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ABSTRACT: An important problem in Quantum Field Theory (QFT) is to understand the
structures of observables on spacetime manifolds of nontrivial topology. Such observables
arise naturally when studying physical systems at finite temperature and/or finite volume
and encode subtle properties of the underlying microscopic theory that are often obscure on
the flat spacetime. Locality of the QFT implies that these observables can be constructed
from more basic building blocks by cutting-and-gluing along a spatial slice, where a crucial
ingredient is the Hilbert space on the spatial manifold. In Conformal Field Theory (CFT),
thanks to the operator-state correspondence, we have a non-perturbative understanding of
the Hilbert space on a spatial sphere. However it remains a challenge to consider more
general spatial manifolds. Here we study CF'Ts in spacetime dimensions d > 2 on the spatial
manifold 72 x R?3 which is one of the simplest manifolds beyond the spherical topology.
We focus on the ground state in this Hilbert space and analyze universal properties of the
ground state energy, also commonly known as the Casimir energy, which is a nontrivial
function of the complex structure moduli 7 of the torus. The Casimir energy is subject
to constraints from modular invariance on the torus which we spell out using PSL(2,7Z)
spectral theory. Moreover we derive a simple universal formula for the Casimir energy in
the thin torus limit using the effective field theory (EFT) from Kaluza-Klein reduction of
the CFT, with exponentially small corrections from worldline instantons. We illustrate our
formula with explicit examples from well-known CFTs including the critical O(N) model
in d = 3 and holographic CFTs in d > 3.
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1 Introduction

Conformal Field Theories (CFTs) provide a unifying and powerful approach to a large class
of strongly coupled Quantum Field Theories (QFTs) that arise in both high energy and
condensed matter physics. Over the recent years, there has been tremendous development
in elucidating the structure of CFTs by the conformal bootstrap method [1-3], which
explores general constraints on the CFT observables by basic principles such as unitarity
and associativity of the operator-product-expansion (OPE). In spacetime dimensions d > 2,
most of the works focus on CFT observables defined on flat spacetime, namely the spectrum
of local operators and their OPE coefficients. These CFT data determine completely the
local correlation functions on the flat spacetime My = R4~ 11 which are central objects
in QFT. However there is much more to QFT than the flat spacetime. In particular, local
QFT is expected to be defined on general spacetime manifolds.

Considerations of QFT on a spacetime manifold of nontrivial topology open the door
to a profusion of new observables. For example the correlation functions of local operators
(even the partition function itself) may now depend nontrivially on topology and finer
geometric data of the manifold. Such dependence detects global topological features of



QFT which are crucial to distinguish theories that are otherwise identical at the level of
local correlation functions [4, 5]. Of course QFT on a general spacetime manifold contains
far more information than such topological data. The challenge is to develop methods
to extract QFT observables on nontrivial manifolds, understand their general properties,
and uncover underlying structures. On the surface this seems an intractable task simply
because of the sheer complexity of the geometry of the manifolds. Nonetheless, the locality
principle dictates that QF'T observables must obey consistency conditions known as cutting-
and-gluing axioms [6, 7], which implies that the study of QFT on general manifolds can be
reduced to more basic building blocks and their gluing. It also points to intricate relations
among seemingly distinct observables on different manifolds. Unsurprisingly, such questions
are most well-formulated for CFTs. Indeed the conformal bootstrap equations for local
correlation functions amount to the cutting-and-gluing consistencies on the flat spacetime.
Here we decompose a CFT observable (e.g. a correlation function of local operators) into
two pieces by cutting along a sphere S?~!, and the basic building blocks consist of the local
operator spectrum which specifies the Hilbert space of states on S¢~! via the state-operator
correspondence and the OPE coefficients that determine the wavefunction associated to
each piece from the decomposition. To pursue this axiomatic approach for CFTs on d > 2
spacetime manifolds which in general do not admit an S¢~! spatial slice, we will need to
understand the Hilbert space on non-spherical spatial manifold M,_;, which is a main
motivation for this work.

In this paper, we initiate a systematic study of d > 2 CFTs on spatial manifold
M1 = T? x R4 3, which is one of the simplest non-spherical manifolds with nontrivial
topology and nontrivial geometric moduli (coming from the T factor). We write the metric
on T? as
La io

dsae = Li|dt + Tdz|*, T = ,
Ly

(1.1)
where L and Ly are the lengths of two cycles with a tilt angle § € (0,7) and ¢,z € [0,1) are
the periodic coordinates. In other words, the area of 72 is A = L1Losinf and 7 = 71 + i1
denotes the usual shape moduli (complex structure moduli) of the torus which take values
on the upper half-plane H (i.e. 75 > 0).

The immediate task is to investigate the Hilbert space Hpz,pa-3 on this spatial man-
ifold, for which little is known since there is no correspondence with local CF'T operators
(see comments on the d = 3 case in [8]). Here we make progress by focusing on the ground
state of Hrpz, ga—3 in an ambient spacetime My = T2 x R4~3! and exploring general prop-
erties of the ground state energy, also known as the Casimir energy,! measured with respect
to the Hamiltonian

Hrzyga-s = /T?de—3 Too - (1.2)

The Casimir energy is extensive in the noncompact R~ directions, whose energy density

See [9] for a recent review on critical Casimir effect in general.



we denote by Ey,c takes the following form

B = —LTQ, (1.3)

d—
2

where the dependence on the torus area A is fixed by dimensional analysis and the dimen-
sionless coefficient £(7) will be the central object in this paper that contains nontrivial
dependence of the shape moduli 7 of the torus. We will refer to £(7) as the (dimension-
less) Casimir energy density. We emphasize that Fy,. has a counterterm ambiguity that
is fully-extensive on T2 x R%3 and shifts Evae — Fiac + AA? where A is a UV cutoff
scale. This comes from the cosmological constant counterterm on 72 x R4=*!. There are
no other counterterm ambiguities since 72 is flat. Consequently, £(7) is unambiguous and
well-defined.

We note the following immediate properties of £(7). Firstly, £(7) is a real function of
the complex moduli 7 since Hpo ga—2 is Hermitian. Secondly, for bosonic CFTs, £(7) is
modular invariant under PSL(2,Z) transformations of 7,

ar +b

14
et +d’ (1.4)

E(r)y=E(nT), ~1=

with a,b,c,d € Z and ad — bc = 1. This follows from the orientation-preserving large
diffeomorphisms on 72 and is also a general property of the Hamiltonian Hy2, ga—2 and its
entire energy spectrum.? Thirdly, if the CFT is parity-invariant then

8(7—) = S(—%) ) (15)

which is a consequence of the orientation-reversing large diffeomorphism (x1, zo) — (1, —z2)
on T2.
To derive further universal constraints on £(7), we consider the Euclidean CFT on
T? x R%=2 (see previous works [11, 12]). We first take one of R?~? directions to be the
Euclidean time, then the partition function is clearly determined by the Casimir energy.
Alternatively, choosing the cycle Sé on T? of length B = L; to be the Euclidean time,
the partition function becomes a trace over the Hilbert space on the base S! x R%2. This
second perspective enables us to infer the structure of £(7) in the limit 7 — ioco where Ly is
small compared to Ly using the effective field theory (EFT) of the CFT from Kaluza-Klein
(KK) reduction on Sé. A main result is the following universal behavior for the Casimir
energy density,>
lim &(7) = 0172% + 02721_% + 0 (736_2”"MT262”i"QT1> , (1.6)
T—>100
where n > 0 and @ are integers and cy, co, &, M are theory-dependent constants. Namely
the cusp behavior of £(7) is controlled by two perturbative terms in 75 and a tower of

2For fermionic CFTs, to define the theory on T2, a choice of spin structure must be specified. This
breaks the PSL(2,Z) modular invariance to congruence subgroups. We study the toroidal Casimir energy
density of fermionic CFTs in a subsequent publication [10].

3Despite the funny looking powers in 72 (which come from the rescaling (1.3)), the physical interpreta-
tions of the perturbative terms are quite simple: ¢; controls the extensive dependence of the CFT Casimir
energy on the large circle of size Ly while ca controls the sub-extensive dependence on Ls.



non-perturbative (exponentially small) terms which may also come with perturbative cor-
rections. As we explain in section 2.1, the constants c1, co are captured by the EFT from
integrating out massive KK modes and the absence of other perturbative terms follows
from a simple EFT argument. On the other hand, the non-perturbative terms in (1.6)
come from worldline instantons from massive KK particles with (rescaled) mass M and
KK charge Q going n-times along the S on the base of the KK reduction.

Moreover we will argue that the leading perturbative coefficient ¢; > 0 and is strictly
positive unless the theory is topological, thus providing a measure of local degrees of
freedom in the d-dimensional CFT. Similarly, the second perturbative coefficient co > 0
is a measure of the gapless degrees of freedom in the d — 1-dimensional EFT from KK
reduction, and ¢y = 0 if the EFT is gapped.

The perturbative coefficients ci,c2 in (1.6) are closely related to CFT observables
at finite temperature (in d and d — 1 dimensions respectively). Such observables are of
great interest in both condensed matter and high energy literature because they encode
finite temperature properties of quantum critical points [13-15] and via the AdS/CFT
correspondence provide a CFT description of black holes [16-19]. The relevant spacetime
manifold here is My = S/la x R4 for the d-dimensional CFT, and the temperature is
related to the inverse size of the circle T = %.4 The basic observables here are the one-
point functions of conformal primaries which determine higher-point functions by OPE.
In contrast to the flat spacetime, the one-point function on the thermal background is in
general non-vanishing and determined by the residual conformal symmetry up to an overall
constant [20]. A distinguished case is the one-point function of the stress energy tensor

(d—1)br

<Ttt>Sé><]Rd*1 = (1 - d)<Tu>S}i xRd-1 = dﬁd ) <Tti>S}J,><]Rd*1 =0, (17)

where ¢ labels the 5}3 direction and i labels the spatial R%~! directions. The same coefficient
br determines the free energy density

1 b
f(ﬁ) = —mlog ZsllaXRd—l = T;(i, (18)

where V;_; regulates the infinite spatial volume. This follows from (1.7) and the relation

1
<Ttt>5[13XRd—1 = mag log ZSllide—l . (1.9)

The thermal background can be thought of a limit of My = S}; X S%_l with % — 00.
The latter comes naturally from the radial quantization of the CFT on the sphere S;l%_l of
radius R. The corresponding partition function counts states in the Hilbert space Hga—1
graded by their energy measured by the radial Hamiltonian (equivalently local operators
graded by their scaling dimensions A),

R d—1
B F—)OO VO].(S )
RA _ ZSEXRd71 = exp <_6Mdﬂi1bT ; (110)

4The thermal background Mg = Sé x R4 is one of the simplest manifolds that is not conformally flat.
Nonetheless all known observables on My = Sé xR are still determined by the flat space CFT data [20].

