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Abstract. We propose a simulation-based model of flower finding in
echolocating nectarivorous bats. In particular, we propose a behavior-
based model that uses two sensorimotor loops to dock with flowers. The
EchoVr, as we have termed our echo simulator, uses a bank of echoes col-
lected by ensonifying real objects with a physical (bat-like) sonar device.
Using the EchoVr, we built a 2D environment consisting of simulated
objects. We trained a neural network to activate the correct sensorimotor
loop based on the echoes received by the simulated bat. The model guides
the simulated bat to dock successfully with the flower opening (95% suc-
cess rate) by computing control commands solely from echoic inputs.
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1 Introduction

More than 500 species in 67 plant families depend on bats as their primary
pollinators [4]. Certain flower species have been shown experimentally to be
approached by bats using sonar [5,7,8,18], and many others are believed to be
located using echolocation. Several studies have investigated the acoustic cues
bats use to approach flowers [8,16,18], but no sensorimotor model has been
proposed or tested to explain how bats exploit these cues.

Previously, we argued [13,14,22] that behavior-based control architectures [2,
11] offer promising models to understand bat sonar-based behavior. These archi-
tectures assume minimal reliance on internal representations, which are chal-
lenging to infer from echo data. Using sensorimotor loops that directly connect
sensory input to actions should allow bats to react effectively in real-time situ-
ations [1], regardless of environmental complexity.

In this paper, we set out to build a model of the sensorimotor behavior that
guides echolocating bats to the opening of flowers while avoiding obstacles. In
particular, we present a behavior-based model that uses separate sensorimotor
loops to complete the task. Our model uses two sensorimotor loops: an approach
loop and an avoid loop. The approach loop uses acoustic cues from echoes to
guide the bat toward a target, while the avoid loop steers the bat away from
potential obstacles. The simulated bat will learn to activate an appropriate loop
on the currently received echoes.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
O. Brock and J. Krichmar (Eds.): SAB 2024, LNAI 14993, pp. 51–62, 2025.
https://doi.org/10.1007/978-3-031-71533-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71533-4_4&domain=pdf
https://doi.org/10.1007/978-3-031-71533-4_4


52 T. H. Nguyen and D. Vanderelst

2 Methods

2.1 Targets and Arena

We set up a foraging task in a virtual arena for a simulated echolocating bat.
The goal is for the bat to navigate to flower openings while avoiding collisions
with flower sides and arena walls. In the current work, we reuse our previously
developed method to simulate the echoes received by an echolocating bat, termed
EchoVR, [14]. This simulator uses a bank of echoes collected by ensonifying
real objects with a physical (bat-like) sonar device. The sonar device comprises
a single ultrasonic emitter and two microphones embedded in 3D-printed bat
pinnae.

The EchoVR allows one to build a 2D environment consisting of the ensoni-
fied objects and calculates the binaural echoes for arbitrary positions and ori-
entations of the simulated bat in the environment. Note that by feeding the
EchoVR a large set of echoes collected from real objects, the environment also
incorporates sources of noise, i.e., the noise inherent in the physical devices used
to collect the echo data. For example, the EchoVR models variations in the echo
that occur even if the same object is ensonified by the bat from the same position
and orientation. As the signal-to-noise ratio of the physical ensonficiation devices
is lower than that of the bat’s sonar system, the noise produced by the EchoVR
can be seen as a worst-case scenario when modeling bat echolocation [3].

The EchoVR takes into account the head-related transfer function of the bat,
as its echo database was collected using microphones embedded in 3D printed
pinnae of the bat Micronycteris microtis [20]). It also accounts for the acoustic
phenomena of spreading and atmospherical attenuation that weaken the echoes
as distance increases and interference between echoes. The EchoVr also includes
a model of the auditory periphery of bats [24]. This model converts simulated
echoes to a representation that is a proxy of the bat’s cochlear activation pattern.
This model returns a low-passed, logarithmically compressed envelope of the
received echoes (an example is shown in Fig. 1). Therefore, the cochlear model
reduces the temporal resolution of the echoes but accentuates weaker echoes.
More details on the EchoVR can be found in [14].

