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Abstract—We propose a Behavior-Based Robotic (BBR) archi-
tecture to model the cognitive controller of echolocation bats. The
architecture used a neural network to perform high-level control
by governing two sensorimotor loops. We trained our model in
a simulated environment where the echoes returned from the
environment were derived from real echoes collected by a physical
sonar system. We trained our BBR architecture on a foraging
task and tested the trained agent in different experiments. The
agent demonstrated the ability to learn the foraging task on
different maze geometries by avoiding obstacles and approaching
food items. The agent also demonstrated robustness against
considerable noise in actuation. This prototype demonstrated the
feasibility of training a BBR model of complex bat echolocation
tasks using a hybrid simulated environment.

Index Terms—bat echolocation; modeling; sonar; cognitive
architecture; Real2Sim; artificial ethology

I. INTRODUCTION

Research on echolocating bats has shown that bio-sonar is

capable of supporting swift flight through dense vegetation [1],

navigation in changing environments [2], [3], object recog-

nition [4], and airborne foraging [5]. Much of the research

into bat echolocation attempted to isolate the acoustic cues

(i.e., acoustic properties of the echoes) that support different

sonar-based tasks and confirm the sufficiency of those cues

in behavioral experiments [6], [7], simulations [8]–[10], or

robotic studies [11]–[14]. For instance, Greif and colleagues

[7] demonstrated that bats find water by recognizing the

acoustic cues returned by smooth, horizontal surfaces. Several

sensorimotor loops exploiting acoustic cues in task-specific

motor control have been proposed. For example, prey captur-

ing strategies have been evaluated by [11], [12], [15], and us

[16]. In addition, we have proposed and tested sensorimotor

loops for obstacle avoidance [17], [18], mapping [3], and

gleaning prey from leaves [19].

Despite the progress in unraveling how bats exploit acoustic

cues to address specific sonar-based subtasks, little work has

been done on modeling how simple sensorimotor loops could

be integrated to achieve more complex behavior. In previous

work [3], we hypothesized that complex sonar-based behavior

observed in bats could be modeled by a cognitive architecture

mimicking the Behaviour-Based Robotics (BBR) approach

Research supported by NSF grant 2034885, IOS Division Of Integrative
Organismal Systems. All code and data collected for this work can be found
at github.com/huythinhnguyen/SSCI 2022 bat foraging or by contacting the
1st author for the latest version.

[20]. In brief, this robotic control approach aims for an agent’s

complex behavior to emerge from the interaction between

multiple sensorimotor loops, with each loop dedicated to a

simple subtask [21].

A BBR-inspired cognitive architecture is promising for

modeling complex bat behavior for at least two reasons. First,

this architecture assumes that agents do not (or only mini-

mally) rely on internal representations [21]. This characteristic

is an attractive feature for models of bat sonar. Indeed, deriving

internal world representations from sonar data is notoriously

difficult and unreliable (see [17], [18] for arguments). There-

fore, models that do not require internal representations of the

environment are promising candidates for explaining how bats

exploit multiple acoustic cues in dealing with their complex

environments. The second advantage of the BBR approach

is responsiveness [21]. The low speed of sound limits the

update rate in biosonar. However, using fast sensorimotor

loops directly coupling sensory input to actuation should allow

bats to respond appropriately under hard real-time conditions

independent of the complexity of the environment.

While a BBR-inspired architecture seems promising to

explain complex sonar-based behavior, our hypothesis [3]

achievedremains untested. Postulating a Behavior-Based

model of bat sonar requires (1) identifying acoustic cues

for subtasks, (2) formulating sensorimotor loops that exploit

these cues, and (3) stipulating an arbitration mechanism for

activating specific loops. As stated above, previous work has

identified several cues and sensorimotor loops for addressing

specific sonar-based subtasks. However, proposing a model

that arbitrates between multiple sensorimotor loops is not

straightforward. The acoustics of the natural world is complex,

making it often impossible to, a priori, specify how acoustic

cues will change as the bat moves through space. Therefore,

postulating the conditions under which specific loops should

take control is challenging. Machine learning could be an

alternative to manually designing [22] an arbitration model.