ZSéxSf;l =Tr Hga—1©




which is related to the thermal partition function on Sé x R4 in the % — 00 limit

where the heavy operator contributions are no longer suppressed. Therefore by measures
the asymptotic density of high dimension local operators, akin to the role of the conformal
central charge coq in d = 2 CFT,’ and we see that the finite temperature one-point function
(Tuw) SLxRd~1 is determined by the flat space operator data.b

Coming back to the coefficients ¢; and ¢y in our universal formula for the Casimir
energy (1.6), as we explain in section 2.1, ¢; is determined by the thermal one-point function

of the CFT stress energy tensor,”

b
¢l = _gT_ (1.12)

This is natural because the My = T2 x R%2 background we consider is a generalization
of the thermal background by including another compact direction which becomes large in
the limit of (1.6).

If the d-dimensional CFT upon reduction on S! contains a gapless sector described by a
(d—1)-dimensional CFT with stress energy tensor T , ¢2 is determined by the corresponding
thermal one-point function in d — 1 dimensions,

b

=__T 1.13
C2 d_17 ( )

which no longer has an obvious interpretation in terms of flat space operator data in d-
dimensions.

The rest of the paper is organized as follows. In section 2, we carry out the effective field
theory analysis to derive the universal behavior of the Casimir energy density £(7) in the
thin torus limit. In section 3, we spell out the modular properties of £(7) using PSL(2,7Z)
spectral theory. We then illustrate our formula (1.6) with concrete CEFT examples, starting
from the free scalar theory in d > 2 in section 4 where the Casimir energy &£(7) is given
by familiar real analytic Eisenstein series. For interacting CFTs, £(7) is much harder to
compute exactly. In section 5.1, we study the d = 3 critical O(N) CFT in the large N
limit on 72 x R extending previous works. We derive new formulae for £(7) in the O(N)
CFT in terms of a generalized Eisenstein series and determine the behavior in the thin
torus limit which matches onto our formula (1.6) in an interesting way. In large N CFTs
with a semi-classical holographic dual, the ground state on T2 x R4 is dual to certain
AdS soliton in the bulk which depends on the moduli 7 of the boundary 7. The Casimir
energy density £(7) is then determined by the bulk action evaluated on the AdS soliton
solution which we discuss in section 5.2. We end with a discussion of open questions and
future directions in section 6.

®We emphasize that in d > 2, the coefficient by is in general a nontrivial function on the conformal
manifold of the CFT.
fSimilarly, the one-point function of a general local operator <O>S}3 «md—1 is related to the £ — oo limit

B

of ((’)(317))SL1€X5;.¢;17

(O st = Y e w4 (gl0()9), (1.11)
[

which depends on the OPE coefficients with general CFT operators ¢.
"In the notation of [20], ¢} = — frhere,



2 General structure of Casimir energy density

2.1 High temperature expansion from effective field theory

Here we derive the universal formula (1.6) for the Casimir energy density £(7) in the thin
torus limit 7 — ico. As already mentioned in the introduction, this will be achieved by
analyzing the effective field theory (EFT) from KK reduction on the small circle in this
limit [21, 22].
We work with the CFT on T2 x R%2 and start by putting the metric (1.1) into the
KK form
ds* = B2(dt + a)* + L*dz* + dypa» (2.1)

where a = udz is KK photon (graviphoton) and
ﬂ:Ll, n =T, L:LQSiDHITQB. (2.2)

Treating the t direction as Euclidean time, we can interpret the CF'T partition function
on T? x R%2 as a thermal partition function over the Hilbert space on the base manifold
St x R4-2,

*ﬁ(HSI{ wrd—2 TP  pd—2)

Z(T? x RT"2) = Try e L , (2.3)

1 d—2
SLX]R

where PSE «Rd-2 is the generator for translation along the base Si (the charges are quantized
as 7 for n € Z) and p the corresponding chemical potential.

Since we can equivalently pick one of the non-compact directions in R42 to be Eu-
clidean time, in which case the partition function is dominated by the ground state contri-
bution, we arrive at the following relation

e_vd—QEvac(L17L279) _6Fside—2(L,ﬂ,ﬂ) (24)

=e
between the ground state energy on T2 x R%~3 and the free energy on Si x R92. From the
extensivity of the free energy and (1.3) with A = L3 (the area of T2), we obtain a relation

E(r) = —A? f(L, B, 1), (2.5)

between the Casimir energy density £(7) on T2 x R~ and the free energy density f(3, i)
on S x R4-2,

We now focus on the limit § < L with p fixed (equivalently 7 — oo with 7 fixed).
In this case, f(/3,u) is naturally captured by the EFT from KK reduction of the CFT
on S’é in (2.1). Below we will deduce universal properties of f(/3,u) from general EFT
considerations.

On general grounds, the d—1 dimensional Wilsonian EFT from the KK reduction of a d
dimensional CF'T on Sé is obtained from integrating out KK modes of mass mgyg ~ % At
infinite volume (on the base manifold), it is well-known that this leads to an effective action
Serr that consists of local analytic functionals in the background fields which capture the
induced contact interactions. Here the relevant background fields consist of the metric on
the base manifold g;; and the KK photon gauge field a;. The possible local functionals are



constrained by invariance under background diffeomorphism and gauge transformations
(together they correspond to diffeomorphism transformations in d dimensions). These
functionals take the form

SEFT S 52n+2m—d+1/dd—lx\/gR[g]nF[a]m’ (26)

for n,m € Z>o where R[g] denotes schematically the Riemann curvature on the base man-
ifold and F'[a] the field strength of the KK photon. They constitute a derivative expansion
of Sgpr where the § dependence is fixed by dimensional analysis, and so equivalently
describes a high temperature (small ) expansion of Sgpr.

Now the background we are interested in (2.1) has vanishing curvature for both the
metric g;; and the gauge field a; on the base. Consequently, the only non-vanishing local
functional among (2.6) has n = m = 0, which corresponds to the cosmological constant
term generated by integrating out massive KK modes. Therefore, we have

& _
SEFT = _Bdl—l /dd 1\/§+ SgapleSSa (27)

where Sgapless is the action that governs the dynamics of the gapless modes that survive
the KK reduction. Note that quantum effects at finite temperature typically generate a
non-negative thermal mass squared mfhermal for the KK zero mode. While there have been
recent counter-examples to this statement (see [23, 24]), here we assume this is true. The
remaining unlifted KK zero modes are then described by a d — 1 dimensional CFT.

An important caveat here is that if the d dimensional CFT has gravitational anomalies,
such anomalies must be matched by the EFT. In this case, local functionals of the Chern-
Simons type can appear in SgpT, which are generally not invariant under background gauge
transformations® and the non-invariance precisely reproduces the d dimensional anomalous
variation upon reduction on Sé. Nevertheless, the flatness of our background ensures that
they do not contribute to Sgpr.”

We emphasize that the simple form of the Sgpr in (2.7) completely determines the EFT
partition function, correspondingly the free energy density f(3, i), in the high temperature
limit to all orders in (3,

. C1 1 (&)

lim £(B.0) =~ + 5 (~ s ) + FunlBer0). (28)
up to terms that are non-perturbative in S (i.e. exponentially small as § — 0) which
we package together in f,,(8, 1) and will come back to shortly. The first term on the
r.h.s. of (2.8) comes obviously from the cosmological constant term in (2.7). Comparing

with (1.8) in the f < L limit, we find

b
¢l = *FT (2.9)

8Such Chern-Simons type terms are either non-invariant under small gauge transformations because

of field-dependent couplings or non-invariant under large gauge transformations because of ill-quantized
constant couplings.

9This is to be contrasted with the cases where the base manifold of the KK reduction has nontrivial
curvature (e.g. S or S* x S92 for d > 4).



is determined by one-point function of the stress tensor 7),,. The second term on the r.h.s.
of (2.8) comes from the thermal free energy of the d — 1 dimensional CFT (that survives
the KK reduction) on S} x R4~2 (i.e. (1.8) with 3 replaced by L and d replaced by d — 1)
and the coefficient ¢y is determined by the one-point function of the stress tensor ﬁ-j for

this d — 1 dimensional CFT,
b
___T 2.10
o= (210)

2.2 Non-perturbative corrections from worldline instantons

The high temperature EFT does not completely determine the free energy of the KK-
reduced theory on the base manifold away from the infinite volume limit. The corrections
are denoted by fnp (5, 1) in (2.8) which are exponentially suppressed (i.e. behave as e~ L/B).
Such non-perturbative contributions are naturally associated with worldline instantons,
namely virtual massive particles propagating around the compact circle Si on the base
manifold. They are most easily seen from the worldline representation for the one-loop
effective action of a free massive particle [25, 26],°

o0 dT ~
Sirg=| e M7

T

v T »/:rj(T)zzj(O) Da? () exp l/o de <igij5£zf£j + QTriQaj:'ﬂ)] ,

(2.11)
where x7(p) parametrizes the worldline of a scalar particle of mass M ~ % and KK-charge
Q@ € Z and T is the usual Schwinger parameter. For nonzero @, the particle couples to the
background KK-photon «a;. The saddle point equation for the worldline path integral over
27 (y) is simply & = 0 since the a; is flat. The Euclidean solutions compatible with the
periodicity condition are

2i(p) = (%,0, ...,0), (2.12)

where the only nonzero entry is in the Si direction and this solution winds n times along
Si. The one-loop effective action (2.11) is dominated by these saddles for large mass
ML~L/B>1,

. —nML 2mi
Jim S g = e b, (2.13)

on top of which there are perturbative contributions in 1/ M coming from the fluctuations.