For the present work, we ensonified two objects: a plant and a cardboard
pole. These two objects vary greatly in geometric complexity. The plant consists
of many stochastically oriented surfaces that result in complex echoes, typical of
vegetation, e.g., [23,27]. In contrast, the cardboard pole has a basic geometry,
resulting in a simple echo. The echoes of the two objects are depicted in detail
in [14].

The bat is modeled as emitting narrowband calls with a frequency of 42
kHz and a duration of about 2 ms. These parameters are determined by the
ensonification device used to collect the physical echoes from the pole and the
plant, as detailed in [14]. Furthermore, we model the bat as emitting 40 calls
per second. This emission rate is biologically plausible and corresponds to the
approximate call rate used by Nectarivorous bats approaching targets [5,6].
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Without access to the echoes of real flowers visited by bats, we used the
two objects to construct target flowers for the simulated bat. In doing so, we
attempted to create a target to test the hypothesis that a behavior-based model
can be trained to approach a complex target (returning complex echoes) from a
range of appropriate angles. We constructed a proxy for a flower composed of one
plant and two poles. The poles are spaced at a distance of 30 cm from the center
of the plant, creating an opening with an angular span of 60◦. The opening of
the flower defines the successful docking zone. This arrangement recreates the
typical bilateral symmetry of flowers. The diameter of 30 cm of the proxy flower
is larger than for the real flowers visited by nectarivorous bats [16]. However, by
making the flower larger, we compensate for our simulated bat’s (current) lack
of spectral information (see Discussion for details).

The arena walls, which the bat should avoid, are made of plants arranged in a
rectangle. Figure 1 shows the arrangement of the flower and the arena. Note that
this arrangement of the flower results in considerably complex echoes (see Fig. 1c
for an example). The plant is a complex reflector in itself. The two poles add
two more strong reflectors to this. Furthermore, the relative strength and time of
arrival of the echoes of the plants and poles are determined by the position and
orientation of the bat in the arena.

Fig. 1. (a) The arrangement of the proxy for a flower used in this paper. The arrange-
ment consists of a central plant and two symmetrically placed cardboard poles. (b)
The arena (16 × 16 m2) in which we test our simulated bat. The walls of the arena
consist of plants. (c) An example of echoes received by the bat from the flower in the
left (orange) and right (blue) ears. The envelopes extracted using the cochlear model
are also depicted (the envelope for the left ear is plotted inverted for clarity). The high-
lighted part of the waveforms is the bat’s emission. These are followed by a complex
echo (consisting of multiple copies of the emitted pulse). (Color figure online)
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2.2 Sensorimotor Loops

In this paper, we propose that bats can find flowers using only two sensorimotor
loops: an approach loop and an avoid sensorimotor loop. By activating the cor-
rect loop at each point in time, the bat can approach targets (i.e., the flower’s
docking zone) or avoid objects (i.e., the walls and parts of the flower outside
the allowed docking zone). In the following, we introduce these control loops.
Next, we explain how we trained the model to activate the correct loop based
on the current echoes.

Approach Loop. The approach sensorimotor loop uses two acoustic cues
extracted from the echoes: the delay in the onset of the echo to and the Interau-
ral Level Difference (ILD) ΔI. In the following, we explain how these cues are
used to set the linear velocity ν and the angular velocity ω when the approach
sensorimotor loop is active.

Following each call generated by the bat, the echo onset delay to is extracted
from the simulated echoes by determining the time at which the response of
the cochlear model crosses a threshold. Therefore, the delay in the echo to gives
the delay between the generation of the call and the arrival of the first (suffi-
ciently strong) echo. The echo onset delay to is related to the distance do of the
object that returns the echo as to = 2do/c with c the speed of sound in air (here
set to 343 m/s).

