

Observations of Small-scale Magnetic Flux Ropes Associated With Significant Values of Partial Variance Increment Indices

Yu Chen¹ and Qiang Hu^{1,2}

¹Center for Space Plasma and Aeronomics Research (CSPAR), The University of Alabama in Huntsville, Huntsville, AL 35805, USA

²Department of Space Science, The University of Alabama in Huntsville, Huntsville, AL 35805, USA

Key Points:

- Around 3% of SFRs identified by the Grad-Shafranov-based detection could be indiscernible from the current sheet structures.
- Large PVI values in SFRs mostly correspond to boundary current sheets, field-line kinks, and a rotational discontinuity near the center.
- Multi-point spacecraft measurements are necessary to distinguish SFRs from other structures with magnetic field rotations.

14 **Abstract**

15 We report recent findings for the magnetic field configurations of small-scale magnetic flux ropes (SFRs)
 16 broadly defined and identified by using the Grad-Shafranov-based techniques for in-situ measurements
 17 via the Parker Solar Probe (PSP), Solar Orbiter (SolO), and two Helios spacecraft. Since the current
 18 sheets were found to occur at boundaries of SFRs and/or inside SFRs at 1 AU via the partial variance
 19 increment (PVI) and the Grad-Shafranov (GS) reconstruction technique by [Pecora et al. \(2019\)](#), we
 20 further examine such a co-existence in this study by assessing the maximum PVI indices within SFR
 21 intervals using the above four spacecraft observations throughout the inner heliosphere (≤ 1 AU). Less
 22 than 15% of SFRs have maximum PVI indices exceeding a threshold value of 6 that is used to indicate a
 23 current sheet structure. Three representative events are selected to explain the most common situations.
 24 (1) Current sheets occur at SFR boundaries and near the center. Each could be a weak switchback feature
 25 in the time-series profile of the gradually bipolar magnetic field rotations. (2) An SFR configuration
 26 is confirmed by both the measurement of counterstreaming electrons and the GS reconstruction result,
 27 despite that a large PVI value occurs near the SFR center which is due to an arbitrary kink instead of
 28 a current sheet. (3) A current sheet is falsely identified as an SFR where a significant PVI value (~ 7)
 29 occurs near the center. In the end, we discuss the necessity of using multi-point spacecraft measurements
 30 to discern the structures associated with SFRs.

31 **1 Introduction**

32 Magnetic flux ropes, in the shape of bundled twisted magnetic field lines, have been investigated
 33 over several decades. The intrinsic characteristics of interplanetary magnetic flux ropes, based on in-situ
 34 spacecraft observations, have been revealed using analytic model fitting (e.g., [Choi et al., 2022](#); [Hu, He,](#)
 35 [& Chen, 2022](#)) and the two-dimensional (2D) Grad-Shafranov (GS)-based detection technique ([Hu et](#)
 36 [al., 2018](#)). The large-scale flux ropes, also known as magnetic clouds, can be studied via remote sensing
 37 and in-situ observations (e.g., [Hu, Zhu, et al., 2022](#)). They possess significantly large sizes and are
 38 associated with coronal mass ejections (CMEs). On the other hand, the small-scale magnetic flux ropes
 39 (hereafter, SFRs), whose sizes are down to a few hundred kilometers, have been suggested to form part of
 40 the “spaghetti-like structured solar wind” together with presumably non-twisted flux tubes ([Borovsky,](#)
 41 [2008](#)). These relatively small-scale structures were observed to be omnipresent from the region near
 42 the Sun to regions at different heliocentric distances and heliographic latitudes. Sometimes, they occur
 43 within large-scale solar wind structures such as stream interaction regions and near the heliospheric
 44 current sheet ([Chen & Hu, 2020](#); [Choi et al., 2022](#); [Chen et al., 2023](#)). Their properties such as duration
 45 and scale size are found to follow power-law and log-normal distributions, and they possess mid to

46 high Alfvénicity at small distances in the slow solar wind and in high-speed winds at higher latitudes
 47 (Farooki, Noh, et al., 2024; Farooki, Lee, et al., 2024; Chen et al., 2019). Overall, SFRs occur much
 48 more frequently than magnetic clouds, and there is no clear separation of the two distinct populations
 49 in the distributions of all their relevant properties. In addition, the GS-based detection algorithm does
 50 not separate the magnetic flux ropes based on their scale sizes. Therefore, to be consistent with all our
 51 previous studies, we use the term “SFR” throughout this study without confining our event candidate
 52 to be “small” in duration or size.

53 Current sheet is also a common type of structure occurring in the solar wind (Miao et al., 2011; Phan
 54 et al., 2020; J. Huang et al., 2023). The well-known largest structure is the heliospheric current sheet
 55 (HCS), which shows clear signatures such as changes in magnetic field polarities, enhanced proton number
 56 density and plasma beta, etc., as a spacecraft passes across, typically accompanied by a break in the
 57 electron pitch angle distribution for the electron streaming along the magnetic field lines. Identification
 58 of smaller-scale current sheets using solar wind spacecraft measurements often focuses on sudden changes
 59 in the magnetic field directional angles and/or the field components between two adjacent timestamps
 60 (Li, 2008; Greco et al., 2009). Sometimes, current sheets are identified together with reconnection
 61 exhaust, i.e., a region bounded by bifurcated current sheets (Runov et al., 2003). They usually consist of
 62 two rotational discontinuities (RDs). In a time-series plot obtained from a spacecraft across a bifurcated
 63 current sheet, one can see pairs of correlated magnetic field components with the velocity counterparts
 64 on one side and anti-correlated pairs on the other. When these observational signatures occur, they are
 65 also identified as “reconnecting current sheets” (Phan et al., 2006, 2009; Teh et al., 2009). For these
 66 reconnecting current sheets, the Alfvénic plasma jet will show up in the outflow region in addition to
 67 the topological change of the magnetic field, due to the correspondence of active magnetic reconnection
 68 (Gosling et al., 2005; Davis et al., 2006).

69 The aforementioned three types of structures, i.e., SFRs, current sheets, and magnetic reconnection
 70 exhaust, are considered to be related, especially in either 2D or 3D simulations of the magnetohydrodynamics
 71 (MHD) turbulence. Reconnected field lines at the current sheet may generate magnetic islands
 72 in outflow regions (Greco et al., 2009). Furthermore, current sheets could form magnetic walls of SFRs
 73 simultaneously (Miao et al., 2011; Zheng & Hu, 2018). However, in the 1D time-series data, both
 74 SFRs and current sheets are recognized according to magnetic field rotations depending on the data
 75 resolution. A sudden change in field components could exist in a longer interval that also may exhibit
 76 gradually bipolar field rotations. Under this circumstance, structures for a current sheet structure and
 77 a typical SFR may be intermixed, leading to ambiguity in distinguishing these structures. Also, both
 78 are occasionally accompanied by enhanced magnetic field strength (e.g., Farglette et al., 2021), which

79 thus brings challenges in distinguishing between SFRs and current sheets, especially for single-spacecraft
 80 measurements.

81 To address this issue, [Pecora et al. \(2019\)](#) combined the GS reconstruction technique with the
 82 Partial Variances Increment (PVI) indices to distinguish and quantify the roles of flux ropes and current
 83 sheets, especially when they co-exist. They performed GS reconstruction to generate 2D configuration
 84 of hundreds of SFRs and identified the locations of relatively large PVI values within each SFR interval.
 85 They summarized three categories of events: (1) the X-point type where current sheet(s) exist at bound-
 86 aries of flux tubes, (2) O-point type where current sheet(s) occur within flux tubes, and (3) neither (N)
 87 type events. They found that about half of their events are X type. Note that these analysis results
 88 are obtained via the spacecraft observations at 1 AU. With the growing amount of data within 1 AU
 89 by both Parker Solar Probe (PSP) and Solar Orbiter (Solo), one may wonder if there is an additional
 90 circumstance containing both SFRs and current sheets. First, the SFRs identified via the PSP were
 91 found to overlap with the other types of structures, e.g., the magnetic switchbacks ([Chen & Hu, 2022](#)).
 92 Moreover, these ubiquitous switchbacks were suggested to be stabilized by small-scale current sheets
 93 ([J. Huang et al., 2023](#)). Thus, it is likely that current sheets, SFRs, and switchbacks co-exist in the same
 94 scenario. Meanwhile, the SFR database, at <http://www.fluxrope.info/>, has published over 10,000
 95 events using PSP datasets. Therefore, whether this database contains falsely identified events and if so,
 96 how many of them are, has always puzzled us.

97 In this study, we present the recent investigation of SFRs especially their association with current
 98 sheets, using the GS-based detection results from the PSP, Solo, and Helios 1 & 2 in-situ measurements.
 99 This paper is organized as follows. Section 2 briefly introduces the GS-based detection method, the
 100 calculation of the PVI, the four spacecraft datasets, and specific data processing details. In Section 3,
 101 we first present the overview of SFRs via the four missions, such as distributions of selected parame-
 102 ters for these SFRs. Moreover, we dive into those SFRs associated with large PVI indices with both
 103 statistical and individual case studies. Three typical events are selected to represent the most common
 104 circumstances. Finally, we summarize our major findings in Section 4 and discuss the future work.

105 2 Method and Data

106 The identification of SFRs is through the extended GS-based detection algorithm ([Zheng & Hu,](#)
 107 [2018; Hu et al., 2018; Chen & Hu, 2022](#)). It relies on the GS-type equation ([Sonnerup et al., 2006; Teh,](#)
 108 [2018](#)):

$$\nabla^2 A = -\mu_0 \frac{dP_t}{dA} = -\mu_0 \frac{d}{dA} \left[(1-\alpha)^2 \frac{B_z^2}{2\mu_0} + (1-\alpha)p + \alpha(1-\alpha) \frac{B^2}{2\mu_0} \right], \quad (1)$$

109 where the transverse pressure is defined by the terms inside the square brackets, $P_t = [...]$. The scalar
 110 function $A(x, y)$ is equivalent to the 2D magnetic flux function, characterizing the cylindrical configura-
 111 tion of the structure with the parameter $\alpha \equiv Const$. Such a configuration has invariance along its axis
 112 z , i.e., $\partial/\partial z = 0$. The initial value of A along the projected spacecraft path along $y = 0$ is calculated
 113 from the spacecraft measurement, i.e.,

$$A(x, 0) = - \int_0^x (1 - \alpha) B_y(x', 0) dx'. \quad (2)$$

114 Values of A over a 2D cross-sectional plane are then obtained by solving an initial value problem (see
 115 [Hu and Sonnerup \(2002\)](#); [Hu \(2017\)](#) for more details). In the above equation under the assumption that
 116 the remaining plasma flow in a frame of reference moving with the SFR is aligned with the magnetic
 117 field, the factor $\alpha = \langle M_A \rangle^2 \approx Const$ is the square of the average Alfvén Mach number, which indicates
 118 an approximately constant proportionality of the remaining flow speed to the local Alfvén speed. Notice
 119 that the equation (1) returns to the traditional GS equation when $\alpha = 0$ ([Sonnerup & Guo, 1996](#); [Hau](#)
 120 & [Sonnerup, 1999](#)).