The n = 0 case of (2.12) is the trivial saddle which is insensitive to compact directions
of the spacetime manifold. The fluctuations thereof precisely generate the perturbative
terms in the effective action that are power law in 3. The case n # 0 of (2.12) corresponds
to nontrivial worldline instantons and (2.13) gives the instanton action which depends on
the chemical potential p if the particle carries a nonzero KK charge (). For convenience
we define the dimensionless mass M by M = 27M

The most general contributions to fu, (3, ) come from multiple worldline instantons,
each labeled by its mass M, KK charge () and winding number n. Moreover these world-
line instantons may interact with one another, producing corrections beyond the dilute
instanton gas approximation [27].

0Here for simplicity we focus on scalar particles. Generalizations to spinning particles can be found
in [25] by introducing auxiliary variables along the worldline.



The non-perturbative contributions to the free energy takes the following form, as a
sum over multi-instanton configurations

ﬂ J M; 2mi J i /8
A Jap (B, 1) Z Z e 1o Mi 2mipy ) Q 9,5.0 (L) . (2.14)

=183

Here j counts the number of worldline instantons each with unit winding number. The
vectors M , Q each has j entries and they specify the masses and KK charges of individual
instantons in this configuration.!! The fluctuations around each j-instanton configuration
and the integration over the moduli space of such configurations are captured by the factor
9; 51,0 (%) which contains power-law terms in %
For free CFTs compactified on S [13, the worldline instantons coming from massive KK
modes do not interact and 9;5iG can be computed explicitly from (2.11). See further
discussions in section 4 for the free scalar CF'T. In general CFT upon circle reduction, there
are nontrivial interactions among worldline instantons which are not taken into account
by (2.11). In section 5.1, we will find explicit expressions of 951G for the worldline
instantons in the interacting O(NN) CFT.
Using the relation between the free energy and the Casimir energy (2.5) (and also (2.2)),
we conclude the EFT analysis with the following universal behavior for the Casimir energy
density on T? x R4=31,

o . .
lim £(7) = 17 +corp 2 +> Z eI L Mig2Tin 2 Qg o s(m), (2.15)

T—+100 . 3M,Q
=G
which contains two perturbative terms whose coefficients are related to finite temperature
CFT data by (2.9) and (2.10), and a tower of nonperturbative contributions from the
worldline instanton gas.

3 Modular properties from PSL(2,7) spectral theory

As already explained in the introduction, the toroidal Casimir energy density £(7) is a
modular (invariant) function of the complex moduli 7. Here we want to understand what
types of non-holomorphic modular functions are relevant for this CFT observable.

Unlike the holomorphic case where the space of modular functions is highly constrained
(to be rational functions of the modular invariant j(7)), the space of non-holomorphic mod-
ular functions is much bigger. This is necessary to accommodate the vast zoo of modular
functions of different properties that arise from QFT observables which are mostly non-
holomorphic. Well-studied examples of such modular functions include the torus partition
functions of d = 2 CFTs and correlation functions in the d = 4 N/ = 4 super-Yang-Mills
(SYM) CFT where 7 is the complexified Yang-Mills coupling. An important question there
is to understand the general properties of the relevant modular functions as dictated by
the underlying CFT. Impressive progress is made in the recent years on this question for

11p this parametrization, a worldline instanton of charge @ and winding number n is represented as n
identical worldline instantons of unit winding number and the same charge Q.



both the d = 2 CFTs [28, 29] and the d = 4 SYM [30] using the powerful tool of PSL(2,Z)
spectral theory (see also previous work [31]). Here we initiate to tackle the same question
in yet another different context, that is the toroidal Casimir energy of general d > 2 CFTs.

3.1 Review of PSL(2,Z) spectral theory

Let us start with a quick review of the necessary ingredients for the PSL(2,Z) spectral
theory. See for example [32, 33] for more details. Here we follow the conventions of
mathematics literature to denote the real and imaginary parts of the complex moduli as
T = x + iy (which we haven written as 7 = 71 +i7y in the rest of the paper). The standard
PSL(2,Z) fundamental domain is denoted by F = PSL(2,Z)\H with the hyperbolic metric

2 2
ds? = w , (3.1)
Yy
and hyperbolic volume -
vol(F) = . (3:2)

For modular invariant square integrable functions f(7),g(7) € L?(F), there is a natural
inner product known as the Petersson inner product defined by the following integral
over F,

2. -
)= . ‘;fmgm, (3.3)

Square integrability here simply means finite (f, f). The hyperbolic Laplacian on F de-
fined by

A=—y*(02+ 85) ) (3.4)
is self-adjoint with respect to (3.3) on L?(F). Consequently, any modular invariant function
f € L?(F) admits a unique orthogonal decomposition into eigenfunctions with respect to A,

= 3 vi(T (fovs) 1 s T

known as the Roelcke-Selberg spectral decomposition. The eigenfunctions here consists of
a continuous family of non-holomorphic Eisenstein series Ey(7) with s = 3 + R, which

satisfies
AFEs = s(1 — s)FEy, (3.6)
and a discrete family called the cusp Maass forms v;(7) satisfying
1
Avj=Njvj, A=+ Rj, (8:7)

where R; are a set of sporadic positive real numbers.
Let us review some properties of these modular eigenfunctions below. The Eisenstein

series has the following explicit definition, in the form of a Fourier decomposition,'?
02s—1(J) . s, Al=s) 1
Es(1) = ¢s(y +le4cos 2mjx) LA (s >fK 12my),  ws(y) =y° + DORA
(3.8)

12Note that the Eisenstein series is not in L?(F). Nonetheless when smeared by a function f(t) € L*(R),
fIR dt f(t)E1 j2444(7) defines modular functions in L*(F).

~10 -



where oy, (n) = 34, d™ is the divisor function and A(s) is the completed Riemann zeta
function defined below,

A(s) =7 °T(s)¢(2s) . (3.9)

It satisfies the following reflection relation,

A(s) =A (; - 3) , (3.10)

and is meromorphic for s € C with simple poles at s = 0, % and residues

Ress—oA(s) = —Res,_1A(s) = — = (3.11)

2 )

_1
2

A(s) has zeroes at s = £ for nontrivial zeros p of the Riemann zeta function (with Re p = %
according to the Riemann hypothesis).
Correspondingly, the Eisenstein series F4(7) is meromorphic in s, with a simple pole

at s = 1 and other sporadic simple poles at s = g. In particular the residue at s =1 is,
3
Ress—1 Es(7) = = = vol(F) L. (3.12)
s

For Re s > 1, the Eisenstein series is equivalently defined by the following Poincaré series

Es(1) = Z Im(y7)% = é Z Y

2s
HET oo \PSL(2,Z) mneZ,(m;n)=1 mT +n

S

: (3.13)

which is clearly PSL(2,Z) invariant and its meromorphic continuation to s € C is given
by (3.8). It is convenient to define the completed (symmetric) Eisenstein series

EX (1) = A(s)Es(7), (3.14)

which satisfies

Ei(r) = Ei_(7). (3.15)

For Res > 1, it can also be written as

Ei(r) = s T(s) 3 Y

2
2 el |m7 + n|?s

S

: (3.16)

where Y means the m = n = 0 term is dropped. The overlaps in (3.5) are explicitly

given by,
d*r o0 s
(B = [ FPOB) = [ dy R, (317)

where Fjy = fi{% dx F () is the zero Fourier mode of F'(7) and the last equality follows from
the unfolding trick (using the Poincaré series definition of Ej in (3.13) and then analytic
continuation).

The Maass cusp forms v;(7) are eigenfunctions of A in L?(F). The special case is the
constant function usually normalized as,

Vv = § (3.18)

™
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For more general Maass cusp forms, depending on their parity under x — —x, we have

Z ay; ) cos (2mkx)\/yK iRt (2mky) ,

(3.19)
Z ) sin (2mkx) /YK, R (27rky)
where the order of the Bessel functions are related to the A eigenvalue \; by
M=ty (RT)? (3.20)
J T4 g’ ’
The normalization is commonly fixed by ag"i) = 1. The coefficients ag-j + and R?[ are

not known analytically but numerical results are available (see for example appendix A.2
of [28]).

3.2 Spectral decomposition of Casimir energy density

The spectral decomposition (3.5) only applies to modular functions that are square inte-
grable. As we have derived from EFT arguments in section 2.1, the CFT toroidal Casimir
energy density £(7) has the following cusp behavior (see (2.15)),

lim &(1) = clyg + Cle*g +0 (yae*%M"yeQ”ikm) , (3.21)

T—>100

for ¢; > 0 and ¢ > 0, thus clearly not square integrable for d > 2.
Nevertheless there is a natural way to regularize this cusp behavior using the hyperbolic

Laplacian,
d(d—2
el = (a+ 1D, (3.22)
which is modular invariant and vanishes exponentially at the cusp
—2nMny 2mwiknz
T1—1>rznoo greg( ) 0 (y € € ) (323)

and thus now in L?(F). Therefore we can apply the decomposition (3.5) and write,

o0

reg’yj 1 / d5(Eren, ) E
reg Z Vjvyj )+47TZ Res:% S< ree S> S(T)' (324)

It is straightforward to invert the differential operator in (3.22) and obtain,

<A . d(d—2)> -1 greg _ i <(c/‘r0ga I/]> I/j(T) + L /R B ds ( <€r0g7 Es> ES(T) ,

4 = A+ d(d 2) <Vj,1/j> A7 al—41)2 _ (25—1)2

(3.25)
which is still in L?(F) since coefficients in the decomposition are now divided by positive

numbers that are bounded below by M
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This inversion is ambiguous up to the kernel of A+ (d 2) \which can be fixed by adding
the Eisenstein series F4(7) whose coefficient is fixed by the cusp behavior of £ in (3.21).
2

We thus find!?

