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Abstract—We propose a Behavior-Based Robotic (BBR) archi-
tecture to model the cognitive controller of echolocation bats. The
architecture used a neural network to perform high-level control
by governing two sensorimotor loops. We trained our model in
a simulated environment where the echoes returned from the
environment were derived from real echoes collected by a physical
sonar system. We trained our BBR architecture on a foraging
task and tested the trained agent in different experiments. The
agent demonstrated the ability to learn the foraging task on
different maze geometries by avoiding obstacles and approaching
food items. The agent also demonstrated robustness against
considerable noise in actuation. This prototype demonstrated the
feasibility of training a BBR model of complex bat echolocation
tasks using a hybrid simulated environment.

Index Terms—bat echolocation; modeling; sonar; cognitive
architecture; Real2Sim; artificial ethology

I. INTRODUCTION

Research on echolocating bats has shown that bio-sonar is
capable of supporting swift flight through dense vegetation [1],
navigation in changing environments [2], [3], object recog-
nition [4], and airborne foraging [5]. Much of the research
into bat echolocation attempted to isolate the acoustic cues
(i.e., acoustic properties of the echoes) that support different
sonar-based tasks and confirm the sufficiency of those cues
in behavioral experiments [6], [7], simulations [8]-[10], or
robotic studies [11]-[14]. For instance, Greif and colleagues
[7] demonstrated that bats find water by recognizing the
acoustic cues returned by smooth, horizontal surfaces. Several
sensorimotor loops exploiting acoustic cues in task-specific
motor control have been proposed. For example, prey captur-
ing strategies have been evaluated by [11], [12], [15], and us
[16]. In addition, we have proposed and tested sensorimotor
loops for obstacle avoidance [17], [18], mapping [3], and
gleaning prey from leaves [19].

Despite the progress in unraveling how bats exploit acoustic
cues to address specific sonar-based subtasks, little work has
been done on modeling how simple sensorimotor loops could
be integrated to achieve more complex behavior. In previous
work [3], we hypothesized that complex sonar-based behavior
observed in bats could be modeled by a cognitive architecture
mimicking the Behaviour-Based Robotics (BBR) approach
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[20]. In brief, this robotic control approach aims for an agent’s
complex behavior to emerge from the interaction between
multiple sensorimotor loops, with each loop dedicated to a
simple subtask [21].

A BBR-inspired cognitive architecture is promising for
modeling complex bat behavior for at least two reasons. First,
this architecture assumes that agents do not (or only mini-
mally) rely on internal representations [21]. This characteristic
is an attractive feature for models of bat sonar. Indeed, deriving
internal world representations from sonar data is notoriously
difficult and unreliable (see [17], [18] for arguments). There-
fore, models that do not require internal representations of the
environment are promising candidates for explaining how bats
exploit multiple acoustic cues in dealing with their complex
environments. The second advantage of the BBR approach
is responsiveness [21]. The low speed of sound limits the
update rate in biosonar. However, using fast sensorimotor
loops directly coupling sensory input to actuation should allow
bats to respond appropriately under hard real-time conditions
independent of the complexity of the environment.

While a BBR-inspired architecture seems promising to
explain complex sonar-based behavior, our hypothesis [3]
achievedremains untested. Postulating a Behavior-Based
model of bat sonar requires (1) identifying acoustic cues
for subtasks, (2) formulating sensorimotor loops that exploit
these cues, and (3) stipulating an arbitration mechanism for
activating specific loops. As stated above, previous work has
identified several cues and sensorimotor loops for addressing
specific sonar-based subtasks. However, proposing a model
that arbitrates between multiple sensorimotor loops is not
straightforward. The acoustics of the natural world is complex,
making it often impossible to, a priori, specify how acoustic
cues will change as the bat moves through space. Therefore,
postulating the conditions under which specific loops should
take control is challenging. Machine learning could be an
alternative to manually designing [22] an arbitration model.
A disadvantage to using machine learning is that this requires
a large number of training iterations. Therefore, using machine
learning often requires relegation to simulation. However, this
would require simulating the complex acoustics of the world,
which is not trivial. Even modeling the echoes returned by
single objects (as we have before in a series of papers) is
computationally very demanding [23]-[26]. This makes it hard
(if not impossible) to provide the simulated bat with realistic
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echoes from complex environments.

