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11

In this study, we propose an integrated analytical framework combining factor analysis, latent12

profile analysis, and causal inference using survey data from over 360 Battery Electric Vehicle13

(BEV) owners across 44 survey items related to infrastructure features, time and cost constraints,14

situational factors, and vehicle characteristics. We first extract eight latent dimensions that15

structure charging station evaluations, capturing not only technical and economic considerations16

but also trust in provider reliability, situational convenience, and EV-specific constraints.17

Building on these factors, we uncover two distinct user profiles: Efficiency-Oriented Users,18

prioritizing predictable access, minimal detours, and low waiting times, and Information-19

Responsive Users, who prioritize availability of co-located amenities, compatibility with daily20

routines, and EV-specific requirements, highlighting substantial heterogeneity in how drivers21

prioritize infrastructure features. Using inverse propensity weighting, we estimate the causal22

effects of private charger access, public charging frequency, opportunistic charging behavior, and23

EV usage purpose on profile membership. Our results reveal that access to private chargers and24

frequent public charging are key drivers of more selective, context-sensitive station evaluations25

associated with the Information-Responsive profile. We also find that trip purpose strongly26

conditions station priorities, with business-related users emphasizing reliability and situational27

compatibility. These findings underscore that expanding charger availability without addressing28

informational, contextual, and experiential needs will fall short of building equitable and29

sustainable EV infrastructure. Planning strategies must recognize user heterogeneity, anticipate30

differentiated demands, and integrate charging ecosystems into the fabric of routine urban31

mobility.32

33

1. Introduction34

Over the last decade, electric vehicle (EV) adoption has surged, with the number of plug-in hybrid electric vehicles35

(PHEVs) and battery electric vehicles (BEVs) in the U.S. increasing from 0.2 million in 2013 to 4.8 million in 2023 [1].36

Additionally, the share of new EV sales rose sharply, from 7% in 2022 to 10% in 2023 [1]. This upward trajectory is37

expected to continue, with projections forecasting up to 12.8 million EV sales in the U.S. by 2035 [1]. Several factors38

underpin this rapid growth, including advancements in battery technologies [2], the introduction of stronger policy39

incentives [3], and growing consumer awareness of EV benefits [4]. As adoption accelerates, the large-scale expansion40

of public charging infrastructure emerges as an essential enabler, particularly for users without reliable access to41

private charging options, facilitating ease of travel within and between urban areas. However, such infrastructure42

build-out raises critical questions about its long-term sustainability, many of which are deeply intertwined with43

patterns of EV user behavior. In particular, many regions exhibit highly uneven charging station usage, where a small44

number of stations account for a disproportionate share of total visits, while others remain largely underutilized [5, 6].45

Explanations for this inequality might point to deficiencies in service reliability [7] or access barriers at certain sites [8]46

but such arguments risk overlooking a more fundamental gap: the lack of a clear and structured understanding of how47

and why EV users evaluate and choose between available charging stations.48

This knowledge gap is rooted in both the limited scope and methodological shortcomings of existing research.49

Most studies emphasize a narrow set of observable station attributes such as proximity [9], cost [10], or charging50
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

speed [11], while neglecting experiential and contextual factors that users often weigh during real-world decision-1

making. Attributes like prior satisfaction [12], user reviews [13], trust in charging providers [14], or situational2

constraints [9] (e.g., availability of nearby amenities or compatibility with travel routines) are rarely measured or3

modeled with sufficient granularity, even though they play critical roles in shaping perceived reliability, comfort, and4

integration of charging into daily life. Accounting for these dimensions is essential, as they introduce new behavioral5

contexts where users may prioritize convenience, daily routine fit, or trusted recommendations over purely technical6

specifications. Moreover, much of the literature assumes user preferences are homogeneous, treating EV users as a7

uniform group despite growing evidence of meaningful heterogeneity in usage patterns and charging priorities [12].8

Even when segmentation is attempted, it often relies on surface-level demographic or vehicle ownership characteristics9

without systematically connecting preference structures to underlying behavioral routines [15]. Moreover, studies often10

interpret survey findings through descriptive correlations, conflating structural factors such as access to private charging11

infrastructure or neighborhood station density with self-selection based on user choices or habits. For example, users12

who frequently prioritize stations with co-located amenities or trusted network providers may not do so because of13

inherently different preferences, but rather because they have greater flexibility enabled by private home charging access14

or lower time constraints during travel. Therefore, without accounting for these structural differences, observational15

patterns risk being misinterpreted as intrinsic user preferences, rather than outcomes shaped by infrastructural and16

behavioral conditions. Failing to disentangle these dynamics limits the ability to identify causal factors of behavior,17

obscures the conditions under which preferences emerge, and hinders the development of targeted infrastructure18

strategies tailored to diverse user needs.19

To address these limitations, this study draws on a detailed survey of BEV owners to analyze charging station20

selection preferences. We first reduce the dimensionality of 44 survey items related to infrastructure features, time and21

cost constraints, situational factors, and vehicle characteristics, identifying a set of latent behavioral dimensions that22

structure how users evaluate public charging stations. These latent factors provide an interpretable basis for uncovering23

the underlying factors of station selection decisions. Building on these factors, we probabilistically segment users24

into distinct profiles based on the similarity of their prioritization strategies, capturing meaningful differences in how25

users balance technical, situational, and experiential considerations when selecting charging stations. Furthermore,26

to understand the factors behind these profiles, we apply a causal framework that approximates a quasi-randomized27

experiment by reweighting observations based on observed characteristics. This approach enables us to estimate28

the effect of key behavioral and infrastructural factors such as private charger access, public charging frequency,29

opportunistic charging behavior, and EV usage purpose on profile membership. Through this integrated procedure,30

we specifically explore three main research questions:31

RQ1 Building on a user-centric framework for analyzing charging infrastructure preferences [15], we ask what are the32

underlying latent dimensions that structure how EV users evaluate public charging stations, and how can these33

be empirically identified from a broad set of survey items?34

RQ2 Can EV users be grouped into distinct preference profiles based on how they prioritize different charging station35

attributes, and what characterizes each group?36

RQ3 To what extent do specific behavioral and infrastructural factors, such as charging frequency, driving purpose,37

or private charger access, causally influence the likelihood of belonging to each preference profile?38

By answering these questions, we seek to uncover the factors behind divergent charging station evaluation strategies39

among EV users, and provide actionable insights for infrastructure planners, policymakers, and behavioral researchers.40

In doing so, we aim to support more targeted, effective, and equitable deployment of public charging infrastructure. The41

rest of the paper is organized as follows. Section 2 reviews the literature on charging station selection and highlights42

methodological gaps. Section 3 introduces the survey data and summarizes the variables used. Section 4 presents43

the factor extraction, profile segmentation, and causal inference framework. Section 5 reports the main findings,44

and Section 6 interprets the results in light of planning and policy implications and concludes with a discussion of45

limitations and directions for future work.46
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

2. Background1

The adoption of EVs remains an essential component of state-wide energy resilience goals. Several states, including2

California and New York, have set ambitious goals to ensure that 100% of new passenger vehicles sold are zero-3

emission vehicles (ZEVs) by 2035, with Oregon targeting a 90% adoption rate [16]. At the same time, the price gap4

between gasoline vehicles and EVs is expected to narrow, removing one of the main barriers to EV adoption [17, 18].5

Nevertheless, sufficient access to charging infrastructure remains a significant hurdle that must be overcome to drive6

the uptake of EVs [19, 20]. Therefore, the sustainable development of charging infrastructure, in line with the rate of7

EV adoption, is crucial for achieving environmental and energy goals. This requires a thorough understanding of the8

factors that influence users’ choices and preferences regarding charging stations. Without this insight, we risk creating9

a situation where a small number of stations serve the majority of user demand, leading to underutilization of many10

stations and inequitable access across different communities [21, 22].11

To gain a clear understanding of the existing potentials and challenges within the expansion of charging12

infrastructure and EV adoption, conducting surveys remains an invaluable tool for capturing direct responses from13

diverse user groups regarding their preferences. Studies have indicated that different EV users may have distinct14

preferences about charging infrastructure, assigning different levels of importance to factors such as range anxiety,15

accessibility, and the capacity of charging stations [23, 24, 25, 26]. Additionally, an analysis aiming to identify users’16

perceptions and preferences should include individual user attitudes and their experiences with the actual infrastructure.17

In this regard, studies have found factors related to charging infrastructure, such as location [27], number and type of18

chargers [14, 28], energy source [29], and charging time [30] to be significant in charging station selection. Additionally,19

certain factors related to user perceptions, such as range anxiety and battery range [31], and situational characteristics20

of charging, such as time of day [32], home charging availability [33], and detour time [34], have also been found21

influential in users’ selection of charging stations.22

Despite the exploration of various factors to understand users’ perceptions of charging stations, certain elements23

that might influence the decision-making process are often overlooked. For instance, this includes factors related to24

the social influence of selecting a charging station, especially for potential adopters or those with less experience25

using charging stations. In such cases, users might rely on recommendations from their social circle (e.g., friends and26

family), reviews of the stations by other users, and their own experiences if applicable [33]. Furthermore, even when27

such attributes are included, their definitions often lack alignment with real-world user behavior. For example, the28

measures of accessibility often only focus on distance to the nearest charger, without accounting for the opportunity29

to engage in nearby activities, such as dining or shopping, while charging their vehicle [35]. This is also important to30

include since, due to the longer charging times, EV users often prefer to visit other activity locations during the charging31

process [11, 36]. This limited view restricts our ability to capture the full spectrum of preferences and behaviors that32

govern station selection. As a result, infrastructure planning efforts may mischaracterize the factors that matter most33

to users, potentially leading to underutilized assets or unmet user needs.34

Furthermore, a critical but often overlooked dimension of charging station planning is the recognition that EV35

users are not a homogeneous group [12]. Individuals vary widely in how they prioritize infrastructure features,36

the constraints they face, and the contexts in which charging decisions are made. Some may focus exclusively on37

minimizing cost or travel time, while others may prioritize safety, convenience, or the presence of nearby services.38

These differences are not random and instead they reflect variations in lifestyles, vehicle usage patterns, access to private39

infrastructure, and broader social and economic positioning [37]. Without explicitly accounting for this heterogeneity,40

policies aimed at improving infrastructure access or encouraging behavioral shifts risk targeting an average user41

that does not meaningfully represent any specific segment. Segmenting users based on their charging preferences42

allows for more targeted and effective interventions. For instance, financial incentives or information campaigns may43

resonate differently with users who charge primarily at home versus those who rely on public infrastructure. Similarly,44

infrastructure improvements such as adding amenities or ensuring price transparency may disproportionately benefit45

certain user segments, depending on their stated priorities. Recognizing these segments can also enhance demand46

forecasting and equity assessments, as it allows planners to evaluate whether infrastructure investments meet the needs47

of both high-frequency public chargers and more infrequent, routine-based users.48

