

2 )2
+(s− m

2
)(s− m

2
+1)

,

and introduce let t = s − m, so that the summation is over m and t. Then it
can be easily shown that the resulting double sum agrees with the one on the
right-hand side.

Corollary 6.5. Vertex algebra (M(2) ¹ M(2))S2 is generated by
N−1(sl(2)) + N−1(4É1). In particular, V is generated by N−1(sl(2)) and a
primary field W 6 of conformal weight 6.

Proof. From Theorem 6.2 and Proposition 6.4, we see that all genera-
tors of (M(2) ¹ M(2))S2 are within N−1(sl(2)) + N−1(4É1). Through direct
computation we see that the S2-orbifold subalgebra is generated by a pri-
mary vector of degree 6. However, any such vector necessarily belongs to
N−1(sl(2)) + N−1(4É1). Hence, we can conclude our argument.

6.2. Further W -algebras and Schur’s indices. We use the decomposition from
[5] (see also [3]):

V
(p)
0 =

∞⊕

s=0

L−2+1/p(2sÉ1).

Let U0(p) := Com(M(1), V
(p)
0 ). The character of U0(p) is given by the

following result:

Proposition 6.6. We have:

ch[U0(p)] =

∑
n1g0,n2∈Z

sgn(n2)(−1)n1q
n1(n1+1)

2 +n1n2+p(n2
2+n2)

(q; q)2
∞

,

where sgn(n) = 1 for n g 0 and 0 otherwise.

It is not hard to see using the same approach as in [12] or [11]

Proposition 6.7.

q
2p+2

24 ch[U0(p)] = ¸(Ä)2¸(pÄ)2 · CT·1,·2

ϑ(z1; pÄ)ϑ(z2; pÄ)ϑ(z1 + z2; pÄ)

ϑ(z1; Ä)ϑ(z2; p
2 Ä)ϑ(z1 + z2; p

2 Ä)
,

where
ϑ(z; Ä) = −iq1/8·−1/2(q; q)∞(·; q)∞(·−1q; q)∞,
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is the Jacobi theta function with · := e2Ãiy, and CT denotes the constant term
with respect to the Fourier expansion in ·i.

We end with a conjecture that generalizes a character identity for

ch[M(2)¹2

] from Section 3. Observe that Corollary 5.2 together with (5.1)
gives
∑

n1≥0,n2∈Z
sgn(n2)(−1)n1 q

n1(n1+1)
2

+n1n2+(n2
2+n2)

(q; q)2
∞

= (q; q)2
∞

∑

n1,n2≥0

qn1+n2

(q)2
n1 (q)2

n2

.

Some clues from 4d/2d dualities in physics suggest that the following identity
should hold (for k g 0):

∑
n1g0,n2∈Z

sgn(n2)(−1)n1q
n1(n1+1)

2 +n1n2+(k+1)(n2
2+n2)

(q; q)2
∞

= (q)2k+2
∞

∑

n1,...,n2k+2g0

qn·AD2k+2
·nT +n1+···+n2k+2

(q)2
n1

(q)2
n2

· · · (q)2
n2k+2

,

where n = (n1, ..., n2k+2) and AD2k+2
is the adjacency matrix of the Dynkin

diagram of type D2k+2 (for k = 0, we have D2 = A1 × A1, whose Dynkin
diagram consists of two nodes with no edges).

7. The symmetric orbifold (L(−2, 0) ¹ L(−2, 0))S2

Let SF (d) be the vertex algebra of symplectic fermion. The symmetric
group Sd acts naturally on SF (d).

Recall that Aut(SF (d)) = Sp(2d,C). Let

G0 = SL(2,C) × · · · × SL(2,C).

The action of Sd and G0 commutes, so we have the of the group G0 acts on
(SF (d))Sd .

Here we consider the case d = 2.
We use the decomposition

SF (d) =
⊕

¼∈P+

Vsp(4)(¼) ¹ E¼

where Vsp(4)(¼) is irreducible finite-dimensional sp(4)–module, with highest

weight ¼, and E¼ is irreducible W −5/2(sp(4)) = (SF (d))sp(4)–module. Next
we notice that dim Vsp(4)(¼)G0 f 1, and dim Vsp(4)(¼)G0 = 1 if and only if
¼ = mÉ2 for certain m ∈ Zg0. (This result follows from [20] or [22]). This
proves the first half of the following result.

Theorem 7.1. We have

L(−2, 0) ¹ L(−2, 0) =

∞⊕

m=0

EmÉ2
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(L(−2, 0) ¹ L(−2, 0))S2 =

∞⊕

m=0

E2mÉ2
,

Proof. We only have to prove the second relation. Using (2.1) and the
Jacobi triple product identity, it is easy to prove

ch[(L(−2, 0)¹L(−2, 0))S2 ]=
1

2

(
1

(q2; q)2
∞

+
1

(q4; q2)

)
=

(1−q)
∑

ng0(−1)nqn2

(q; q)2
∞

holds. Also, using

ch[E2mÉ1
] =

q4m2+2m(1 − q)(1 − qm+1)(1 − qm+2)(1 − q2m+3)

(q; q)2
∞

one easily demonstrates that ch[(L(−2, 0) ¹ L(−2, 0))S2 ] =
∑

mg0 ch[E2mÉ1
].