E=c

Eregy Vi) vi(T) 1 (Eregs Es)
) + B 4 —/ ds g Ey(1). 2
;E% N+ T (o) ey P e ) (3:26)

N\R.

This decomposition is unique. Suppose there is another modular function £ with the same
cusp behavior as in (3.21) and

<A + d<d4_2)) E'= g - (3.27)

Then £ — & € L*(F) and

d(d—2)

(a+ 55

)w—gq:o, (3.28)
which is not possible by the spectral decomposition (3.5), of which the eigenspectrum for
A is bounded below by %.

It is convenient to work with the symmetric Eisenstein series E(7), correspondingly

we define
(f, Es)

Als) -

{f7 ES} = {f7 ES} = {fa El—s} ) (329)

then we can write,

12 d27' 1 {grcgaE } *
E(r) = ClE%(T) + d(d—2)7T/]-'l/26reg(T) + R/Res:l ds @12 (2s-1)2 ES(7)

4 4 (3.30)
+Z (7).

Focusing on the zero Fourier mode of &£, we have

12 d*t 1 Ereg, Es s
E0(y) =erog W)+ T3 | Ees(r) + 5 [ ds e Bl N sy
°=2 T T 1

dld—2)r Jr y 271
(3.31)
and similarly for the zero mode of &¢g
3 d*r 1
Gl = [, €+ 5 [ sl BN (3:32)

We have used here that non-constant cusp forms do not have zero Fourier mode.
A major advantage of the spectral decomposition is that it isolates the potential un-
knowns and packages them into the coefficients, which we define as

h(s) = {&reg, Es}, Pj = (Eveg,vj) for j > 1, (3.33)

which completely determines £(7). We summarize the properties of h(s) below:

13In parity-invariant CFT, only the even cusp forms 1/;' in (3.19) appears in the spectral decomposition
of the toroidal Casimir energy.
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6. h(4)=(d—1) (A(d - A(ld)>

2

The first three properties above follow from the definition of the overlap {&eg, Es} and
that &g is square integrable. In general the spectral overlap {f, Es} for modular function
f € L*(F) has a meromorphic analytic continuation to s € C. Here for &g, we will see
that h(s)A(s) cannot have any poles except s = 0. To see this, let us study the behavior
of (3.32) in the large y region. We are then instructed to deform the contour to the left.
This could potentially generate perturbative terms in y from poles in the integrand. Since
Ereg(T) cannot have perturbative terms in y near the cusp, the integrand h(s)A(s) must
have the right pole structure to cancel the constant term in (3.32). This comes from the
pole of h(s)A(s) at s = 0. Since A(s) has a simple pole at s =0 (3.11), we conclude
d*r

h(0) = g /f o Ees(7). (3.34)

Furthermore, there cannot be poles in h(s) to the left of Re s = 0, and then by reflection,
h(s) cannot have poles anywhere for s € C except at zeroes of A(s) along Rs = 1/4 (and
its reflection along Rs = 3/4). Similarly by looking at the large y behavior of (3.31), and
matching with the cusp behavior in (3.21), we conclude

h <‘2i> —h (25‘1) = (d—1) (A(?gl) - Aé)) . (3.35)

Therefore we can equivalently write, by contour deformation,

1 A(%) 1 {greg7Es} * regaV]
g—2<cl+A(d 1)62 EQ(T)+ZW;/1:{es>gdSW_WE Z -7').

T =1 At
(3.36)
and for the zero Fourier mode,
1 A 1 {Eveg: Bs}
07 ( TR ) AN 5 [y PR T (30

So far we have focused on the overlap coefficient function A(s) in (3.33) that is necessary
and sufficient to reconstruct the zero Fourier mode of £(7). To fully determine £(7) we also
need the overlaps with the cusp forms (3.19) which are denoted by p; in (3.33). It is widely
believed (though not proven) that the cusp forms do not have degenerate eigenvalues [34—
36]. Consequently, the overlaps p; is determined by the k = 1 Fourier mode of £(7) using
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the orthogonality conditions for the Bessel functions Kj;,(27y) [37]. Physically, the k-th
Fourier mode &(y) of £(7) accounts for the contributions from worldline instantons of
total KK charge k to the free energy (equivalently toroidal Casimir energy). From the
above reasoning, we have just concluded that all instanton sectors of higher KK charges
are completely determined by the ¥ = 0 and & = 1 sectors! Such a general statement
about CFT is of course a consequence of the powerful modular invariance for the toroidal
geometry. We note that this is essentially a restatement of similar constraints discussed
in [28, 30] albeit in a different physical context. Furthermore, there are also constraints on
the k = 0 sector (“scalar sector”) itself from modular invariance. In [29], a closed modular
bootstrap equation was derived for the scalar sector of a class of d = 2 CFTs. Analogously,
the & = 0 mode &) (3.31) and equivalently the spectral overlap h(s) in (3.33) satisfy a
similar bootstrap equation. We leave a more detailed study of the spectral decomposition
for the toroidal Casimir energy to the future.

4 Casimir energy density in free scalar theories

For illustration of the general structure predicted by the EFT analysis in section 2 and
the spectral theory analysis in section 3, here we consider the free CFT of a real scalar in
dimension d > 2. The computation of the toroidal Casimir energy for the free scalar was
done in [38, 39] (and more recently for higher dimensional torus in [40]). Below we review
these results and compare with our general result (2.15) from EFT analysis.

The scalar Casimir energy density on My = T2 x R4! is given by the following

obvious sum-integral,

dd 3—’
Foc= > / %d 32 Win,n (D) 5 (4.1)
mne”
where each individual mode contributes,
mn(B) = 7 + (my +nka)?, (4.2)

and 121 and 152 are the momentum lattice basis vectors on the T' 2,

= 2w 1 - 2w 1
k1 1, —— ko = — — . 4.
Ll < Tz)’ T L (0’ Tz) (43)

Note that we have explicitly excluded the m = n = 0 term in the sum.
The sum-integral (4.1) suffers from UV divergence. We regulate the non-compact

momentum integral by dimensional regularization,

1 T2 d / d—2
m,nEL

The residual sum over the momentum lattice is regulated by analytic continuation using
the real analytic Eisenstein series defined in (3.16). Taking into account the rescaling (1.3),
we obtain the dimensionless modular invariant Casimir energy density for the free scalar,

E(7) = Fia(r) = Bj(r), (45)
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where in the last equality we have used the reflection symmetry (3.15) of the Eisenstein
series.

The free scalar Casimir energy density has a simple Fourier decomposition in 7
(see (3.8)),

_ < (k\T
E(r) = AMd/2)r + AL — dj2)ri =y 4r}? 3 () cos(2mkn1) K aos (2mknrs)
n 2
kn=1
(4.6)
This makes explicit the hierarchy between perturbative and non-perturbative contributions
in the limit 7 — ¢0co. The former comes from the zero Fourier mode and comparing

to (2.15), we find the corresponding coefficients

e = A (g) = A (d;l> , (4.7)

where A(s) is defined in (3.9). Indeed, the thermal one-point function of stress tensor of a
free real scalar (see for example [20]) takes the form (1.7) with

2(d 1 /d
bT:_dvoli(Sd)—l) :—dA<2> , (4.8)

where we have used vol(S9~1) = I%E‘j//;). Since the gapless sector of a free scalar upon S*

reduction is obviously a free scalar in one lower dimension, we see (4.8) is in agreement
with (4.7) via the general relations (2.9) and (2.10).

The non-perturbative contributions to the toroidal Casimir energy for the free scalar
come entirely from the nonzero Fourier modes in (4.6). As explained in section 2.2, they
are associated with worldline instantons of massive particles in the KK reduced theory.
In the free scalar theory, such massive particles are in one-to-one correspondence with the
k-th KK modes (k # 0), whose (dimensionless) mass and KK-charge satisfy M = Q = k.
The worldline instanton from the k-th KK mode going n-times around the compact Si
is weighted by e?™"7 from its worldline action (see (2.11)). Together with fluctuations
thereof, they account for the nonzero Fourier modes in (4.6).

Finally, in terms of the spectral decomposition discussed in section 3, the free scalar
toroidal Casimir energy is the special case where the only nonzero term on the r.h.s. in (3.30)
is the first term. Equivalently &z = 0 (see (3.22)) as a consequence of the Laplace-type
differential equation (3.6) satisfied by the Eisenstein series E7}.

2

5 Casimir energy density in interacting CFTs

The power of our general results from the previous sections lies in that it applies to general
CF'Ts. While it is very difficult to compute the toroidal Casimir energy for interacting CFTs
in general, here we discuss examples where analytical methods are applicable. We will see
how these analytical results confirm our general formula (2.15) from EFT considerations
and we will also discuss the interesting features brought about by nontrivial interactions.
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5.1 Critical O(N) scalar CFT

The first interacting CF'T we consider is the critical O(N) CFT in d = 3 dimensions. This
is perhaps the most widely studied class of CFTs in d > 2. It models the second order
phase transitions of three-dimensional statistical models including the uniaxial magnet
(N =1), the XY magnet (N = 2), the Heisenberg magnet (N = 3) and the spherical model
(N = o0), as well as the quantum critical points of two-dimensional materials (see [41] for
a recent review). In the large N limit, the singlet sector of the O(N) CFT is conjectured
to have a holographic dual [16-18] described by the Vasiliev’s higher-spin gauge theory on
AdS, [42-44] subject to suitable boundary conditions [45, 46].14

To describe the O(N) CFT, we start with a scalar field theory defined by the following
O(N) symmetric action on flat space R3,15

0= [ @500 + 5o + 0] 6.1)

where ¢; with i = 1,2,... N denotes a scalar field in the vector representation of O(N) and
u,r are the coupling constants. The quartic interaction is relevant in d = 3 and triggers
an renormalization group (RG) flow from the free O(N) symmetric theory to a nontrivial
fixed point in the infra-red (IR) described by the critical O(N) CFT. Near the critical
point, the mass term is relevant and thus needs to be tuned r — r. to ensure a vanishing
mass gap and furthermore we take u — oo to reach the CFT.

