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Abstract— In this work, we performed a comprehensive
combined experimental and modeling study on the
polarization reset mechanisms of floating body (i.e.,
channel) ferroelectric FETs, an important class of device
with growing interests due to added functionalities and
improved reliabilities. Using fully-depleted silicon-on-
insulator (FDSOI) FeFET as a classical example, we
demonstrate that: 1) without hole generation mechanisms,
floating body FeFETs during reset is simply a capacitor
divider, with negligible ferroelectric voltage drop for
switching; ii) Band-to-band-tunneling (BTBT) around
gate-to-S/D overlap even with zero drain bias generates
holes to facilitate the reset in FDSOI FeFET, though at a
slower speed and hold the reset state; iii) With scaling, S/D
inner fringe field can enable fast reset, thus offering a
potential efficiency boost approach; iv) a compact FDSOI
FeFET model is developed that can capture the BTBT
effect and reproduce the observed behaviors; v) the reset
mechanism is also validated in a NAND string composed of
FDSOI FeFETs, demonstrating its relevant applications.
These insights show the strategies in improving reset
efficiency, i.e., enhanced BTBT and inner fringe field.

I. INTRODUCTION

HfO, based FeFET has been a competitive candidate for
embedded nonvolatile memory regime owing to its energy
efficiency, superior scalability and CMOS compatibility. Bulk
FeFET has been heavily studied over the last decade and its
polarization set and reset processes are very efficient as the
electrons from S/D during set and holes from the body during
reset can effectively screen the polarization (Fig.1(a)).
However, many emerging FeFETs that can provide new
functionalities (e.g., FDSOI FeFET), excellent reliability (e.g.,
back-end-of-line (BEOL) FeFET), or superior electrostatics
(e.g., gate-all-around (GAA) FeFET) all have floating body,
that is disconnected from hole reservoir. During polarization
reset as demonstrated in Fig.1(b), the path of screening holes
is cutoff from body which hinders the reset process. Therefore,
it is important to look at other hole generation mechanisms and
understand its role in the reset operation.

Typically, holes can be generated through either Shockley-
Read-Hall (SRH) generation, band to band tunneling (BTBT)
at gate-to-drain overlap (i.e., GIDL) or BTBT at junction
sidewall (Fig.1(c)). In this work, to fully grasp the resetting
process of floating body FeFETs and thereby enhance the

switching efficiency, FDSOI FeFET is examined as a
representative example. Understanding such mechanisms are
critical for many applications as it directly impacts the
available memory window that can be leveraged. As an
illustration, in the flash-based vertical NAND array, where the
string channel is disconnected from p-type substrate, the erase
operation requires hole generation through the gate-induced-
drain-leakage (GIDL) at the select transistors. As shown in
Fig.2(a), the erase of the traditional NAND flash requires
extremely high drain bias (20V) at both bit line (BL) and
source line (SL) to enable a large enough GIDL current to erase
the whole block. Recently, ferroelectric has shown great
promise in vertical NAND application as it can enable a large
memory window at lower operation voltages and improved
speed compared with flash [1], it is important to understand the
polarization reset mechanisms in FeFETs with floating body.
In this work, through comprehensive experimental and
modeling studies, we show that it is possible to generate
efficient holes through the BTBT at low drain bias, reducing
the concern over the reliability and power consumption.
Fig.2(b) illustrates that only a small drain bias is needed for
erasing in a floating body FeFET.
II. DEVICE UNDER TEST

In this work, 28nm bulk FeFET [1] and 22nm FDSOI
FeFET [2] are utilized. TEMs are shown in Fig.3(a)/(b) for
bulk and FDSOI FeFETs, respectively. As an illustrative
example of floating body FeFET, the FDSOI FeFET is adopted
and compared side by side with bulk FeFET, in the hope of
revealing the physical mechanisms. Under +4V, 10us (solid
line)/1us (dashed line) write pulses, the /p-Vg characteristics
of both bulk and FDSOI FeFETs with W/L=0.5xm/0.5um are
shown in Fig.3(c)/(d), respectively. It shows that the low
threshold voltage (LVT) state for both devices are similar
while the high threshold voltage (HVT) state shows distinctive
behavior. It shows that with 1us pulse width, full polarization
switching is not possible. This will be further studied later.

During the positive set operation, both bulk and FDSOI
FeFETs have the same response in the channel, where the
electrons from both source/drain are supplied to the channel to
screen the polarization, as shown in Fig.4(a)/(b). Since the set
process for bulk and FDSOI can benefit from electron supply
from S/D, therefore, both of them can set even below 100ns at
4V as shown in Fig.4(c)/(d). By write FeFETs into HVT state,
then by applying +4V and +2V pulse with different pulse
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width, the polarization switching happens for both
bulk/FDSOI FeFETs roughly at the same pulse width as
demonstrated in Fig.4(e)/(f). Moreover, the retention of LVT
is shown in Fig.4(g)/(h) for bulk/FDSOI FeFETs, respectively.
These indicates the electrons are stable and could hold the
polarization for a long retention time without significant loss.
III. RESET IN FLOATING BopY FEFETS

During reset in a FDSOI FeFET, where no direct hole
supply from the body is available, the whole stack can be
modeled as a simple capacitor divider (Fig.5(a)), where all
capacitors are connected in series. Note that this could be true
even for p-doped substrate with medium doping. The
discrepancy between bulk and FDSOI FeFET during reset can
be observed in the transient simulation shown in Fig.5(b),
where the voltage drops in ferroelectric layer, Vg, in the
FDSOI device is much smaller than the bulk one. The
capacitor divider picture of the stack is also validated by the
excellent match between the TCAD and SPICE simulations as
demonstrated in Fig.5(c), using the same set of parameters.
With no BTBT accounted here, these results raise the question
regarding whether floating body FeFETs can be reset at all.