While surveys have played a central role in identifying the factors that influence charging station preferences, most49

analyses remain descriptive in nature. In this regard, traditional methods of analyzing surveys on charging infrastructure50

perceptions and preferences often rely on summary statistics or visual presentations to illustrate differences between51

survey variables. More comprehensive approaches employ techniques such as choice experiments [38], sensitivity52
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

analysis [39], or employ principal component analysis [40]. Nevertheless, while such studies report associations1

between user characteristics and stated preferences, they stop short of disentangling whether these relationships reflect2

causal mechanisms or merely reflect correlations driven by unobserved factors. As a result, we lack clarity on whether3

key attributes, such as access to private chargers, frequency of public charging, or usage purposes, actively shape users’4

decision-making processes, or whether they simply co-occur with certain stated preferences. This methodological5

gap limits the actionable insights that can be derived from surveys, particularly when designing interventions or6

infrastructure that aim to influence behavior rather than just observe it. Incorporating a causal inference framework7

enables a more rigorous examination of how behavioral, infrastructural, and contextual factors affect the likelihood of8

adopting distinct charging preference profiles. This is especially important when assessing the impact of factors such as9

home charger availability, opportunistic charging behavior (e.g., plugging in whenever a charger is available, regardless10

of battery state), or business-related EV use (e.g., frequent charging during work trips). These factors are potentially11

endogenous to socioeconomic status or mobility needs, but are rarely analyzed as causal drivers in the literature. By12

estimating the direction and magnitude of these effects, a causal framework can provide a stronger empirical basis13

for identifying leverage points in infrastructure planning and for designing user-specific interventions that go beyond14

one-size-fits-all strategies.15

Based on our review of the literature, it is evident that understanding users’ perceptions and preferences regarding16

charging infrastructure is essential for developing a public charging system that is both sustainable and responsive to17

real-world usage patterns. This exploration must move beyond narrow sets of attributes to incorporate a wider range of18

influencing factors including technical features, contextual constraints, and experiential needs, while also accounting19

for heterogeneity across user segments and identifying the causal mechanisms that shape preference formation. To20

address these limitations, we design a targeted survey of EV users that captures both stated preferences and contextual21

factors across 44 attributes related to infrastructure, cost, time, situational routines, and vehicle characteristics. This22

comprehensive coverage allows us to identify the latent dimensions that structure station evaluation. We then apply a23

probabilistic segmentation approach to uncover distinct user profiles based on these dimensions, enabling a structured24

analysis of preference heterogeneity. Finally, we adopt a causal inference framework to estimate the effect of key25

behavioral and infrastructural exposures such as private charging access, charging frequency, and driving purpose on26

profile membership. Together, these components provide a methodologically integrated approach to understanding how27

EV users make charging decisions and what levers can inform more effective and equitable infrastructure strategies.28

3. Data29

3.1. Survey Design and Procedure30

This study draws on a subset of data from a larger online survey designed to capture attitudes, preferences, and31

behaviors related to EV adoption and usage. Our analysis focuses specifically on the portion of the survey related to32

public charging station selection and includes only respondents who identified as current EV users. The full online33

survey comprises 89 questions in two main sections: participant background and user preferences regarding their34

perceptions and interactions with the charging infrastructure. More specifically, the first section of the survey collects35

demographic information, including state of residence, age, gender, race, education, employment status, income, and36

vehicle ownership status and type. Only U.S. residents above the age of 18 were eligible to complete the survey. The37

second part of the survey includes questions organized into two thematic areas. The first theme explores participants’38

interactions with and preferences regarding EVs, such as their priorities when considering a potential EV purchase (e.g.,39

“If you were to buy an electric car tomorrow, what would be the most important features for you in your choice of an40

electric car?”). The second theme focuses on public charging behavior, including preferences for station attributes and41

individual charging patterns (e.g., “Which of the following characteristics or features would be important to you when42

choosing a charging station?”). The third theme addresses participants’ broader environmental attitudes, capturing43

their perspectives on the human–nature relationship and ecological values (e.g., “Humans have the right to modify the44

natural environment to suit their needs.”) [41]. Additionally, participants were given the opportunity to provide open-45

ended comments about the survey. Finally, participants were recruited via Prolific Academic (ProA), a crowdsourcing46

platform for recruiting online participants for research [42, 43].47
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

3.2. Descriptive Statistics1

3.2.1. Participants’ Background2

Our analysis focuses on a subpopulation of 365 respondents who identified as current EV owners, drawn from3

a larger survey sample of 997 valid responses, as detailed in Reimer et al. [15]. EV respondents had a median age4

of 37 years, with ages ranging from 19 to 71. The sample includes 60.6% male and 39.2% female participants. In5

terms of racial and ethnic composition, 55.1% identified as White, 24.1% as Black, 12.3% as Asian, and the remaining6

8.5% as Hispanic or another group. Educational attainment is relatively high with 45.8% of respondents holding a7

Bachelor’s degree, 35.1% a graduate degree, 9.6% an associate or junior college degree, and 9.6% a high school8

diploma or less. Most participants are employed full-time (80.0%), while 12.3% work part-time and the remainder9

are retired or unemployed. In terms of annual household income, 22.3% report earning over $150,000, 15.9% between10

$110,000 and $150,000, and 28.0% between $75,000 and $110,000. A smaller share (14.6%) earn between $25,00011

and $60,000, while 8.0% report incomes below $25,000. Regarding political affiliation, 56.1% identified as liberal,12

34.0% as conservative, and 9.9% as independent.13

3.2.2. Participants’ Perceptions and Preferences14

The survey included a comprehensive set of questions designed to capture how participants perceive, evaluate,15

and engage with EV charging infrastructure. To support nuanced behavioral modeling, questions were customized16

by ownership status. While all participants answered questions related to EV adoption and environmental attitudes,17

only current EV users were asked about their specific charging routines and public station selection preferences.18

Nevertheless, here we focus exclusively on current EV users (Ċ = 365) to enable a deeper analysis of charging19

behavior within the context of actual preferences rather than hypothetical intentions. All perception and preference20

items were presented using a five-point Likert scale ranging from 1 (“not at all important”) to 5 (“very important”),21

allowing participants to express the relative weight they assign to various infrastructure, behavioral, and situational22

factors. Among the 44 items analyzed, key themes included attributes of charging providers (e.g., energy source,23

network affiliation), availability of amenities near charging locations (e.g., dining and retail), physical accessibility and24

reliability of stations (e.g., socket availability, speed), and time- or cost-related constraints. These items are grouped25

into several broader categories, summarized in Table 1, which presents the distribution of responses across all five26

Likert levels.27

Participants were also asked about their behavioral charging routines, including frequency of charging (e.g., “How28

often do you charge your electric vehicle?”), battery management strategies (e.g., “Do you typically charge only when29

your battery is nearly empty?”), and whether they engage in small, opportunistic charging when the opportunity arises.30

These behavioral treatments complement the stated preferences by capturing real-world patterns of station interaction.31

Furthermore, to contextualize preferences within broader social and mobility settings, the survey included additional32

questions on usage purpose (whether the EV is primarily used for business, commuting, or social trips), and a social33

treatment measure asking respondents how many people in their social network (friends and family) regularly drive34

EVs.35

Table 1: Survey items on charging station preferences among EV users (Ċ = 365)

Category Abbr. Description 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

ATT1 Energy source of power station: The type of energy source that
is used to generate electricity at the charging station, such as
solar, wind, or grid electricity.

13.7 16.7 26.0 23.8 19.7

Provider ATT2 Charging network provider: The company or network providing
the charging station services.

8.5 13.4 25.8 29.3 23.0

ATT3 Vehicle-to-grid (V2G) capabilities: Whether your electric ve-
hicle can contribute power back to the grid.

23.8 18.4 27.1 18.9 11.8

ATT4 Battery swapping/switching: Whether the charging station of-
fers battery swapping or switching services.

29.6 14.5 23.3 16.7 15.9

ATT5 Amenities: Access to a restaurant or shopping mall next to the
charging station.

2.7 11.5 24.4 33.4 27.9

Amenities ATT6 Opportunities for other activities during charging: Whether you
can engage in other activities, such as shopping or working,
while your vehicle is charging.

2.2 7.7 23.0 37.8 29.3
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

Category Abbr. Description 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

ATT7 Accessibility of charging station: The overall ease of reaching
the charging station.

0.3 1.9 10.1 30.7 57.0

Accessibility ATT8 Location area of charging station: The geographical area where
the charging station is located, like residential, work, or com-
mercial locations.

1.1 3.3 17.0 32.3 46.3

ATT9 Available sockets/piles (#): The number of available charging
outlets or piles at the charging station.

0.5 2.7 11.5 35.9 49.3

ATT10 Charging cost: The amount of money you have to pay for
charging your electric vehicle.

0.3 3.0 14.8 24.7 57.3

Cost ATT11 Price savings: The amount of money you save by using a
specific charging station.

1.4 6.0 19.2 29.9 43.6

ATT12 Parking cost: The cost of parking your electric vehicle at the
charging station.

2.7 5.5 16.4 32.6 42.7

ATT13 Perfect information (about price): The degree to which you
have access to complete and accurate information about charg-
ing station prices.

0.5 3.0 18.6 34.5 43.3

ATT14 Previous satisfaction: Whether or not you have visited a charg-
ing station before and were satisfied with the experience using
it.

1.4 5.5 17.8 38.9 36.4

Experience ATT15 Recommendations by friends and family: Recommendations
by friends and family when exploring a new charging station.

10.1 15.1 25.8 28.8 20.3

ATT16 Reviews: Previous user reviews when trying out a new charging
station.

2.5 8.5 22.2 36.2 30.7

ATT17 Valet-charging: Whether the charging station offers valet ser-
vices for charging your electric vehicle.

37.5 14.8 18.4 16.7 12.6

ATT18 Charging duration: The time it takes your electric vehicle to
charge completely.

0.0 0.8 10.4 36.7 52.1

ATT19 Charging speed: The category of the charging station, such as
level 1, level 2, or DC fast, indicating the charging speed it
offers.

0.0 3.0 9.9 26.8 60.3

Time ATT20 Detour distance/travel time: The additional distance or time you
have to travel out of your way to reach a charging station.

1.4 3.6 19.7 40.3 35.1

ATT21 Travel Time: The time it takes to reach the charging station
from your current location.

1.4 3.3 20.0 39.7 35.6

ATT22 Waiting time (min): The amount of time you have to wait in
line before you can start charging your electric vehicle.

0.5 4.9 12.3 27.9 54.2

ATT23 Idle time at charging station: The amount of time you spend
waiting at a charging station during the charging process.

2.5 5.5 21.4 34.5 36.2

EXO1 I typically charge when I do not have enough battery power for
the next trips I plan.

1.9 1.9 14.2 30.1 51.8

EV Character-
istics

EXO2 I typically charge when the state of charge falls to a certain
level.

1.4 5.2 21.4 32.6 39.5

EXO3 I typically charge when the battery is empty/discharged. 1.1 3.0 12.1 30.7 53.2
EXO4 I typically charge when I am below a specific buffer range that

I always want to have in the battery.
6.0 9.9 23.8 27.9 32.3

EXO5 Range anxiety: The level of concern or worry you experience
about running out of battery power before reaching your desti-
nation.

1.9 9.3 18.4 31.8 38.6

Driver Percep-
tion

EXO6 Driver risk attitudes: Your personal attitude towards risk and
safety while driving an electric vehicle.

5.8 12.1 26.8 29.3 26.0

EXO7 Environmental consciousness: Your level of concern and com-
mitment to environmental issues and sustainability.

6.6 9.9 26.6 30.4 26.6

EXO8 Awareness of charging infrastructure: Your level of knowledge
and awareness of available charging stations.

1.4 6.6 26.0 36.4 29.6

EXO9 Home charging availability (garage): Whether you have the
option to charge your electric vehicle at home in your garage.

0.8 3.3 14.5 29.9 51.5

EXO10 Number of charging stations: The number of charging stations
that are within a driving range of your vehicle.

1.4 4.1 16.7 37.5 40.3

Charging Op-
portunity

EXO11 Workplace charging availability: Whether your workplace pro-
vides charging facilities for electric vehicles.

7.7 11.2 22.5 30.1 28.5

EXO12 Distance between charging stations: The distance between the
closest charging station and the next one on your route.

0.5 5.2 17.0 34.2 43.0
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Category Abbr. Description 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)

EXO13 Availability on your way: Availability of charging stations in
your daily activities routine (e.g., going to work, shopping,
etc.).

1.9 4.4 15.9 34.8 43.0

EXO14 Number of household vehicles: The total number of vehicles
owned by your household.

17.0 18.9 25.8 24.1 14.2

EXO15 Frequency of charging events: Number of times you need to
charge during a week/month.

2.7 7.4 23.6 38.1 28.2

EXO16 Day of the week: Your preference to charge your vehicle during
weekdays or weekends.

19.7 17.5 22.2 27.1 13.4

EXO17 Daytime/night: Your preference for charging after working
hours or before working hours.

6.6 11.8 26.8 29.0 25.8

Situational
Time

EXO18 Driving schedule: The typical schedule or routine for driving
your electric vehicle.