This paper suggests a (hybrid) method for designing a model
of sonar-based behavior by combining dedicated sensorimotor
loops. As such, this paper is an initial attempt to try and ex-
plain more complex sonar-based behavior by hypothesizing a
behavior-based cognitive architecture. We used reinforcement
learning to train the arbitration between sensorimotor loops
in a hybrid simulated environment. To ensure the acoustic
validity of our simulated environment, we used acoustic data
collected using a physical sonar sensor to supply the simulator
with a realistic acoustic model of a complex environment.
Using data captured using physical transducers, we could
overcome the high computational cost of rendering echoic data
from object geometry.

As an initial test of our hypothesis that a Behavior-Based
architecture can support more complex sonar-based behavior,
we selected a foraging task requiring (1) avoiding obstacles
and (2) approaching food items. This task also represents an
initial test of our hybrid modeling approach.

II. METHODS

We tasked an agent (simulated bat) with moving around
an arena constructed of vegetation-like obstacles and foraging
for objects labeled as food. We postulated that this foraging
task could be completed using two sensorimotor loops. The
first sensorimotor loop (avoidance) steered the agent away
from obstacles. The second loop (approach) made the agent
approach objects, i.e., food items. We used reinforcement
learning to train the agent to appropriately activate each of
these loops based on the current echoic input.

The agent was equipped with a simulated sonar system
modeled after bats’ biosonar. The sonar system consisted of
one ultrasonic emitter (mouth) and two microphones (ears).
The simulated emitter corresponded to a narrowband (42 kHz)
piezo ultrasonic emitter. In contrast to our simulated bat, most
bats use frequency-modulated broadband emissions, particu-
larly when operating in complex environments [27]. However,
the acoustic properties of the simulated emitter were speci-
fied by how we collected echoes from physical objects, as
described in section II-A. Using a narrowband emitter does
not invalidate our demonstration as it provides our simulated
bat with less information than real bats. As such, our bat
can not exploit any information not available to real bats.
The bat’s ears’ directionality was modeled based on the bat
Mycronicteris microtis (see Section II-A for details). The agent
used a call rate of 50 Hz (which corresponds to bat call rates
in complex environments, see [18] for references). The agent’s
controller used only the simulated echoes received by the two
ears as sensory input.

A. Environment and echo simulation

We constructed a simulated environment to train and test the
agent. We refer to this environment as the Echolocation-based
Virtual Environment (EchoVR). As indicated, the echoes re-
turned by this environment were derived from physical echoes
collected from two reference objects. Many natural bat habitats

Fig. 1.
geometry object as obstacle: plant. (c) Collect reference echoes of simple
geometry object as food: cardboard pole.

(a) Custom sonar device. (b) Collect reference echoes of complex

consist primarily of vegetation, with the complex geometry of
unstructured reflectors returning many overlapping echoes for
each call [28]. We used echoes from an artificial plant with
densely packed leaves (the overall diameter of the plant is
approximately 50 cm) to model the vegetation in the natural
habitat. Echoes from simulated food items were based on
echoes collected from a cardboard pole (10 cm in diameter).
This object returned a single isolated echo, akin to simpler
(than plants’) echoes produced by airborne insect prey items
[29].

To collect echoes from the artificial plant and the cardboard
pole, we built a custom sonar device (see Figure 1) to collect
reference echoes with a bat-like head-related transfer function
(HRTF). Two omnidirectional microphones (Knowles, FG-
23329-P07) were inserted into a pair of 3D-printed bat ears
(Micronycteris microtis [23]). The ultrasonic emitter placed
2 cm below the ears produced a 1-2 ms pulse of 42 kHz.
The microphones recorded echoes for both ears for a duration
of 23 ms using a 300 kHz sampling rate (resulting in 7000
samples for each ear). For each reference object (i.e., plant and
pole), we collected echoes at different distances, azimuths, and
object orientations. We collected five measurements for each
combination of these parameters. In this way, we constructed a
bank of reference echoes allowing us to approximate the echo
returned by both objects for different distances, azimuths, and
orientations to the agent.