A disadvantage to using machine learning is that this requires

a large number of training iterations. Therefore, using machine

learning often requires relegation to simulation. However, this

would require simulating the complex acoustics of the world,

which is not trivial. Even modeling the echoes returned by

single objects (as we have before in a series of papers) is

computationally very demanding [23]–[26]. This makes it hard

(if not impossible) to provide the simulated bat with realistic
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echoes from complex environments.

This paper suggests a (hybrid) method for designing a model

of sonar-based behavior by combining dedicated sensorimotor

loops. As such, this paper is an initial attempt to try and ex-

plain more complex sonar-based behavior by hypothesizing a

behavior-based cognitive architecture. We used reinforcement

learning to train the arbitration between sensorimotor loops

in a hybrid simulated environment. To ensure the acoustic

validity of our simulated environment, we used acoustic data

collected using a physical sonar sensor to supply the simulator

with a realistic acoustic model of a complex environment.

Using data captured using physical transducers, we could

overcome the high computational cost of rendering echoic data

from object geometry.

As an initial test of our hypothesis that a Behavior-Based

architecture can support more complex sonar-based behavior,

we selected a foraging task requiring (1) avoiding obstacles

and (2) approaching food items. This task also represents an

initial test of our hybrid modeling approach.

II. METHODS

We tasked an agent (simulated bat) with moving around

an arena constructed of vegetation-like obstacles and foraging

for objects labeled as food. We postulated that this foraging

task could be completed using two sensorimotor loops. The

first sensorimotor loop (avoidance) steered the agent away

from obstacles. The second loop (approach) made the agent

approach objects, i.e., food items. We used reinforcement

learning to train the agent to appropriately activate each of

these loops based on the current echoic input.

The agent was equipped with a simulated sonar system

modeled after bats’ biosonar. The sonar system consisted of

one ultrasonic emitter (mouth) and two microphones (ears).

The simulated emitter corresponded to a narrowband (42 kHz)

piezo ultrasonic emitter. In contrast to our simulated bat, most

bats use frequency-modulated broadband emissions, particu-

larly when operating in complex environments [27]. However,

the acoustic properties of the simulated emitter were speci-

fied by how we collected echoes from physical objects, as

described in section II-A. Using a narrowband emitter does

not invalidate our demonstration as it provides our simulated

bat with less information than real bats. As such, our bat

can not exploit any information not available to real bats.

The bat’s ears’ directionality was modeled based on the bat

Mycronicteris microtis (see Section II-A for details). The agent

used a call rate of 50 Hz (which corresponds to bat call rates

in complex environments, see [18] for references). The agent’s

controller used only the simulated echoes received by the two

ears as sensory input.

A. Environment and echo simulation

We constructed a simulated environment to train and test the

agent. We refer to this environment as the Echolocation-based

Virtual Environment (EchoVR). As indicated, the echoes re-

turned by this environment were derived from physical echoes

collected from two reference objects. Many natural bat habitats

���

������

Fig. 1. (a) Custom sonar device. (b) Collect reference echoes of complex
geometry object as obstacle: plant. (c) Collect reference echoes of simple
geometry object as food: cardboard pole.

consist primarily of vegetation, with the complex geometry of

unstructured reflectors returning many overlapping echoes for

each call [28]. We used echoes from an artificial plant with

densely packed leaves (the overall diameter of the plant is

approximately 50 cm) to model the vegetation in the natural

habitat. Echoes from simulated food items were based on

echoes collected from a cardboard pole (10 cm in diameter).

This object returned a single isolated echo, akin to simpler

(than plants’) echoes produced by airborne insect prey items

[29].

To collect echoes from the artificial plant and the cardboard

pole, we built a custom sonar device (see Figure 1) to collect

reference echoes with a bat-like head-related transfer function

(HRTF). Two omnidirectional microphones (Knowles, FG-

23329-P07) were inserted into a pair of 3D-printed bat ears

(Micronycteris microtis [23]). The ultrasonic emitter placed

2 cm below the ears produced a 1-2 ms pulse of 42 kHz.

The microphones recorded echoes for both ears for a duration

of 23 ms using a 300 kHz sampling rate (resulting in 7000

samples for each ear). For each reference object (i.e., plant and

pole), we collected echoes at different distances, azimuths, and

object orientations. We collected five measurements for each

combination of these parameters. In this way, we constructed a

bank of reference echoes allowing us to approximate the echo

returned by both objects for different distances, azimuths, and

orientations to the agent.