3.3 8.2 26.8 35.6 26.0

EXO19 Dwelling time at destination: The duration of your stay at your
destination, affecting the opportunity to charge.

3.0 6.6 25.8 35.3 29.3

EXO20 Number of daily trips: The average number of trips you take in
your electric vehicle each day.

5.2 12.9 27.9 32.1 21.9

EXO21 Season: Your preference or pattern for charging during different
seasons of the year.

15.6 18.4 27.9 27.1 11.0

1

4. Methodology2

To examine the behavioral dynamics shaping charging station selection, we develop a multi-stage methodology3

grounded in survey responses introduced in Section 3. As illustrated in Figure 1, our approach first applies factor4

analysis to distill key dimensions of charging preferences from a high-dimensional set of attitudinal questions. This5

dimensionality reduction step reveals latent constructs that structure how individuals perceive and evaluate charging6

infrastructure. Building on these insights, we implement a latent profile analysis to identify probabilistic clusters of7

EV users who share similar preference patterns. These profiles provide an interpretable basis for capturing behavioral8

heterogeneity in station selection. Finally, we assess the causal influence of specific treatments (e.g., home charger9

ownership or certain EV usage patterns) on profile membership. Using inverse propensity score weighting to adjust10

for observable confounders, we approximate a quasi-experimental design that improves the validity of our inferences.11

4.1. Latent Factor Analysis12

We build on the broader human-centric framework developed in Reimer et al. [15], which identified key perceptual13

and behavioral constructs shaping charging infrastructure evaluation across diverse user types. In this study, we focus14

specifically on current EV users and restrict our analysis to survey items directly related to public charging station15

selection. This narrower scope allows us to isolate the latent cognitive dimensions that underlie station preferences16

within this population, and serves as the first step in our multi-stage empirical framework. To reduce the dimensionality17

of the charging-relevant survey responses (as detailed in Section 3.2.2), we implement a two-stage factor analytic18

approach. We begin with Exploratory Factor Analysis (EFA) to uncover latent constructs embedded in user preferences,19

followed by Confirmatory Factor Analysis (CFA) to evaluate the stability and interpretability of the extracted structure20

across subsamples. This sequence provides the foundation for addressing our first research question (RQ1): what are21

the underlying dimensions that shape how EV users evaluate and choose public charging stations?22

EFA is a data-driven technique widely used to identify patterns of covariance among observed variables in survey23

data, enabling inference of unobservable latent factors [44]. Its strength lies in its flexibility as it does not impose a24

predefined structure and can be applied to a broad range of survey contexts, such as ours. The central idea is to explain25

the observed correlations between items as arising from a smaller set of latent variables, each influencing a subset26

of questions. Let X represent the matrix of observed item responses; the method assumes that these responses can27

be approximated by a linear combination of ā latent factors plus residual noise, where ā l Ć and Ć is the number28

of original variables. We extract latent factors using maximum likelihood estimation with oblique (promax) rotation,29

allowing factors to correlate, as is often appropriate for behavioral constructs [45]. Items with primary loadings above30

0.4 are retained, while those with cross-loadings exceeding 0.3 are removed, in line with common practice in the31

literature [44]. The number of factors is selected through a combination of Kaiser’s criterion (eigenvalues above one),32

scree plot analysis, and conceptual interpretability of the resulting factors. To ensure the reliability of the extracted33
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

෠ �

Figure 1: Methodological framework

factors, we calculate Cronbach’s alpha (ÿ), a standard measure of internal consistency. Values of ÿ above 0.7 are1

generally taken to indicate acceptable reliability [46], with higher values reflecting more coherent constructs.2

To confirm the robustness of the identified structure, we perform CFA using a randomly drawn hold-out3

sample [47]. This step tests whether the hypothesized factor model fits the data better than competing structures,4

including hierarchical or unrestricted models. Model adequacy is often assessed through multiple indices including5

the Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), and Tucker–Lewis Index6

(TLI), with thresholds of RMSEA < 0.06, CFI > 0.95, and TLI > 0.95 indicating good fit [48]. The final factor scores,7

denoted �F, serve as low-dimensional summaries of user preferences and form the input for subsequent profiling and8

causal analysis.9

4.2. Latent Profile Analysis10

To explore the second research question (RQ2) regarding whether distinct user profiles can be identified based11

on preferences for public charging stations, we apply Latent Profile Analysis (LPA) to the continuous factor scores12

�F obtained in the previous section. LPA is a person-centered statistical technique designed to uncover unobserved13

subgroups within a population by grouping individuals who share similar multivariate response patterns [49]. Unlike14

regression- or variable-centered methods that focus on relationships between measured variables, LPA emphasizes15

the clustering of individuals and identifies the heterogeneity in preferences and decision-making [49]. Therefore, LPA16

allows us to construct a typology of users based on their engagement with the latent constructs derived from factor17

analysis.18

LPA assumes that observed responses arise from a mixture of multivariate Gaussian distributions, each correspond-19

ing to a latent class or profile. Formally, the observed variance of a given response variable ÿ is decomposed into two20

components: the between-profile variance due to differences in latent profile means, and the within-profile variance21

accounting for dispersion around those means. This decomposition is expressed as:22

ÿ2
ÿ
=

ć1

ā=1

ÿā(ąÿā − ąÿ)
2 +

ć1

ā=1

ÿāÿ
2
ÿā

(1)
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

where ąÿā and ÿ2
ÿā

denote the mean and variance of variable ÿ within latent profile ā, ÿā is the proportion of the1

population in profile ā, and ąÿ is the overall population mean of variable ÿ. This formulation captures both inter-2

profile variability and intra-profile dispersion, making LPA well suited to identify hidden behavioral segments across3

individuals. Each respondent ÿ is assigned to a profile based on the posterior probability of belonging to profile ā, given4

their observed factor scores �fÿ from the reduced representation matrix �F. This probability is computed as:5

āÿā =
ÿāü (�fÿ E ąā,�ā)

1ć

Ā=1
ÿĀ ü (�fÿ E ąĀ ,�Ā)

(2)

where ąā and �ā represent the mean vector and covariance matrix of profile ā, and ü (ç E ą,�) denotes the multivariate6

normal density function. Each individual is ultimately classified into a profile using the maximum posterior rule:7

āÿ = argmaxā āÿā.8

We estimate model parameters using maximum likelihood, fitting models with ÿ = 2 to 6 profiles. Model selection9

is guided by multiple information criteria, including the Bayesian Information Criterion (BIC), Akaike Information10

Criterion (AIC), entropy, and the Lo-Mendell-Rubin adjusted likelihood ratio test [50]. We require each retained profile11

to account for at least 10% of the total sample to ensure interpretability and avoid overfitting.12

4.3. Causal Inference Framework13

To identify the determinants that shape EV users’ preferences for charging stations (RQ3), we adopt a causal14

inference framework designed to estimate the effect of specific treatments while adjusting for a set of observed15

confounders. Unlike conventional regression-based approaches that capture statistical associations without accounting16

for selection bias, this framework aims to approximate a randomized experimental design by reweighting observations17

to achieve covariate balance across treatment groups. This adjustment reduces bias due to non-random exposure and18

enables more credible estimation of directional effects. Our methodological pipeline involves three main steps. First, we19

define the structure of the causal model by specifying the treatment variable (Đ ), outcome (ĕ ), and a set of confounders20

(Ĕ) for each analysis. Second, we apply inverse propensity score weighting (IPW) to estimate the average treatment21

effect on the treated (ATT), reweighting observations such that the distribution of covariates becomes balanced across22

treatment groups. Finally, we estimate the outcome probability through a weighted logistic regression, where the23

treatment of interest predicts the likelihood of belonging to each latent profile, while accounting for all specified24

confounders.25

4.3.1. Framework Assumptions and Model Setup26

In observational studies, individuals are not randomly assigned to treatments. Instead, they self-select based on27

characteristics that may also influence the outcome of interest. This non-random assignment introduces confounding,28

as the treatment and outcome may both be driven by shared, potentially unobserved factors [51]. Without proper29

adjustment, such confounding biases the estimated effects and undermines the validity of causal conclusions. Our30

framework addresses this by adopting the potential outcomes framework, where each individual ÿ has a hypothetical31

outcome under treatment, ĕÿ(1), and under control, ĕÿ(0). The causal effect is defined as the difference Āÿ = ĕÿ(1)−ĕÿ(0),32

though only one of these is observed. We thus estimate the average treatment effect ATE = Ā[ĕ (1)] − Ā[ĕ (0)]33

under three assumptions [51]: (1) treatment assignment is independent of potential outcomes conditional on observed34

covariates (exchangeability), (2) each individual has a non-zero probability of receiving each treatment (positivity),35

and (3) an individual’s potential outcomes are not affected by the treatment status of others (no interference).36

These assumptions allow us to estimate the causal effect of each treatment variable on the outcome while adjusting37

for a shared set of confounders. Specifically, we model the probability of belonging to a specific charging station38

preference profile (outcome) as a function of treatment and confounders, estimating separate models for each treatment.39

This approach is necessary because balancing multiple treatments in a small sample (less than 1,000 observations) can40

lead to unstable or biased weights.41

Outcome The outcome variable in each causal model is the latent profile membership derived from the previous LPA42

stage. This outcome is categorical and reflects the probabilistic assignment of each respondent to a distinct preference43

profile. Each respondent is assigned to the profile with the highest posterior probability, allowing us to treat profile44

membership as a discrete outcome that captures systematic differences in charging station selection behavior.45

Gazmeh et al. Page 9 of 24

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388494

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed



Behavioral Segmentation and Causal Evidence on EV Charging Preferences

Confounders Confounders are variables that influence both the treatment and the outcome, potentially biasing the1

estimated treatment effect if not properly adjusted [51]. We identify confounders based on theoretical relevance and2

prior empirical literature, ensuring that each is likely to precede the treatment and be related to the outcome. Therefore,3

based on the available information we include (1) Age as older individuals may differ in their charging behavior due to4

driving habits or income stability. (2) Median Income as socioeconomic status influences both EV ownership patterns5

and access to private infrastructure. (3) Gender since behavioral and technological preferences may vary systematically6

by gender. (4) Education Level because higher educational attainment may correlate with environmental attitudes or7

EV familiarity. (5) Race and Ethnicity since disparities in infrastructure access and adoption rates necessitate this8

adjustment, and (6) Social treatment to EVs which is reported as “the number of people you know who own EVs” and9

acts as a proxy for normative influence and access to informal knowledge.10

Treatments Treatments in our framework refer to specific factors that may influence EV users’ charging preferences.11

We construct separate models for each treatment to isolate its effect and avoid complications arising from multiple12

treatments in limited sample contexts. Each model includes the same outcome and confounders but a different binary or13

categorical treatment variable. The treatments analyzed include (1) Private Charger Access which is a binary indicator14

for whether the respondent has access to a home or workplace charging point. (2) Public Charging Frequency as a15

categorical measure of how often the respondent uses public stations (weekly, monthly, or less). (3) Opportunistic16

Charging Behavior measured by agreement with the statement “I charge whenever the opportunity arises.” (4) EV17

Usage Purpose indicating whether the EV is primarily used for social, commercial, or commuting purposes. (5) Driving18

Frequency as a self-reported metric on how frequently the respondent drives their EV.19

Our defined structure allows to quantify how each behavioral or infrastructural factor influences the likelihood of20

aligning with a given charging station preference profile, yielding targeted insights for interventions and infrastructure21

planning.22

4.3.2. Inverse Propensity Score Weighting (IPW)23

To estimate the causal effect of a treatment on profile membership while accounting for differences in confounding24

variables, we implement inverse propensity score weighting (IPW)[52]. This technique creates a pseudo-population25

in which the distribution of confounders is similar across exposed and unexposed groups, thereby approximating the26

conditions of a randomized experiment. Unlike regression-based covariate adjustment or stratification methods, which27

may not adequately address selection bias or allow for flexible weighting schemes, IPW directly targets imbalance28

in treatment assignment by assigning higher weights to underrepresented individuals [53]. Under this reweighting,29

observed differences in outcomes between groups can more plausibly be attributed to the treatment itself, rather than30

to baseline differences in confounders. This makes IPW especially powerful in complex observational settings such31

as survey-based behavioral studies [54]. In this study, this method is applied separately for each binary or categorical32

treatment, ensuring that the balancing condition is met adequately in each model.33