The bank of reference echoes allowed us to create complex
simulated environments consisting of arbitrary numbers of
plants and food items by combining plant and pole echoes
to generate the echoes received by the agent in the simulated
EchoVR. In simulating the echoes received by the agent, we
set the field of view (FoV) for the agent to +45° in azimuth
and 2.5 m in range. Beyond this FoV, the echoes picked up
by the physical sonar device are very weak (low signal-to-
noise ratio). Hence, limiting the FoV of the simulated agent to
these ranges is justified. This range is limited compared to the
detection distance of bat sonar [30]. Therefore, our simulated
FoV presents a worst-case scenario.

For each agent’s pose in the arena, we listed all objects
within the FoV, including their distances and azimuths to the
agent. We selected reference echoes for each object in this
list. In particular, we chose reference echoes collected at a
distance closest (but smaller than) to the distance of the virtual
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object. Next, we applied atmospheric and geometric spreading
attenuation to correct for the difference between the reference
echo’s distance and the exact distance to the object in the
EchoVR (see [16], [30] for the equations governing these
phenomena). We linearly interpolated between two reference
echoes nearest to the object’s azimuth to correct the reference
echoes for the object’s exact azimuth. We summed all objects’
resulting echoes (after appropriate time shifting) to obtain the
complex simulated echoes received. We perform this operation
once for each microphone on the physical sonar system,
representing each ear. Thus, we obtained the echoes at the
simulated agent’ left and right ears.

B. Agent cognitive architecture

The agent’s cognitive architecture consisted of three com-
ponents: (1) a model of the bat’s peripheral auditory system
modeling the cochlear processing of simulated echoes as
received by the ears; (2) a decision module that decides, for the
current echoic input, which sensorimotor loop to activate based
on the current sensory data; and (3) two sensorimotor loops
that estimate acoustic cues from the current echoic sensory
input and calculate the motor output (behavior) based on the
cues. In the following sections, we discuss each of these
components.

1) Cochlear processing: The simulated echoes returned by
the EchoVR were subjected to a series of filtering operations
mimicking the bat’s cochlear processing, based on the model
proposed by Wiegrebe [31]. The simulated echo at each ear
was subjected to a gammatone filter, a half-wave rectifier, a
1 kHz lowpass filter, and a non-linearly compression filter
using an exponent of 0.4. The filters essentially extracted
the envelope of the echoes’ waveforms. Next, the envelope
for each ear was subsampled from 7000 samples to 50
samples by averaging every 125 samples and truncating to
the 50 first points. We subsampled the envelopes to reduce
the dimension of input fed to the decision module to lower
the computational load. Moreover, previous work has shown
that echoes can be substantially subsampled without losing
much information [32]. Finally, we zeroed all the points below
a fixed threshold based on the internal noise of our sonar
transducer. Therefore, any values in the echo envelope above
zero could be considered echoes returned by the environment.
The filtering and compressing process is illustrated in Figure
2. The final envelopes from both ears were concatenated into
a 100-point vector and fed into the decision module to select
a sensorimotor loop. The same envelopes were also fed into
the sensorimotor loops for calculating motor output.

2) Decision module: For the decision module of the model,
we used a Strategy Selection Network (SEN), i.e., a fully
connected neural network with 4 hidden layers, consisting of
128, 128, 128, and 64 Rectified Linear Units, respectively.
The SEN took a 100-point vector as input containing the
preprocessed echoes from both ears and provided output via
two units corresponding to the two sensorimotor loops. Each
output unit returned an estimate of the expected reward (Q-
Value) for activating its corresponding sensorimotor loop.

3) Sensorimotor loops: The sensorimotor loop with the
highest Q-Value as estimated by the SEN was activated at each
point in time. The loops were implemented and (biologically
plausibly) parameterized based on our previous work modeling
prey capture [16], [19] and obstacle avoidance in bats [17],
[18]. From this earlier work, we know that, in isolation, these
sensorimotor loops can support prey capturing and obstacle
avoidance.