The bank of reference echoes allowed us to create complex

simulated environments consisting of arbitrary numbers of

plants and food items by combining plant and pole echoes

to generate the echoes received by the agent in the simulated

EchoVR. In simulating the echoes received by the agent, we

set the field of view (FoV) for the agent to ±45ç in azimuth

and 2.5 m in range. Beyond this FoV, the echoes picked up

by the physical sonar device are very weak (low signal-to-

noise ratio). Hence, limiting the FoV of the simulated agent to

these ranges is justified. This range is limited compared to the

detection distance of bat sonar [30]. Therefore, our simulated

FoV presents a worst-case scenario.

For each agent’s pose in the arena, we listed all objects

within the FoV, including their distances and azimuths to the

agent. We selected reference echoes for each object in this

list. In particular, we chose reference echoes collected at a

distance closest (but smaller than) to the distance of the virtual
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object. Next, we applied atmospheric and geometric spreading

attenuation to correct for the difference between the reference

echo’s distance and the exact distance to the object in the

EchoVR (see [16], [30] for the equations governing these

phenomena). We linearly interpolated between two reference

echoes nearest to the object’s azimuth to correct the reference

echoes for the object’s exact azimuth. We summed all objects’

resulting echoes (after appropriate time shifting) to obtain the

complex simulated echoes received. We perform this operation

once for each microphone on the physical sonar system,

representing each ear. Thus, we obtained the echoes at the

simulated agent’ left and right ears.

B. Agent cognitive architecture

The agent’s cognitive architecture consisted of three com-

ponents: (1) a model of the bat’s peripheral auditory system

modeling the cochlear processing of simulated echoes as

received by the ears; (2) a decision module that decides, for the

current echoic input, which sensorimotor loop to activate based

on the current sensory data; and (3) two sensorimotor loops

that estimate acoustic cues from the current echoic sensory

input and calculate the motor output (behavior) based on the

cues. In the following sections, we discuss each of these

components.

1) Cochlear processing: The simulated echoes returned by

the EchoVR were subjected to a series of filtering operations

mimicking the bat’s cochlear processing, based on the model

proposed by Wiegrebe [31]. The simulated echo at each ear

was subjected to a gammatone filter, a half-wave rectifier, a

1 kHz lowpass filter, and a non-linearly compression filter

using an exponent of 0.4. The filters essentially extracted

the envelope of the echoes’ waveforms. Next, the envelope

for each ear was subsampled from 7000 samples to 50

samples by averaging every 125 samples and truncating to

the 50 first points. We subsampled the envelopes to reduce

the dimension of input fed to the decision module to lower

the computational load. Moreover, previous work has shown

that echoes can be substantially subsampled without losing

much information [32]. Finally, we zeroed all the points below

a fixed threshold based on the internal noise of our sonar

transducer. Therefore, any values in the echo envelope above

zero could be considered echoes returned by the environment.

The filtering and compressing process is illustrated in Figure

2. The final envelopes from both ears were concatenated into

a 100-point vector and fed into the decision module to select

a sensorimotor loop. The same envelopes were also fed into

the sensorimotor loops for calculating motor output.

2) Decision module: For the decision module of the model,

we used a Strategy Selection Network (SEN), i.e., a fully

connected neural network with 4 hidden layers, consisting of

128, 128, 128, and 64 Rectified Linear Units, respectively.

The SEN took a 100-point vector as input containing the

preprocessed echoes from both ears and provided output via

two units corresponding to the two sensorimotor loops. Each

output unit returned an estimate of the expected reward (Q-

Value) for activating its corresponding sensorimotor loop.

3) Sensorimotor loops: The sensorimotor loop with the

highest Q-Value as estimated by the SEN was activated at each

point in time. The loops were implemented and (biologically

plausibly) parameterized based on our previous work modeling

prey capture [16], [19] and obstacle avoidance in bats [17],

[18]. From this earlier work, we know that, in isolation, these

sensorimotor loops can support prey capturing and obstacle

avoidance.