121 The GS-based detection algorithm was inspired by the application of the GS reconstruction tech-
 122 nique ([Hu & Sonnerup, 2000](#); [Hu & Sonnerup, 2001](#)) and makes use of the unique feature described by
 123 the GS equation. A spacecraft traversing an SFR structure will record bipolar rotations of the magnetic
 124 field, which shows gradual changes in one or more field components reversing signs. In the local flux
 125 rope frame, given by the coordinates (x, y, z) for the GS equation, it is typically the B_y component that
 126 changes sign. Correspondingly, in the 2D plane perpendicular to the flux rope z -axis, an SFR structure
 127 is usually depicted as a series of nested iso-surfaces (contours) of the magnetic flux function A . The
 128 aforementioned change of the sign of the B_y component in equation (2) thus corresponds to changes of
 129 A from one boundary to the extreme value near the center and to the other boundary returning to its
 130 value at the beginning again. The point where A reaches its extreme value is also defined as the turning
 131 point. As shown in the equation (1), since P_t is a single variable function of A , one can also expect for
 132 an SFR that P_t will follow the same change as A . Therefore, the identification of SFRs is simplified to
 133 searching for a double-folding pattern of P_t versus A between the inbound and the outbound spacecraft
 134 paths traversing a structure. The detailed detection algorithm and associated criteria were described in
 135 [Hu et al. \(2018\)](#); [Chen and Hu \(2022\)](#). In short, the basic requirement for the GS-based algorithm is
 136 that the function $P_t(A)$ be single-valued and double-folded in an interval. All related quantities for the
 137 detection algorithm are obtained from the in-situ single spacecraft data. The related Python package is

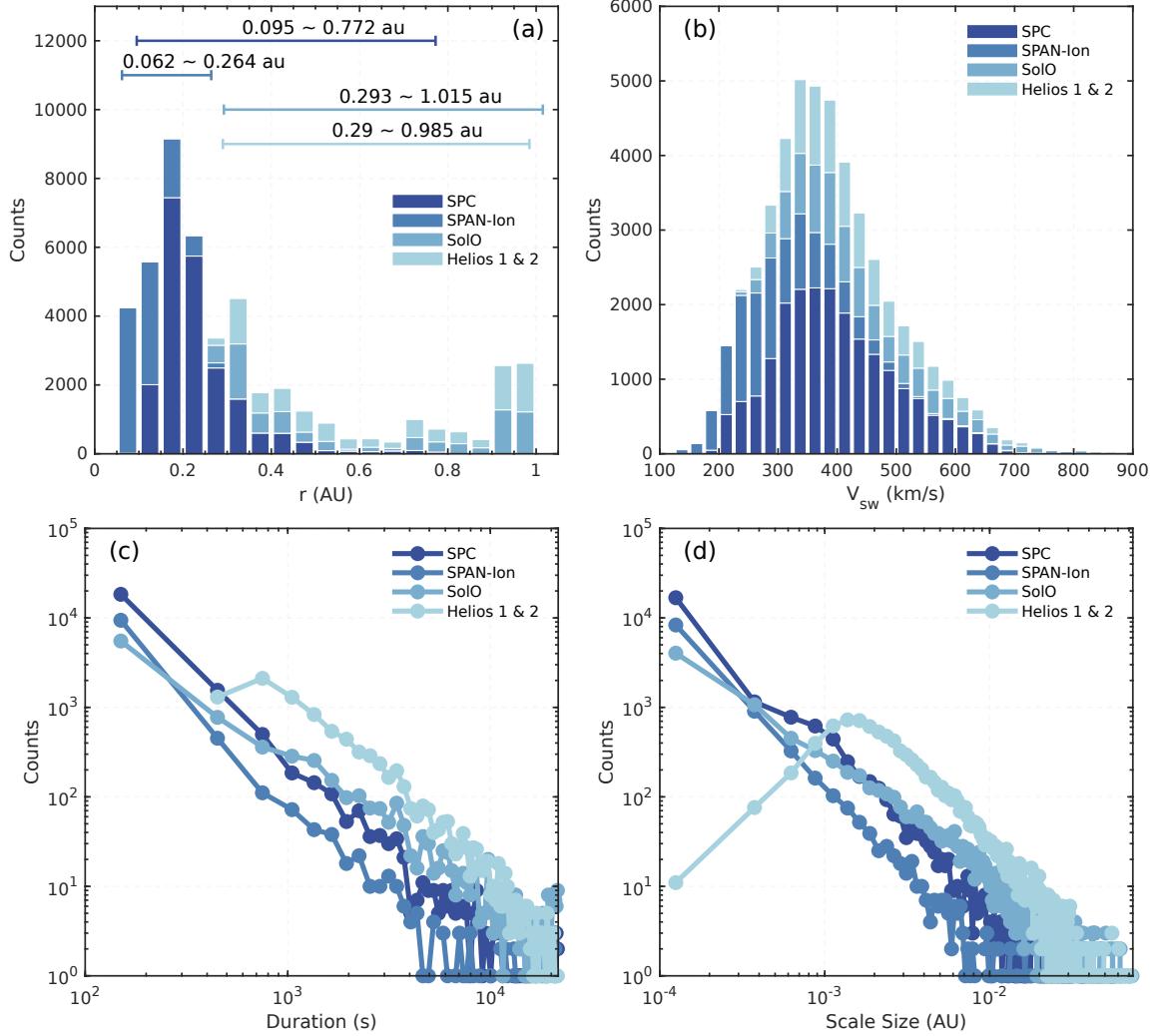
now available on GitHub at <https://github.com/PyGSDR/PyGS> and can be accessible via the Python in Heliophysics Community (PyHC) at <https://heliopython.org/>.

The significant value of the Partial Variance Increment (PVI) index is used to determine the passages of current sheets (Greco et al., 2008; J. Huang et al., 2023) from in-situ spacecraft measurements. It is calculated by using the time-series magnetic field vectors \mathbf{B} :

$$\text{PVI}_{s,\tau} = \frac{|\Delta\mathbf{B}(s, \tau)|}{\sqrt{\langle |\Delta\mathbf{B}(s, \tau)|^2 \rangle}}. \quad (3)$$

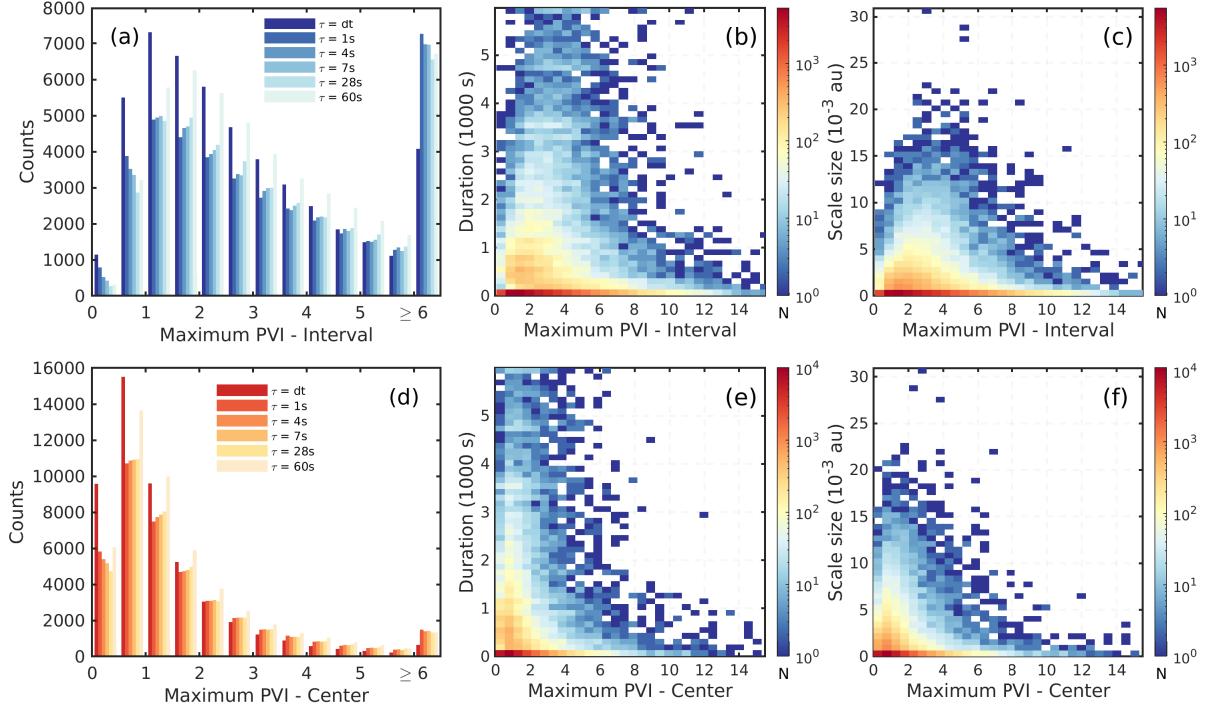
The increment $\Delta\mathbf{B}$ is between the field at time s and that after a time lag τ , i.e., $\Delta\mathbf{B}(s, \tau) = \mathbf{B}(s + \tau) - \mathbf{B}(s)$. Here, the time lag $\tau = \Delta t$, the resolution of processed datasets, may have different values as described in the following paragraph. As suggested in J. Huang et al. (2023), the average symbol in the denominator is calculated via an 8-hour window. In this study, we use the criterion, i.e., $\text{PVI} > 6$, to indicate the possible current sheet structure considering that the original data are downsampled for the GS detection.

This study uses four spacecraft datasets from PSP, SolO, and Helios 1 & 2, in order to have rather complete radial distance coverage spanning the inner heliosphere to 1 AU. The magnetic field and plasma bulk parameters of PSP are provided by the FIELDS (Bale et al., 2016) and the Solar Wind Electrons Alphas and Protons (SWEAP, Kasper et al. (2016)) instrument suites. The latter includes both Solar Probe Cup (SPC, Case et al. (2020)) and the Solar Probe Analyzers Ion (SPAN-Ion, Livi et al. (2022)) probes. The SPC data are used in most time periods, and the SPAN-Ion data are to supplement the SPC data around the perihelion when the SPC data with "Only Good Quality" were unavailable. The PSP data are downsampled to 28s cadence when the PSP was under the cruise mode. When it was under the encounter mode (mostly within 0.25 AU), they are processed to the nearest integer cadence in seconds, such as 1s, 4s, etc. The magnetic field data onboard the SolO are from the Magnetometer (MAG, (Horbury et al., 2020)), whereas data of plasma bulk properties are via the Solar Wind Analyzer Suite (SWA, Owen et al. (2020)). The original data resolution is slightly downsampled to 4s. Since the SolO lasts a rather shorter time period since its launch, we also include the results from Helios 1 & 2 "New Proton Corefit Data" (Porsche, 1981; Stansby et al., 2018), which were downsampled to 1 min for the detection. Actually, the SFRs via these two datasets had already been published in Chen and Hu (2020). However, those events were obtained with the original GS equation, which may exclude some intervals with modest Alfvénicity. In this study, we re-processed the SFR candidates detected from Helios 1 & 2 by using the extended GS-type equation (1) and the associated criteria (Chen & Hu, 2022).


167 **3 Results****Table 1.** Overview of GS-based SFR detection results for different spacecraft datasets.

Datasets	Time period (UT)	Radial distance (AU)	Duration (s)	Scale size (AU)	V_{sw} (km s $^{-1}$)	Count
PSP ^a	2018 Oct 30-2023 Apr 30	0.062-0.772	10-21,645	1.97×10^{-6} -0.0754	93.70-1607.98	31,541
SolO	2021 Apr 22-2023 Apr 24	0.293-1.015	37-21,645	7.67×10^{-6} -0.0889	215.32-1144.76	8,357
Helios 1 & 2	1975-1984, 1976-1980	0.29-0.985	481-61,621	1.82×10^{-4} -0.19	211.55-1090.3	8,838

^aPSP datasets include both SPC and SPAN-Ion data.


168 As aforementioned, the automated detection of SFRs has been carried out for the recent PSP and
 169 SolO spacecraft data. The candidates in the previous database using two Helios spacecraft measurements
 170 have been reprocessed in this study. Totally over 40,000 events are recognized. Table 1 and Figure 1
 171 present an overview of the detection periods and a summary of the selected SFR properties and detailed
 172 distributions of each set of results. The detection of SFRs using the PSP data encompasses a mission
 173 period up to Orbit No.15, i.e., from 2018 October 30 to 2023 April 30. These events were discovered
 174 at smaller heliocentric distances, i.e., between 0.062 and 0.772 AU. Figure 1(a) shows that the SPC
 175 dataset contributes the most to SFR counts at distances less than 0.5 AU. Over 21,000 events have been
 176 identified mostly within 0.3 AU during which the spacecraft was in the encounter mode and thus had a
 177 better complete data coverage. The SFRs via the SPAN-Ion data are mostly within 0.2 AU, typically
 178 near each perihelion. They supplement the gaps where the SPC data with the flag "Only Good Quality"
 179 were unavailable. Events spreading out from 0.4 to 1 AU are mainly contributed by SolO and Helios
 180 spacecraft. The detected SFRs using SolO data contain records from 2021 April 22 to 2023 April 24,
 181 which arise in a wide range of distances from 0.293 to 1.015 AU. The two Helios spacecraft were at
 182 similar ranges of radial distances as the SolO. Thus, they are utilized to minimize the impact of data
 183 gaps that may conceal the overall distribution. The SFRs via these two Helios measurements have a
 184 total of over 8,000 records. The range of V_{SW} is very similar among the three groups of results. It
 185 shows that SFRs in this study spread in both the slow and fast-speed solar winds. Figure 1(b) presents
 186 histograms of average solar wind speed for each group of events. Since both PSP and SolO spacecraft
 187 were mostly in the slow solar wind streams at low latitude regions for the past orbits, V_{SW} in these three
 188 groups peaks at a small speed, i.e., 350 km s $^{-1}$.