Both loops use the same two acoustic cues derived from the
echoic inputs to set the bat’s linear and rotational velocity:
(1) estimated distance d. to the nearest object and (2) the
interaural intensity difference (IID). Behavioral and neuro-
physiological evidence has established that the bat’s auditory
pathway extracts these cues [33]. In our implementation, the
estimated distance d, was derived from the simulated echoes’
compressed envelopes by dividing the time-of-flight for the
onset of the echoes (first above threshold sample) by twice the
speed of sound. Next, from the onset of the echo envelope,
we took an integrating window over 0.7 meters (0.4 ms) for
each ear. This operation resulted in the intensity of the echo
onset in each ear (Wep and Wright)' Finally, the IID was
calculated as follows,

W,
IID = 10 x log;, —1<it )

right

Figure 3 shows the linear and angular velocity (v,w) profiles
applied under each of the two loops. The linear velocity for
each sensorimotor loop is 2.5 m/s when d. > 1 m and is
1.5 xd.+1 m/s when d. < 1 m. However, the linear velocity
is set to 0.05 m/s when d. < 0.5 m for the avoidance loop.
For the avoidance loop, |w| is a function of d, (see Figure 3b)
with sign(w) = sign(IID). For the approach sensorimotor
loop, w = —sign(IID) x 250°/s, with a magnitude cutoff set
at 1000°/s (see Figure 3c). In previous work, these values have
been selected as corresponding to the velocities observed in
bat flight (see [16], [17] for details).

C. Training the simulated bat

The SEN decision module was trained using deep rein-
forcement learning [34], an approach in which a deep neural
network is trained by allowing the agent to learn from trials
and errors by interacting with the environment to maximize re-
wards. The implementation of our deep reinforcement learning
agent was based on the TF-agents package [35]. achieved The
training arena consisted of walls constructed of (simulated)
plants spacing 0.4 meters apart. The walls formed a square
of four 3-meter-wide tunnels with four 90° turn corners (see
Figure 4a). At the beginning of each training episode, the agent
was initialized at world coordinate x = 5.5 m, y = —2.5 m,
facing north. The initial location was jittered by £25 cm and
a jitter of +20° was added to the facing direction to add some
randomness to the initial pose. Food items spawned in the
shaded areas indicated in Figure 4a. Food first spawned in area
I. After being captured, the food item was removed from the
map, and a new food item spawned in the next shaded area
in the order of I, II, III, IV, and back to I. There was only
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Fig. 2. Filtering and compressing process simulating the cochlear processing of echoes [31]. (a, f) physical reference objects (food: pole, obstacle: plant).
(b, g) raw echoes waveform of the reference objected collected by the physical sensor. (c, h) Envelopes of the echo waveform after a series of filtering. (d,

i) compressed envelopes via subsampling. (e, j) Final envelopes with background noise removed by thresholding
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Fig. 4. (a) The default training setup for the foraging task. (b) Learning curve.
Notes that pre-set maximum number of food in each training phase affected
the maximum episode’s returns the agent could reach.

one food item in the maze at any time, and the agent would
hunt for food until it collected the maximum amount of food
allowed. The episode ended when: (1) the agent collected the
pre-set maximum number of food items (default was 11); (2)
the agent hit a wall; or (3) the agent exceeded the time allowed
to capture the current food item.

We used Deep Q-Network (DQN) [36] as the learning
algorithm to train the SEN decision-making module. We gave
the agent a +2 reward for each food item collected and -
2 for hitting the wall. The discount factor was set to 0.999
to motivate the agent to seek long-term rewards. DQN uses
a hybrid exploration-exploitation policy called e-greedy, with
€ being the probability that the agent chooses a random
policy instead of the approximated optimal policy. It gradually
switches to a deterministic policy by linearly reducing € to
zero over time. In our implementation, we set e starting at
0.8 to allow a high level of exploration in the beginning.
We trained the controller until an early-stopping condition of
average episode reward exceeding 15 (more than eight food
items collected) was reached.

At the beginning of this study, training resulted in the
agent prioritizing the avoidance sensorimotor loop since the
likelihood of hitting the plants was much higher than finding
food. To address this, two tutorial phases with a duration
of 300,000 steps each were introduced. In the first tutorial
phase, we initialized the agent at a distance of 1.5 meters
from the food spawning area and ended the episode when
the first food was reached. This increased the likelihood of
the agent encountering food so that it could come up with a
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strategy to approach the food instead of constantly activating
the avoidance sensorimotor loop. The second tutorial phase
was similar to the first, but the agent was allowed to collect
up to 6 food items. This allowed the agents to optimize for
seeking more rewards after the first food item. Finally, the
default training settings were restored after completing two
tutorial phases.