Both loops use the same two acoustic cues derived from the

echoic inputs to set the bat’s linear and rotational velocity:

(1) estimated distance de to the nearest object and (2) the

interaural intensity difference (IID). Behavioral and neuro-

physiological evidence has established that the bat’s auditory

pathway extracts these cues [33]. In our implementation, the

estimated distance de was derived from the simulated echoes’

compressed envelopes by dividing the time-of-flight for the

onset of the echoes (first above threshold sample) by twice the

speed of sound. Next, from the onset of the echo envelope,

we took an integrating window over 0.7 meters (0.4 ms) for

each ear. This operation resulted in the intensity of the echo

onset in each ear (Wleft and Wright). Finally, the IID was

calculated as follows,

IID = 10× log
10

Wleft
Wright

(1)

Figure 3 shows the linear and angular velocity (v, Ë) profiles

applied under each of the two loops. The linear velocity for

each sensorimotor loop is 2.5 m/s when de > 1 m and is

1.5×de+1 m/s when de ≤ 1 m. However, the linear velocity

is set to 0.05 m/s when de < 0.5 m for the avoidance loop.

For the avoidance loop, |Ë| is a function of de (see Figure 3b)

with sign(Ë) = sign(IID). For the approach sensorimotor

loop, Ë = −sign(IID) × 250ç/s, with a magnitude cutoff set

at 1000ç/s (see Figure 3c). In previous work, these values have

been selected as corresponding to the velocities observed in

bat flight (see [16], [17] for details).

C. Training the simulated bat

The SEN decision module was trained using deep rein-

forcement learning [34], an approach in which a deep neural

network is trained by allowing the agent to learn from trials

and errors by interacting with the environment to maximize re-

wards. The implementation of our deep reinforcement learning

agent was based on the TF-agents package [35]. achieved The

training arena consisted of walls constructed of (simulated)

plants spacing 0.4 meters apart. The walls formed a square

of four 3-meter-wide tunnels with four 90ç turn corners (see

Figure 4a). At the beginning of each training episode, the agent

was initialized at world coordinate x = 5.5 m, y = −2.5 m,

facing north. The initial location was jittered by ±25 cm and

a jitter of ±20ç was added to the facing direction to add some

randomness to the initial pose. Food items spawned in the

shaded areas indicated in Figure 4a. Food first spawned in area

I. After being captured, the food item was removed from the

map, and a new food item spawned in the next shaded area

in the order of I, II, III, IV, and back to I. There was only
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Fig. 2. Filtering and compressing process simulating the cochlear processing of echoes [31]. (a, f) physical reference objects (food: pole, obstacle: plant).
(b, g) raw echoes waveform of the reference objected collected by the physical sensor. (c, h) Envelopes of the echo waveform after a series of filtering. (d,
i) compressed envelopes via subsampling. (e, j) Final envelopes with background noise removed by thresholding
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Fig. 3. Linear and angular velocity profile. (a) The linear velocity of both
loops. (b) The magnitude of angular velocity for avoidance loop. (c) Angular
velocity profile for approaching loop.
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Fig. 4. (a) The default training setup for the foraging task. (b) Learning curve.
Notes that pre-set maximum number of food in each training phase affected
the maximum episode’s returns the agent could reach.

one food item in the maze at any time, and the agent would

hunt for food until it collected the maximum amount of food

allowed. The episode ended when: (1) the agent collected the

pre-set maximum number of food items (default was 11); (2)

the agent hit a wall; or (3) the agent exceeded the time allowed

to capture the current food item.

We used Deep Q-Network (DQN) [36] as the learning

algorithm to train the SEN decision-making module. We gave

the agent a +2 reward for each food item collected and -

2 for hitting the wall. The discount factor was set to 0.999

to motivate the agent to seek long-term rewards. DQN uses

a hybrid exploration-exploitation policy called ë-greedy, with

ë being the probability that the agent chooses a random

policy instead of the approximated optimal policy. It gradually

switches to a deterministic policy by linearly reducing ë to

zero over time. In our implementation, we set ë starting at

0.8 to allow a high level of exploration in the beginning.

We trained the controller until an early-stopping condition of

average episode reward exceeding 15 (more than eight food

items collected) was reached.