189 The ranges of duration and scale sizes are also similar among the four sets of events. More
 190 specifically, as shown in Table 1, three sets of results have broad ranges of scale sizes from a few
 191 kilometers to 0.19 AU and duration from 10 s to 17 hrs. Among them, 99.88% of intervals are less than
 192 6 hours long, which corresponds to the commonly defined SFR. Whereas, a negligible portion of 0.12%

Figure 1. Distributions of the SFR properties: (a) radial distance of the occurrence, (b) average solar wind speed within SFR intervals, (c) duration, and (d) scale size. See the legends for the correspondence to the four datasets: PSP/SPC, PSP/SPAN-Ion, SolO, and Helios 1 & 2.

of events has duration longer than 6 hours, which is close to the scale size of the magnetic cloud. It should be understood that the results that the SFRs via Helios 1 & 2 have larger ranges of scale sizes and duration is due to a larger sampling interval or lower resolution of the Helios datasets. Therefore for a fixed set of search windows, the lower and upper limits of the range of duration become larger. Figure 1(c & d) display detailed distributions of SFR counts for duration and scale size. All four groups of events still seem to follow a power-law tendency, although the lower end of each distribution is affected by the data resolution. The limited sample sizes and uncertainty in the choices of the bin sizes prohibit us to provide more definitive conclusions about their distributions.

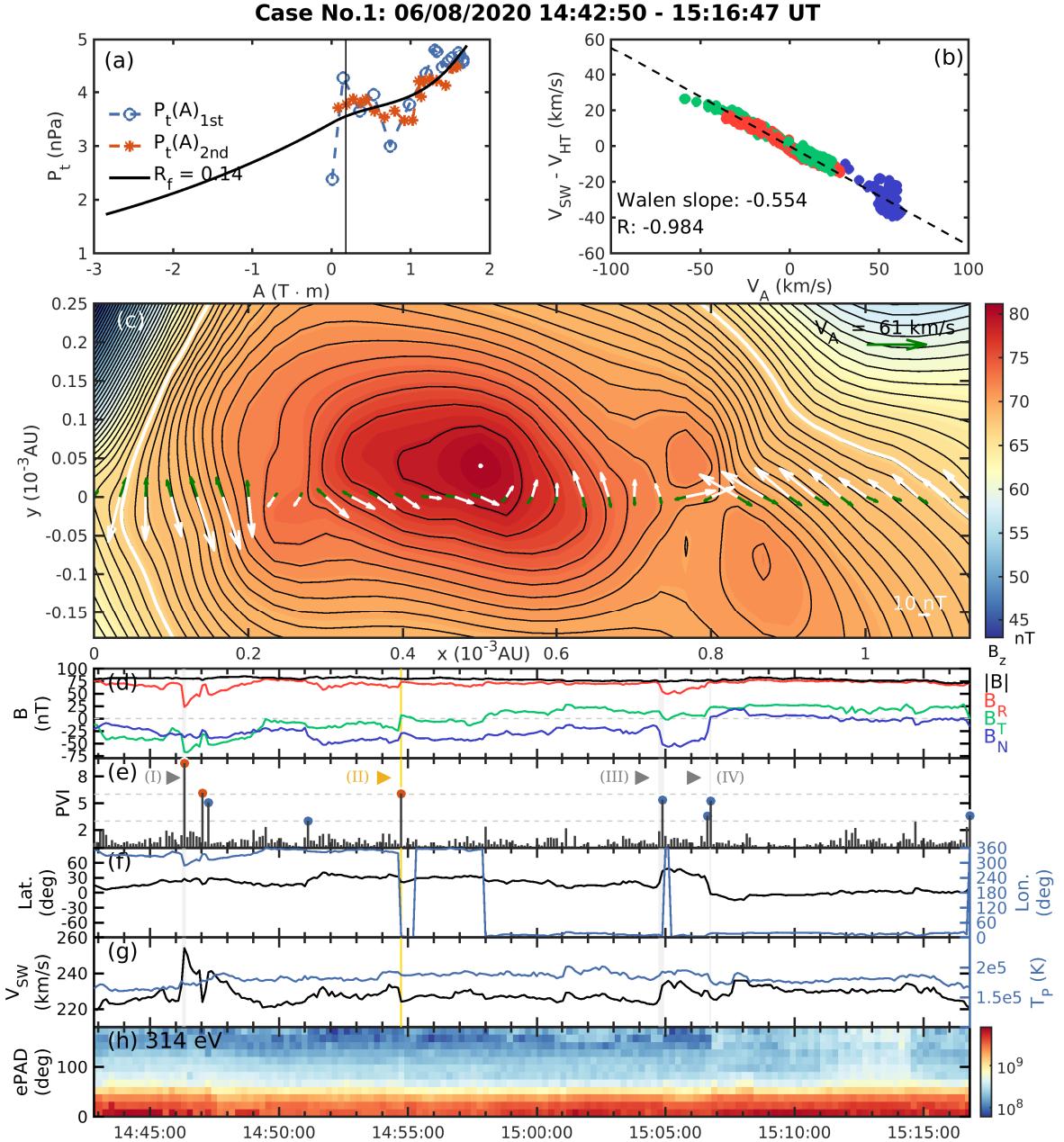
Figure 2. Distributions of SFR properties versus different maximum PVI values: (a & d) counts with different time lags τ (see the legend), (b & e) duration, and (c & f) scale sizes. The top row shows the distributions for the maximum PVI values within SFR intervals, whereas the bottom row shows those for the maximum PVI values near the turning point (usually the SFR center).

As aforementioned, with the increasing numbers of SFRs collected in our databases, it becomes an important question whether they are “contaminated” by current sheets. One way to signalize current sheets from the background solar wind is via the PVI index. As suggested by Greco et al. (2018); Chhiber et al. (2020), different values of PVI indices may hint at some special structures. For example, PVI values greater than 3 and 6 likely refer to non-Gaussian structures and current sheets, respectively. Notice that current sheets can often be detected at boundaries of SFRs, which often results in large PVI indices within SFR intervals. This usually does not affect the identification of an SFR structure (Pecora et al., 2019). Thus, we also examined PVI indices near the turning point, i.e., at the point with the extreme value of A (usually near the SFR center) as introduced in the Section 2. If the PVI indices are still large under such a circumstance, it is necessary to look further into whether they should be current sheet type or flux rope structures. In PVI calculations with $\tau = dt$, the time lag τ is designated as the time step dt of the time-series data for the GS-based detection, i.e., 1s, 4s, 7s, 28s, and 60s, respectively (depending on the original plasma data cadence). For a fixed τ , e.g., $\tau = 4s$, the magnetic field data is reprocessed to be 1s cadence for calculating the PVI values by Equation 3. Notice that SFRs via the

215 two Helios datasets are taken into account in groups of $\tau = dt$ (60s for Helios datasets) and $\tau = 60s$ only
 216 due to the resolution of the original data.

217 Figures 2 (a & d) show the counts of SFRs corresponding to the maximum PVI indices with
 218 different time lags for all events included in this study. Panel (a) represents the maximum PVI indices
 219 within SFR intervals, whereas panel (d) is those near the SFR center. When setting $\tau = dt$, there are
 220 more SFRs with smaller maximum PVI indices than those calculated with fixed time lags (e.g., $\tau = 1s$),
 221 which is partially because SFRs via the two Helios data are not included in counts with $\tau = 1s$. Without
 222 these two sets of events, 37% of SFRs are identified via the plasma data with the original resolution
 223 lower than 1s. Therefore, rapid changes in the magnetic field appearing with the original higher data
 224 resolution for the PSP and SolO might be smoothed after downsampling. On the other hand, counts of
 225 SFRs at larger maximum PVI indices with different time lags appear to be similar, which is likely due
 226 to slow changes in field rotations that become detectable with large time lags. The overall tendency is
 227 uniform with different τ . Around half of identified SFR intervals have maximum PVI indices greater
 228 than 3, which are consistent with the previous findings that SFRs have non-Gaussian features (Zheng
 229 & Hu, 2018). Less than 15% of events have those indices greater than 6, including those current sheet
 230 structures near the SFR boundaries. For the maximum PVI indices near the SFR center, these ratios
 231 become smaller, i.e., around 3%. Thus, only a small portion of events might be indistinguishable from
 232 current sheets with $PVI > 6$.

233 As aforementioned, the GS-based detection is constrained by the plasma data resolution that has
 234 lower cadences than those of the magnetic field. Therefore, we will still refer to PVI values with a time
 235 lag equal to the processed data resolution in the SFR detection, i.e., $\tau = dt$, for consistency. Figures 2
 236 (b, c, e, f) present distributions of SFR duration and scale size at different maximum PVI indices within
 237 the interval and near the center respectively. SFRs with shorter durations and smaller scale sizes have
 238 wide ranges of maximum PVI indices and dominate the distributions in both groups. For the maximum
 239 PVI indices within SFR intervals, as the duration and scale size increase, such ranges become narrower
 240 and center around $PVI \approx 4$. When using $\tau = 1s$, the center is around $PVI \approx 8$ (not shown as they do not
 241 include Helios results). Given a limited sample size, these tendencies may indicate that relatively larger
 242 or longer SFRs have more current sheets at boundaries or areas other than the center. For the maximum
 243 PVI indices near the SFR center, they have similar narrowing tendencies as increasing scales but tend
 244 to be around smaller maximum PVI indices, i.e., around 2 (maximum PVI ≈ 4 for $\tau = 1s$). These PVI
 245 indices refer to non-current sheet types. It is expected that relatively longer or larger SFRs often have
 246 gradual bipolar field rotations, while current sheets usually correspond to more abrupt changes.


Table 2. Overview of selected SFRs with large PVI values.

Case No.	Time period (UT)	Radial distances (AU)	Scale size (AU)	PVI_{max}	$PVI_{turning}$
1	2020 June 8, 14:42:50-15:16:47	0.14	0.001	9.46	6.078
2	2022 September 23, 01:02:48-06:01:28	0.526	0.032	5.537	5.389
3	2022 October 21, 17:50:48-18:19:16	0.759	0.004	7.149	7.149

With $\tau = dt$, 8.27% of events possess the maximum PVI indices > 3 near the SFR center. Considering the large number of events, the batch mode of the GS reconstruction with the default settings is adopted for a quick run to generate the cross-sectional maps. Among 2,591 events showing satisfactory reconstruction results and thus without the need for further manual adjustments, we found that these SFRs can be categorized into three major types. (1) The spacecraft crosses near the center(s) of one or more SFRs where the transverse magnetic field directions have nearly opposite directions. (2) The spacecraft crosses the SFR(s) but not through the center, and the transverse magnetic field directions have abrupt changes but not complete reversals. (3) The spacecraft crosses the open magnetic field lines, which exhibit an “X” shape with opposite field directions from one side to the other. 85% of the aforementioned events are found to be either the first or second type. Again, SFRs with shorter duration and smaller scale sizes dominate in all three groups of events, which may conceal the intrinsic dependencies on the PVI indices (if any). In the following, we select three representative cases with relatively large PVI indices in each aforementioned category. The overview of these cases is listed in Table 2, including the case sequential number, time period, radial distance, scale size, the maximum PVI index within the whole interval, and that near the center. Two of three cases own large PVI indices within the event interval and near the SFR center. The second case has a PVI index of around 5 and is regarded as a marginal case regarding the above PVI criteria since it does show an interesting signature.