Despite the explicit UV Lagrangian, there is no small parameter in (5.1) and thus it
is not useful in practice to extract CFT data in general. Nonetheless, in the large N limit,
as is suggested by the form of (5.1) with u fixed, we can make use of the 1/N expansion.

Here the standard procedure starts with the Hubbard-Stratonovich transformation to
replace the quartic interaction term by introducing an auxiliary scalar field A,

1 . 6N)A?
N = [ l (0u69)° + 576i65 +

and path integrate over real A. Since ¢ appears quadratically in S[¢, A], we can integrate

+iAgid! (5.2)

it out and obtain an action for A,

X (5.3)

N
SN =5 Tr In(—0% +r + 2i\) +

In the large NV limit, from the saddle point approximation, we obtain the following equation
for A,

/ (d3k 1 124\ . (5.4)

203 k2 + 1+ 20N w

This is known as the gap equation because it determines the mass gap m]%g =r 4 2i\.16
The critical coupling is determined by

Bk 1

eT7% (2m)3 k2

(5.5)

1See also [47, 48] for recent works on this holographic duality beyond the leading large N limit.

15We refer the readers to [49] for further details on the O(N) model and its large N limit.

16 As we will see, for the critical O(N) model on R x T2, the saddle point of X is imaginary and the mass
gap mﬂig > 0.
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It is convenient to work with the dimensional regularization so that r. = 0. Therefore to
study the large N O(N) CFT, it suffices to focus on the following action

/ e [ (0u00)? + NG| | (5.6)

where we have sent u — 0o to decouple the irrelevant deformation A?. Similarly the action
for A simplifies to,

S[\] = gTr In(—0? + 2i)). (5.7)

On R3, the CFT is clearly described by the A\ = 0 saddle point, similarly for other confor-
mally flat spacetime manifolds such as S®.

5.1.1 Casimir energy from gap equation

We now study the O(N) CFT on R x T? to determine the toroidal Casimir energy (see
also previous work [50]). This boils down to solving the path integral for the action (5.6)
(equivalently (5.7)) on R x T2. The saddle point (gap) equation for A becomes,

A Z/ 2m 2 + k:2 +2in (5.8)
where A is the area of T2 and k is a lattice vector with the basis vectors in (4.3). We define
2 2
%N = (”) A2 (5.9)
Ly
and integrate over w to obtain,
1

0= > 5.10
m,ne” \/\m7'+n]2 +7’22A2 ( ) )

The gap equation (after regularization) will determine A as a function of the complex
moduli 7. Physically, 27 A is the induced dimensionless mass of the ¢’ fields due to the
nontrivial geometry, generalizing the thermal mass in the case of Sé x R2. Equivalently, it
determines the one-point function of the O(N) invariant operator ¢;¢' on R x T2. In the
limit the 72 area A — oo, the induced mass m? = 2i\ vanishes which is consistent with
vanishing gap in the CFT on R3.

The large N Casimir energy is then given by the following mode sum as in the theory
of N free scalars of mass A (see around (4.1)),

N 27

Bvac = L Z VImT +nf2 + 7342 (5.11)

Equivalently, this follows from evaluating the CFT partition function on Sé x T2

— 2 aw 72
Eyac = li}rgoﬁlogZ— 2/2 log(w? + k* + 2i)) (5.12)
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after integrating over w and dropping extensive terms on T2 (which can be absorbed by
the d = 3 cosmological constant counterterm).
After a rescaling (see (1.3)), we obtain the dimensionless Casimir energy density,

E(r) = —FNTQ_% > \/|m7' +n|2 + 12A(T)2. (5.13)

m,neL

To regularize the momentum lattice sum that appears in the gap equation (5.10) and the
Casimir energy (5.13), we define the following generalized Eisenstein series,

1 TS
So(r,A) = =7~°T 2 :
Gs(1,A) 27r (S)mgnéz (|m7+n\2+7'22A(T)2)5 (5.14)

The real analytic Eisenstein series defined in (3.16) is recovered as a special case at A = 0,

Eg(r) = lim (Gs(T, A) - ;(WZ(Z)Q)J : (5.15)

More generally, G4(7,A) is obviously modular invariant if 7A(7)? is modular invariant
(e.g. a constant), since the above can be written as a sum of Poincaré series,

Im(y7)* 1 T(s)

s ;CZMGFOO\I-ZSL 0z P ImONRADY " 2(ena? (10
Here for the application to the CFT on R x T2, as a consequence of large diffeomorphisms
on T2, we see indeed that the induced mass normalized by the T2 area 2iAA = (27)%moA?
is modular invariant and therefore so is G4(, A).

Similar to the Eisenstein series Es(7), the function G4(7, A) admits an analytic contin-
uation in s that is finite at s = —1/2 and s = 1/2 which will be relevant for the gap equation
and the Casimir energy respectively. We note that the function G4(7, A) is a slight modifi-
cation of the function gs(A, 7) introduced in [50] which they used to analyze the spectrum
on T? numerically. There the analytic continuation in s is provided by an integral formula.
Here we will provide an alternative but equivalent formula in the form of Poincaré series

(more precisely sum of them) which makes the modular invariance manifest,'”

Gy(r,A) = Z/ (TZA)l_S Ki_s(2mAln + mtl|) + w (WTQAZ)FS , (5.17)

mne” |n + mT‘

and is well defined for A away from the branch cut A < 0. The details of the derivation
and the comparison to the formulae in [50] are given in appendix A.

In terms of the regulated generalized Eisenstein series G4(7,A) in (5.17), the gap

equation becomes'®

1
(hA) o 3 e At _gpp (5.18)

0=G
m,ne’l |Tl + mT‘

1
2

" The special case of the modular invariant function G, (7, A) when 79 A? is a constant has also recently
shown up in a different context [51].
18In other words, A is the fixed point of the 7-dependent lattice sum.
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and the Casimir energy is

3 3
N5 Z/ 1+ 27Aln + m7| o2 Alntme| | 2NT2A37}  (5.19)

47

m,ne”l

g(T,A)ZNGi%(T,A): P
Note the close resemblance to the corresponding expression for the free scalar (4.4). The
toroidal Casimir energy for the O(N) CFT is obtained from solving the gap equation (5.18)
for the induced mass A(7) and then plugging it in (5.19). The gap equation says that the
CFT Casimir energy extremizes £(7, A) with respect to A2. The induced mass squared A2
must be non-negative to avoid an instability on 72 (and thus divergent partition function
on T3). For our choice of branch cut in (5.17), this means the saddle point has A(7) > 0,

which is clearly consistent with (5.18). In fact, the saddle point is a local minimum of
E(r,A), since

0?E(1,A)
9(A2)2

NTQ
~ 3272A

NT['27'22G5 (1, A) Z e 2mAlntm| (5.20)

m,nez

which is positive for A > 0.
We solve the gap equation (5.18) numerically and then evaluate the toroidal Casimir
energy (5.19).1 In figure 1, we present a plot of £(7) for the O(N) CFT in the standard
3

PSL(2,Z) fundamental domain. We see the growth behavior at large 7 as 77, and the 7
dependence is almost negligible in this region. In figure 2, we present a plot of A(7) in
the standard PSL(2,7Z) fundamental domain. The induced mass tends toward a constant
at large 7. The dependence on 7 is also very weak. In the next section, we discuss
analytic results for £(7) in the thin torus (high temperature) limit, which will explain
these observations.

5.1.2 High temperature expansion and worldline instantons

We now study the toroidal Casimir energy £(7) for the O(N) CFT in the thin torus 7 — ico
limit, to compare with the universal formula (2.15) derived from high temperature EFT
and the numerical results obtained above. For this purpose it is useful to use another form
of the regulated generalized Eisenstein series (5.17). Specifically, we have

o0

3
E(r,A) = N2 f(A) + 2]\77'2 Z Z L e2mnmTL /2 L A2K (2102 + A2mmy) (5.21)
neZ m= 1
where .
— 3A3 : —2A . —27A
f(A) = o (47‘(‘ A° + 6w ALip (e ) + 3Li3 (e )) . (5.22)

The derivation is given in appendix A. The gap equation, which locates the local minimum
of £(1,A) in A, becomes

o
A +log(l — e 2™3) =2 > 2T K0 (2102 + A2my) . (5.23)

nezZ m=1

19For the numerical evaluation, we find another form (A.6) for G5(7, A) to be more useful, as the sum of
Bessel functions converges very fast on the standard fundamental domain.
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Figure 1. Toroidal Casimir energy of the O(N) scalar CFT as a function of 7, computed in the
standard PSL(2,Z) fundamental domain. In the left figure, we zoom into the region around 75 = 1
to show the 7, dependence of the Casimir energy, which is more prominent at smaller 75. In the
right figure, we project the 3D plot along the —7; direction to highlight the suppression of 7
independence in this fundamental domain. £(7) grows at large 7 as T23 / 2, which becomes dominant
as early as 72 ~ 1 in the O(N) scalar CFT. The 71 dependence is negligible in this domain, except
for minor dependence near the boundary at |7| = 1, which is mostly contributed by the lowest
nonzero KK mode.