The propensity score, defined as the probability of receiving the treatment given observed confounders, is estimated34

using a logistic regression model. Formally, let Đÿ * {0, 1} denote the treatment status for individual ÿ, and let Ĕÿ be35

the vector of confounders. The propensity score �Ćÿ = Č (Đÿ = 1 E Ĕÿ) is given by:36

�Ćÿ =
exp(Ā0 + Ā¤Ĕÿ)

1 + exp(Ā0 + Ā¤Ĕÿ)
(3)

This equation captures the log-odds of treatment as a linear function of the confounders, with estimated parameters Ā037

and Ā derived from the sample. The fitted value �Ćÿ represents the individual’s likelihood of receiving the treatment,38

conditional on their covariates. Once the propensity scores are estimated, we construct the inverse-propensity weights39

as follows:40

čÿ =

{ 1

�Ćÿ
, if Đÿ = 1 (Treated)
1

1− �Ćÿ
, if Đÿ = 0 (Untreated)

(4)

These weights amplify the influence of individuals whose treatment status is underrepresented relative to their41

covariates. For example, a participant in the treatment group with a low �Ćÿ (i.e., who was unlikely to receive the42

treatment based on their characteristics) will receive a larger weight, reflecting their increased informational value43

in correcting for selection bias. The reweighted dataset thus simulates a balanced population in which treatment44

assignment is independent of the covariates.45
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

Overlap Check and Balance Diagnostics A fundamental requirement for valid causal inference using IPW is that1

the reweighted distribution of covariates is balanced across treatment and control groups [52]. This condition ensures2

that any differences in outcomes between groups can plausibly be attributed to the treatment, rather than pre-existing3

differences in observed confounders. To evaluate this, we implement both quantitative and visual diagnostics that4

assess overlap in propensity scores and balance across covariates. Specifically, we use standardized mean differences5

(SMDs) to assess covariate balance before and after weighting. The SMD is a scale-invariant measure that quantifies the6

magnitude of difference in a covariate’s distribution between treated and untreated groups [55]. For a binary confounder7

Ĕā, such as access to a private charger, the SMD can be computed as:8

SMDā =
Ć
(Đ )

ā
− Ć

(ÿ)

ā√
Ć
(Đ )

ā
(1 − Ć

(Đ )

ā
) + Ć

(ÿ)

ā
(1 − Ć

(ÿ)

ā
)

, (5)

where Ć
(Đ )

ā
and Ć

(ÿ)

ā
represent the weighted proportions of individuals with the characteristic in the treated (Đ = 1)9

and control (Đ = 0) groups, respectively. This formulation is equivalent to a standardized effect size using a pooled10

binomial variance, and values of |SMDā| < 0.2 are typically considered indicative of acceptable balance [55].11

4.3.3. Weighted Outcome Analysis12

With covariate distributions balanced through IPW, the final step estimates the causal effect of each treatment13

variable on the probability of profile membership. The reweighted sample mimics a randomized experiment in which14

the treated and untreated groups are comparable on all observed confounders. Thus, any observed differences in the15

outcome can be interpreted as resulting from differences in the treatment alone [56]. To quantify this effect, we estimate16

a weighted logistic regression model, where the outcome is profile membership and the weights are derived from the17

propensity score model.18

logit(Č (ĕÿ = 1)) = ÿ + ĀĐÿ, (6)

where ĕÿ denotes whether individual ÿ belongs to the profile of interest, and Đÿ * {0, 1} indicates treatment status (e.g.,19

access to a private charger). The coefficient Ā captures the log odds of being in the specified profile for the treated20

group relative to the control group. Because the treatment groups are balanced on observed confounders, Ā represents21

an unbiased estimate of the average treatment effect on the treated (ATT) [54].22

Further, the exponentiated coefficient ăĀ yields the causal odds ratio, indicating how much more likely a treated23

individual is to belong to the given profile compared to a similar untreated individual. For instance, if ăĀ = 2, then24

individuals with access to a private charger are twice as likely to exhibit behavioral characteristics aligned with a25

particular charging station selection profile compared to those without such access, holding all else equal. This weighted26

regression is applied independently for each treatment, using the appropriate profile-specific outcome and inverse27

probability weights.28

5. Results29

We present our findings in three parts, each corresponding to a central research question. We begin by identifying30

latent dimensions that structure how EV users evaluate charging stations, revealing core factors related to perceived31

convenience, cost sensitivity, and station reliability. Building on these dimensions, we use LPA to uncover distinct32

user groups who share similar charging selection preferences, offering a typology of EV users based on their selection33

behavior. Finally, we move beyond description to causation, applying IPW to estimate the influence of various factors34

on profile membership. This allows us to disentangle how certain conditions and behavioral routines shape selection35

strategies, advancing a more actionable understanding of charging infrastructure usage.36

5.1. Deconstructing the Dimensions of Charging Station Preferences37

EV users evaluate public charging stations not only by comparing tangible station-level attributes, such as cost or38

charging speed, but also through broader cognitive frameworks shaped by personal attitudes and situational constraints.39

Prior work emphasizes this distinction between choice attributes directly observed at the point of decision and the40

contextual factors that shape how these decisions are cognitively framed [15]. To operationalize this conceptual41

separation, we conducted two separate EFAs based on responses to the survey prompt: “Imagine you are looking42
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

for a charging station for your electric vehicle. Which of the following characteristics or features would be important1

to you when choosing a charging station?” The first group of 23 items focused on infrastructure, cost, and time-related2

attributes as elements that define the comparative appeal of one station over another. The second group comprised 213

items capturing individual characteristics, perceptions, and situational considerations that influence decision-making4

at a broader cognitive level. In both groups, item correlations were moderate to high, ranging from 0.31 to 0.74,5

indicating a coherent latent structure. The Kaiser-Meyer-Olkin (KMO) measure, which assesses sampling adequacy6

by quantifying the proportion of variance among variables that might be common variance, was 0.85 and 0.90 for the7

two groups, respectively. This is well above the acceptable threshold of 0.70 for moderate-sized samples [44]. Bartlett’s8

test of sphericity confirmed that the correlation matrices were suitable for factor analysis (Ć < 0.001) [44].9

Parallel analysis and visual inspection of scree plots in Figure 2 guided the number of latent factors. The distinct10

break in the slope of each scree plot, which represents the relationship between eigenvalues and the ordinal number11

of factors, was used as a reference point to determine the number of meaningful latent constructs to retain [57]. For12

the infrastructure-cost-time group, we retained five factors. In the situational-characteristics group, we retained three13

factors, despite the scree plot suggesting a fourth. This decision was made due to the lack of conceptual coherence in14

the additional factor, which included only a single item with significant loading (> 0.30). Collectively, the retained15

factors explained approximately 70% of the variance in the data. These decisions are consistent with best practices in16

factor retention, which emphasize balancing statistical criteria with the interpretability and theoretical relevance of the17

extracted factors.18

To validate the factor structure, we conducted a confirmatory factor analysis (CFA) on a hold-out subsample (Ċ =19

365). The final model, comprising seven factors across both groups, exhibited acceptable fit with Ďĉďāý = 0.054,20

ďĎĉĎ = 0.077, ĐĈą = 0.823, and ÿĂą = 0.838. Although the TLI and CFI fell slightly below conventional21

thresholds, these values are within acceptable bounds given the multidimensionality of the model and the diversity of22

included items. The extracted factor scores from this validated structure form the basis for the subsequent latent profile23

analysis. Results for the full survey (Ċ = 997), including other vehicle ownership types such as PHEVs and non-EVs,24

are reported in Reimer et al. [15].25

We retained only those items with primary factor loadings above 0.30, in line with conventions in literature,26

recommending thresholds between 0.30 and 0.40 to ensure interpretability and relevance of latent constructs [44]. The27

internal consistency of each factor was assessed using Cronbach’s alpha (ÿ), a widely accepted measure of reliability.28

Values of ÿ around 0.70 to above are generally considered acceptable [46], indicating that the items within each factor29

measure a coherent underlying concept. All factors exceeded this threshold, with alphas ranging from 0.68 to 0.85.30

The final set of eight latent factors, along with their corresponding items, is presented in Table 2. These factors reflect31

the multidimensional nature of EV users’ charging station evaluations, integrating both infrastructure-facing and user-32

centric considerations. Specifically:33

F1 Infrastructure & Perceived Trust: This factor includes 7 items with loadings ranging from 0.31 to 0.80. It34

captures perceptions of technological and institutional reliability, such as the energy source of the charging35

station, vehicle-to-grid (V2G) capabilities, battery swapping, valet services, and trust-related signals including36

recommendations and user reviews. These items reflect not only functional evaluations but also broader trust-37

based heuristics that shape charging station selection [13, 14, 29, 33].38

F2 Time & Travel Constraints: Comprising 5 items with loadings between 0.45 and 0.74, this factor reflects39

concerns related to time efficiency and logistical burden. It includes waiting time, idle time, total travel time,40

and detour distance. This factor aligns with established findings that time cost and charging delays are major41

barriers to EV adoption and station selection [11, 30, 34].42

F3 Accessibility & Charging Speed: This factor contains 5 items with loadings from 0.30 to 0.63. It emphasizes43

physical accessibility and functional utility, including availability of charging piles, perceived ease of use,44

charging speed, and past satisfaction. These elements have consistently been linked to infrastructure usability45

and likelihood of repeat visitation [9, 12, 14].46

F4 Charging & Parking Costs: Includes 4 items with loadings from 0.42 to 0.70, centered on economic47

considerations such as price transparency, cost of charging, parking fees, and perceived savings. This cost-48

focused dimension is widely recognized in literature as a key determinant of consumer behavior in charging49

networks [10].50
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

F5 Charging Amenities & Activities: Composed of 2 items with high loadings (0.67 and 0.87), this factor reflects1

co-located services such as shopping and dining options that enhance the perceived value of dwell time. While2

often underrepresented in infrastructure planning models, this dimension supports findings that multifunctional3

environments increase station attractiveness [11, 36].4

F6 Situational Awareness: Encompassing 7 items with loadings between 0.35 and 0.77, this factor includes5

indicators such as the number of household vehicles, daytime versus nighttime usage, seasonality, and weekday6

behavior. These reflect routine-specific decision contexts that are typically overlooked in conventional charging7

models but are increasingly recognized as crucial to understanding usage variability [23, 32, 37].8

F7 Charging Awareness & Usage Patterns: Consisting of 8 items with loadings from 0.30 to 0.60, this factor9

captures familiarity with infrastructure availability and habitual charging behaviors. It includes station density,10

proximity, availability at home or work, and driving schedules, pointing to spatial and behavioral accessibility11

beyond physical distance [9, 21].12

F8 EV Characteristics: Comprising 4 items with loadings between 0.50 and 0.60, this factor relates to technical13

features that constrain charging decisions, including battery range, current state of charge, EV type, and self-14

charging capabilities. These items provide a necessary baseline for evaluating how vehicle-specific limits shape15

charging opportunities [12, 31].16

These eight factors provide a structured and interpretable basis for understanding EV users’ charging preferences17

beyond simple station-level attributes. Factors F1 through F4 capture traditional infrastructural and economic18

considerations widely cited in the literature, reaffirming the importance of reliability, speed, accessibility, and cost.19

Meanwhile, F5 through F8 surface less frequently studied but critical dimensions. For instance, F5 highlights the20

overlooked role of amenities in enhancing user satisfaction during dwell times, offering new insights for station co-21

location strategies. F6 and F7 point to the cognitive framing of decision-making, shaped by daily routines and spatial22

knowledge—features often absent from current accessibility models. F8 reaffirms that EV-specific constraints are23

nontrivial in shaping charging decisions.24
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Figure 2: Latent factors scree plot