3.1 Case No.1: Current Sheets Inside an SFR

Figure 3 presents the first case in Table 2, i.e., for an SFR interval on 2020 June 8, from 14:42:50 to 15:16:47 UT. During this time period, the PSP spacecraft was at around 0.14 AU, which is a day behind its fifth perihelion. Panels (a & c) show the $P_t(A)$ curves that are used to reconstruct this SFR structure and its corresponding cross sectional map. In panel (a), the blue circles and red stars describe $P_t(A)$ values from the left boundary on panel (c) to the turning point (near the white dot), and then from it to the right boundary. The two sets of data points consist of a double-folding pattern of $P_t(A)$, i.e., the two sets of symbols overlapping and a single fitting function can be obtained as illustrated by the black

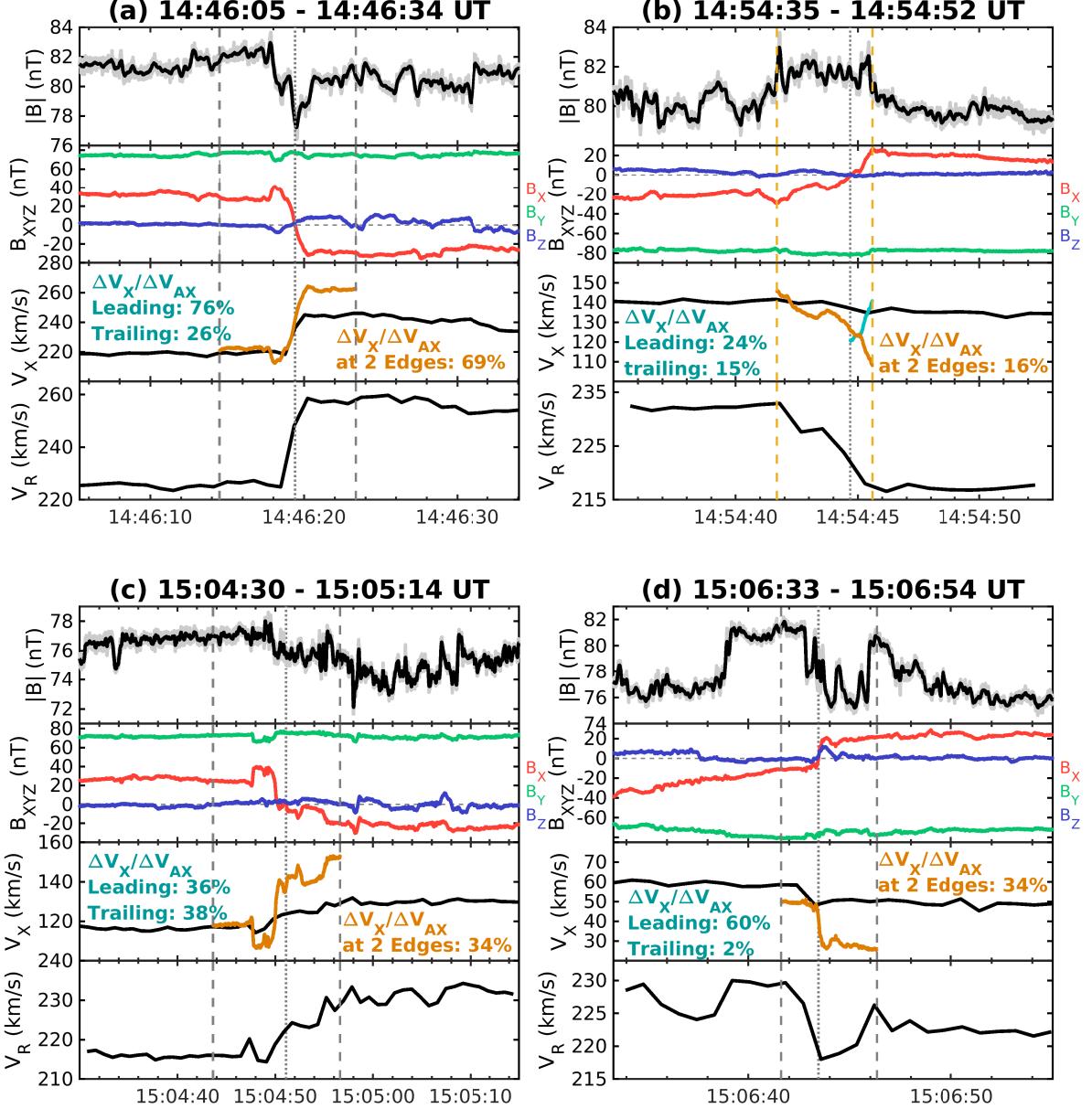


Figure 3. Results of the GS-type reconstruction and time-series plot for Case No.1: 2020 June 8, 14:42:50 to 15:16:47 UT. Panels (a-c) show the $P_t(A)$ data points and the fitting curve (black), the Walén relation, and the cross sectional map with the axis orientation $z=[0.94, 0, -0.34]$ in RTN coordinates respectively. Panels (d-h) are the time-series plot of the same interval, which includes the magnetic field components in RTN coordinates and its magnitude, PVI index, latitudinal and longitudinal angles of the magnetic field, solar wind speed V_{SW} and proton temperature T_p , and the ePAD at 314 eV respectively. Yellow and gray shaded areas (denoted by triangles and roman numbers) mark selected subintervals where large PVI indices occur. The yellow color here is to point out that this jump is close to the flux rope center.

272 curve, which is a core feature of the GS reconstruction technique. On the cross sectional map, the black
 273 contours indicate the transverse magnetic field \mathbf{B}_t in the co-moving frame, which forms a closed field line
 274 region in the center. The background colored areas represent the axial field B_z , which depicts a unipolar
 275 feature coinciding with the central contour lines. These two features thus confirm a flux rope structure
 276 with right-handed chirality as indicated by the white arrows along $y = 0$. The turning point (time) of
 277 this event is at 2020 June 8, 14:56:22 UT, which is close to the maximum B_z (white dot). Along the
 278 spacecraft path (at $y = 0$), the transverse remaining flow (green arrows) are mostly anti-aligned with
 279 the \mathbf{B}_t vectors as drawn and are generally a fraction of the average Alfvén speed as shown in magnitude.
 280 This is also demonstrated in panel (b), which shows the Walén relation between the remaining flow and
 281 the Alfvén velocity V_A . The linear regression slope is -0.554, thus indicating a modest Alfvénic structure.

282 The bottom panels (d-h) of Figure 3 show the corresponding time-series variations of this SFR
 283 interval containing the magnetic field in the RTN coordinates and its magnitude, the values of PVI
 284 indices, the latitude and longitude angles of the magnetic field, solar wind speed V_{SW} and proton
 285 temperature T_p , and the electron pitch angle distribution (ePAD) at 314 eV. To be consistent with the
 286 detection dataset, the 7s averaged data are adopted due to the resolution of the plasma data. Shaded
 287 areas represent selected intervals with large PVI indices and are thus examined further to see if each
 288 is a reconnection exhaust. During the whole SFR interval, the field component B_T gradually changes
 289 from being negative to positive building a bipolar rotation, while B_R and B_N mostly remain positive
 290 and negative respectively. The unidirectional electron strahls are throughout the whole event interval
 291 (Figure 3h). Panel (e) shows the PVI indices at each data point, with the threshold values of 3 and
 292 6 denoted by the horizontal dashed lines. At a glance, there are four regions with abruptly large PVI
 293 indices, which are around (I) 14:46, (II) 14:54, (III) 15:05, and (IV) 15:06 UT. Note that we would first
 294 name these structures “jumps” to describe those sudden changes in the field components, and discuss
 295 the confirmation of the current sheet structure later. Among them, the second jump (No.II, marked by
 296 a yellow area) is close to the SFR center, while the other three are near the SFR boundaries. The PVI
 297 index for this jump is 6.078 as listed in Table 2. It is accompanied by a small change in latitude, i.e.,
 298 around 20 degrees. The shear angle of the total magnetic field between two edges of the yellow area is
 299 40°. Both V_{sw} and T_p have dips simultaneously at the two edges.

300 Since the second significantly large PVI jump (interval No.II) is close to the SFR center, it raises the
 301 same question as aforementioned at the beginning of this subsection: is it a flux rope or a current sheet?
 302 Figure 4 presents a zoomed-in view of each interval around those jumps. Panels (a-d) correspond to the
 303 Roman numbers (I-IV) in Figure 3. The boundaries of each jump are visually identified, which are chosen
 304 at locations around the relatively steady magnetic field before and after the sudden jumps. The first

Figure 4. Zoomed-in time-series plots of the yellow and gray shaded areas (I-IV) in Figure 3 on June 8, 2020, which are marked by (a-d) respectively. For each subfigure, panels from the top to bottom are the field magnitude $|B|$ with the original data resolution (gray line) and its moving average (black line), the magnetic field in the principal XYZ coordinates, V_X and the predicted velocity (cyan and orange lines), and the radial solar wind speed V_R . Boundaries of jumps are denoted by two vertical dashed lines. Again, the yellow color here points out that this interval is close to the flux rope center. Three ratios of $\Delta V_X / \Delta V_{AX}$ are calculated based on the assumption of a bifurcate current sheet (cyan) and a single current sheet (orange) respectively. See texts for more details.

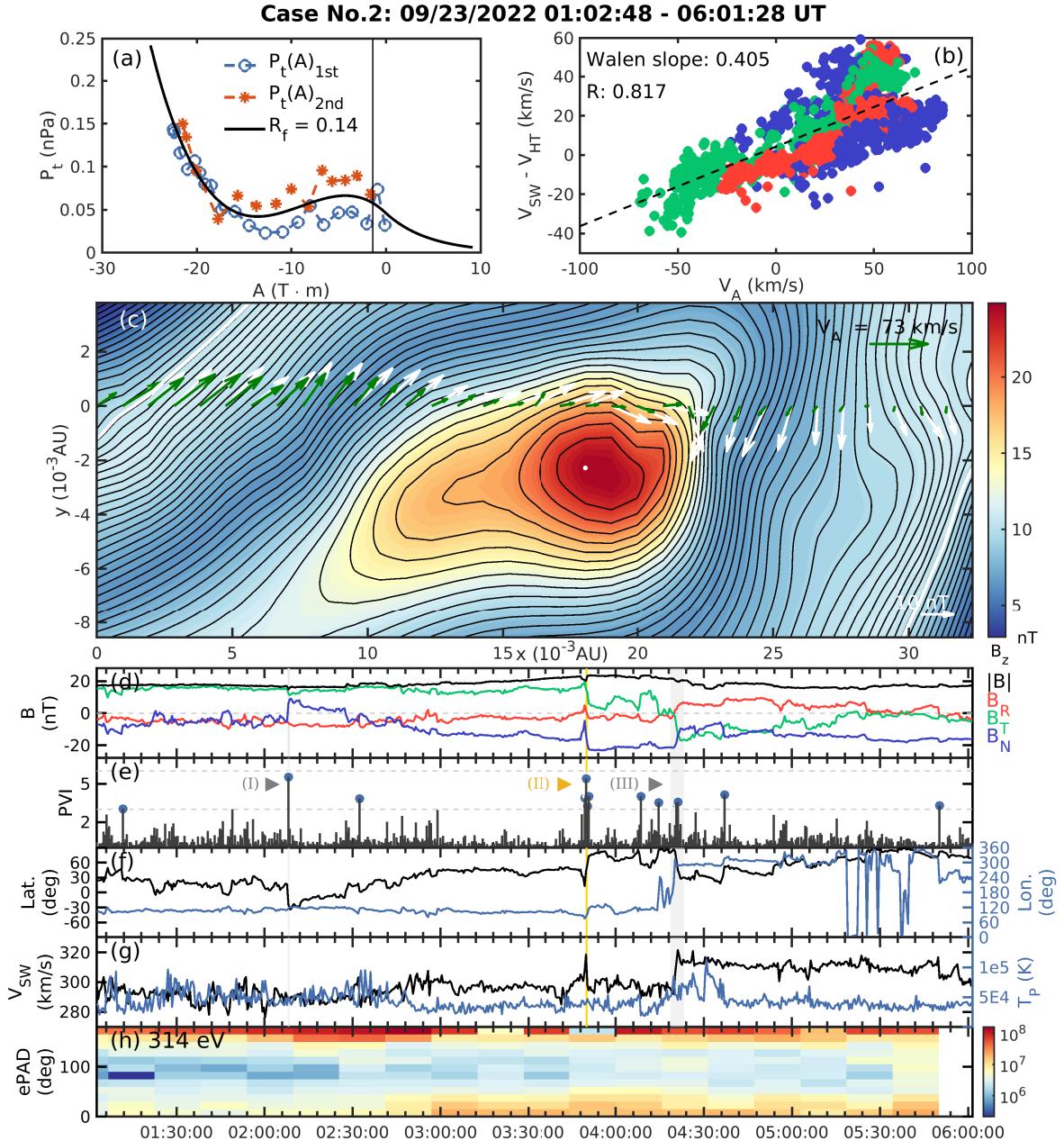
305 panel of each interval shows the magnitude of the magnetic field with its original data resolution (gray
 306 line) and the running average (black line) for presenting purposes. The second panel shows the magnetic
 307 field in the hybrid current sheet coordinate system, also known as the LMN coordinate (Gosling & Phan,
 308 2013). To separate it from the RTN coordinates, we denote this coordinate system by *XYZ*. Following
 309 (Gosling & Phan, 2013), the *Z* component is obtained by $B_l \times B_r / |B_l \times B_r|$, where the subscripts “l” and
 310 “r” indicate the magnetic field at the current sheet left and right boundaries (two dashed lines in Figure
 311 4). The *Y* component is calculated by crossing *Z* and the maximum variance direction via the minimum
 312 variance analysis of the magnetic field (MVAB, Paschmann and Daly (1998)). Finally, the *X* component
 313 is completed by $Y \times Z$. On the second panel, the component B_X along the direction tangential to
 314 the current sheet shows a stair-like variation, whereas the component B_Z is around the zero line as it
 315 corresponds to the normal component. The third panel shows the solar wind velocity denoted by black
 316 line and the predicted velocities in *X*-direction marked by cyan and orange lines. The cyan lines represent
 317 the predicted velocity based on the assumption of a bifurcate current sheet, which usually consists of two
 318 RDs at the two edges and thus obtained via the two separate Walén tests (Phan et al., 2020). The orange
 319 line is obtained under the assumption that there is only one current sheet or discontinuity corresponding
 320 to the dotted line in the middle. We will present the best matched predicted velocity lines only for the
 321 rest of the cases. In particular, we follow Phan et al. (2020) to label the ratio $\Delta V_X / \Delta V_{AX}$. Notice
 322 that three ratios are marked on the third panel. Those denoted by “leading” and “trailing” indicate
 323 changes across two edges of the presumably “bifurcate” current sheet, i.e., from inflow to outflow regions.
 324 They are derived from the Walén relation $V_{X2} - V_{X1} \sim \pm(B_{X2} - B_{X1})/(\mu_0 \rho_1)^{1/2}$. Here, the subscript
 325 “1” represents the inflow region, which corresponds to the average before the leading edge (left vertical
 326 dashed line) or the average after the trailing edge (right vertical dashed line), respectively. The subscript
 327 “2” corresponds to the current sheet center (vertical dotted line). The third ratio indicates the differences
 328 of V_X and V_{AX} between the two edges. Therefore, it can represent the Alfvénicity of a single current
 329 sheet interval to some extent.