0.20

Figure 2. Rescaled induced mass A of the O(N) scalar CFT as a function of 7, computed in the
standard PSL(2, Z) fundamental domain. The induced mass hardly depends on 71 in this PSL(2, Z)
frame, and approaches a constant at large 75.
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Let us first analyze the gap equation (5.23) and Casimir energy (5.21) at infinite 7o.
From positivity and asymptotic behavior the Bessel function Ky(z), it is clear that the
saddle point A that solves (5.23) approaches a constant Ay = A(7 = i00) which satisfies

1 +2*/5) ' (5.24)

1
TAg +log(l—e 2™0) =0 = Ag= = log(
T

Consequently, the Casimir energy evaluates to
3

]\g—f (473 AF + 67 AgLiy (e727A0) 4 3Lig (e72mA0) ) = 2]\22(3)723 . (5:25)

This determines the coefficient ¢; in (2.15) for the O(N) CFT in the large N limit to be

E(r =) =

CIO(N) — 2]\;§T(3) ) (5.26)
Here 27/ coincides with the dimensionless thermal mass [14] on R? x Sé and c; agrees
with the thermal free energy [13] via the relation (2.9).

A main advantage of the equations (5.23) and (5.21) is that it can be solved recursively
in a large T expansion. First we note that by dropping all exponentially suppressed terms
in (5.23) and (5.21), there is no perturbative (i.e. power law in 79) correction to (5.24)
and (5.25). Consequently we conclude that ¢y in (2.15) vanishes for the O(N) CFT to the
leading order in the large N limit,

S =, (5.27)

This is consistent with the fact that the circle reduced theory (keeping only zero KK
modes), namely the O(N) vector model in d = 2 (equivalent to the O(N) og-model in the
IR) famously has a mass gap for N > 3 [52-59].

Given the general discussion in see section 2.2, we are then led to the following expan-
sion of the solution A(7) for the induced mass,

o) . )
INCETNES D SRS S i el S SR TVE)
7=1

MEZLI,
m1<ma<--<mj;

(5.28)

The second term on the r.h.s. above keeps track of the contributions from multiple world-
line instantons in the EFT from KK reduction. Here j counts the number of worldline
instantons and each individual instanton labeled by ¢ = 1,...,j has KK charge Q = m;
and mass M = /m? + A3.

Similarly for the Casimir energy, we have the following expansion,

3 0 , py
) —arf+NY Y eI VST ).

Jj=1 mEZI
m1<mg<--<mj

(5.29)

Here the coefficient functions A; (m2) and & 5(72) are perturbative in 75 and account
for fluctuations on the multi-instanton background and integrations over moduli of such
configurations. Furthermore, parity invariance of the O(N) CFT implies that

Ajn(m) =40 _m(r), &Em(n)=E& _m(mn). (5.30)
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One can solve for A; 5 from (5.23) recursively starting from j = 1, and then evalu-

ate (5.21) on the solution. Below we denote K, (2) = K,(2)e* and M; = /m? + A3 for
convenience, and list the solutions that account for the single-instanton effects

2 1 1 1
A = —Ko (21 M) = = 1—— 2 5.31
Lm \@WICO( mMy72) m\ BMi71 ( 167 M 19 +O(TQ)> ’ ( )

the two-instanton contributions,

2m
ﬁAl,mlAI,mz +
8AgTo .
ErY; K1 (2nMi12) Ko (2m MaTe) + distinct perm. of {m;}
TV

20y 1

_ 6m1,m2

. M%M% 7T\/m7'2_5 + O(15 1) + distinct perm. of {m;},
M3

2
AQ,ml,mg = EKO (47TM17_2) 6m1,m2

(5.32)

and three-instanton contributions,

47 m 2
A3,m1,m2,m3 = TAl,ml AQ,mz,m;g - 7A1,m1 Al,mgAl,mQ + E’CO (67TM1T2) 5m1,m2 5m1,m3
\[Mg [QTI'TQAOMl IC() (27TM17’2) ( m%—FAg)lCl (27TM17'2)} Al,mgAl,mg,
8AgTo K1 (4 M1T2) 4A 019 K1 (2 M 732) o
— Omy maD1ms — A9 o .ms +distinet . of {m;
/5 M, 1,m2 R 1,mg NG Y2 2,ma,ms +distinct perm. of {m;}

2A T2 1 2 V2 2 1
5 \}2 1 + 3 3 1| 5 3 + 5m1,m2
5 M2 M2 M3 Mlz M22 M32 Mlz

+(’)(72_2)+distinct perm. of {m;}.

(5.33)

Similarly for the toroidal Casimir energy of the O(N) CFT, we find the following one-

instanton contributions,
1 3
— 2 — 2
517m1 = 27’2 MK (27TM17'2) =M (1+ 167 M7 +O(T2 )) , (534)

two-instanton contributions,

3 1
E2mymy = — VBT ATy A1y A1y +75 My K1 (471 M172) Sy msp +distinet perm. of {m;}

1
TEA 2M -1 1oty
= 5?\41?\/[2 1 15m1,m2+(9(7-2 2)+distinct perm. of {m;},

(5.35)
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Figure 3. Casimir energy of O(NN) scalar CFT as a function of 7 € [-1/2,1/2] at fixed 75 =1.

and three-instanton contributions,

1

212
7—23/2A17m1A17m2A17m3 + T2M1 ]Cl (67TM17'2) 5m1,m26m1,m3

2712 (/521 Ag)
3

g3vm17m27m3 =

11427272 A2
+2’7’22 [12[)K0(27TM17'2)7T7'2,C2(27TM17'2) Al,mgAl,mg

3
— At Ag1s Ko (4T M172) Opmy jmy A1,ms +distinet perm. of {m;}

2
= 2A50T2 ~ 1; - —\/zA%éml,mzé—i-@(l)—i-distinct perm. of {m;}.
Mp? Mg M3 1443
(5.36)
Because there is only one perturbative term in £(7) for the O(N) CFT, it is the dom-
inant contribution on the standard fundamental domain even for not very large 7o. This
explains why there is little 73 dependence for £(7) in this domain (see figure 1). Fur-
thermore, among the instanton contributions, the leading 7 dependence is exponentially
suppressed with a larger exponent than the leading 7 independent exponential term, due
to the higher mass of instanton with KK charge. We have checked these leading instanton
contributions presented above numerically at large 7 and they agree with the numerical
solution from directly solving (5.18) and then evaluating (5.19) on the saddle. Specifically,
we plot the Casimir energy density £(7) for the O(N) CFT as a function of 71 at 7o =1 in
figure 3. One can compute the leading contribution to the amplitude of the first Fourier
term in (5.29) using (5.34) which gives 2&; 1(m2 = 1)672”\/@%0.0035, while the ampli-
tude shown in figure 3 is about 0.0033. We see that even for 79 =1 (and it gets better
for large 72), the exponential suppression is prominent and the one-instanton coefficient
already works well (about 5% error) for estimating 71 dependence.
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5.2 Holographic CFTs with Einstein gravity duals

Let us now consider the case of general d > 3-dimensional large N CF'Ts that are dual to
Einstein gravity on AdSg41 at strong coupling [16-18]. While the ground state of the CFT
on S9! is dual to the empty global AdSy 1, the CFT ground state on R43 x T2 is expected
to be dual to certain AdS soliton solution [12, 60, 61] . For rectangular 72 = Sil X 5}42, the
AdS soliton solution is given in [60],

2 2dr? r?

dt?+

2_ e T
W=t i o) T

2 2
dyr27.2,. 7 72,2 T, 9
(1—(ro/7) )leacl—l—g—QLQdacz—i—g—zdyi (5.37)
which is related by a double Wick rotation to the black d-brane solution. Here ¢ denotes
the AdS radius. The AdS radial coordinate is r» which ends at r =rg in the interior and
approaches 7 =o0o at the asymptotic boundary. The boundary 72 coordinates are x1,xs
which obey the identification 1 ~x1+1, x2 ~x2+1. The remaining boundary noncompact

spatial directions are y; with ¢ =1,...,d—3 and the time direction is .
The circle in the x; direction shrinks in the bulk as r decreases. To avoid a singularity
at r =10, this requires?
47 f?
ro— 5.38
0 dLl 3 ( )

so that the z; circle caps off smoothly. Meanwhile the circle in the x5 direction remains
non-contractible. The energy density (in the non-compact R?3 directions) for the AdS
soliton is [60]

rd Ly Lo (4m)d=tpd=1 L,

J D =— ) 5.39
soliton 167TGN€d+1 4ddGN Lil_l ( )

where Gy denotes the Newton’s constant.

The solution of [60] for rectangular boundary 72 has a straightforward generalization
for general T2 with complex moduli 7= 7 +i79,
r? 2dr? r? L3

dt®+

2—_7
e R I IS TR

2
r
((1—(r0/r)d)(dx1 +7‘1d1‘2)2+722da:%)+?2dy3,
(5.40)
where r( is determined by the same relation (5.38) so that the circle in the z; direction
caps off smoothly in the bulk.?!
The energy density for this general AdS soliton solution follows from a similar calcu-
lation,

d
A _(@m et (5.41)

Esoliton = =366 a7 = 7 4qiGiy e

where we have used A= L?7; as the area of the T2,

20Physically, to create a conical singularity requires a massive codimension-two object (e.g. worldsheet of
a string in AdS4). One can check that the energy density of the AdS soliton solution (5.37) is minimized
when the conical singularity is absent, so the non-singular AdS soliton represents the ground state of the
dual CFT.