5.2. Segmenting Charging Station Selection Preferences25

To capture heterogeneity in how individuals evaluate PCSs, we applied LPA to the eight latent factors identified26

in the previous section. While EFA transformed individual survey responses into a smaller set of underlying latent27
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

Abbr. Variables F1 F2 F3 F4 F5 F6 F7 F8

ATT1 Energy source of power station 0.731
ATT2 Charging network provider 0.349
ATT3 Vehicle-to-grid (V2G) capabilities 0.803
ATT4 Battery swapping/switching 0.792
ATT5 Amenities 0.866
ATT6 Opportunities for other activities during charging 0.669
ATT7 Accessibility of charging station 0.626
ATT8 Location area of charging station 0.456
ATT9 Available sockets/piles (#) 0.445
ATT10 Charging cost 0.654
ATT11 Price savings 0.446
ATT12 Parking cost 0.701
ATT13 Perfect information (about price) 0.423
ATT14 Previous satisfaction 0.317
ATT15 Recommendations by friends and family 0.478
ATT16 Reviews 0.313 0.305
ATT17 Valet-charging 0.722
ATT18 Charging duration 0.446
ATT19 Charging speed 0.369
ATT20 Detour distance/travel time 0.535
ATT21 Travel Time 0.558
ATT22 Waiting time (min) 0.490
ATT23 Idle time at charging station 0.739
EXO2 State of charge (%) 0.508
EXO1 EV type 0.538
EXO3 Battery/driving range (mile) 0.600
EXO4 Self-charging 0.501
EXO5 Range anxiety 0.474
EXO6 Driver risk attitudes 0.372 0.386
EXO7 Environmental consciousness 0.447
EXO8 Awareness of charging infrastructure 0.404
EXO9 Home charging availability (garage) 0.455
EXO10 Number of charging stations 0.604
EXO11 Workplace charging availability 0.473
EXO12 Distance between charging stations 0.420
EXO13 Availability on your way 0.353
EXO14 Number of household vehicles 0.690
EXO15 Frequency of charging events 0.307 0.309
EXO16 Remaining distance to destination 0.770
EXO17 Daytime/night 0.426
EXO18 Driving schedule 0.349 0.365
EXO19 Dwelling time at destination 0.311 0.356
EXO20 Number of daily trips 0.544
EXO21 Season 0.753

Cronbach’s ÿ 0.83 0.76 0.68 0.71 0.78 0.85 0.77 0.69
SS Loadings 2.985 1.750 1.465 1.456 1.413 3.179 1.823 1.518
Proportion Var 0.130 0.076 0.064 0.063 0.061 0.151 0.087 0.072
Cumulative Var 0.130 0.206 0.270 0.333 0.394 0.545 0.632 0.704
KMO 0.85 0.90

Table 2

Rotated factor loadings and explained variance for infrastructure and perceptual constructs (F1–F5) and EV characteristic
and situational constructs (F6–F8).

constructs, LPA extends this by classifying individuals into subgroups that share similar combinations of preferences1

and attitudes across those constructs. This enables us to identify distinct profiles of EV users based on their2

prioritization of charging-related factors. These profiles later serve as the dependent outcome in our causal inference3

framework.4

LPA was estimated using a Gaussian finite mixture model and the Expectation-Maximization (EM) algorithm.5

Prior to estimation, factor scores were standardized to ensure comparability across dimensions. Models with two6

to six profiles were fitted, and model fit was evaluated using the Bayesian Information Criterion (BIC), entropy,7
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

# Profiles BIC Entropy Percent Uncertain Smallest Profile Size (%)

2 -7354.285 0.870 0.082 23.6%
3 -7364.594 0.697 0.301 24.9%
4 -7359.838 0.732 0.299 13.7%
5 -7360.163 0.771 0.299 9.3%
6 -7392.323 0.780 0.312 7.1%

Table 3

Model fit statistics for Latent Profile Analysis (LPA) across 2 to 6 profiles. The smallest profile size is normalized by
dividing by 365.

and classification uncertainty. The latter was operationalized as the percentage of respondents with posterior profile1

membership probabilities below 0.80. As shown in Table 3, the BIC has an overall downward trend with increasing2

profiles, a known behavior of this criterion due to its sensitivity to added model complexity, as each additional profile3

increases the model’s ability to explain variation in the data. However, the two-profile solution achieved the most4

interpretable segmentation with high entropy (0.87) and low uncertainty (8.2%), and it avoided overly small classes5

that compromise practical relevance. We therefore selected the two-profile VVE model (ellipsoidal, equal orientation)6

as our final solution.7

The two profiles, labeled P1 (n = 279, 76.4%) and P2 (n = 86, 23.6%), exhibit distinct prioritization patterns across8

the eight factors (Table 4 and Figure 3). These factor scores represent standardized values computed across the full9

sample, where positive means indicate above-average prioritization of the corresponding latent construct relative to10

the overall population, negative means indicate below-average prioritization, and values near zero suggest neutral or11

average emphasis. While P1 members display low or near-zero mean scores across most factors, P2 members show12

consistently elevated scores, especially on factors related to infrastructure perception (F1), contextual awareness (F6),13

and vehicle characteristics (F8). These patterns suggest qualitatively different approaches to PCS selection.14

P1 Efficiency-Oriented Users: This group comprises the majority (76.4%) of respondents and is characterized by15

lower importance ratings on six of the eight factors, except accessibility (F3) and cost considerations (F4). Their16

strongest negative deviations appear in F1 (Infrastructure & Perceived Trust, mean = −0.34) and F6 (Situational17

Awareness, mean = −0.27). Members of this group appear to place minimal emphasis on external validation18

(e.g., trust signals or amenities), contextual routines, or technical constraints. This aligns with findings that some19

EV users adopt a utilitarian or default-based approach to charging, particularly when home charging reduces20

dependence on PCS environments [58]. The tight clustering of interquartile ranges also suggests a relatively21

homogenous profile.22

P2 Information-Responsive Users: Representing 23.6% of users, this group exhibits positive scores on five23

factors, particularly in F1 (mean = 1.09), F5 (Charging Amenities, mean = 0.35), F6 (Situational Awareness,24

mean = 0.86), and F8 (EV Characteristics, mean = 0.08). These respondents demonstrate higher awareness of25

both the built environment and their own technical needs, integrating contextual signals such as time-of-day,26

station amenities, and vehicle constraints into their selection process. This preference structure mirrors behavior27

documented in studies of experience-based decision-making among advanced EV users [59].28

The two profiles capture a meaningful segmentation of EV users based on charging station preferences. The29

majority (P1) reflect a more infrastructure-independent approach focused on accessibility and cost, potentially30

indicating reliance on private chargers or a lower frequency of public charging. In contrast, the smaller but distinct31

subgroup (P2) exhibits context-aware and preference-sensitive decision strategies, suggesting a need for richer,32

amenity-supported infrastructure. These findings underscore the importance of tailoring charging infrastructure not33

only to technical demand but also to the informational and experiential cues users rely on. For policymakers and34

planners, these results suggest that one-size-fits-all deployment strategies may fail to engage key user segments,35

particularly those motivated by nearby amenities or situational compatibility.36

Figure 4 compares the sociodemographic composition of the two latent profiles. While both groups exhibit similar37

gender distributions, with males comprising approximately 60% of each profile, differences emerge across other38

categories. In terms of education, P2 (Information-Responsive Users) shows a substantially higher share of graduate39

degree holders (48%) compared to P1 (Efficiency-Oriented Users, 33%). A similar divide is seen in income where40

Gazmeh et al. Page 15 of 24

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388494

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed



Behavioral Segmentation and Causal Evidence on EV Charging Preferences

1 0 1

Profile 1

Profile 2

F1: Infrastructure

0.5 0.0 0.5

F2: Time

0.5 0.0 0.5

F3: Accessibility

0.5 0.0 0.5

F4: Cost

1 0 1

Profile 1

Profile 2

F5: Amenities

1 0 1

F6: Situation

1 0 1

F7: Usage Pattern

0.5 0.0 0.5

F8: EV Characteristics

Figure 3: Latent factors distribution for charging station selection profiles.

Profile F1 F2 F3 F4 F5 F6 F7 F8
Infrastructure Time Accessibility Cost Amenities Situation Usage Patterns EV Characteristics

1 -0.336 0.003 0.047 0.030 -0.108 -0.265 -0.017 -0.024
(0.870) (1.024) (0.954) (1.021) (1.014) (0.944) (0.971) (1.007)

2 1.090 -0.009 -0.151 -0.097 0.349 0.861 0.055 0.078
(0.483) (0.925) (1.129) (0.927) (0.870) (0.625) (1.093) (0.978)

Table 4

Mean and standard deviation of factor scores (F1 to F8) across LPA profiles. Standard deviations are shown in parentheses.

44% of P2 members report annual incomes below $75,000, whereas P1 includes a higher proportion of individuals1

in the upper income bracket (42% earn above $110,000). Racial and ethnic composition also diverges sharply, with2

P2 containing a higher proportion of Black respondents (41%) and fewer White respondents (48%) compared to P13

(19% and 60%, respectively). Nevertheless, political affiliation displays the most distinct contrast. while 63% of P14

identify as liberal, 51% of P2 identify as conservative. Overall, these patterns suggest that P1 users are more likely to5

be affluent, White, and politically liberal, with lower levels of educational attainment. In contrast, P2 users tend to be6

higher educated yet lower income, more racially diverse, and more politically conservative than their P1 counterparts.7

These contrasts suggest that sociodemographic characteristics are associated with how individuals prioritize features8

of public charging infrastructure, consistent with prior work in this field [37].9

1 2

Pr
op

or
tio

n

Female
(40%)

Female
(38%)

Male
(60%)

Male
(62%)

Gender

1 2

<Bachelor's
(20%) <Bachelor's

(13%)

Bachelor's
(48%) Bachelor's

(39%)

Graduate
(33%) Graduate

(48%)

Education

1 2

75,000-110,000
(28%)

75,000-110,000
(26%)

<75,000
(30%)

<75,000
(44%)

>110,000
(42%)

>110,000
(31%)

Income ($)

1 2

Asian (15%)
Asian (5%)

Black (19%) Black (41%)
Hispanic (5%)

Hispanic (6%)

White (60%)
White (48%)

Race/Ethnicity

1 2

conservative
(28%)

conservative
(51%)

independent
(9%)

independent
(13%)

liberal
(63%)

liberal
(36%)

Political Affiliation

Demographics by LPA Profile

Figure 4: Comparison of profiles by demographic.
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

5.3. Causal Drivers of Charging Station Selection Preferences1

To answer our third research question (RQ3) what are the key behavioral and infrastructural drivers that explain2

why EV users differ in their selection of public charging stations, we estimate the causal impact of a set of treatment3

variables on profile membership. In specific, we focus on five treatment variables. First, access to a private charger4

(home or workplace) is considered a key determinant of reliance on public charging infrastructure, with prior studies5

finding that users with private access are less sensitive to the physical and operational features of public stations [58].6

Second, we consider opportunistic charging behavior defined as whether users tend to charge in small quantities7

whenever an opportunity arises, as it reflects responsiveness to short-term availability. Third, we examine the primary8

purpose of EV usage, whether for social, business, or commuting needs. These categories are not mutually exclusive9

but serve as contextual indicators of variability in charging motivations. Fourth, driving frequency provides a proxy10

for overall usage intensity, which may interact with the perceived importance of certain station attributes. Finally, we11

include public charging frequency (weekly or monthly) to assess how the extent of reliance on public infrastructure12

may condition selection preferences.13

Using LPA profile membership as a revealed outcome of charging station preferences, we estimate the effect of each14

treatment variable using the inverse propensity weighting (IPW) framework described in Section 4. Propensity scores15

are estimated using logistic regression models of the form Đÿ < Ĕÿ, where Đÿ is the binary treatment variable and Ĕÿ is16

the vector of confounders including age, income, education, race, gender, and social treatment to EVs. Each observation17

is then reweighted using inverse-propensity weights to achieve covariate balance across treatment groups. We then fit18

a weighted logistic regression model of the form ĕÿ < Đÿ, where ĕÿ is a binary indicator of profile membership (119

if the user belongs to P2, 0 otherwise), to estimate the causal effect of the treatment on the likelihood of belonging20

to the Information-Responsive user group. This approach allows us to isolate the directional influence of behavioral21

and infrastructural factors on the formation of distinct user profiles, yielding interpretable and causal estimates of how22

access, habits, and purpose shape charging preferences.23

Table 5 summarizes the results of logistic regression models used to estimate the propensity scores for each24

treatment, including binary indicators for private charger access, opportunistic charging, public charging frequency25