330 Notably, in Figure 4(b), the field magnitude $|B|$ in interval No.II increases slightly when approach-
 331 ing the center of the current sheet. The reconnection exhaust with a bifurcate current sheet can usually
 332 be seen if the components B_X and V_X correlate positively at one edge and possess anti-correlation at the
 333 other, or vice versa. However, the V_X in this interval seems to not correlate with the B_X as $\Delta V_X / \Delta V_{AX}$
 334 for the whole area is only 16%. Changes in V_X across the leading and trailing edges are only 24% and
 335 15% of ΔV_{AX} . Therefore, without clear Alfvénic proton jets in the outflow region, it is unlikely to be
 336 a bifurcated current sheet associated with a reconnection exhaust. Instead, it could be a single RD as
 337 neither significantly depressed field strength nor enhanced T_p is observed at this current sheet.

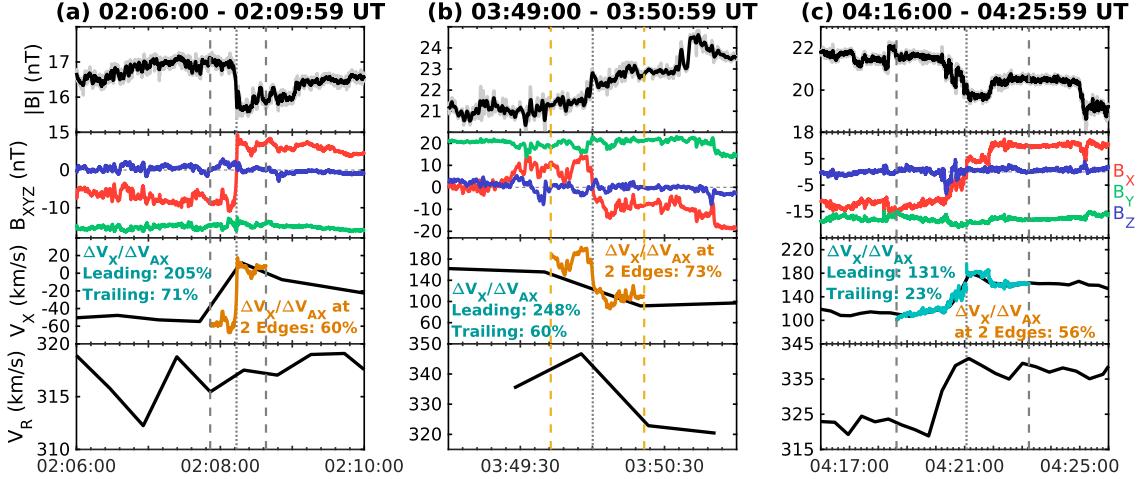
338 As aforementioned, there are additional time periods also corresponding to sudden PVI index
 339 jumps, which are marked by the gray areas (I), (III), and (IV) in Figure 3. Based on the cross-sectional
 340 map in Figure 3(c), they occur near the boundaries of a flux rope or the intersection between the
 341 main structure and sub-structure. As shown on the Figure 3(e), the first jump has a PVI index above
 342 8, whereas the last two are slightly below 6 (the upper horizontal dashed line). Moreover, they are
 343 accompanied by 20 to 30 degrees change in either latitude or longitude angles of the magnetic field. The
 344 first and third jumps also have clear increases in the solar wind speed, while the last one seems to be
 345 similar to the one near the SFR center, i.e., both V_{SW} and T_p drop.

346 Figure 4(a, c, & d) also show the zoomed-in views of these three areas (corresponding to I, III, & IV
 347 in Figure 3). The second panel of each interval shows a clear and abrupt monotonic rotation of B_X from
 348 one sign to the opposite sign, which hints at the current sheet structures. Magnitudes of the magnetic
 349 field in the first and last intervals dip around the center of current sheets (vertical dotted line) where
 350 the B_X crosses the zero-line. Shear angles of the magnetic field between two vertical dashed lines are
 351 42°, 34°, and 23°, respectively. Although with the lower resolution of V_X , the entire intervals (between
 352 two vertical dashed lines) in Figure 4(a, c, & d) seem to have V_X anti-correlated with B_X . Notice that
 353 the last two intervals (areas III & IV) are only separated by 1 minute. As shown in Figure 4(d), the two
 354 current sheets can be regarded as boundaries to enclose a substructure. In fact, the extended interval
 355 from 15:04:30 to 15:06:54 UT also has B_X anti-correlated with V_X (not shown). Thus, none of these
 356 three jumps have clear associations with reconnection exhausts, i.e., complying with the classification as
 357 reconnecting current sheets.

358 In summary, this case represents a situation in which an SFR interval contains one or more current
 359 sheets, which are crossed by the spacecraft and thus result in large PVI values. Although the maximum
 360 PVI index exceeds 8 within this SFR interval, it occurs near the boundary where the magnetic field
 361 changes direction more significantly than other points. All four current sheets with relatively large PVI
 362 values exceeding 5 are non-reconnecting type, which lacks the plasma jet in the outflow regions. The
 363 ratios between ΔV_X and ΔV_{AX} at two edges of all current sheets in Figure 4, i.e., 69%, 16%, 34%, and
 364 34%, illustrate that they could be one single RD, instead of a reconnection exhaust bounded by two
 365 RDs. Moreover, since unidirectional electron strahls are throughout the whole interval, these current
 366 sheet structures are more possibly be boundaries of a magnetic switchback (Kasper et al., 2019). This
 367 switchback is quite weak and does not appear to have strong reversals of the magnetic field in the time-
 368 series plot. Although the one near the SFR center also has a large PVI index, it only has a small rotation
 369 of the magnetic field direction. This small change is embedded in a background with a more general
 370 bipolar rotation where one field component changes the sign over the SFR interval. Such a co-existence


371 of the SFR and large PVI index is also similar to the O-point type in [Pecora et al. \(2019\)](#), where the
 372 current core is near the SFR center.

373 **3.2 Case No.2: SFR With Arbitrary Kinks**


374 Figure 5 shows the case No.2 in Table 2, whose interval starts from 2022 September 23, 01:02:48
 375 UT and ends at 06:01:28 UT. This SFR is longer in duration as compared with the other two cases. The
 376 scale size, as represented by the range of the x -axis of Figure 5(c), is about 0.032 AU. As usual, panel
 377 (a) also shows a clear double-folding pattern of $P_t(A)$. This SFR is left-handed and possesses a modest
 378 level of Alfvénicity, i.e., the Walén test slope is 0.405. On time-series plots of the whole interval, one can
 379 see that V_{SW} near the two boundaries of this SFR have different values, whose minimum and maximum
 380 are 276 and 321 km s⁻¹ respectively. Thus, the trailing region of this SFR might be in a faster stream.
 381 Moreover, there are clear bidirectional electron strahls, especially for the time period after 03:00 UT.
 382 This could hint that the corresponding magnetic field lines have both ends rooted at the Sun. In other
 383 words, this SFR could be initially formed in the low corona, ejected into the solar wind, and finally
 384 traversed by the PSP at 0.526 AU.

385 Figure 5(e) presents several jumps in the magnetic field measurements including two significant
 386 ones, i.e., areas as marked by Roman numbers (I) and (II), whose PVI indices are close to 6 (the top
 387 horizontal dashed line). The jump near the SFR center, as marked by the yellow area and roman number
 388 (II), is accompanied by a sudden dip in the latitude and a narrow peak in the V_{SW} . The corresponding
 389 shear angle for this jump is 53°. This jump is within a dip-like region as exhibited in Figure 5(d). Figure
 390 6(b) displays the corresponding time period for area (II) in detail. Again, unlike the traditional current
 391 sheet, the magnitude of the magnetic field during this period is on the increase phase. The general shape
 392 of V_X seems to change similarly to that in B_X , which is somewhat hidden because of the 28s cadence
 393 plasma data at this radial distance. Three ratios of $\Delta V_X / \Delta V_{AX}$, i.e., 248% when crossing the leading
 394 edge, 60% when crossing the trailing edge, and 73% at two edges, show strong Alfvénic correlations.
 395 Combining the variations of the B_R in Figure 5d, which change from below zero-line to positive and
 396 then become negative again after crossing the current sheet center (the dotted line in Figure 6b), this
 397 interval could be a part of the magnetic switchback structure within an SFR interval ([Chen et al., 2021](#)).
 398 It can also be an arbitrary kink since the spacecraft traverses the perimeter of this SFR instead of the
 399 center, contrary to Figure 3(c).