The ILD ΔI is obtained by integrating the response of the cochlear model for
the left and right ears, starting at to for the duration of the echo (i.e., until the
response drops below a threshold). This results in the echo intensity IL and IR
for the left and right ears, respectively. This assumes that the auditory system
of a bat functions approximately as an energy integrator [25]. Next, the ILD ΔI
is calculated as follows,

ΔI = 10 × log10
IL
IR

(1)

A positive (negative) ILD indicates that the echo reaching the left (right) ear
is louder. Indeed, the ILD inherently contains azimuthal position information
about the object from which the echo is returned, e.g., [21].

After extracting the ILD ΔI and the onset delay to, we use these parameters
to calculate the control commands, that is, the linear velocity ν and the angular
velocity ω. The equation (derived from tau-based control principles [10]) for the
linear velocity ν is,

ν = (νmax − νmin)[1 − (1 − K × A × (do))
1
K −1] (2)

with K set to 0.1 and A representing the braking coefficient, determining the
rate at which the slowing occurs. We set νmin = 1 m/s, νmax = 4 m/s, and A =
1 m/s2 as conservative flight speeds and acceleration for nectarivorous bats [26].
Equation 2 results in a non-linear deacceleration of the bat as it approaches
the target. After calculating the linear velocity, we calculate the bat’s angular
velocity as follows,

ω = ν/Rtrn (3)
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with Rtrn, the bat’s turn radius, given as,

Rtrn = −sign(ΔI)
(
log(|ΔI|) − Rmin

)
(4)

Eqs. 3 and 4 allow the bat to steer towards a target. The bat must minimize the
difference in loudness between the left and right ears to approach the source of the
returning echo. In other words, ΔI should be regulated to zero. When ΔI > 0
(ΔI < 0 ), the echo source is left (right) of the bat and the turning radius
Rtrn should be set to a positive (negative) value to turn left (right). Moreover,
when the magnitude of the ILD (|ΔI|) is large, the source of the echo is fur-
ther away from the central azimuth, and the bat must make a sharper turn. In
contrast, when the magnitude of the ILD (|ΔI|) is smaller, the bat will make
a smaller correction turn to gradually guide itself towards the source of the
returning echo. When |ΔI| = 0, the turning radius Rtrn is infinite and the bat
flies straight. In Eq. 4, Rmin is the minimum allowed turning radius, which is
determined based on the bat’s current velocity ν,

Rmin = ν2/a (5)

to allow us to restrict the angular velocity of the bat to a biologically realis-
tic range. Holderied [9] reported that the flight speed determines the smallest
turning radius of different species of bats. In particular, he suggested that bats’
turning radii are limited such that the g-force they experience is (most often)
below about 3g. Hence, in Eq. 5, we set a = 3.

In summary, the approach sensorimotor loop controls the angular and linear
velocity of the simulated bat. It turns the bat towards the source of the echo and
reduces its speed as it approaches the target. The angular and linear velocities
and the acceleration are limited to biologically plausible values, resulting in
realistic dynamics.

Avoid Loop. When activated, the avoid sensorimotor loop steers the bat away
from obstacles. In this section, we describe how this loop is implemented. Sim-
ilarly to the approach sensorimotor loop, the avoid sensorimotor loop uses the
onset distance do and ILD ΔI to set the linear velocity ν and the angular velocity
ω when activated. When using the avoid sensorimotor loop, the linear velocity
ν is calculated in the same way as when using the approach loop.

The main difference between the approach and avoid loops lies in how the
angular velocity is set. Equation 6 sets the turning radius Rtrn when the avoid
loop is activated. The turning radius depends on the distance to the object that
returns the echo (and not on the magnitude of the ILD as in the approach loop).
If the distance do is smaller, the bat is more likely to collide with the object
and should perform a sharper turn (that is, employ a smaller turning radius).
Equation 6 implements this logic.