(weekly and monthly), EV driving frequency (weekly and monthly), and three non-mutually-exclusive EV usage26

purposes (social, business, and commuting). As expected in propensity score modeling, the goal is not to maximize27

explanatory power or ensure all predictors are statistically significant, but rather to generate scores that allow for28

covariate balancing between treated and control groups [53]. Nevertheless, several covariates emerge as statistically29

significant predictors of specific treatments, reinforcing their role as important confounders in the causal framework.30

Social treatment to EVs (measured by the number of known EV users) is positively associated with private charger31

access (Ć < 0.05), commuting as a driving purpose (Ć < 0.05), and business use (Ć < 0.1), suggesting that normative32

influence and peer networks may facilitate access to infrastructure and shape usage contexts. Age is negatively33

associated with public charging frequency (Ć < 0.01 for weekly users), indicating that younger users are more likely to34

rely on public infrastructure and possibly reflecting differences in housing type, commute behavior, or early adoption35

patterns. In terms of income, lower-income users are more likely to report business-related driving (Ć < 0.05), while36

higher-income users are marginally less likely to engage in commuting-related EV use (Ć < 0.1). Importantly, these37

variables serve not as direct drivers of profile membership in our causal models, but as confounders that must be38

accounted for to isolate the effects of the treatment variables of interest. Furthermore, we report the overall fit statistics39

(AIC, BIC, and log-likelihood) vary across models, with AIC values ranging from 371.75 to 744.50 and log-likelihoods40

between 416.61 and 847.21, indicating acceptable model performance for score generation purposes.41

To assess whether the overlap assumption holds, we examine the distribution of propensity scores across the two42

outcome groups (profile 1 and profile 2). The absence of extreme weights in the estimation process indicates that43

no major violations of the overlap condition are present. This conclusion is further supported by post-weighting44

diagnostics, which show that standardized mean differences (SMDs) between treated and control groups for all45

covariates fall below 0.13. These values are well below the commonly accepted threshold of 0.2, indicating that46

covariate distributions are successfully balanced after applying inverse-propensity weights.47

In the final stage of the causal analysis, we estimate a series of weighted logistic regression models to assess how48

each treatment variable influences the probability of belonging to Profile 2 (Information-Responsive Users), using49

Profile 1 (Efficiency-Oriented Users) as the reference category. Each model uses the same outcome variable and set50

of confounders, but includes a different treatment variable. The outcome is a binary indicator of profile membership,51

and the sample is weighted using inverse-propensity scores derived from the models described in Table 5. The results52

of these weighted regressions are summarized in Table 6, which reports coefficient estimates, standard errors, and53
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

Private Opportunistic Driving Purpose PECSfreq EVfreq
Charging Charging Social Business Commuting Monthly Weekly Monthly Weekly

Intercept -0.227 -0.134 0.382 -1.461 1.898∗ 0.110 0.624 1.798∗ 0.723
(0.789) (0.713) (0.804) (0.774) (0.821) (0.876) (0.916) (0.912) (1.052)

PeopleEVdrive [T.1] 1.173∗ 0.711 0.085 0.854 1.023∗ 0.341 -0.389 -0.741 -0.409
(0.481) (0.461) (0.533) (0.556) (0.499) (0.600) (0.582) (0.627) (0.742)

PeopleEVdrive [T.2] 1.384∗∗ 0.885 0.388 1.255∗ 0.746 0.774 0.136 -0.309 -0.020
(0.473) (0.453) (0.527) (0.549) (0.480) (0.590) (0.569) (0.622) (0.733)

Income [<75k$] -0.017 0.041 -0.023 0.620∗ -0.235 -0.201 0.129 0.284 0.187
(0.327) (0.309) (0.341) (0.305) (0.375) (0.380) (0.399) (0.366) (0.416)

Income [>110k$] 0.538 -0.160 -0.052 0.124 -0.678 -0.484 -0.661 0.528 0.025
(0.348) (0.297) (0.331) (0.291) (0.354) (0.345) (0.387) (0.366) (0.404)

Gender [Male] -0.128 0.057 0.088 0.361 -0.198 0.607∗ 0.521 0.108 0.044
(0.278) (0.241) (0.268) (0.239) (0.283) (0.286) (0.311) (0.296) (0.335)

Degree [Graduate] 0.151 -0.222 -0.217 0.109 0.078 0.136 0.497 0.701∗ 0.231
(0.310) (0.263) (0.287) (0.254) (0.306) (0.308) (0.338) (0.334) (0.372)

Degree [<Bachelor’s] -0.279 -0.285 0.390 -0.787∗ -0.424 0.013 0.052 0.113 -0.821 

(0.357) (0.336) (0.396) (0.347) (0.384) (0.406) (0.436) (0.394) (0.481)

Race [Black] -0.174 0.340 -0.178 0.914∗ -0.447 1.562∗∗ 1.998∗∗∗ 0.091 -0.670
(0.448) (0.393) (0.422) (0.397) (0.485) (0.521) (0.557) (0.473) (0.560)

Race [Hispanic] 0.478 0.500 -0.289 -0.039 0.211 1.061 1.142 0.030 1.411 

(0.751) (0.599) (0.623) (0.608) (0.770) (0.724) (0.795) (0.831) (0.819)

Race [White] 0.264 0.593 0.523 0.120 -0.129 0.442 0.400 0.535 0.492
(0.419) (0.354) (0.395) (0.354) (0.442) (0.403) (0.462) (0.440) (0.485)

Age 0.001 -0.005 0.009 -0.013 -0.016 -0.028∗ -0.039∗∗ -0.035∗∗ -0.014
(0.012) (0.010) (0.012) (0.010) (0.011) (0.012) (0.013) (0.012) (0.014)

AIC 379.00 456.01 392.08 467.40 371.75 744.50 739.77
BIC 423.87 500.88 436.95 512.27 416.61 847.21 842.48
Log Likelihood -177.50 -216.01 -184.04 -221.70 -173.87 -350.25 -335.89
No. Observations 348 348 348 348 348 348 348

Table 5

Logit and multinomial logit regression results for behavioral outcomes related to EV charging. Coefficients are in bold when
statistically significant at the 10% level or better. Standard errors are shown in parentheses.

Note: Bolded coefficients are statistically significant. ∗∗∗Ć < 0.001, ∗∗Ć < 0.01, ∗Ć < 0.05,  Ć < 0.1

model fit statistics for all treatments considered. AIC values range from 362.34 to 391.02 and log-likelihood values1

are between -178.17 and -193.30. These fit metrics suggest that the weighted models adequately capture variation in2

profile membership driven by each treatment variable, particularly for those with strong behavioral or infrastructural3

relevance.4

The model for private charging access shows a statistically significant positive association with Profile 25

membership (Ć < 0.05), with an odds ratio of 2.39. This indicates that users with private home or workplace charging6

access are more than twice as likely to exhibit preference patterns characterized by attention to infrastructure provider7

characteristics (e.g., network branding, energy source), the availability of nearby amenities (e.g., retail or dining8

options), temporal and spatial situational constraints (e.g., time of day, distance to stations), and compatibility with9

EV-specific needs (e.g., battery range, state of charge). This finding suggests that users with private charging access10

may have more flexibility to prioritize attributes such as convenience, context, and system compatibility, likely because11

their reliance on public infrastructure is more discretionary than constrained.12

In contrast, the model for opportunistic charging behavior, defined as charging in small amounts whenever the13

opportunity arises, does not show a statistically significant association with profile membership (Ć = 0.41). This14

suggests that opportunistic charging tendencies alone do not meaningfully influence how individuals prioritize public15

charging station attributes such as provider reliability (F1), nearby amenities (F5), or situational compatibility (F6).16

These results imply that broader charging routines or structural factors may play a larger role than spontaneous behavior17

in shaping stated preferences for PCS features.18

Among the driving purposes, EV use for business purposes is significantly associated with Profile 2 membership19

(Ć < 0.001, OR = 2.70), indicating that these users are more likely to report preferences emphasizing infrastructure20

trustworthiness, time compatibility, and vehicle-specific constraints. This likely reflects the higher opportunity costs21
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

Private Opportunistic Driving Purpose PECSfreq EVfreq
Charging Charging Social Business Commuting Monthly Weekly Monthly Weekly

Intercept -1.836∗∗∗ -1.030∗∗∗ -0.882∗∗∗ -1.628∗∗∗ -0.554∗ -2.629∗∗∗ -2.629∗∗∗ -1.455∗∗∗ -1.455∗∗∗

(0.325) (0.213) (0.243) (0.193) (0.241) (0.391) (0.391) (0.297) (0.297)
LPA Profile 0.872∗ -0.150 -0.330 0.993∗∗∗ -0.761∗∗ 1.768∗∗∗ 2.006∗∗∗ 0.457 0.298

(0.352) (0.263) (0.283) (0.257) (0.283) (0.433) (0.441) (0.341) (0.384)

AIC 383.90 388.60 389.60 375.52 385.99 362.34 391.02
BIC 391.12 395.82 396.82 382.74 393.21 372.99 401.67
Log Likelihood -189.95 -193.30 -192.80 -185.76 -189.99 -178.17 -192.51
No. Observations 348 348 348 348 348 348 348

Table 6

Logit regression results with odds ratios for the effect of charging and usage behavior on LPA profile membership.
Coefficients are followed by standard errors in parentheses and odds ratios beneath.

Note: Bolded coefficients are statistically significant. ∗∗∗Ć < 0.001, ∗∗Ć < 0.01, ∗Ć < 0.05,  Ć < 0.1

and time sensitivity associated with work-related travel, where disruptions due to unclear pricing, limited charging1

speed, or station unavailability can have direct professional or financial consequences. As such, business users may2

demand more reliable and well-signposted infrastructure with predictable performance, underscoring the role of3

station quality, service integration, and dependability in supporting commercial EV operations. By contrast, EV use4

for commuting is negatively associated with Profile 2 (Ć < 0.01, OR = 0.47), suggesting that commuters tend to5

de-emphasize features such as the availability of amenities at or near the station (F5), infrastructure-related cues6

like provider branding and energy source (F1). Instead, their preferences appear to prioritize predictability, minimal7

charging and parking cost, and pricing information. This aligns with the efficiency-oriented pattern of Profile 1, which8

reflects a narrower set of practical considerations optimized for regular, goal-driven trips. The model for social use of9

EVs is not statistically significant (Ć = 0.25), indicating that leisure or personal activities do not systematically predict10

stated preferences in charging station evaluation.11

Charging frequency emerges as one of the strongest predictors in the model. Public charging on a monthly basis is12

significantly associated with Profile 2 membership (Ć < 0.001, OR = 5.86), as is weekly public charging (Ć < 0.001, OR13