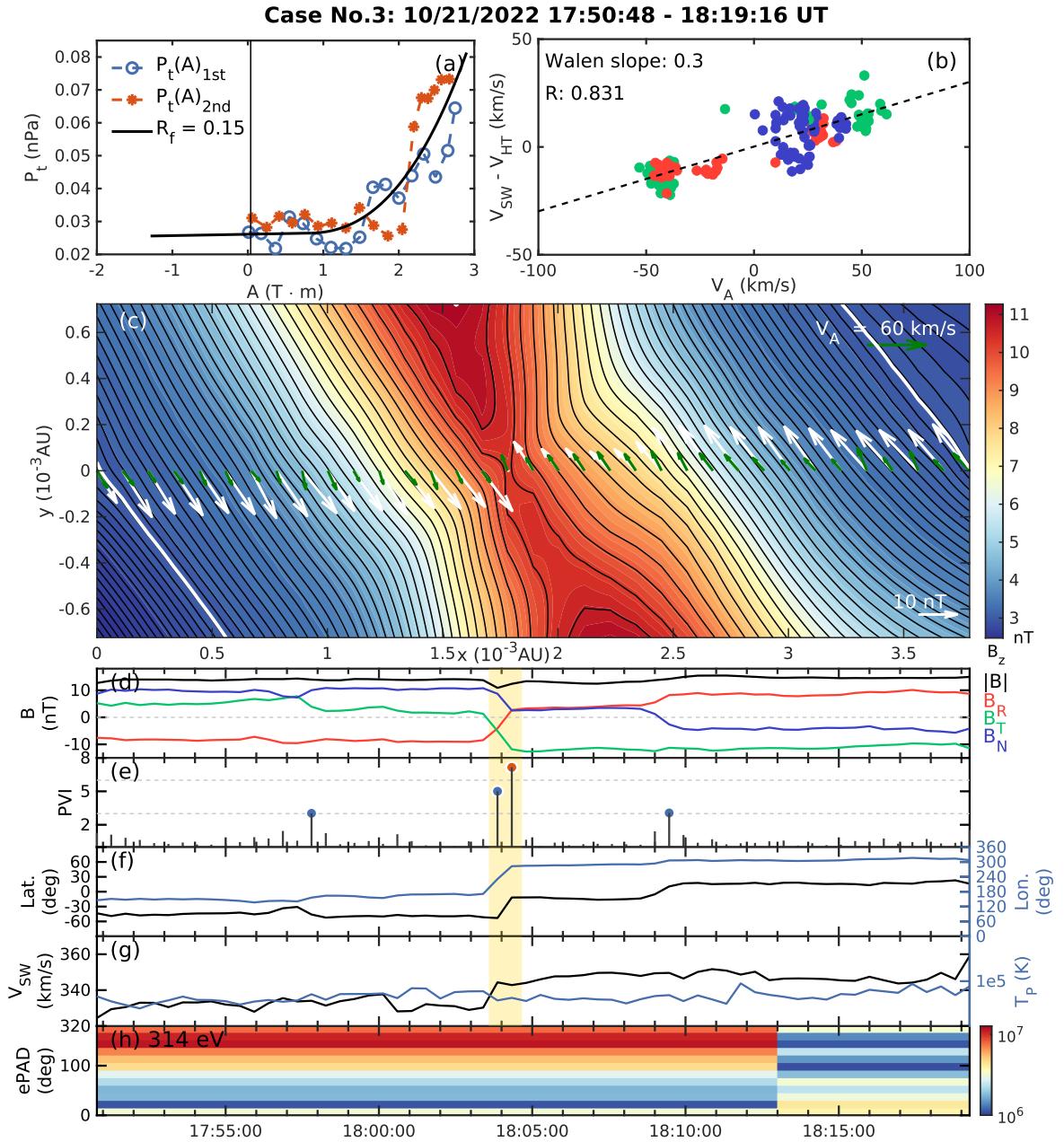
400 As mentioned above, the PVI indices within this interval have two significant jumps close to 6.
 401 Figure 6 also displays the first jump out of the above two and the one selected from the other 10 jumps

Figure 5. Results of the GS-type reconstruction and time-series plot for Case No.2: 2022 September 23, 01:02:48 to 06:01:28 UT. The flux rope axis is $z=[0.49, 0.41, -0.77]$ in RTN coordinates. The format follows that of Figure 3.

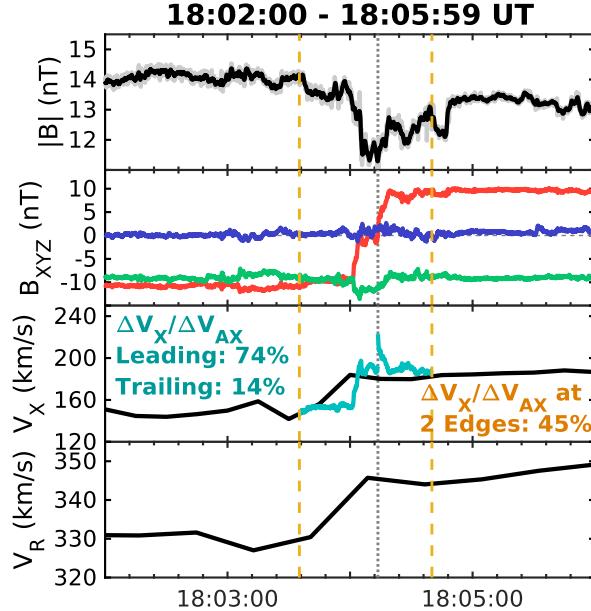
Figure 6. Zoomed-in time-series plots of yellow and gray shaded areas (I-III) in Figure 5. The format follows that of Figure 4.

that have PVI indices exceeding 3, as shown in subfigures (a & c). The interval (a), although affected by the resolution of the plasma data, reveals a positive correlation between B_X and V_X . The leading edge has a strong Walén relation with a ratio to be over 100%, which can also be seen in Figure 5(a). The time period of this jump corresponds to the left top region on the cross-sectional map. The remaining flow vectors are quite large compared with the Alfvén speed. Also, they appear to be aligned with the transverse field \mathbf{B}_t . Thus, the Alfvénicity around such a region is very high indeed. The panel (c) shows a time period where the PSP traversed at the boundary of the main SFR structure. The signatures in V_X hint at the reconnection exhaust. At the leading edge, V_X and B_X form the Alfvénic correlation with the ratio to be $>100\%$, whereas the trailing edge has clear anti-correlation with B_X as shown by the cyan line as well.

In summary, this case could be a scenario in which an SFR is generated after the magnetic reconnection at a relatively large current sheet, where the main structure is in the outflow region and the left top region on the cross-sectional map has very large remaining flow vectors compared with the corresponding Alfvén speed in this interval. The aforementioned current sheet together with the SFR are not fully traversed by the spacecraft. Thus, the expected nearly symmetric outflow on the other side of the SFR is uncertain, likely due to the spacecraft path that did not traverse along the normal direction of the current sheet. One boundary of the reconnection exhaust might correspond to that of this SFR, while the other boundary is possibly out of the range of the cross-section map. Again, large PVI indices still exist at the boundaries of the SFR, which hint at small current sheets. Considering that the counterstreaming electrons exist in the whole interval as an indicator of closed field-line connectivity


422 for a magnetic flux rope structure, it could be an arbitrary kink as the spacecraft did not cross the center
 423 the this SFR structure.

424 **3.3 Case No.3: False Identification of an SFR**


425 Figure 7 shows the case No.3 in Table 2, which starts from 2022 October 21, 17:50:48 UT to 18:19:46
 426 UT. Unlike the other two cases, the GS reconstruction result shows a clear current sheet structure. The
 427 duration of the interval is only 20 minutes. Panel (c) depicts the magnetic field lines that change
 428 polarities clearly along the spacecraft path. Although the remaining flow vectors also change to the
 429 opposite direction, there are some deviations from the \mathbf{B}_t vectors. Therefore, the Alfvénicity of this
 430 interval is weak, which was also indicated by the panel (b), i.e., the corresponding Walén test slope is
 431 0.3. The most uncertain signature is the double-folding pattern of $P_t(A)$ although it is understood that
 432 it is not a necessary and sufficient condition for the existence of a flux rope structure. Panel (a) seems
 433 very similar to those of the other two cases, which could be the major reason for this event to be falsely
 434 identified as an SFR. In the time-series plot, the magnetic field has clear changes with a shear angle of
 435 97° . All three components have the apparent bipolar rotations, which is supposed to hint at flux rope
 436 structures. However, these rotations are through step-wise jumps, or in other words, rapid change of
 437 signs. Such changes are also reflected by a significant value of the PVI index exceeding 6 and around
 438 60 degrees change in longitude (around 30 degrees in latitude) in the middle of the interval. Notice
 439 that these signatures all occur near the center of this interval. The last panel of Figure 7 shows a clear
 440 ePAD signature, indicating that the corresponding magnetic field lines change connectivity, although
 441 the timing is a little off due to low data resolution. In addition, the cross-section map shown in Figure
 442 7(c) is similar to the 2D configuration of a bifurcate current sheet reconstructed in Teh et al. (2009).

443 The zoomed-in view in Figure 8 further shows what happened near the “SFR” center. The strength
 444 of the magnetic field drops, and the B_X component shifts the sign abruptly. The proton jet is very weak
 445 compared with the predicted velocity since the spacecraft traversed the inflow region mostly and nearly
 446 crossed the X line as shown by Figure 7(c). Therefore, it is unlikely to record a strong outflow region (if
 447 any).

448 In summary, based on the GS reconstruction result, this event should be a current sheet, which was
 449 mistakenly identified as an SFR. It has a clear dip in the magnitude of the magnetic field, a significantly
 450 large PVI index, and the corresponding discontinuous variations of electron strahls. The expected jet is
 451 very weak due to the spacecraft path that did not cross the outflow region.

Figure 7. Results of the GS-type reconstruction and time-series plot for Case No.3: 2022 October 21, 17:50:48 to 18:19:16 UT. The flux rope axis is $z=[-0.13, -0.75, 0.64]$ in RTN coordinates. The format follows that of Figure 3.

Figure 8. Zoomed-in time-series plots of the single yellow shaded area in Figure 7. The format follows that of Figure 4(a).

452 4 Summary and Discussion

453 We report the recent GS-based detection results obtained from four in-situ spacecraft datasets.
 454 They include the PSP data covering fifteen orbits, the SolO data from April 2021 to April 2023, and
 455 data from the full mission periods of the two Helios spacecraft. We present the overview of the identified
 456 SFRs, which occur almost across all heliocentric distances from 0.062 to 1.015 AU. In total, 48,736 SFRs
 457 are identified from the four spacecraft datasets with variable cadences. They have duration and scale
 458 sizes range from 10 s to 17 hrs and 1.97×10^{-6} to 0.19 AU, respectively. They also exist in a wide range
 459 of solar wind speeds and tend to be more frequently associated with relatively slow solar wind speeds
 460 around 350 km s^{-1} , given the aforementioned in-situ spacecraft observations.

461 Among these SFRs, we examine those containing large PVI indices as they may hint that the
 462 magnetic field rotation was not always an indicator for an SFR, an intrinsic fact that was known, but
 463 not well studied. The resulting statistics demonstrate that less than 15% of SFRs have the maximum
 464 PVI indices larger than 6, a threshold for current sheet identification. Events with PVIs exceeding
 465 this value mostly possess the corresponding maximum PVI indices near boundary areas. When further
 466 examining those indices near the SFR center, only around 3% of events are possibly false identification
 467 of SFRs with the corresponding PVI indices exceeding 6. In addition, SFRs with shorter durations
 468 and smaller scale sizes appear to have wide ranges of maximum PVI indices including those near the

469 SFR center. Based on the limited sample size, as scales increase, they may have more current sheets
 470 at boundaries, while the field rotations near the SFR centers tend to be gradual changes rather than
 471 rapid characteristics of current sheets. When considering a more relaxed threshold value of the PVI
 472 index, around half of SFR intervals have the maximum PVI values greater than 3, which indicates that
 473 they possess non-Gaussian features. Also, the co-existence of SFRs and current sheets again hints at
 474 the possible MHD turbulence generation mechanism for these structures at all distances from near the
 475 Sun to 1 au.

476 For SFRs that might co-exist with or be indistinguishable from current sheets, we find three
 477 categories of events via the batch mode of the GS reconstruction. They do not appear to have any
 478 obvious dependencies on the PVI indices given limited sample sizes. A representative type of event in
 479 each category is selected and analyzed, which represents the situations that (1) an SFR with current
 480 sheets near the center and at boundaries, (2) an SFR with arbitrary kinks and is embedded in the
 481 outflow region, and (3) a current sheet that is falsely identified as an SFR. Under the first circumstance,
 482 both the SFR main structure and current sheets are crossed by the spacecraft. Four subintervals around
 483 the calculated PVI jumps are investigated in detail. Three jumps occur near the flux rope boundaries
 484 or between the main flux rope structure and the sub-structure. Only one PVI jump is near the flux
 485 rope center. This likely corresponds to the “O-type” event classified by [Pecora et al. \(2019\)](#), where
 486 the current sheet discontinuity is an “O” point rather than a “sheet” like structure. The unidirectional
 487 electron strahls are throughout the whole SFR interval, and all four jump regions contain modest to
 488 high Alfvénic correlation without a clear signature of proton jets. Thus, for this case, we conclude that a
 489 single one-side RD exists, while the reconnection exhaust bounded by two RDs is not seen based on the
 490 analysis results of Walén relations for each subinterval. The large PVI index near the flux rope center
 491 could also be a weak spike boundary or a “current sheet” embedded within the O point. The magnetic
 492 field rotation is small around this jump, which is in the background of a more gradual bipolar rotation.
 493 Notice that although this case presents a main SFR and the substructure, a single SFR crossed by the
 494 spacecraft near the center is also categorized to this type since the large PVI value near the SFR center
 495 is likely due to the current core as discussed above (see also [Pecora et al. \(2019\)](#)).