Rtrn = sign(ΔI)[log(1 − do
d0,max

) − Rmin] (6)
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In Eq. 6, d0,max is the maximium detection delay (distance), here set to 3 m. The
turn radius is converted to angular velocity using Eq. 3. Moreover, the minimum
turning radius Rmin is, as for the approach loop, set using Eq. 5.

In summary, the avoid loop sets the bat’s linear velocity in the same way as
the approach loop. Nearer to obstacles, the linear velocity is reduced but kept
within biologically realistic bounds. The angular velocity is set so that closer to
obstacles the bat takes sharper turns.

2.3 Training the Bat

Having specified the sensorimotor loops, we now explain how we train a neural
network to select the correct loop to activate based on current echoes. Since the
network takes the current binaural echoes (after cochlear processing) as input
and returns a selected loop to be activated, the network converts the echoes into
suitable motor commands by activating the right loop.

To train the neural network, we need to collect echoes from the arena and
label each echo with the suitable sensorimotor loop to be activated. We design a
teacher model to allow us to automate the echo labeling task. Although training
can be set up in a reinforcement learning framework (see [12,14] for our previous
work using reinforcement learning to train artificial echolocators), the current
approach allows us to avoid the complexity of using reinforcement learning by
leveraging heuristics about the problem. In the following, we explain the func-
tioning of the teacher model before describing how the teacher model was used
to train the neural network.

Teacher Model. The teacher model takes the bat’s current pose and the spatial
arrangement of the walls and flowers to determine the appropriate sensorimotor
loop for this spatial arrangement. This sets the teacher model apart from the
final neural network that controls the bat. The bat’s control neural network
will only receive the echoes as input and is not provided with any information
about the bat’s current pose and spatial arrangement of objects.

The teacher model operates as follows. First, it assesses the proximity of the
bat to the arena walls. If the bat is within 1.5 m of a wall and is oriented toward
it, the teacher model returns the avoid loop as the appropriate loop to activate.
If the bat is not within 1.5 m of a wall or is not oriented toward it, the teacher
model lists all flowers in the arena in order of their distance from the bat. Next,
the teacher model assesses the relative position between the bat and the closest
flower. It feeds this relative pose to a Support Vector Machine classifier (SVM).
This classifier tries to predict the outcome of activating the approach loop for a
given relative pose between a bat and a flower. More details on training the SVM
classifier will be discussed in the following section.

If the SVM classifier suggests that the approach loop would lead to a dock
(i.e., a successful outcome), the teacher model returns the approach sensorimotor
loop as appropriate to activate. If the SVM predicts that the approach loop would
result in a hit with the non-opening side of the flower, the avoid sensorimotor
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loop is selected. When activating the approach loop is not predicted to result in
contact with the flower (dock or hit), the SVM classifies the outcome at that pose
to be miss. If the classifier returns a miss output, the teacher model proceeds to
evaluate the next flower, farther away. The avoid loop is returned if no dock is
predicted after the teacher model has evaluated the four closest flowers.

Support Vector Machine Classifier. As mentioned in the previous section,
the teacher model used to scaffold the training of the neural network controlling
the bat contains an SVM that suggests which sensorimotor loop to use based
on the pose of the bat and the configuration of the arena. In this section, we
explain how this SVM was trained.

To gather training data, we performed a simulation in which a single flower is
placed in the center of the arena, and a bat is spawned in a random pose within
a range of 10 m around the flower. The bat uses the approach sensorimotor loop
until one of three outcomes occurs: (i) the bat successfully arrives at the proxy
flower opening, (ii) the bat collides with the flower outside the docking zone, or
(iii) the bat moves beyond the 10-m radius around the circle. We refer to these
outcomes as dock, hit, and miss, respectively.

Running 200,000 trials starting from randomized poses, we observed that
5,659 poses result in docking, 29,421 poses result in hitting, and the remain-
ing 164,920 poses result in miss. The poses leading to the three outcomes are
shown in Fig. 2. This figure shows that most poses pointing toward the flower
opening guide the bat to the flower opening (panel a).