= 7.43). These users place greater emphasis on features such as the availability of charging piles, station accessibility,14

and charging speed (F3), trust-related indicators like provider reputation and user reviews (F1), and compatibility with15

personal schedules and trip characteristics (e.g., time of day, weekday vs. weekend use, and station proximity along16

common routes) captured in F6. The strong association suggests that repeated engagement with public infrastructure17

may heighten users’ sensitivity to the reliability, efficiency, and convenience of stations. This supports the idea that18

frequent users develop more refined expectations regarding station performance, such as anticipating wait times,19

valuing amenities during dwell time, or selecting stations based on routine compatibility. This highlights the role20

of learned experience in shaping public charging preferences. In contrast, self-reported driving frequency (weekly or21

monthly) does not have a significant association with profile membership (Ć = 0.12 and Ć = 0.27, respectively). This22

suggests that it is not how often individuals drive their EVs, but rather how often they rely on public charging that23

drives differences in preference profiles.24

These findings indicate that frequent public charging and business-related EV use are strong drivers of preference25

structures aligned with Profile 2, marked by attention to trust in infrastructure providers, temporal flexibility, nearby26

services, and EV compatibility. In contrast, users with commuting-oriented usage patterns or lower public charging27

frequency are more likely to fall into Profile 1, which reflects a narrower prioritization of charging considerations.28

From a planning perspective, this highlights the importance of designing a charging infrastructure that is sensitive to29

users’ functional contexts and public charging dependence. These findings suggest that infrastructure planning should30

prioritize improving the quality and usability of public charging stations for frequent users by ensuring consistent31

availability, minimizing wait times, and co-locating services that enhance the value of time spent at the station. Such32

improvements can better align with the expectations of experienced users who rely on public charging as part of their33

routine mobility and may increase overall satisfaction and system efficiency.34

6. Discussion & Conclusion35

The rapid expansion of EV infrastructure has underscored the need for a deeper understanding of how users evaluate36

and select public charging stations. Despite considerable progress, major gaps persist in the literature regarding the37
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

multidimensional nature of charging station preferences, the segmentation of EV users based on these preferences,1

and the factors driving heterogeneity in station selection strategies. Addressing these gaps, this study integrates a2

behavioral factor analysis, user profiling, and causal inference framework based on a detailed survey of BEV owners.3

Through factor analysis, we uncover eight latent dimensions that capture how EV users evaluate public charging4

options, moving beyond a narrow focus on cost and speed to include infrastructure-related signals, situational routines,5

and EV-specific technical constraints. Building on these factors, we apply LPA to identify two distinct user segments,6

demonstrating that charging station selection behavior is not uniform and requires targeted infrastructural responses.7

Finally, using inverse propensity weighting, we estimate the causal effects of private charging access, charging behavior,8

EV usage purpose, and reliance on public infrastructure on profile membership, offering actionable insights into the9

behavioral and infrastructural drivers of charging selection heterogeneity. These findings have critical implications10

for infrastructure planning, emphasizing that expanding network coverage alone may be insufficient if user-specific11

informational, contextual, and technical needs are not simultaneously addressed. We summarize our main findings12

below.13

Finding 1: EV users evaluate public charging stations based on a wide array of factors beyond cost and charging14

speed, including confidence in station reliability, situational convenience, and access to amenities.15

This finding emerges from our factor analysis, which extracted eight latent constructs from 44 survey items. While16

well-studied operational concerns like charging speed and cost (F3, F4) remain central, users also prioritized factors17

such as the charging provider, co-located services, and compatibility with situational needs (F1, F5, F6). This highlights18

the need for charging station planning to move beyond minimal technical specifications. Infrastructure development19

should consider the integration of nearby amenities such as retail and dining opportunities, improve informational20

transparency regarding pricing, real-time availability, and station operational status, and support context-sensitive user21

experiences by offering features like flexible access during peak travel times to meet evolving expectations.22

Finding 2: EV users can be segmented into two distinct profiles based on charging station selection patterns:23

Efficiency-Oriented Users and Information-Responsive Users.24

Using LPA on the extracted factor scores, we identified two behavioral groups with fundamentally different25

prioritization strategies. Efficiency-Oriented Users place relatively lower importance on infrastructure provider26

attributes (e.g., network reliability, energy sourcing) and situational cues (e.g., time-of-day suitability, travel detour27

burden), whereas Information-Responsive Users weigh opportunities to engage in nearby amenities, alignment with28

personal schedules, and compatibility with EV-specific charging needs (e.g., battery range) heavily. This segmentation29

highlights that uniform infrastructure strategies, such as deploying standardized charging sites without considering30

co-located activities or flexible access risk not satisfying charging needs of certain EV user segments. Planning31

approaches must therefore anticipate differentiated expectations, providing not only technical capacity but also user-32

centric enhancements to ensure stations meet the diverse practical, contextual, and experiential needs of EV drivers.33

Finding 3: Access to private home or workplace charging substantially shifts public charging preferences toward more34

selective, experience-based evaluation.35

From our IPW analysis, users with private charging access were over twice as likely to belong to the Information-36

Responsive profile. This finding underscores that access to private charging not only reduces reliance on public37

stations but also reshapes user expectations, increasing the importance of public station attributes such as infrastructure38

reliability (e.g., consistent service provision, recognizable network providers), access to nearby amenities (e.g.,39

shopping, dining, or recreation), and convenience in terms of trip compatibility and minimal detour requirements.40

Rather than reducing the need for public investment, widespread private charging access (like at workplaces) may41

raise user standards for public infrastructure. Planning strategies must anticipate this dynamic by ensuring that public42

stations offer not merely availability but also context-sensitive experiences to retain relevance for EV users.43

Finding 4: Opportunistic charging behavior alone does not significantly predict public station selection patterns.44

Despite theoretical expectations that flexible, opportunity-driven behaviors might indicate a broader sensitivity45

to station features, users who reported charging in small amounts whenever the opportunity arises exhibited no46

significant difference in charging selection profile membership. This suggests that opportunistic micro-behaviors may47

not necessarily translate into a more nuanced or expanded evaluative framework when selecting public charging48

stations. From a planning perspective, this highlights that behavioral markers observed at a single point in time may not49

reliably predict deeper infrastructure engagement patterns. Nevertheless, future research should prioritize collecting50

dynamic, real-time behavioral data (e.g., charging session logs) or detailed choice experiments to better examine how51

situational flexibility interacts with long-term station selection strategies.52
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

Finding 5: EV usage purpose shows a strong influence on charging station preferences, especially for business-related1

and commuting-related driving.2

Our causal framework further reveals that users who primarily use their EVs for business-related travel are signif-3

icantly more likely to prioritize features such as reliable station operations (e.g., positive reviews, recommendations4

by friends and family), compatibility with schedules (e.g., station availability on the way), and situational attributes5

such as proximity to meeting locations or delivery destinations. This likely reflects the higher operational stakes6

associated with business travel, where infrastructure failures or unpredictable station performance could lead to missed7

appointments, delivery delays, or financial penalties. Conversely, users whose primary EV trips are between home and8

work prioritize the predictability of access (e.g., location area of the station) and minimal disruption to daily routines9

(e.g., low waiting times), aligning with the efficiency-oriented profile. From a planning standpoint, these findings10

emphasize the need to differentiate public charging infrastructure offerings based on trip purpose. Infrastructure11

solutions should recognize that work-oriented users require higher reliability and logistical support, while routine12

commuters demand consistent access, and leisure users could potentially benefit from co-located amenities that enhance13

comfort or convenience. Failing to account for these differentiated needs may limit station utility across user segments14

and undermine infrastructure effectiveness.15

Finding 6: Public charging reliance, not general EV usage intensity, drives more selective station evaluation.16

Compared to users who charge less than once a month, we find that public charging frequency is a strong predictor17

of profile membership. Users who charge at public stations on a monthly or weekly basis are significantly more likely18

to belong to the Information-Responsive profile which prioritizes infrastructure reliability, proximity to amenities,19

situational compatibility, and technical compatibility with their EVs. In contrast, overall EV driving frequency, whether20

monthly or weekly, shows no statistically significant association with profile membership. This distinction highlights21

that it is engagement with the public charging network, not merely the frequency of EV usage, that shapes how22

users evaluate station features. From a planning perspective, these results indicate that users who regularly rely on23

public infrastructure form expectations around station quality, accessibility, and amenity integration. Infrastructure24

expansion efforts should prioritize enhancing the reliability, user information systems (e.g., on real-time availability),25

and co-location of services at high-use sites, ensuring that the needs of frequent public chargers are systematically26

met. Neglecting this group may risk reinforcing dissatisfaction and limiting the effective utilization of public charging27

investments.28

Finding 7: Expanding the number of chargers alone will not ensure sustainable utilization or user satisfaction. First,29

our factor analysis revealed that EV users evaluate stations based not only on technical attributes like cost and charging30

speed, but also on experiential needs such as provider reliability, availability of nearby amenities, and compatibility31

with individual schedules and vehicle characteristics. Second, the segmentation of users into Efficiency-Oriented and32

Information-Responsive profiles demonstrated that while some users may prioritize availability, a substantial portion33

demands context-sensitive features beyond physical proximity. Third, our causal analysis showed that users with private34

chargers (who have alternative options) become more selective about public station quality, and that frequent public35

charging heightens sensitivity to infrastructure reliability and service integration. Future strategies must therefore36

integrate behavioral segmentation insights into infrastructure design, ensuring that new stations meet the diverse37

expectations and usage patterns of EV drivers rather than relying on density alone as a proxy for accessibility.38

Our findings emphasize that user preferences are shaped by complex interactions among infrastructural access,39

behavioral routines, and situational contexts. Effective strategies must recognize heterogeneity in charging motivations,40

prioritize quality-of-experience features, and integrate infrastructure design with users’ broader mobility needs. While41

our study offers insights into EV charging preferences and adoption expectations, several limitations should be42

considered. First, due to sample size constraints (Ą H 300), we do not model multiple treatments simultaneously43

within a single causal framework. Although inverse propensity weighting provides unbiased estimates under uncon-44

foundedness, jointly estimating effects for multiple treatments would violate overlap assumptions and lead to unstable45

balancing weights. Second, while we included key confounders in our models and verified covariate balance post-46

weighting, unobserved or omitted variables may still bias estimates. For instance, we lacked information on the47

duration of EV ownership, residential stability, local station density, or commuting regularity, each of which could48

plausibly influence both treatment and outcome. Finally, all analyses rely on self-reported survey responses, which49

may be subject to recall bias, social desirability effects, or mismatches between stated and revealed behavior. Future50

work should expand our framework and allow for interaction effects between treatments and subgroup heterogeneity51

across sociodemographic strata. Access to detailed large-scale mobility data, real-time charging logs, or usage-52

based insurance data would also enable validation of the findings and support more robust inferences. In addition,53
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Behavioral Segmentation and Causal Evidence on EV Charging Preferences

experimental or quasi-experimental designs (e.g., encouragement designs or instrumental variable strategies) could1

help isolate the behavioral effects of treatment pathways such as test drives or public infrastructure improvements. As2

EV adoption accelerates, understanding the interplay between structural constraints, experiential learning, and user3

preferences will be critical to designing sustainable charging ecosystems.4

Acknowledgement5

The authors are grateful to National Science Foundation for the award BCS #2323732 to support the research6

presented in the paper. However, the authors are solely responsible for the findings presented in this study.7

Gazmeh et al. Page 22 of 24

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388494

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed



Behavioral Segmentation and Causal Evidence on EV Charging Preferences

References1

[1] IEA, “Global EV Outlook 2024.” iea.org/reports/global-ev-outlook-2024, 2024. License: CC BY 4.0.2

[2] S. Hemavathi and A. Shinisha, “A study on trends and developments in electric vehicle charging technologies,” Journal of energy storage,3

vol. 52, p. 105013, 2022.4

[3] L. Li, Z. Wang, and X. Xie, “From government to market? a discrete choice analysis of policy instruments for electric vehicle adoption,”5

Transportation Research Part A: Policy and Practice, vol. 160, pp. 143–159, 2022.6

[4] O. Egbue and S. Long, “Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions,” Energy7

policy, vol. 48, pp. 717–729, 2012.8

[5] W. Zhan, Y. Liao, J. Deng, Z. Wang, and S. Yeh, “Large-scale empirical study of electric vehicle usage patterns and charging infrastructure9

needs,” npj Sustainable Mobility and Transport, vol. 2, no. 1, p. 9, 2025.10

[6] J. A. Mahlberg, J. Desai, and D. M. Bullock, “Evaluation of electric vehicle charging usage and driver activity,” World Electric Vehicle Journal,11

vol. 14, no. 11, p. 308, 2023.12

[7] O. I. Asensio, E. Buckberg, C. Cole, L. Heeney, C. R. Knittel, and J. H. Stock, “Charging uncertainty: Real-time charging data and electric13

vehicle adoption,” tech. rep., National Bureau of Economic Research, 2025.14

[8] A. Ermagun and J. Tian, “Charging into inequality: A national study of social, economic, and environment correlates of electric vehicle15

charging stations,” Energy Research & Social Science, vol. 115, p. 103622, 2024.16