496 The second case possibly depicts a flux rope embedded in an outflow region of the magnetic
 497 reconnection exhaust. Again, it has gradually varying bipolar rotations of the magnetic field. There
 498 are noticeable counterstreaming electrons, which hints at a closed field-line topology with possible field-
 499 line connectivity to the Sun. The PVI jump on one side of the outflow region corresponds to a strong
 500 Walén relation where $\Delta V_X / \Delta V_{AX}$ is 60%. This is also evident between the remaining flow and the
 501 Alfvén velocities on the SFR cross-section map. The other side, however, does not contain such strong

502 characteristics due to the spacecraft path deviating from the outflow region. The other PVI jump takes
 503 place near the SFR center, which also has a large $\Delta V_X / \Delta V_{AX}$ ratio between the two edges of the jump,
 504 i.e., 73%. Again, no proton jet shows up. Considering that the spacecraft only traverses the SFR near
 505 the perimeter, this could be an arbitrary kink instead of a current sheet. This type of events can also have
 506 multiple SFRs with possible current sheets in between while the spacecraft only traverses the periphery
 507 part of the whole structure.

508 The third case represents the falsely identified SFR. It has almost the same characteristics as
 509 an SFR, such as the double-folding pattern of $P_t(A)$, and bipolar rotations of the magnetic field, etc.
 510 The significant PVI index and variations of electron strahls indicate a current sheet crossing instead
 511 of encountering an SFR. There could be a reconnection exhaust associated with this current sheet.
 512 However, since the spacecraft may have only traversed the inflow regions, the proton jet is very weak.

513 The above three types of events could correspond to a scenario with each being enclosed by a
 514 large-scale current sheet, i.e., the HCS, similar to the scenarios of multiple islands/flux ropes at the
 515 Earth's magnetopause current sheet ([Hasegawa et al., 2006, 2010](#)). For example, we notice that a 3-hr
 516 HCS crossing in the PSP encounter No.14 has been reported in [Phan et al. \(2024\)](#) with signatures of
 517 multiple flux ropes embedded. These events are rare and generally embody significant uncertainties due
 518 to limited single-point measurements. We will pursue detailed analysis in future work.

519 One should also note that to distinguish whether there is a current sheet inside an SFR ([Gosling](#)
 520 & [Phan, 2013](#)), a current sheet between two SFRs or flux tubes ([Farglette et al., 2021](#)), or a mistakenly
 521 recognized SFR event, the most definitive way to separate SFRs from current sheets and vice versa is
 522 still via the multi-point spacecraft measurements. In addition, one can also address whether an SFR
 523 could have moderate to high Alfvénicity and its implications with our approach. Another fundamental
 524 open question is regarding the sources generating these SFRs, which could benefit from a combination
 525 of in-situ measurements and remote sensing observations. [Wood et al. \(2023\)](#) presented six small CME
 526 flux ropes by combining Wide-field Imager for Solar Probe (WISPR) images and time-series data from
 527 FIELDS and SWEAP. [N. Huang et al. \(2023\)](#) recently compared SFR occurrences with mini-filaments at
 528 the Sun. They found that the occurrence rate of mini-filaments is far more than that of SFRs. Although
 529 it is possible that mini-filaments could evolve to be several different structures after detaching from the
 530 Sun, the observation of those events is over the whole solar surface, while the in-situ observation is mostly
 531 limited in space and time, i.e., often only in the low latitude regions at one point at a time. Therefore,
 532 re-examining these properties using up-to-date new and future missions, such as SolO, HelioSwarm

533 (Spence, 2019; Klein et al., 2023), etc., as well as combining remote sensing data will be essential to our
 534 future work.

535 **5 Open Research**

536 The PSP and SolO data in this study are downloaded from the NASA CDAWeb (<https://cdaweb.gsfc.nasa.gov/index.html/>), and the Helios 1 & 2 data are from <https://helios-data.ssl.berkeley.edu/data/>. The GS-based detection and GS-type reconstruction results are obtained
 537 using the PyGS package, which is published at the Python in Heliospheric Community website at
 538 <https://heliopython.org/> and our GitHub at <https://github.com/PyGSDR/PyGS>. The SFR event
 539 lists are available on the flux rope database at <http://www.fluxrope.info/>.
 540

542 **Acknowledgments**

543 We would like to thank Dr. Jia Huang and Dr. Lingling Zhao for helpful suggestions and discussions.
 544 Y.C. and Q.H. acknowledge NASA grants 80NSSC21K0003, 80NSSC21K1763, 80NSSC21K1319, and
 545 NSF grant AGS-2229065 for support. This work was made possible in part by a grant of high performance
 546 computing resources and technical support from the Alabama Supercomputer Authority.

547 **References**

548 Bale, S., Goetz, K., Harvey, P., Turin, P., Bonnell, J., De Wit, T. D., ... others (2016). The fields
 549 instrument suite for solar probe plus. *SSRv*, *204*(1-4), 49–82. Retrieved from <https://doi.org/10.1007/s11214-016-0244-5> doi: 10.1007/s11214-016-0244-5

550 Borovsky, J. E. (2008, August). Flux tube texture of the solar wind: Strands of the magnetic carpet at 1
 551 AU? *Journal of Geophysical Research (Space Physics)*, *113*, A08110. doi: 10.1029/2007JA012684

552 Case, A. W., Kasper, J. C., Stevens, M. L., Korreck, K. E., Paulson, K., Daigneau, P., ... others
 553 (2020). The solar probe cup on the parker solar probe. *ApJS*, *246*(2), 43. Retrieved from
 554 <https://doi.org/10.3847/1538-4365/ab5a7b> doi: 10.3847/1538-4365/ab5a7b

555 Chen, Y., & Hu, Q. (2020, may). Effects of radial distances on small-scale magnetic flux ropes in the
 556 solar wind. *ApJ*, *894*(1), 25. Retrieved from <https://doi.org/10.3847/1538-4357/ab8294> doi:
 557 10.3847/1538-4357/ab8294

558 Chen, Y., & Hu, Q. (2022, jan). Small-scale magnetic flux ropes and their properties based on in situ
 559 measurements from the parker solar probe. *ApJ*, *924*(2), 43. Retrieved from <https://doi.org/10.3847/1538-4357/ac3487> doi: 10.3847/1538-4357/ac3487

560 Chen, Y., Hu, Q., Allen, R. C., & Jian, L. K. (2023, jan). Small-scale magnetic flux ropes in stream
 561

563 interaction regions from parker solar probe and wind spacecraft observations. *The Astrophysical*
564 *Journal*, 943(1), 33. Retrieved from <https://dx.doi.org/10.3847/1538-4357/aca894> doi:
565 10.3847/1538-4357/aca894

566 Chen, Y., Hu, Q., & le Roux, J. A. (2019, aug). Analysis of small-scale magnetic flux ropes covering the
567 whole ulysses mission. *ApJ*, 881(1), 58. Retrieved from <https://doi.org/10.3847/1538-4357/ab2ccf> doi: 10.3847/1538-4357/ab2ccf

569 Chen, Y., Hu, Q., Zhao, L., Kasper, J. C., & Huang, J. (2021, jun). Small-scale magnetic flux ropes
570 with field-aligned flows via the PSP in situ observations. *ApJ*, 914(2), 108. Retrieved from
571 <https://doi.org/10.3847/1538-4357/abfd30> doi: 10.3847/1538-4357/abfd30

572 Chhiber, R., Goldstein, M. L., Maruca, B. A., Chasapis, A., Matthaeus, W. H., Ruffolo, D., ... Raouafi,
573 N. (2020, feb). Clustering of intermittent magnetic and flow structures near parker solar probe's
574 first perihelion—a partial-variance-of-increments analysis. *The Astrophysical Journal Supplement*
575 *Series*, 246(2), 31. Retrieved from <https://dx.doi.org/10.3847/1538-4365/ab53d2> doi: 10
576 .3847/1538-4365/ab53d2

577 Choi, K.-E., Lee, D.-Y., Marubashi, K., & Lee, S. (2022, may). Near-orthogonal orientation of small-scale
578 magnetic flux ropes relative to the background interplanetary magnetic field. *The Astrophysical*
579 *Journal*, 931(2), 98. Retrieved from <https://dx.doi.org/10.3847/1538-4357/ac69d3> doi:
580 10.3847/1538-4357/ac69d3

581 Davis, M. S., Phan, T. D., Gosling, J. T., & Skoug, R. M. (2006). Detection of oppositely di-
582 rected reconnection jets in a solar wind current sheet. *Geophysical Research Letters*, 33(19).
583 Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006GL026735>
584 doi: <https://doi.org/10.1029/2006GL026735>

585 Farglette, N., Lavraud, B., Rouillard, A., Eastwood, J. P., Bale, S. D., Phan, T., ... Bonnell, J. W. (2021).
586 Magnetic increases with central current sheets: observations with parker solar probe. *A&A*, 650,
587 A11. Retrieved from <https://doi.org/10.1051/0004-6361/202039191> doi: 10.1051/0004-6361/
588 202039191

589 Farooki, H., Lee, J., Pecora, F., Wang, H., & Kim, H. (2024, apr). Axial flux evolution of small-scale
590 magnetic flux ropes from 0.06 to 10 au. *The Astrophysical Journal Letters*, 965(2), L18. Retrieved
591 from <https://dx.doi.org/10.3847/2041-8213/ad3964> doi: 10.3847/2041-8213/ad3964

592 Farooki, H., Noh, S. J., Lee, J., Wang, H., Kim, H., Abdulla, Y., ... Pecora, F. (2024, mar). A
593 closer look at small-scale magnetic flux ropes in the solar wind at 1 au: Results from improved
594 automated detection. *The Astrophysical Journal Supplement Series*, 271(2), 42. Retrieved from
595 <https://dx.doi.org/10.3847/1538-4365/ad24e1> doi: 10.3847/1538-4365/ad24e1

596 Gosling, J. T., & Phan, T. D. (2013, jan). Magnetic reconnection in the solar wind at current sheets
 597 associated with extremely small field shear angles. *The Astrophysical Journal Letters*, *763*(2), L39.
 598 Retrieved from <https://dx.doi.org/10.1088/2041-8205/763/2/L39> doi: 10.1088/2041-8205/763/2/L39

600 Gosling, J. T., Skoug, R. M., McComas, D. J., & Smith, C. W. (2005). Magnetic disconnection from the
 601 sun: Observations of a reconnection exhaust in the solar wind at the heliospheric current sheet.
 602 *Geophysical Research Letters*, *32*(5). Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL022406> doi: <https://doi.org/10.1029/2005GL022406>

604 Greco, A., Chuychai, P., Matthaeus, W. H., Servidio, S., & Dmitruk, P. (2008). Intermittent mhd
 605 structures and classical discontinuities. *GRL*, *35*(19). Retrieved from <http://dx.doi.org/10.1029/2008GL035454> (L19111) doi: 10.1029/2008GL035454

607 Greco, A., Matthaeus, W., Perri, S., Osman, K., Servidio, S., Wan, M., & Dmitruk, P. (2018). Partial
 608 variance of increments method in solar wind observations and plasma simulations. *Space Science
 609 Reviews*, *214*, 1–27. Retrieved from <https://dx.doi.org/10.1007/s11214-017-0435-8> doi:
 610 [10.1007/s11214-017-0435-8](https://doi.org/10.1007/s11214-017-0435-8)

611 Greco, A., Matthaeus, W. H., Servidio, S., Chuychai, P., & Dmitruk, P. (2009, jan).
 612 *ApJ*, *691*(2), L111–L114. Retrieved from <https://doi.org/10.1088/0004-637x/691/2/l111>
 613 doi: 10.1088/0004-637x/691/2/l111