21 Topologically, the AdS soliton is a fibration of S* xR%™2 over a two-disk (parametrized by r and z1).
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For a fixed boundary geometry T2 x R?=3 (i.e. fixed complex moduli 71), clearly there
are multiple AdS soliton solutions related by PSL(2,7Z) transformations, corresponding to
filling in different one cycles on the T2 in the bulk. The CFT ground state then naturally
corresponds to the AdS soliton that has the minimal energy density. From (5.41), this
comes from minimizing the length L; of a non-contractible cycle on the boundary T2
that becomes contractible in the bulk. The minimal length of a non-contractible cycle
on a compact manifold ¥ is known as the systole and denoted by sys(X). Therefore the
solution (5.40) is the bulk dual for the CFT ground state when the x; direction is along the
shortest geodesic on the T2. The rescaled dimensionless Casimir energy density (see (1.3))
is determined by the systole on T2,

(4m)d=tel A3

E(r)= 1diGy  sys(T) (5.42)

which is manifestly modular invariant since sys(7?) is invariant.

In the limit of large 72, we see (5.42) matches onto the universal formula (2.15) from
EFT analysis with
( 47r)d71 pd—1

_ 5.43
saicy 0 2= (5-43)

=
where ¢; is proportional to the thermal free energy (1.8) (see (2.9)), which is natural
from the bulk due to the relation between the black brane (which dominates the canonical
ensemble) and the AdS soliton by double Wick rotations [60]. Furthermore, the vanishing
co implies that upon circle reduction, the boundary CFT is completely gapped in the large
N limit. Finally, there are no non-perturbative contributions in the standard fundamental
domain, which is related to the non-smooth feature of (5.42).%2

The AdS/CFT dictionary determines the bulk parameters ¢,G y in terms of the bound-
ary CFT data. While the detailed relations depend on the specific AdS/CFT dual pairs,
the general property is that in the large N limit, the 1/N corrections in the CFT corre-
spond to higher derivative interactions in the bulk quantum gravity. When there is another
tunable parameter in the large N CFT, such as the marginal coupling gyy in the N =4
super-Yang-Mills theory (SYM), one may further take the 't Hooft limit where the 't Hooft
coupling A (e.g. A=Ng?,, in the SYM) is fixed as N — oco. This is possible for CFTs
with string theory duals, where non-planar (higher-genus) and nonperturbative (in string
coupling) effects are suppressed in the 't Hooft limit. In table 1, we gather the relevant
AdS/CFT dictionary for the following well-known AdS/CFT dual pairs, in d =3 between
type ITA string theory on AdSyx CP3 and the U(N); x U(N)_;, ABJM theory [63], in d =4
between type IIB string theory on AdSsx.S® and the N'=4 SU(N) super-Yang-Mills the-
ory [16], in d =5 between type I’ string theory (type IIA with O8 orientifold) on the warped
background AdSgxHS? and the 5d N'=1 rank N Seiberg theories with N ¢ <8 funda-
mental flavors [64, 65], and in d =6 between M-theory on AdS7 x S* and the 6d N = (2,0)
theories [16]. Also included in table 1 is the coefficient ¢; that determines the toroidal

#2See [62] for another perspective on the restricted dependence (5.42) of £(7) on the boundary geometry.
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Casimir energy for these large N CFTs to the leading order in the large N limit via (5.42)
and (5.43) which is valid at strong coupling in the CFT.?3

At subleading orders in -, there are corrections to (5.42) and (5.43) coming from
higher derivative interactions in the bulk. In type IIA/IIB string theory and M-theory,
the leading higher derivative term takes the schematic form R* which is a quartic term
in the Riemann curvature tensor with a unique supersymmetric completion [66]. The R*
term modifies the AdS soliton solution and also the energy density. Using the AdS/CFT
dictionary (see table 1), this leads to a correction to ¢; in (5.43) at (’)(N%) for the 3d
ABJM and the 4d N'=4 SYM, and at O(N) for the 5d N'=1 Seiberg theories?* and the
6d N = (2,0) theories.

The precise coefficient for this correction has been computed explicitly for the N’ =4
SYM in [68] in the 't Hooft limit with large 't Hooft coupling A = N g%,

2
15¢(3) , _:
C§YM:%N2 <1+ %( )/\§+(’)()\3)> +O(NY), (5.44)
where the first term on the r.h.s. captures all the planar contributions and the further
subleading terms in % come from bulk interactions at even higher derivative orders such as
D*R* [69]. The non-planar contributions are contained in the second term on the r.h.s. .

Using the fact that the R* interaction depends on the type IIB axion-dilaton, equivalently

the complexified Yang-Mills coupling vy = 942” —1—%, through the real analytic Eisenstein
YM
series Es (Tyn) [66], the large N expansion of ¢f¥M at fixed 7yy is given by,
2
2 15¢(3
AN = TN CEE . ;ﬁ VNE; (rym) +O(N?), (5.45)

which also makes manifest the SL(2,Z) duality invariance in 7yy of the type IIB string
theory and the N'=4 SYM.
Contrary to ¢;YM which receives a O(N'/2) correction, the coefficient ¢3¥M in (5.43)

stays zero at O(N'/2).20 More generally, we expect ¢§¥™ =0 to all orders in + (at nonzero

ZThese AdS/CFT dual pairs as defined are fermionic and thus require a spin structure on the boundary
manifold that extends into the bulk. Here we have implicitly summed over the spin structures on My =
T2 xR%2 to produce a bosonic CFT on the boundary so that the general modular-invariant large N
formula (5.42) still applies. If we choose to work directly in the fermionic CFT with a bounding spin
structure p, then sys(TQ) in (5.42) needs to be replaced by the shortest geodesic length on T? along an anti-
periodic cycle for the fermion (see general comments in section 6 on toroidal Casimir energy in fermionic
CFT).

24The calculation in the AdS¢ dual of the 5d Seiberg theories will be more subtle than the other cases
because of divergences in the 10d background at the locus of the flavor D8 branes and the O8 orientifold
plane (see for example [67] where these divergences cancel for certain physical observables in the 5d CFT).

ZMore precisely, [68] analyzed the corrections to the black brane solution in AdSs and changes to the
thermal free energy due to the R* interaction. The corrections for the AdS soliton is then obtained from
a double Wick rotation. It would be interesting to generalize this analysis to other holographic duals in
string or M-theory.

263ce section 3 of [68] for the modified black brane solution after taking into account the R* interaction.
The modified AdS soliton (with rectangular T2 on the boundary) is obtained from double Wick rotation
and compactifying one of the remaining noncompact boundary directions. Using the results there, it is
easy to see that the energy density for the AdS soliton still depend on Lo, L1 via La/L¢™" as in (5.39) (i.e.
extensive in Ls). Consequently ¢5*™ =0 to this order in the large N expansion (otherwise it would lead to
non-extensive Ly dependence in Esoliton)-

_97 —



Dim (1/Gy l A c1

d=3 ¥k1/2N3/2 (W2/2)1/6N1/6k1/6£8 % 8\8f7217r2k1/2N3/2
d=14 2 N2 gU2 N1/, Ng2y, = N?

d=5 %\/Em]\ﬁﬂ (18772)1/4(8—Nf)*1/4N1/4€S %mz\ﬁ/z
d=6 A6 N3 (87) /BN30y, 64 N3

Table 1. The AdS/CFT dictionary involving the Newton’s constant Gy and the AdS scale ¢ on
AdSg41 for the d=3 ABJM CFT, the d=4 N =4 SU(N) SYM, the d =5 rank N Seiberg theories
and the d=6 SU(N) N =(2,0) theories. Here ¢, is the string length and ¢1; is the Planck length
in M-theory. The 't Hooft couplings A are listed for the d=3,4 examples where an 't Hooft limit
exists.

gym). This is because the SYM reduced on a circle with thermal boundary condition?” for
the fermions is described at low energy by the pure d =3 Yang-Mills theory, which confines
and has a mass gap [19, 70, 71]. Nonetheless, we expect the Casimir energy £ SYM t6 behave
drastically different at O(N?) where one-loop effects in gravity enter. In particular, the
one-loop determinants for the bulk fields will depend nontrivially on the complex moduli
7 of the torus, producing non-perturbative terms in 7o that modifies (5.42) at O(N?).

If we work in the ’t Hooft limit and focus on the planar contribution to £5YM, it suffices
to consider tree-level string theory in the bulk. In this case, we expect the 7 dependence

in (5.42) for the large N Casimir energy to persist to all orders in %,28

.1 w2 A? 15¢(3) , _s -
1315; WESYMzngYM(A)W’ fSYM()\):H_ R AT 2+0(\72), (5.46)
A ixed

where fSYM()) receives contributions from tree-level higher derivative interactions in type

9

IIB string theory.?? As the consequence of the relation (2.9), the same function f(\)

2T As explained in footnote 23, we are summing over spin structures p on T2. Out of the four spin struc-
tures, three of them are bounding (even) and the remaining one is nonbounding (odd). Only the odd spin
structure (periodic boundary condition for the fermions along all cycles) is compatible with supersymmetry
(SUSY) and the SUSY algebra ensures the ground state energy in this sector vanishes exactly. Therefore
the actual ground state of the full theory is defined in an even spin structure (which has negative energy).
For a similar reason (SUSY is preserved by periodic boundary conditions for fermions), in the thin torus
limit, out of the three even spin structures, the one with anti-periodic (thermal) boundary condition along
the small cycle dominates.

28We have already discussed why ¢5 ™ = 0 from the field theory side (at nonzero coupling). This can also
be seen concretely from the bulk string theory in the 't Hooft limit. At tree level, the translation symmetry

along T% xR%? is preserved in the (deformed) AdS soliton and the metric only depends on the size of the

SYM
soliton

contractible direction (e.g. z1 direction in (5.40)) through the regularity condition. Therefore E. is
proportional to A and then by dilatation symmetry its 72 dependence (after rescaled by (1.3)) takes the
same form as in (5.42).

29A priori one may wonder if there are worldsheet instanton corrections that depend on the complex
moduli 7 of the T?. However there are no nontrivial second homology class in the AdS soliton geometry
that can support worldsheet instantons of finite actions. This does not completely rule out worldsheet-
instanton-like contributions that are non-perturbative in ¢2, equivalently % (see for example [72]). Here

we have suppressed such potential contributions in (5.46).
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determines the thermal free energy of the SYM in the ’t Hooft limit which has been studied
extensively in the literature since [68].