To answer that, Fig.6(a)/(b) demonstrate the reset
dynamics of both bulk and FDSOI FeFETs. All the devices are
initialized to the LVT state for study. From the switching
dynamics, two observations can be drawn: 1) FDSOI FeFET
could fully reset as the bulk FeFET, though the basic
electrostatics say otherwise; 2) FDSOI FeFET reset takes a
longer time than the bulk FeFET at higher reset voltages
(Fig.6(c)) while at a similar speed when the reset voltage is
small. These suggest a slow hole generation mechanism that
can enable full reset in FDSOI FeFETs. Also as shown in
Fig.6(d), given a long reset pulse width namely 10ms, both
bulk and FDSOI FeFETs could switch to HVT at low voltage.
Besides, the HVT retention of bulk/FDSOI FeFET is
investigated as illustrated in Fig.6(e)/(f), respectively. By
increasing the write pulse width from 1lus to 1ms, the HVT
state in bulk FeEFETs becomes more stable. Besides, the HVT
state is also stable, confirming the FDSOI FeFET could hold
generated holes.

IV. EVIDENCE OF BTBT

To explain the two observations, first the gate-to-channel
capacitance, i.e., Cgc-Vg, is measured and shown in
Fig.7(a)/(b) for bulk/FDSOI FeFETs respectively. It clearly
shows the signature of electron-hole pair generation in FDSOI
FeFET at negative gate voltages, even at frequency of 100kHz.
This means that with 10us response time, hole generation is
already happening, thus confirming what is observed in the
switching dynamics. Next the DC Ip-Vg curves are also
measured, covering a wide range of drain biases. Interestingly,
at small drain bias (e.g., SmV), a strong hole generation as
leakage current is present in FDSOI FeFETs as shown in
Fig.7(c)/(d). This indicates that the drain bias is not the main
driver for the hole generation, but the gate bias. Then band
diagrams along the channel extracted from TCAD simulations
(Fig.7(e)/(f)) confirm the strong channel to S/D band bending
in FDSOI FeFET because of almost no Ve drop during reset
process, thus leading to the strong BTBT generation. Then the
TCAD simulations of reset process with and without BTBT
model activated further confirm that the polarization could
switch in 10us (Fig.7(g)) which is consistent with our

experimental results. Last, the generation rate of BTBT as
demonstrated in Fig.7(h) shows that it is almost concentrated
at the gate-to-drain junctions.

The reset dynamics are also studied for scaled short
channel bulk/ FDSOI FeFETs as demonstrated in Fig.8(a)/(b),
respectively. Interestingly both of these two devices could
reset quickly (Fig.8(c)), suggesting a promising strategy in
improving switching efficiency, i.e., Lg scaling. This speed
enhancement with scaling originates from the increased
effective Vg in shorter device as the inner S/D fringe field
penetrates a larger portion of the Lg as illustrated in Fig.8(d).
The vertical Erg also confirms the scaling does help the FDSOI
FeFET over the reset process.

V. COMPACT MODEL

Given the understanding of the reset process, we then
augment our previously developed compact model for FDSOI
FeFET [3] with an additional BTBT module. The model is
composed of the FDSOI baseline, leveraging the Leti-UTSOI
model [4] as well as the multi-domain nucleation-limited FE
model [5]. The BTBT model calculates the lateral field and the
generated hole density as shown in Fig.9(c). Surface potential
and lateral electric field show excellent match with TCAD
(Fig.9(d)/(e)). Fig.9(f)/(g) demonstrates the transient
waveforms for pulse width of 100ns and 10us, respectively.
The model is able to capture that with the BTBT module
introduced, a full reset is achieved for 10us. While at 100ns,
not much polarization switching happens. The Ip-Vg
characteristics are also shown in Fig.9(h)/(i). Again, confirms
the delayed reset process due to the slow BTBT rate.

VI. NAND STRING OPERATION

With such an understanding on the polarization reset
mechanisms, we demonstrate that it can be applied in NAND
FeFET array. With a string composed of 3 FDSOI FeFETs
(Fig.10(a)), the center FeFET can be reset to a degree as the
single device, thus confirming the possibility as demonstrated
in Fig.10(c)-(f). Comparing the flash based NAND string that
demands a high drain bias to complete the block erase
operation, namely around 20V, FeFET could potentially
improves the reliability and lowers the power consumption.

VII. CONCLUSION

We have performed comprehensive experimental and
modeling efforts in clarifying the polarization reset
mechanisms in an important class of floating body FeFETs.
We have shown that in Si channel floating body device, the
BTBT effect can contribute holes at a slow speed. With gate
length scaling, the S/D inner fringe field also helps device
reset. Additionally, a NAND string composed of FDSOI
FeFETs is shown to be able to full reset as the single FDSOI
FeFET.
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Motivation: Mechanisms of Polarization Reset in Floating Body FEFETs Are not Well Understood

Body-connected FeFET

Floating body (i.e., channel) FeFETs are important, but switching less understood

One relevant application is vertical NAND.
Need to examine how the erase operation can be performed in NAND FeFET
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Evidence of BTBT for Hole Generation
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