614 Hasegawa, H., Sonnerup, B. U. O., Owen, C. J., Klecker, B., Paschmann, G., Balogh, A., & Rème, H.
 615 (2006). The structure of flux transfer events recovered from cluster data. *Annales Geophysicae*,
 616 *24*(2), 603–618. Retrieved from <https://angeo.copernicus.org/articles/24/603/2006/> doi:
 617 [10.5194/angeo-24-603-2006](https://doi.org/10.5194/angeo-24-603-2006)

618 Hasegawa, H., Wang, J., Dunlop, M. W., Pu, Z. Y., Zhang, Q.-H., Lavraud, B., ... Bogdanova,
 619 Y. V. (2010). Evidence for a flux transfer event generated by multiple x-line reconnection
 620 at the magnetopause. *Geophysical Research Letters*, *37*(16), L16101. Retrieved from
 621 <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL044219> doi: <https://doi.org/10.1029/2010GL044219>

623 Hau, L.-N., & Sonnerup, B. U. Ö. (1999). Two-dimensional coherent structures in the magnetopause:
 624 Recovery of static equilibria from single-spacecraft data. *JGR*, *104*(A4), 6899–6917. Retrieved
 625 from <http://dx.doi.org/10.1029/1999JA900002> doi: 10.1029/1999JA900002

626 Horbury, OBrien, H., Carrasco Blazquez, I., Bendyk, M., Brown, P., Hudson, R., ... Walsh, A. P.
 627 (2020). The solar orbiter magnetometer. *A&A*, *642*, A9. Retrieved from <https://doi.org/10.1051/0004-6361/201937257> doi: 10.1051/0004-6361/201937257

629 Hu, Q. (2017, June). The Grad-Shafranov Reconstruction in Twenty Years: 1996 - 2016. *ScChD*, 60,
630 1466-1494. doi: doi:10.1007/s11430-017-9067-2

631 Hu, Q., He, W., & Chen, Y. (2022). A magnetic flux rope configuration derived by optimization
632 of two-spacecraft in-situ measurements. *Frontiers in Physics*, 10. Retrieved from <https://www.frontiersin.org/articles/10.3389/fphy.2022.960315> doi: 10.3389/fphy.2022.960315

633

634 Hu, Q., & Sonnerup, B. U. O. (2000). Magnetopause transects from two spacecraft: A comparison. *GRL*,
635 27(10), 1443–1446. Retrieved from <http://dx.doi.org/10.1029/1999GL010751> doi: 10.1029/
636 1999GL010751

637 Hu, Q., & Sonnerup, B. U. Ö. (2001). Reconstruction of magnetic flux ropes in the solar wind. *GRL*,
638 28, 467-470. doi: 10.1029/2000GL012232

639 Hu, Q., & Sonnerup, B. U. Ö. (2002). Reconstruction of magnetic clouds in the solar wind: Orientations
640 and configurations. *JGR*, 107(A7), 1142. doi: 10.1029/2001JA000293

641 Hu, Q., Zheng, J., Chen, Y., le Roux, J., & Zhao, L. (2018, November). Automated Detection of
642 Small-scale Magnetic Flux Ropes in the Solar Wind: First Results from the Wind Spacecraft
643 Measurements. *ApJS*, 239, 12. doi: 10.3847/1538-4365/aae57d

644 Hu, Q., Zhu, C., He, W., Qiu, J., Jian, L. K., & Prasad, A. (2022, jul). Validation and interpretation of a
645 three-dimensional configuration of a magnetic cloud flux rope. *The Astrophysical Journal*, 934(1),
646 50. Retrieved from <https://dx.doi.org/10.3847/1538-4357/ac7803> doi: 10.3847/1538-4357/
647 ac7803

648 Huang, J., Kasper, J. C., Fisk, L. A., Larson, D. E., McManus, M. D., Chen, C. H. K., ... Halekas,
649 J. S. (2023, jul). The structure and origin of switchbacks: Parker solar probe observations. *The
650 Astrophysical Journal*, 952(1), 33. Retrieved from <https://dx.doi.org/10.3847/1538-4357/acd17e> doi: 10.3847/1538-4357/acd17e

651

652 Huang, N., D'Anna, S., & Wang, H. (2023, mar). Statistical study of ejections in coronal hole regions
653 as possible sources of solar wind switchbacks and small-scale magnetic flux ropes. *ApJL*, 946(1),
654 L17. Retrieved from <https://dx.doi.org/10.3847/2041-8213/acc0f1> doi: 10.3847/2041-8213/
655 acc0f1

656 Kasper, J. C., Abiad, R., Austin, G., Balat-Pichelin, M., Bale, S. D., Belcher, J. W., ... others (2016).
657 Solar wind electrons alphas and protons (sweap) investigation: design of the solar wind and coronal
658 plasma instrument suite for solar probe plus. *SSRv*, 204(1-4), 131–186. Retrieved from <https://doi.org/10.1038/s41586-019-1813-z> doi: 10.1038/s41586-019-1813-z

659

660 Kasper, J. C., Bale, S. D., Belcher, J. W., Berthomier, M., Case, A. W., Chandran, B. D. G., ...
661 Schwadron, N. A. (2019). Alfvénic velocity spikes and rotational flows in the near-sun solar wind.

662 *Natur*, 576(7786), 228-231. Retrieved from <https://doi.org/10.1038/s41586-019-1813-z> doi:
663 10.1038/s41586-019-1813-z

664 Klein, K. G., Spence, H., Alexandrova, O., Argall, M., Arzamasskiy, L., Bookbinder, J., ... others (2023).
665 Helioswarm: a multipoint, multiscale mission to characterize turbulence. *Space Science Reviews*,
666 219(8), 74. Retrieved from <https://link.springer.com/article/10.1007/s11214-023-01019-0> doi: 10.1007/s11214-023-01019-0

668 Li, G. (2008, jan). Identifying current-sheet-like structures in the solar wind. *The Astrophysical Journal*,
669 672(1), L65. Retrieved from <https://dx.doi.org/10.1086/525847> doi: 10.1086/525847

670 Livi, R., Larson, D. E., Kasper, J. C., Abiad, R., Case, A. W., Klein, K. G., ... McManus, M. D. (2022,
671 oct). The solar probe analyzer—ions on the parker solar probe. *ApJ*, 938(2), 138. Retrieved from
672 <https://dx.doi.org/10.3847/1538-4357/ac93f5> doi: 10.3847/1538-4357/ac93f5

673 Miao, B., Peng, B., & Li, G. (2011). Current sheets from ulysses observation. *Annales Geophysicae*,
674 29(2), 237–249. Retrieved from <https://www.ann-geophys.net/29/237/2011/> doi: 10.5194/
675 angeo-29-237-2011

676 Owen, Bruno, R., Livi, S., Louarn, P., Al Janabi, K., Allegrini, F., ... Zouganelis, I. (2020). The
677 solar orbiter solar wind analyser (swa) suite. *A&A*, 642, A16. Retrieved from <https://doi.org/10.1051/0004-6361/201937259> doi: 10.1051/0004-6361/201937259

679 Paschmann, G., & Daly, P. W. (1998). Analysis methods for multi-spacecraft data. issi scientific reports
680 series sr-001, esa/issi, vol. 1. isbn 1608-280x, 1998. *ISSIR*, 1.

681 Pecora, F., Greco, A., Hu, Q., Servidio, S., Chasapis, A. G., & Matthaeus, W. H. (2019, aug). Single-
682 spacecraft identification of flux tubes and current sheets in the solar wind. *ApJ*, 881(1), L11.
683 Retrieved from [https://doi.org/10.3847%2F2041-8213%2fab32d9](https://doi.org/10.3847%2F2041-8213%2Fab32d9) doi: 10.3847/2041-8213/
684 ab32d9

685 Phan, T. D., Bale, S. D., Eastwood, J. P., Lavraud, B., Drake, J. F., Oieroset, M., ... Velli, M. (2020,
686 feb). Parker solar probe in situ observations of magnetic reconnection exhausts during encounter
687 1. *ApJS*, 246(2), 34. Retrieved from [https://doi.org/10.3847%2F1538-4365%2fab55ee](https://doi.org/10.3847%2F1538-4365%2Fab55ee) doi:
688 10.3847/1538-4365/ab55ee

689 Phan, T. D., Drake, J. F., Larson, D., Oieroset, M., Eriksson, S., Yin, Z., ... Raouafi, N. (2024, aug).
690 Multiple subscale magnetic reconnection embedded inside a heliospheric current sheet reconnection
691 exhaust: Evidence for flux rope merging. *The Astrophysical Journal Letters*, 971(2), L42. Retrieved
692 from <https://dx.doi.org/10.3847/2041-8213/ad6841> doi: 10.3847/2041-8213/ad6841

693 Phan, T. D., Gosling, J. T., & Davis, M. S. (2009). Prevalence of extended reconnection x-lines
694 in the solar wind at 1 au. *Geophysical Research Letters*, 36(9). Retrieved from <https:///>

695 agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GL037713 doi: <https://doi.org/10.1029/2009GL037713>

696

697 Phan, T. D., Gosling, J. T., Davis, M. S., Skoug, R. M., Øieroset, M., Lin, R. P., ... others (2006).
698 A magnetic reconnection x-line extending more than 390 earth radii in the solar wind. *Nature*,
699 439(7073), 175–178. Retrieved from <https://doi.org/10.1038/nature04393> doi: 10.1038/
700 nature04393

701 Porsche, H. (1981, November). HELIOS mission: Mission objectives, mission verification, selected
702 results. In W. R. Burke (Ed.), *Solar system and its exploration* (Vol. 164, p. 43-50).

703 Runov, A., Nakamura, R., Baumjohann, W., Zhang, T. L., Volwerk, M., Eichelberger, H.-U., & Balogh,
704 A. (2003). Cluster observation of a bifurcated current sheet. *Geophysical Research Letters*, 30(2).
705 Retrieved from <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002GL016136>
706 doi: <https://doi.org/10.1029/2002GL016136>

707 Sonnerup, B. U. O., & Guo, M. (1996). Magnetopause transects. *GRL*, 23(25), 3679–3682. Retrieved
708 from <http://dx.doi.org/10.1029/96GL03573> doi: 10.1029/96GL03573

709 Sonnerup, B. U. O., Hasegawa, H., Teh, W.-L., & Hau, L.-N. (2006). Grad-shafranov reconstruction: An
710 overview. *JGR*, 111(A9). Retrieved from <http://dx.doi.org/10.1029/2006JA011717> (A09204)
711 doi: 10.1029/2006JA011717

712 Spence, H. E. (2019). Helioswarm: unlocking the multiscale mysteries of weakly-collisional magnetized
713 plasma turbulence and ion heating. In *Agu fall meeting abstracts* (Vol. 2019, pp. SH11B–04).
714 Retrieved from <https://ui.adsabs.harvard.edu/abs/2019AGUFMSH11B..04S/abstract>

715 Stansby, D., Salem, C., Matteini, L., & Horbury, T. (2018). A new inner heliosphere proton parameter
716 dataset from the helios mission. *Solar physics*, 293, 1–11. Retrieved from <https://doi.org/10.1007/s11207-018-1377-3>
717 doi: 10.1007/s11207-018-1377-3

718 Teh, W.-L. (2018). Grad–shafranov reconstruction of magnetohydrostatic equilibria with nonisotropic
719 plasma pressure: the theory. *EP&S*, 70(1), 1–5. Retrieved from <https://doi.org/10.1186/s40623-018-0802-z>
720 doi: 10.1186/s40623-018-0802-z

721 Teh, W.-L., Sonnerup, B. U. O., Hu, Q., & Farrugia, C. J. (2009). Reconstruction of a large-scale recon-
722 nection exhaust structure in the solar wind. *Annales Geophysicae*, 27(2), 807–822. Retrieved from
723 <https://angeo.copernicus.org/articles/27/807/2009/> doi: 10.5194/angeo-27-807-2009

724 Wood, B. E., Hess, P., Chen, Y., & Hu, Q. (2023, aug). Sequential small coronal mass ejections
725 observed in situ and in white-light images by parker solar probe. *The Astrophysical Journal*,
726 953(2), 123. Retrieved from <https://dx.doi.org/10.3847/1538-4357/ace259> doi: 10.3847/
727 1538-4357/ace259

728 Zheng, J., & Hu, Q. (2018, January). Observational Evidence for Self-generation of Small-scale Magnetic
729 Flux Ropes from Intermittent Solar Wind Turbulence. *ApJL*, 852, L23. doi: 10.3847/2041-8213/
730 aaa3d7