III. RESULTS

The early-stopping condition was met after 930,000 steps,
with an average episode’s return of 15.8. Figure 4b shows the
average episode returns as a function of the training steps. We
noticed that the main reason for an episode to end was that
the agent would encounter a food item that it failed to capture
within the time limit. We designed a series of tests to study
the agent’s behavior in more detail. The setup and results of
those tests are discussed in this section. (See [37] for a video
illustrating these tests).

Figure Sa illustrates how the echoes of both ears changed
through a single episode. Figure 5b also shows how the
difference between the Q-values of the two sensorimotor loops
changed. Here, we briefly point out some interesting aspects
of the episode to explain the sensory data received by the
agent. Around the middle of the episode (125% step), the
agent headed straight toward a wall of plants before steering
away. As Figure 5a shows, the echoes from the plants became
increasingly loud and closer. Toward the end of the episode,
as the agent approached the food item, the echoes of the
food item (small unique pulse) stood out separately from
other echoes. In Figure 5b, the Q-values of each sensorimotor
loop, estimated by the SEN output layer, were similar, with a
slight bias toward the avoidance loop. The SEN activates the
sensorimotor loop with the large estimated Q-value. Therefore,
the avoidance loop was activated over 70% of the time when
cruising through the tunnel. As the agent homed in on the food
item, the difference between the Q-value of the approach loop
and which of the avoidance loop grew significantly (See the
last 20 steps in Figure 5b).

A. Testing different maze geometries

We first tested the agent in the same arena it was trained
in. Figure 6a shows the test setup. The agent was initialized
at the center of the south tunnel facing eastward. The initial
pose of the agent was added with the random jitters described
in Section II-C. Food spawned in the shaded area. The
test episode stopped when the agent either (1) successfully
captured the food, (2) hit the wall, or (3) crossed the upper or
lower boundary. The upper and lower boundaries were set not
only to stop the episode from running forever in case the agent
failed to capture the food item but also to help classify the
outcome of an episode, as explained later in this section. Based
on these stopping conditions, we categorize each episode into
one of five categories: success, miss, bail, wrong-way, and
collision.

Success indicated the agent captured the food in the
episode. collision was defined as the agent hitting an obstacle
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Fig. 5. (a). Visualization of echoic input the agent received during an episode.
The horizontal axis represents the range of the sound source, while the vertical
axis illustrates the steps. (Top: Left ear echoes, Bottom: Right ear echoes). (b)
Difference between the Q-value of the approach loop (Qap.) and the Q-value
of the avoid loop (Qqv.) over time steps of the same episode. (c,d) Top view
snapshot of the episodes at the 125" step and the 260™ step.
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Fig. 6. (a) The test setup for the box maze. (b) The test setup for the donut
maze.

(plant/wall). miss occurred when the agent crossed the upper
boundary and never got close to the food item (i.e., within
0.5 m and £10° azimuth). Bail occurred when the agent
crossed either boundary after being close to the food item
for at least a single step. Wrong-way was when the agent
crossed the lower boundary and never got close to the food
item. After running 1000 test episodes, 94.6% of all episodes
ended in success, while none ended in collision. Furthermore,
4.3% ended in miss, 0.3% ended in bail, and 0.8% ended in
wrong-way (see Figure 7).

To assess whether the trained controller generalizes to a
different arena, we constructed a donut-shaped arena with an
8-meter radius whose tunnel has a width of 3-meter. The test
setup is described in Figure 6b. For the donut maze, 92.9% of
episodes ended in success. Even though the agent performed
slightly worse than in the box maze (Figure 6a), the agent
still performed well in the donut maze. The agent remained
collision-free in this maze. The miss, bail and wrong-way rates
were 6.4%, 0.5%, and 0.2%, respectively (Figure 7). This
showed that the agent was not over-trained on the box maze.

For the first 100 steps of each episode in both arenas, the
agent only traveled in an arena segment that did not contain

Authorized licensed use limited to: Umggrgn%/ éﬁ&@lf?h%gIDﬁvr‘ﬁé}gg@?gﬁngﬁ érébgglﬁlé‘me% UTC from IEEE Xplore. Restrictions apply.1533



100

~
v

B success
= miss

. bail

B wrong-way

Percentage (%)
N w
v o

o

Box Maze Donut Maze

Fig. 7. Rates of different episode endings for tests on a different maze
geometry.

a food item. In this arena section, the agent activated the
approach loop about 23% of the time. Even though the best
strategy for an empty arena segment might seem to activate
the avoid loop 100% of the time, the agent still occasionally
activated the approach loop. The proportion of steps in which
the approach loop was activated increased as the agent neared
the food item. Analyzing the last 20 steps of all success
episodes, we found that the approach loop was activated
approximately 65% of the time.