Fig. 2. Results of 200,000 trials in which the bat ran the approach sensorimotor loop
starting from random poses with respect to the flower. Each data point in panels a-c
represents a different pose of the bat (location and orientation). (a) Poses that lead to
docking. (b) Poses that lead to hits. (c) Poses that lead to misses. The poses in panels
a-c are used to train an SVM classifier (d) to predict the outcome if the approach loop
is used at a given pose.

Using the data generated using the 200,000 runs, we fitted an SVM capable
of classifying the current pose as one of the three outcomes based on the echoes
received at that pose. Due to a disproportionally large number of miss poses, we
impose a limit of 100,000 miss poses within our data set. This results to a data
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Fig. 3. (a) schematic layout of the environment used to train the neural network. The
arena measured 16 × 16 m and contained 9 zones in which a flower was placed (the
flower’s center was jittered) with a random orientation. The bat spawned in one of four
areas with a random orientation. (a) One example run used to collect the training data
for the neural network. (c) teacher model architecture and how it is used to collect a
data set of echoes labeled with sensorimotor loops.

set consisting of 135,080 poses with 4% dock poses, 22% hit poses, and 74% miss
poses.

The SVM (Figs. 2d and 3c) was trained on these data using a regularization
parameter C = 0.1 and a kernel of the radial basis function (RBF), using a
kernel coefficient γ = 10. We adopted an 80/20 train-test split for evaluating the
model’s performance. After training, the SVM classifier could correctly classify
91% of poses as leading to dock, hit, or miss when using the approach loop.

Training the Neural Network. In this section, we explain how the teacher
model presented in the previous sections was used to train the bat’s controller:
a neural network that takes the binaural echoes and activates one of two senso-
rimotor loops.

We created a setup featuring nine flowers in a 16 × 16 m arena surrounded by
walls consisting of plants (Fig. 3). The flowers are placed in nine square regions.
The bat spawns in one of four regions. At each step of the simulation, the teacher
model is used to select the approach or the avoid sensorimotor loop. Figure 3b
shows one run that ends with the bat docking with a flower. Using the teacher
model, we collected 5000 runs ending in the bat docking with the flower. For
each step of each run, we recorded the binaural echoes as received by the bat and
the sensorimotor loop suggested by the teacher model. Therefore, we constructed
a large data set of echoes labeled with the sensorimotor actions suggested by the
teacher model. The data set consisted of 2,156,782 binaural echoes. Approxi-
mately 22% of these were associated with the approach loop. The remaining
78% were associated with the avoid loop. We partitioned the data set into an
80:20 train-test split. This data set was used to train a neural network that
directly converted the echoes to a selected sensorimotor loop.
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We used a fully connected neural network model that features six hidden
layers with sizes of 128, 256, 256, 128, 64, and 16, each using ReLU activation.
The output layer has a softmax function applied over one-hot vector the size
of 2 corresponding to the two sensorimotor loops. Training is done using the
Adam optimizer with a learning rate of 5 × 10−5 and weight decay of 5 × 10−5.
The network input layer receives the echo envelopes. The output layer consists
of two units that assess the probability associated with each sensorimotor loop
for a given echoic input. We trained the model for 200 epochs using the Adam
optimizer and a mini-batch size of 2048. The model converges to 84% accuracy.

3 Results

We evaluated the bat’s performance controlled by the neural network for 1000
episodes, during which the simulated bat autonomously determined the senso-
rimotor loop to execute at each step solely based on the echoic input from the
scene. It is important to note that while the teacher model had access to the
bat’s relative position to the flowers and the walls, the neural network only used
the echoes as input. An evaluation episode is run for 2000 steps (50 s at 40 calls
per second) (miss outcome), or until the bat arrives at a flower opening (dock
outcome) or collides with a wall or the side of a flower (dock outcome). We
compared our ‘trained bat’ with a ‘baseline bat’ that randomly selected a new
sensorimotor loop at each simulation step.