At the beginning of this study, training resulted in the

agent prioritizing the avoidance sensorimotor loop since the

likelihood of hitting the plants was much higher than finding

food. To address this, two tutorial phases with a duration

of 300,000 steps each were introduced. In the first tutorial

phase, we initialized the agent at a distance of 1.5 meters

from the food spawning area and ended the episode when

the first food was reached. This increased the likelihood of

the agent encountering food so that it could come up with a
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strategy to approach the food instead of constantly activating

the avoidance sensorimotor loop. The second tutorial phase

was similar to the first, but the agent was allowed to collect

up to 6 food items. This allowed the agents to optimize for

seeking more rewards after the first food item. Finally, the

default training settings were restored after completing two

tutorial phases.

III. RESULTS

The early-stopping condition was met after 930,000 steps,

with an average episode’s return of 15.8. Figure 4b shows the

average episode returns as a function of the training steps. We

noticed that the main reason for an episode to end was that

the agent would encounter a food item that it failed to capture

within the time limit. We designed a series of tests to study

the agent’s behavior in more detail. The setup and results of

those tests are discussed in this section. (See [37] for a video

illustrating these tests).

Figure 5a illustrates how the echoes of both ears changed

through a single episode. Figure 5b also shows how the

difference between the Q-values of the two sensorimotor loops

changed. Here, we briefly point out some interesting aspects

of the episode to explain the sensory data received by the

agent. Around the middle of the episode (125th step), the

agent headed straight toward a wall of plants before steering

away. As Figure 5a shows, the echoes from the plants became

increasingly loud and closer. Toward the end of the episode,

as the agent approached the food item, the echoes of the

food item (small unique pulse) stood out separately from

other echoes. In Figure 5b, the Q-values of each sensorimotor

loop, estimated by the SEN output layer, were similar, with a

slight bias toward the avoidance loop. The SEN activates the

sensorimotor loop with the large estimated Q-value. Therefore,

the avoidance loop was activated over 70% of the time when

cruising through the tunnel. As the agent homed in on the food

item, the difference between the Q-value of the approach loop

and which of the avoidance loop grew significantly (See the

last 20 steps in Figure 5b).

A. Testing different maze geometries

We first tested the agent in the same arena it was trained

in. Figure 6a shows the test setup. The agent was initialized

at the center of the south tunnel facing eastward. The initial

pose of the agent was added with the random jitters described

in Section II-C. Food spawned in the shaded area. The

test episode stopped when the agent either (1) successfully

captured the food, (2) hit the wall, or (3) crossed the upper or

lower boundary. The upper and lower boundaries were set not

only to stop the episode from running forever in case the agent

failed to capture the food item but also to help classify the

outcome of an episode, as explained later in this section. Based

on these stopping conditions, we categorize each episode into

one of five categories: success, miss, bail, wrong-way, and

collision.

Success indicated the agent captured the food in the

episode. collision was defined as the agent hitting an obstacle
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Fig. 5. (a). Visualization of echoic input the agent received during an episode.
The horizontal axis represents the range of the sound source, while the vertical
axis illustrates the steps. (Top: Left ear echoes, Bottom: Right ear echoes). (b)
Difference between the Q-value of the approach loop (Qap.) and the Q-value
of the avoid loop (Qav.) over time steps of the same episode. (c,d) Top view
snapshot of the episodes at the 125th step and the 260th step.
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Fig. 6. (a) The test setup for the box maze. (b) The test setup for the donut
maze.

(plant/wall). miss occurred when the agent crossed the upper

boundary and never got close to the food item (i.e., within

0.5 m and ±10ç azimuth). Bail occurred when the agent

crossed either boundary after being close to the food item

for at least a single step. Wrong-way was when the agent

crossed the lower boundary and never got close to the food

item. After running 1000 test episodes, 94.6% of all episodes

ended in success, while none ended in collision. Furthermore,

4.3% ended in miss, 0.3% ended in bail, and 0.8% ended in

wrong-way (see Figure 7).

To assess whether the trained controller generalizes to a

different arena, we constructed a donut-shaped arena with an

8-meter radius whose tunnel has a width of 3-meter. The test

setup is described in Figure 6b. For the donut maze, 92.9% of

episodes ended in success. Even though the agent performed

slightly worse than in the box maze (Figure 6a), the agent

still performed well in the donut maze. The agent remained

collision-free in this maze. The miss, bail and wrong-way rates

were 6.4%, 0.5%, and 0.2%, respectively (Figure 7). This

showed that the agent was not over-trained on the box maze.