To better understand where the agent activated each sen-
sorimotor loop, we reran 1000 successful iterations of the
model with the agent starting at a fixed initial pose and a
food item at world coordinate of (xr = 6m,y = 1m). Figure
8a,b shows the locations at which both loops were active
throughout the 1000 episodes. This 8c,d separately shows the
locations at which the difference between the Q-values for both
loops was larger than 0.5. We isolated those instances as they
can be considered locations at which the SEN’s confidence in
choosing a sensorimotor loop was high. Figure 8c suggests that
the SEN became more confident in selecting the approach loop
as the agent homed in on the food item. The SEN activated
the avoidance loop with high confidence at locations close to
the wall of obstacles (Figure 8d). The avoidance loop was also
activated with confidence in a small region in front of the food
item. We conjecture that this unexpected avoidance behavior
might not have been unlearned as a successful approach is
unavoidable at this close distance from the food item.

B. Trap avoidance test

Even though the agent achieved a high success rate, this
does not show that the agent has learned to recognize the
food items. Indeed, the controller might have figured out a
strategy to isolate any object in the middle of the tunnel
instead of learning to recognize a food item. We designed
a trap avoidance test to examine whether the agent learned
to discriminate between the plants and the targets. We used
the same test setup for the box and donut arenas. However,
the food item (which returned echoes derived from a cardboard
pole) was replaced with a plant. If the agent avoids the isolated
plants, we can conclude that the agent learned to discriminate
between the plants and the targets.

The collision rate was 18% for the box maze and 15.5%
for the donut maze. The Bail rate was 74.8% for the box

Yworld (m)

Yworld (m)

-3 0 3 6 -3 0 3 6

Xworld (M) Xworld (M)

Fig. 8. Heat map of agent’s locations in 1000 successful episodes with fixed
initial pose and food location. (a) Locations where the agent activated the
approach loop. (b) Locations where the agent activated the avoid loop. (c)
Locations where the Q-value of the approach loop is 0.5 higher than the
avoidance loop. (d) Locations where the Q-value of the avoid loop is 0.5
higher than its counterpart.

maze and 77.0% for the donut maze. For the box maze,
miss and wrong-way rates were 6.7% and 0.5%, respectively.
For the donut maze, miss and wrong-way rates were 7.3%
and 0.2%. respectively. We separated the collisions into two
subcategories, accidental and intentional, based on the trap’s
location to the agent at the moment of collision. Accidental
collision occurred when the trap was outside the +45° FoV
when hit. In this case, the bat could not detect the trap plant.
In contrast, intentional collision occurred when the trap was
within the +45° view width when hit. Accidental collisions
accounted for 17.1% of all episodes in the box maze and
15.1% in the donut maze. Intentional collision accounted for
0.9%of all episodes in the box maze and 0.4% in the donut
maze (see Figure 9). Therefore, most collisions were in the
accidental subcategory.

These results, especially the high bail rate, suggested that
the agent could discriminate between plants and food items.
However, it had to approach an isolated object closely before
being able to distinguish food from obstacles. Hence, the agent
often turns away from the trap when close to it. On many
occasions, turning away at the last few steps put the trap in a
blind spot of the agent at a close distance, causing the agent
to collide with the plant accidentally.

C. Robustness against actuator noise

We assessed whether our model could deal with noise in the
actuation of motor commands. This increases the biological
plausibility of our model, as motor noise is inherent in
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Fig. 9. Rates of different episode endings for trap test.

biological systems. Moreover, in future work, we intend to
test our trained model on a differential drive robot to evaluate
whether our hybrid method results in a control model capable
of operating in the real world. Before doing so, we wanted to
assess how robust the trained agent would be against actuation
noise. Our model already incorporated sensors’ noise by using
echoes collected using a physical system. Indeed, the signal-
to-noise ratio of the sonar transducer used to collect the echoes
is substantially lower than that of bat biosonar [32].