Therefore the second relation in the theorem holds at the level of characters.
On the other hand, using the fact that W −5/2(sp(4)) is fixed under the non-
trivial element of S2 we obtain decomposition

(L(−2, 0) ¹ L(−2, 0))S2 =
∞⊕

m=0

a(m)EmÉ2
,

where the multiplicities a(m) ∈ {0, 1}, and a(0) = 1. Therefore, it suffices to
show that a(2m − 1) = 0 for all m g 1. It is easy to see that a(1) = 0 and
a(2) = 1. Then we observe

Coeffq4m2−2m(q; q)2
∞

(
∞⊕

m=0

a(m)ch[EmÉ2
]

)
= a(2m − 1) − a(2m − 3).

But q4m2−2m, m g 2, does not appear as term in (1 − q)
∑

ng0(−1)nqn2

because 4m2 − 2m = n2 and 4m2 − 2m = n2 + 1 does not have integral
solutions except for m = n = 0, and m = n = 1, respectively. We conclude
that a(2m − 1) = a(2m − 3) for every m g 2, which together with a(1) = 0
gives a(2m − 1) = 0 for every m and completes the proof.

Remark 7.2. One can easily demonstrate that the aforementioned de-
composition is essentially the only case in which a W k(sp(4))-algebra can be
embedded within the tensor product of two Virasoro vertex operator algebras
L(c1, 0) ¹ L(c2, 0). Specifically, aside from the case where c1 = c2 = −2, we
can also observe two degenerate cases that arise due to the presence of singular
vectors of degree 4: c1 = 0 or c2 = 0, and, c1 = −22/5 or c2 = −22/5.

8. Conjectural singlet and triplet type W -algebras for sp(4)

In this section, we present a conjecture regarding the existence of a sp(4)
singlet and triplet type vertex algebra, based on the work of Feigin and
Tipunin [18], [29] (see also [13]).



278 D. ADAMOVIĆ AND A.MILAS

As previously mentioned, Vsp(4)(¼) denoted an irreducible highest weight
representation of sp(4) of highest weight ¼. We observe that for ¼ ∈ P+ ∩Q =
2Zg0É1 + Zg0É2, the zero weight subspace Vsp(4)(¼)0 is non-zero. Moreover,
using the Weyl character formula we have:

dimVsp(4)(nÉ1 + mÉ2)0 = 1 +
m

2
+

n

2
+

mn

2
, n ∈ 2Zg0, m ∈ 2Zg0

and

dimVsp(4)(nÉ1 + mÉ2)0 =
(n + 1)(m + 1)

2
, n ∈ 2Zg0, m ∈ 2Zg0 + 1.

For an even p g 2, we define two q-series:

Sp(q) :=
∑

m∈Z≥0,n∈2Z≥0

dimVsp(4)(nÉ1 + mÉ2)0q
p
2 (m2+ n2

2 +mn+3m+2n)−2m− 3n
2

× (1 − qm+1)(1 − qn+1)(1 − qm+n+2)(1 − q2m+n+3).

and

Tp(q) :=
∑

m∈Z≥0,n∈2Z≥0

dimVsp(4)(nÉ1 + mÉ2)q
p
2 (m2+ n2

2 +mn+3m+2n)−2m− 3n
2

× (1 − qm+1)(1 − qn+1)(1 − qm+n+2)(1 − q2m+n+3),

where

(8.1) dimVsp(4)(nÉ1 + mÉ2) =
(m + 1)(n + 1)(m + n + 2)(2m + n + 3)

6
.

Conjecture 8.1. There exist simple vertex algebras WC2
(p)0 and WC2

(p),
of central charge c = 86 − 60

p − 30p whose characters are given by

Sp(q)

(q; q)2
∞

and
Tp(q)

(q; q)2
∞

,

respectively.

Using [14, 19], it is not hard to see that for p = 2 two vertex algebras

in question are M(2)¹2

↪→ W(2)¹2

where W(2) is the (1, 2)-triplet vertex
algebra. For p = 4, we anticipate the existence of vertex algebras with central
charge c = −49 and of types (2, 4, 6, 92, 11) and (2, 4, 65, 910, 115), respectively.

Regarding the modular properties of the proposed characters (after
adding the q−c/24 term) it is worth noting that by utilizing the properties
of the Weyl group as described in [13], the Tp-series can be expressed as a
summation over a full lattice, taking into account the number of Weyl cham-
bers. Thus, we can represent Tp(q) = 1

8

∑
m∈Z,n∈2Z(·) (observe that (8.1)

makes sense for all n and m). This summation corresponds to a collection of
derivatives of rank two theta functions, whose modular properties have been
thoroughly studied (see [13]). Consequently, this observation suggests that
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WC2(p) is expected to be lisse. (Non)-modular properties of Sp(q) series are
more complicated and can be accessed using the methods developed in [11].
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Logaritamske verteks algebre vezane za sp(4)

Dražen Adamović i Antun Milas

Sažetak. U članku navodimo nekoliko rezultata i slutnji

vezanih za parafermionske verteks-algebre i s njima povezane lo-

garitamske verteks-algebre. Krećemo od tenzorskog produkta

dvije kopije singlet verteks-algebre M(2), te promatramo raz-

ličite podalgebre koje se pojavljuju u njezinoj dekompoziciji,

uključujući N−1(sl(2)) i pripadni Z2-orbifold N−1(sl(2))+, te

S2-simetrični orbifold singlet verteks-algebre M(2). Posebno,

pokazujemo da se N−1(sl(2)) može proširiti do W -algebre tipa

(2, 3, 4, 5, 6, 7, 8). Na kraju iznosimo neke slutnje o egzistenciji

W 3algebri koje generaliziraju triplet i singlet algebru, te anali-

ziramo njihove potencijalne karaktere.
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