For the first 100 steps of each episode in both arenas, the

agent only traveled in an arena segment that did not contain
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Fig. 7. Rates of different episode endings for tests on a different maze
geometry.

a food item. In this arena section, the agent activated the

approach loop about 23% of the time. Even though the best

strategy for an empty arena segment might seem to activate

the avoid loop 100% of the time, the agent still occasionally

activated the approach loop. The proportion of steps in which

the approach loop was activated increased as the agent neared

the food item. Analyzing the last 20 steps of all success

episodes, we found that the approach loop was activated

approximately 65% of the time.

To better understand where the agent activated each sen-

sorimotor loop, we reran 1000 successful iterations of the

model with the agent starting at a fixed initial pose and a

food item at world coordinate of (x = 6m, y = 1m). Figure

8a,b shows the locations at which both loops were active

throughout the 1000 episodes. This 8c,d separately shows the

locations at which the difference between the Q-values for both

loops was larger than 0.5. We isolated those instances as they

can be considered locations at which the SEN’s confidence in

choosing a sensorimotor loop was high. Figure 8c suggests that

the SEN became more confident in selecting the approach loop

as the agent homed in on the food item. The SEN activated

the avoidance loop with high confidence at locations close to

the wall of obstacles (Figure 8d). The avoidance loop was also

activated with confidence in a small region in front of the food

item. We conjecture that this unexpected avoidance behavior

might not have been unlearned as a successful approach is

unavoidable at this close distance from the food item.

B. Trap avoidance test

Even though the agent achieved a high success rate, this

does not show that the agent has learned to recognize the

food items. Indeed, the controller might have figured out a

strategy to isolate any object in the middle of the tunnel

instead of learning to recognize a food item. We designed

a trap avoidance test to examine whether the agent learned

to discriminate between the plants and the targets. We used

the same test setup for the box and donut arenas. However,

the food item (which returned echoes derived from a cardboard

pole) was replaced with a plant. If the agent avoids the isolated

plants, we can conclude that the agent learned to discriminate

between the plants and the targets.

The collision rate was 18% for the box maze and 15.5%

for the donut maze. The Bail rate was 74.8% for the box

��� ���

��� ���

Fig. 8. Heat map of agent’s locations in 1000 successful episodes with fixed
initial pose and food location. (a) Locations where the agent activated the
approach loop. (b) Locations where the agent activated the avoid loop. (c)
Locations where the Q-value of the approach loop is 0.5 higher than the
avoidance loop. (d) Locations where the Q-value of the avoid loop is 0.5
higher than its counterpart.

maze and 77.0% for the donut maze. For the box maze,

miss and wrong-way rates were 6.7% and 0.5%, respectively.

For the donut maze, miss and wrong-way rates were 7.3%

and 0.2%. respectively. We separated the collisions into two

subcategories, accidental and intentional, based on the trap’s

location to the agent at the moment of collision. Accidental

collision occurred when the trap was outside the ±45ç FoV

when hit. In this case, the bat could not detect the trap plant.

In contrast, intentional collision occurred when the trap was

within the ±45ç view width when hit. Accidental collisions

accounted for 17.1% of all episodes in the box maze and

15.1% in the donut maze. Intentional collision accounted for

0.9%of all episodes in the box maze and 0.4% in the donut

maze (see Figure 9). Therefore, most collisions were in the

accidental subcategory.

These results, especially the high bail rate, suggested that

the agent could discriminate between plants and food items.

However, it had to approach an isolated object closely before

being able to distinguish food from obstacles. Hence, the agent

often turns away from the trap when close to it. On many

occasions, turning away at the last few steps put the trap in a

blind spot of the agent at a close distance, causing the agent

to collide with the plant accidentally.

C. Robustness against actuator noise

We assessed whether our model could deal with noise in the

actuation of motor commands. This increases the biological

plausibility of our model, as motor noise is inherent in
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Fig. 9. Rates of different episode endings for trap test.

biological systems. Moreover, in future work, we intend to

test our trained model on a differential drive robot to evaluate

whether our hybrid method results in a control model capable

of operating in the real world. Before doing so, we wanted to

assess how robust the trained agent would be against actuation

noise. Our model already incorporated sensors’ noise by using

echoes collected using a physical system. Indeed, the signal-

to-noise ratio of the sonar transducer used to collect the echoes

is substantially lower than that of bat biosonar [32].