[9] F. S. Hoen, M. Díez-Gutiérrez, S. Babri, S. Hess, and T. Tørset, “Charging electric vehicles on long trips and the willingness to pay to reduce17

waiting for charging. stated preference survey in norway,” Transportation Research Part A: Policy and Practice, vol. 175, p. 103774, 2023.18

[10] J. Globisch, P. Plötz, E. Dütschke, and M. Wietschel, “Consumer preferences for public charging infrastructure for electric vehicles,” Transport19

Policy, vol. 81, pp. 54–63, 2019.20

[11] J. E. Anderson, M. Lehne, and M. Hardinghaus, “What electric vehicle users want: Real-world preferences for public charging infrastructure,”21

International Journal of Sustainable Transportation, vol. 12, no. 5, pp. 341–352, 2018.22

[12] Y. Wang, E. Yao, and L. Pan, “Electric vehicle drivers’ charging behavior analysis considering heterogeneity and satisfaction,” Journal of23

Cleaner Production, vol. 286, p. 124982, 2021.24

[13] Z. Wang, E. Abolarin, K. Wu, V. Rebba, J. Hu, Z. Hu, S. Bao, and F. Zhou, “Beyond charging anxiety: An explainable approach to understanding25

user preferences of ev charging stations using review data,” arXiv preprint arXiv:2507.03243, 2025.26

[14] A. A. Visaria, A. F. Jensen, M. Thorhauge, and S. E. Mabit, “User preferences for ev charging, pricing schemes, and charging infrastructure,”27

Transportation Research Part A: Policy and Practice, vol. 165, pp. 120–143, 2022.28

[15] T. Reimer, J. Ramírez, X. Qian, H. Gazmeh, P. Todd, S. Ukkusuri, and O. Hamim, “A human-centered conceptual framework of ev charging29

decisions,” 2025.30

[16] US Department of Energy, “Alternative Fuels Data Center, State Laws and Incentives.” afdc.energy.gov/laws/state, 2022.31

[17] M. S. Ziegler and J. E. Trancik, “Re-examining rates of lithium-ion battery technology improvement and cost decline,” Energy & Environmental32

Science, vol. 14, no. 4, pp. 1635–1651, 2021.33

[18] J. A. Sanguesa, V. Torres-Sanz, P. Garrido, F. J. Martinez, and J. M. Marquez-Barja, “A review on electric vehicles: Technologies and34

challenges,” Smart Cities, vol. 4, no. 1, pp. 372–404, 2021.35

[19] W. Sierzchula, S. Bakker, K. Maat, and B. Van Wee, “The influence of financial incentives and other socio-economic factors on electric vehicle36

adoption,” Energy policy, vol. 68, pp. 183–194, 2014.37

[20] L. V. White, A. L. Carrel, W. Shi, and N. D. Sintov, “Why are charging stations associated with electric vehicle adoption? untangling effects38

in three united states metropolitan areas,” Energy Research & Social Science, vol. 89, p. 102663, 2022.39

[21] T. Lei, S. Guo, X. Qian, and L. Gong, “Understanding charging dynamics of fully-electrified taxi services using large-scale trajectory data,”40

Transportation Research Part C: Emerging Technologies, vol. 143, p. 103822, 2022.41

[22] H. Gazmeh, Y. Guo, and X. Qian, “Understanding the opportunity-centric accessibility for public charging infrastructure,” Transportation42

Research Part D: Transport and Environment, vol. 131, p. 104222, 2024.43

[23] W. Jia and T. D. Chen, “Are individuals’ stated preferences for electric vehicles (evs) consistent with real-world ev ownership patterns?,”44

Transportation Research Part D: Transport and Environment, vol. 93, p. 102728, 2021.45

[24] A. F. Jensen, E. Cherchi, and S. L. Mabit, “On the stability of preferences and attitudes before and after experiencing an electric vehicle,”46

Transportation Research Part D: Transport and Environment, vol. 25, pp. 24–32, 2013.47

[25] C. Kormos, J. Axsen, Z. Long, and S. Goldberg, “Latent demand for zero-emissions vehicles in canada (part 2): Insights from a stated choice48

experiment,” Transportation Research Part D: Transport and Environment, vol. 67, pp. 685–702, 2019.49

[26] D. Pevec, J. Babic, A. Carvalho, Y. Ghiassi-Farrokhfal, W. Ketter, and V. Podobnik, “A survey-based assessment of how existing and potential50

electric vehicle owners perceive range anxiety,” Journal of cleaner Production, vol. 276, p. 122779, 2020.51

[27] M. Wen, W. Xiang, and J. Sun, “Charging location selection based on the investigation of charging behavior of private cars,” in 202152

International Conference of Social Computing and Digital Economy (ICSCDE), pp. 75–78, IEEE, 2021.53

[28] S. S. Bhattacharyya and S. Thakre, “Exploring the factors influencing electric vehicle adoption: an empirical investigation in the emerging54

economy context of india,” foresight, vol. 23, no. 3, pp. 311–326, 2021.55

[29] S. Speidel and T. Bräunl, “Driving and charging patterns of electric vehicles for energy usage,” Renewable and Sustainable Energy Reviews,56

vol. 40, pp. 97–110, 2014.57

[30] G. Brückmann and T. Bernauer, “An experimental analysis of consumer preferences towards public charging infrastructure,” Transportation58

Research Part D: Transport and Environment, vol. 116, p. 103626, 2023.59

[31] W. Jia and T. D. Chen, “Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models,”60

Transportation Research Part A: Policy and Practice, vol. 173, p. 103693, 2023.61

[32] S. Hardman, A. Jenn, G. Tal, J. Axsen, G. Beard, N. Daina, E. Figenbaum, N. Jakobsson, P. Jochem, N. Kinnear, et al., “A review of consumer62

preferences of and interactions with electric vehicle charging infrastructure,” Transportation Research Part D: Transport and Environment,63

Gazmeh et al. Page 23 of 24

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388494

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed



Behavioral Segmentation and Causal Evidence on EV Charging Preferences

vol. 62, pp. 508–523, 2018.1

[33] V. K. Ramachandaramurthy, A. M. Ajmal, P. Kasinathan, K. M. Tan, J. Y. Yong, and R. Vinoth, “Social acceptance and preference of ev2

users—a review,” IEEE Access, vol. 11, pp. 11956–11972, 2023.3

[34] Y. Guo, X. Qian, T. Lei, S. Guo, and L. Gong, “Modeling the preference of electric shared mobility drivers in choosing charging stations,”4

Transportation Research Part D: Transport and Environment, vol. 110, p. 103399, 2022.5

[35] X. Qian, H. Gazmeh, M. L. Small, Q. Wang, and Y. Guo, “The accessibility and inaccessibility of urban public charging station,” 2025.6

[36] N. Burroughs, K. Kolich, T. Byers, and V. Nordstrom, “Electric vehicle charging survey: Insights into ev owners’ charging habits, and use of7

public ev charging,” Energy Efficiency and Conservation Authority, 2021.8

[37] R. Lee and S. Brown, “Social & locational impacts on electric vehicle ownership and charging profiles,” Energy Reports, vol. 7, pp. 42–48,9

2021.10

[38] S. Wolff and R. Madlener, “Charged up? preferences for electric vehicle charging and implications for charging infrastructure planning (ssrn11

scholarly paper id 3491629),” Social Science Research Network. https://doi. org/10.2139/ssrn, vol. 3491629, 2019.12

[39] D.-Y. Lee, M. H. McDermott, B. K. Sovacool, and R. Isaac, “Toward just and equitable mobility: Socioeconomic and perceptual barriers for13

electric vehicles and charging infrastructure in the united states,” Energy and Climate Change, p. 100146, 2024.14

[40] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–15

459, 2010.16

[41] R. E. Dunlap, K. D. Van Liere, A. G. Mertig, and R. E. Jones, “New trends in measuring environmental attitudes: measuring endorsement of17

the new ecological paradigm: a revised nep scale,” Journal of social issues, vol. 56, no. 3, pp. 425–442, 2000.18

[42] E. Peer, L. Brandimarte, S. Samat, and A. Acquisti, “Beyond the turk: Alternative platforms for crowdsourcing behavioral research,” Journal19

of experimental social psychology, vol. 70, pp. 153–163, 2017.20

[43] L. Litman, A. Moss, C. Rosenzweig, and J. Robinson, “Reply to mturk, prolific or panels? choosing the right audience for online research,”21

Choosing the right audience for online research (January 28, 2021), 2021.22

[44] R. D. Ledesma, P. J. Ferrando, M. A. Trógolo, F. M. Poó, J. D. Tosi, and C. Castro, “Exploratory factor analysis in transportation research:23

Current practices and recommendations,” Transportation research part F: traffic psychology and behaviour, vol. 78, pp. 340–352, 2021.24

[45] A. B. Costello and J. Osborne, “Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis,”25

Practical assessment, research, and evaluation, vol. 10, no. 1, 2005.26

[46] K. S. Taber, “The use of cronbach’s alpha when developing and reporting research instruments in science education,” Research in science27

education, vol. 48, no. 6, pp. 1273–1296, 2018.28

[47] T. A. Brown, Confirmatory factor analysis for applied research. Guilford publications, 2015.29

[48] L.-t. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives,”30

Structural equation modeling: a multidisciplinary journal, vol. 6, no. 1, pp. 1–55, 1999.31

[49] D. J. Bauer and P. J. Curran, “The integration of continuous and discrete latent variable models: potential problems and promising32

opportunities.,” Psychological methods, vol. 9, no. 1, p. 3, 2004.33

[50] J.-Y. Tein, S. Coxe, and H. Cham, “Statistical power to detect the correct number of classes in latent profile analysis,” Structural equation34

modeling: a multidisciplinary journal, vol. 20, no. 4, pp. 640–657, 2013.35

[51] J. Pearl, Causality. Cambridge university press, 2009.36

[52] D. J. Graham, “Causal inference for transport research,” Transportation Research Part A: Policy and Practice, vol. 192, p. 104324, 2025.37

[53] P. C. Austin, “An introduction to propensity score methods for reducing the effects of confounding in observational studies,” Multivariate38

behavioral research, vol. 46, no. 3, pp. 399–424, 2011.39

[54] G. W. Imbens and D. B. Rubin, Causal inference in statistics, social, and biomedical sciences. Cambridge university press, 2015.40

[55] P. C. Austin, “Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched41

samples,” Statistics in medicine, vol. 28, no. 25, pp. 3083–3107, 2009.42

[56] P. R. Rosenbaum and D. B. Rubin, “The central role of the propensity score in observational studies for causal effects,” Biometrika, vol. 70,43

no. 1, pp. 41–55, 1983.44

[57] R. D. Ledesma and P. Valero-Mora, “Determining the number of factors to retain in efa: An easy-to-use computer program for carrying out45

parallel analysis,” Practical assessment, research, and evaluation, vol. 12, no. 1, 2007.46

[58] S. Á. Funke, F. Sprei, T. Gnann, and P. Plötz, “How much charging infrastructure do electric vehicles need? a review of the evidence and47

international comparison,” Transportation research part D: transport and environment, vol. 77, pp. 224–242, 2019.48

[59] S. Haustein, A. F. Jensen, and E. Cherchi, “Battery electric vehicle adoption in denmark and sweden: Recent changes, related factors and49

policy implications,” Energy Policy, vol. 149, p. 112096, 2021.50

Gazmeh et al. Page 24 of 24

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5388494

P
re

pr
in

t n
ot

 p
ee

r 
re

vi
ew

ed