The trained bat using the neural network for sensorimotor loop selection
outperforms the ‘baseline bat’ selecting sensorimotor loops randomly (Fig. 4g).
The trained model yields a dock rate of 93%. On average, the trained model takes
around 600 steps (or 15 s at 40 calls per second) to collide with an object (either
dock or miss), which is approximately 2.5 times longer than the duration that
the random model takes (see Fig. 4h). We show examples of each outcome in
Fig. 4 a-f.

Dock outcomes occur when the bat recognizes it is in a favorable position
(based on the echoes) to approach the flower opening and engage the approach
loop. In both Figs. 4a and 4b, the bat turns on the approach loop when facing the
opening of flower C to dock. In contrast, the bat tends to turn away if it comes
close to a non-opening side of the flower (as depicted with flower B in Fig. 4a).
When the bat is not facing any particular object, it consistently opts for the
avoid loop, as observed at the beginning of the episode in Fig. 4b.

The most common scenario resulting in a hit outcome is when the bat
becomes trapped in the corner of the arena (see Fig. 4c). Other occurrences
of the hit outcome, happening at a rate of 0.5%, are when the bat collides with
a non-opening part of a flower (see Fig. 4d). As the bat attempts to navigate the
arena while looking for the front of a flower, there are instances where it bounces
around until the time limit expires. One of these miss episodes is illustrated in
Figs. 4e.
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Fig. 4. Examples of runs where the bat is guided by the trained neural network, result-
ing in outcomes categorized as dock (a-b), hit (c-d), and miss (e). The network chooses
between the avoid and approach sensorimotor loop at each step based on the echoes.
Avoidance steps are shown in shades of blue, while approach steps are shown in shades
of red, with darker shades indicating higher confidence. An example where the bat is
guided by a random policy is shown in (f). (g) The likelihood of each outcome for the
trained neural network and the random policy. (h) The duration of each outcome for
both the trained and random models.

4 Discussion

We developed a behavior-based reactive navigation model trained to guide a
bat in foraging flowers using narrowband echolocation calls as input. The model
demonstrates high success rates in this task, approaching flowers closely and
veering away if the bat nears the non-opening side of a flower while continuing to
approach if facing the flower opening. This strategy effectively prevents collisions
with walls or the non-opening sides of flowers. However, a notable inefficiency
arises: when the bat veers away from the non-opening side of a flower, it misses
the opportunity to investigate the other side, resulting in the miss outcome. In
the future, we will explore an additional sensorimotor loop that allows the bat
to focus on a single flower target to improve efficiency.

Our model introduces several simplifications. The flowers were modeled as
composite objects, and the bat operated only in 2D. Furthermore, the environ-
ment was simpler than the environment typically faced by nectarivorous bats.
Nevertheless, the model demonstrates the feasibility of modeling the complex
task of approaching flowers at the correct angle using sensorimotor loops acti-
vated under the correct conditions and justifies further expanding our work. We
are working on a more elaborate model that includes more realistic flower echoes
and a more sophisticated arbitration approach to select the appropriate senso-
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rimotor loop. Future iterations of the model could also include more specific
behavior observed in bats. For example, bats are capable of selecting flowers to
approach based on their size [17] or morphology [7].

Previous explanations of foraging in nectarivorous bats suggested that bats
use the spectral content of the echoes to find and approach flowers (see [7,
16–18] for example). Our current model does not use spectral cues, nor does
it have access to them, as the echoes were narrowband signals. Instead, the
current model solves the problem in the time domain using the time-intensity
profiles of the echoes. To allow the use of temporal cues, our proxy flower had a
diameter larger than is typical for flowers (here: 30 cm; see [19] for examples of
real flowers). Hence, in our model, we trade spectral information for temporal
information (see, for example, [15] for a discussion about the relationship between
spectral and temporal information in echolocating bats). In the future, collecting
broadband echoic data to populate the EchoVR would enable us to create a
model that exploits the spectral cues presumably used by bats.
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