We performed a Monte Carlo simulation where rotations per
second (RPS) and diameters of the two wheels were randomly
sampled for each test episode. We set vz, and vy as random
variables scaling the left and right wheels’ RPS. Likewise,
the random variables scaling the diameters of left and right
wheels are denoted as d;, and dg. The effective velocities of
two wheels 7, g can be calculated as,

tr,r =RPSp g X D, g = YL,ROL,R X UL,R )

where
RPSp, g = 7L,r XRPSL R 3)
Dirr = 0nrxDrr “4)

with RPSy, r the ideal rotational rate, RPSy p the actual
(scaled) rotational rate, Dy, g is ideal diameter, and D r.r the
actual (scaled) diameter of the left and right wheels.

At the beginning of each simulation episode, we sampled
YL, Yr> 01, and di independently from normal distributions
with means of 1 and standard deviations of 0.1 and 0.05 for
vr,r and dr, g, respectively. It should be noted that these are
very noisy conditions. Indeed, on average, the actual velocities
of the wheels differed by over 10% from their ideal. In
this simulation, we assumed that the distance between two
wheels was 25 cm (this approximates the diameter of several
commercially available robots).

We ran 3000 test episodes in the box maze. The success rate
dropped to 73.7% while the collision rate increased from 0%
to 4.3%. The rate of miss, bail, and wrong-way were 12.9%,
8.5%, and 0.6%, respectively (see Figure 10). We noticed
that most collisions occur in episodes the right wheel was
substantially faster than the left wheel. This caused the robot
to over-steer when making a left turn at the southeast corner of
the maze, resulting in a collision. However, the success rate
was still relatively high in this simulation, which indicated

Percentage (%)

miss bail

collision

success wrong-way

Fig. 10. Rates of the different episode endings for the Monte Carlo simulation
where the velocity of each wheel was varied by randomly sampling the wheel’s
RPS and diameter.

that the model could perform reasonably, even in the face of
substantial actuator variation.

IV. DISCUSSION

Brooks proposed the Behavior-Based architecture as an al-
ternative to approaches that relied heavily on building internal
world models and planning [21]. Analogously, we argued in
several papers [3], [16]-[19] against the assumption that bats
build a (3D) model of the environment using their sonar system
and use this for planning actuation. We argued that a close link
between sensing and acting (without the need for extensive
representations or planning) would allow bats to respond
in real-time to the complex and changing environments in
which they operate. Moreover, not requiring a model of the
environment sidesteps the problems associated with deducing
the world’s layout from underspecified echo signals.

In previous work, we proposed and tested sensorimotor
loops in isolation [3], [16]-[19]. This paper is the first test
of the idea that a combination of sensorimotor loops can be
used to scaffold more complex sonar-based behaviors. As said
in the introduction, we consider the current work preliminary.
This paper combines only two sensorimotor loops previously
tested and parameterized to model common bat behavior, i.e.,
approaching targets while avoiding obstacles. However, in
modeling this, we developed a methodology that integrates
simulation-based machine learning with acoustic data col-
lected using real transducers. While simulation necessarily
incurs a reality gap, building a simulated environment that
returns echoes derived from measurements limits this gap.
Therefore, we can now expand the current work to tackle
more complex behaviors based on this work. For example, we
plan on modeling the behavior of nectar-feeding bats [38]-
[41]. This behavior requires the bat to locate the target flower
(among other vegetation) and align itself with the flower’s
opening to ‘dock’ and access the nectar.

We consider the current work as an initial test of our
overarching hypothesis concerning the cognitive architecture
underlying sonar-based behavior in bats. The work here is also
preliminary in one other respect. We have only preliminarily
analyzed the control strategy that emerged from the training.
Indeed, we expect but have not tested that analyzing the SEN
could aid us in understanding the strategies bats might adopt in
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tackling more complex tasks. In other words, by applying the
methods of artificial ethology [42] (i.e., studying the behavior
and controllers) of artificial agents, we hope to be able to draw
conclusions about (1) the structure of more complex sonar-
based tasks and (2) higher-level strategies that bats could use
to tackle them. In turn, we hope this leads to hypotheses that
can be tested in behavioral or neurophysiological studies on
bats.
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