We performed a Monte Carlo simulation where rotations per

second (RPS) and diameters of the two wheels were randomly

sampled for each test episode. We set ³L and ³R as random

variables scaling the left and right wheels’ RPS. Likewise,

the random variables scaling the diameters of left and right

wheels are denoted as δL and δR. The effective velocities of

two wheels ūL,R can be calculated as,

ūL,R = RPSL,R × D̄L,R = ³L,RδL,R × uL,R (2)

where

RPSL,R = ³L,R × RPSL,R (3)

D̄L,R = δL,R ×DL,R (4)

with RPSL,R the ideal rotational rate, RPSL,R the actual

(scaled) rotational rate, DL,R is ideal diameter, and D̄L,R the

actual (scaled) diameter of the left and right wheels.

At the beginning of each simulation episode, we sampled

³L, ³R, δL, and δR independently from normal distributions

with means of 1 and standard deviations of 0.1 and 0.05 for

³L,R and δL,R, respectively. It should be noted that these are

very noisy conditions. Indeed, on average, the actual velocities

of the wheels differed by over 10% from their ideal. In

this simulation, we assumed that the distance between two

wheels was 25 cm (this approximates the diameter of several

commercially available robots).

We ran 3000 test episodes in the box maze. The success rate

dropped to 73.7% while the collision rate increased from 0%

to 4.3%. The rate of miss, bail, and wrong-way were 12.9%,

8.5%, and 0.6%, respectively (see Figure 10). We noticed

that most collisions occur in episodes the right wheel was

substantially faster than the left wheel. This caused the robot

to over-steer when making a left turn at the southeast corner of

the maze, resulting in a collision. However, the success rate

was still relatively high in this simulation, which indicated
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Fig. 10. Rates of the different episode endings for the Monte Carlo simulation
where the velocity of each wheel was varied by randomly sampling the wheel’s
RPS and diameter.

that the model could perform reasonably, even in the face of

substantial actuator variation.

IV. DISCUSSION

Brooks proposed the Behavior-Based architecture as an al-

ternative to approaches that relied heavily on building internal

world models and planning [21]. Analogously, we argued in

several papers [3], [16]–[19] against the assumption that bats

build a (3D) model of the environment using their sonar system

and use this for planning actuation. We argued that a close link

between sensing and acting (without the need for extensive

representations or planning) would allow bats to respond

in real-time to the complex and changing environments in

which they operate. Moreover, not requiring a model of the

environment sidesteps the problems associated with deducing

the world’s layout from underspecified echo signals.

In previous work, we proposed and tested sensorimotor

loops in isolation [3], [16]–[19]. This paper is the first test

of the idea that a combination of sensorimotor loops can be

used to scaffold more complex sonar-based behaviors. As said

in the introduction, we consider the current work preliminary.

This paper combines only two sensorimotor loops previously

tested and parameterized to model common bat behavior, i.e.,

approaching targets while avoiding obstacles. However, in

modeling this, we developed a methodology that integrates

simulation-based machine learning with acoustic data col-

lected using real transducers. While simulation necessarily

incurs a reality gap, building a simulated environment that

returns echoes derived from measurements limits this gap.

Therefore, we can now expand the current work to tackle

more complex behaviors based on this work. For example, we

plan on modeling the behavior of nectar-feeding bats [38]–

[41]. This behavior requires the bat to locate the target flower

(among other vegetation) and align itself with the flower’s

opening to ‘dock’ and access the nectar.

We consider the current work as an initial test of our

overarching hypothesis concerning the cognitive architecture

underlying sonar-based behavior in bats. The work here is also

preliminary in one other respect. We have only preliminarily

analyzed the control strategy that emerged from the training.

Indeed, we expect but have not tested that analyzing the SEN

could aid us in understanding the strategies bats might adopt in
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tackling more complex tasks. In other words, by applying the

methods of artificial ethology [42] (i.e., studying the behavior

and controllers) of artificial agents, we hope to be able to draw

conclusions about (1) the structure of more complex sonar-

based tasks and (2) higher-level strategies that bats could use

to tackle them. In turn, we hope this leads to hypotheses that

can be tested in behavioral or neurophysiological studies on

bats.
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