We end by noting the sharp distinction between the 7 dependence of the toroidal
Casimir energy £(7) in CFTs with matrix large N limits discussed here which have Einstein
gravity duals, and those with vector large N limits which have higher-spin gravity duals.
In particular, at d =3, for the ABJM theory and the O(N) CFT in the leading large N
limit, we have

8\/§7T2k1/2N3/2 A3 ’
81 sys(T?)3
2¢(3)
5

3
— N 5\2) 32 —2mAore fo A (1 —2) —4nAgT2
Eony(T) ( T +e V2T +167TT2A0+(’)(72 ) |+0O(e )
(5.47)

The expression for the O(N) CFT is smooth in 7 € H and has an infinite tower of instanton

EABIM Yy, (T) =

contributions, both of which are features absent in the ABJM case. This signals the
different natures of their holographic duals and it would be interesting to investigate this
further in the context of ABJ triality [67].

6 Discussions

In this paper we have studied general properties of d>2 CFT on Mg=T2?xR4 3! (or
Mg =T?xR%2 in the Euclidean signature) which is one of the simplest spacetime manifold
of nontrivial topology and a natural generalization of the thermal background St xR4~!
We focused on a basic observable on this geometry, namely the Casimir energy (ground
state energy) on the spatial manifold My_; =72 xR% 3. The dimensionless Casimir en-
ergy density £(7) is a nontrivial modular invariant function of the complex moduli 7 of the
torus 72 and appears to be independent from conventional CFT data. In the thin torus
limit 75 — 0o, we derived a simple universal formula (2.15) for £(7) which shows that the
toroidal Casimir energy is controlled by two perturbative terms in 7o up to non-perturbative
corrections. This was accomplished via an effective field theory (EFT) argument by com-
pactifying the d dimensional CFT on the small cycle of the thin torus. The coefficients
c1,co of the perturbative terms are proportional to familiar finite temperature observables
in the CFT and its circle reduction. The remaining non-perturbative terms in (2.15) are
accounted for by worldline instantons associated with massive particles in the d—1 di-
mensional EFT going around the remaining cycle in the base manifold. Combining with
PSL(2,7Z) spectral theory which is a powerful framework to study modular invariant func-
tions, we translated the EFT constraints into a set of stringent conditions on the spectral
overlap in the decomposition of £(7) with respect to eigenfunctions of the PSL(2,Z) in-
variant Laplacian. This spectral decomposition makes more explicit the class of modular
invariant functions that are physically relevant for describing the toroidal Casimir energy
E(7) in CFT. It also explains intricate relations between EFT data that enters into the
universal formula for £(7) (2.15). For example, although £(7) in general receives worldline
instanton contributions in the EFT from all KK charges @), effects at higher total KK
charges are completely determined by the Q =0 and @ = £1 sector as a consequence of the

~ 99 —



modular invariance. We illustrate these universal properties of £(7) in concrete CFT ex-
amples including the free scalar CFT, the critical O(N) model and holographic CFTs with
Einstein gravity duals. Below we discuss a number of open questions and future directions.

Sign of Casimir energy and universal bounds. One intriguing question is the sign
of the Casimir energy density and possible universal bounds on its magnitude. From the
universal behavior of the toroidal Casimir energy (2.15), it is clear that £(7) is positive for
large 7 and unbounded from above. This translates to a negative vacuum energy density
Eyac that can be arbitrarily negative by tuning 7.° Furthermore, we observe in all the
examples studied here £(7) is positive everywhere on the upper half-plane. We are thus
led to the following conjecture,

Conjecture 1 For any d >3 unitary bosonic CFT (that is not a TQFT), the dimension-
less modular-invariant toroidal Casimir energy density E(T) as defined in (1.3) is strictly
positive.

For 71 =0, this positivity was proven in [12]. In fact in that case a stronger result
holds [12, 73], stating that along 71 =0, £(7) is convex and monotonically increasing in
79 € (0,00). For holographic d=3 CFTs, a gravity argument was given in [74, 75] for the
non-positivity of vacuum energy density Eyac <0 on M3 =R xX with a general closed spa-
tial two-dimensional manifold ¥ (see also [76]). It would be interesting to find a field
theoretic proof that applies at general 7 (and potentially for more general closed spatial
manifolds®!).

As a consequence of the modular invariance, the special points 7 =14 and 7 = ¢™/3

on the
standard fundamental domain which are preserved respectively by Zo and Zjs subgroups
of PSL(2,Z) are extrema of £(7). From the CFT examples we have studied, we notice
that the Zs-symmetric point 7= 5" s always the global minimum of £(7) while the Za-
symmetric point 7 =1 is a saddle point. For free scalar theories, this is a property of the

real analytic Eisenstein series Eq(7).3? For the critical O(N) model, these structures are
2

30Recall the negative sign in the relation (1.3) between Eyac and £(7).

31Let us collect some field theory evidence for this statement in d =3 when the CFT is defined on Rx X.
When ¥ is a sphere, we have Fyac (52) =0 which follows from the operator-state correspondence and the
absence of Weyl anomaly in d =3 (for the same reason the spherical Casimir energy vanishes for unitary CFT
in all odd spacetime dimensions). For a deformed 52, evidence for negative Fyac can be found in [77, 78]
for free theories. For free scalar CEFT when ¥ is a compact hyperbolic surface (see [79] for more general
discussions for free massless scalars), the regulated and rescaled vacuum energy is determined by the Selberg

zeta function for the hyperbolic Laplacian Ax as Fvac(X) = % Cag(s)|.__1. This zeta function is negative
2

s=—
at s= —% as a consequence of the Selberg trace formula (see Corollary 3.4 in [80]). Moreover, the genus
two Bolza surface is an extrema (a consequence of its large discrete isometry group [81]) for Eyac(X) over
the Teichmiiller space (moduli space of hyperbolic structures) with Eyac &~ —0.325003 [82]. It would be
interesting to show if this is the global maximum (e.g. by generalizing the bootstrap analysis in [83, 84]
which found that the Bolza surface maximizes the spectral gap).

3270 see this, we note that the Eisenstein series E,(7) is related to the Epstein series E(A,s) on the two

dimensional lattice A that defines the flat torus via 7% =C/A as below,

1
20(25)

E(A,s)= Z/@w)*s , Es(r)=

vEA

E(A,s), (6.1)
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clear from figure 1. For holographic CFTs, it follows from Loewner’s inequality for the
systole on T2 [90],
2
sys(T?) < ——=vol(T?), 6.2
ys(T7) < 7 (T7) (6.2)
which is saturated for flat torus with precisely r=e’5". We thus propose the following
conjecture,

Conjecture 2 For any d > 3 unitary bosonic CFT (that is not a TQFT), the dimensionless
2w

modular-invariant toroidal Casimir energy density E(1) has a global minimum at T=e3"
on the standard PSL(2,7Z) fundamental domain.

Generalizations to fermionic CFTs. Thus far we have mostly focused on bosonic
CFTs (except for comments in the holographic examples). In the presence of fermionic
matter, to define the CFT on a general spacetime manifold M, requires a spin structure.
For Mg=T?xR% 2, there are four spin structures that correspond to either periodic or
anti-periodic boundary conditions for the fermions along each of the two independent cy-
cles on T2. The choice of the spin structure p is a part of the data that specifies the
fermionic CFT on this geometry (in addition to the metric). The ground state and the
corresponding Casimir energy £,(7) depend on p in addition to the complex moduli 7.
Relatedly, for a fixed spin structure p, the full PSL(2,7Z) invariance of the bosonic Casimir
energy £(7) is broken to congruence subgroups preserving p for the fermionic counterpart
Ey(1). Consequently, £,(7) will have different modular properties. There is also a simple
generalization of the EFT analysis in section 2.1 for fermionic CFT with an analogous uni-
versal formula as (2.15). In subsequent work [10], we study the toroidal Casimir energy for
fermionic CFTs systematically with concrete examples including the Gross-Neveu model
and Chern-Simons-Matter CFTs.

Excited states and refinement by symmetries. It is also interesting to study excited
states in the Hilbert space on My_; =T2?xR% 3 and the energy spectrum. In particular,
in the similar way that the asymptotic density of high energy states in d =2 CFT on S! is
determined by the CFT central charge via the Cardy formula [91], the asymptotic density of
states on 79! is determined by the Casimir energy using modular invariance on 7¢ [12].33
It would be interesting to compute this asymptotic density explicitly in d >3 CF'Ts, such
as the 3d O(N) critical model on RxT? (see [50]).

In CFTs with global symmetries, it is natural to refine the observables by including
symmetry twists (insertions of topological defects representing the symmetry), which or-
ganize the states into representations of the symmetry and also give rise to twisted sectors
in the Hilbert space. In particular, the Cardy formula in d=2 has a symmetry-refined

where v =m7+n and the quadratic form is defined by (v,v) = % such that the corresponding Gram
matrix has determinant one. It is well-known that the minimization of the Epstein series on a rank d lattice
is related to finding the densest sphere packing in R¢ (more precisely lattice type packing). For d =2, the
minimum of E(A,s) (and correspondingly the densest sphere packing in R?) is achieved by the triangular
lattice which corresponds to 7= e?™/ [85-89).

33The case Mg_1 =T?xR% 2 can be thought of a limit of Mg_; =791,
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version [92, 93] that characterizes the asymptotic growth of operator degeneracies in a
fixed charge or twist sector. The generalization to higher d CFTs with zero-form sym-
metries was recently explored in [94]. Symmetries are particularly interesting when they
carry 't Hooft anomalies, which are often reflected by degeneracies in the twisted Hilbert
space [95]. For d=3 CFT on M3=RxT?, the spatial manifold supports both nontriv-
ial zero-form and one-form symmetry defects and thus provides an ideal playground to
investigate consequences of anomalies for generalized symmetries (and gravity) in CFT.

State-operator correspondence on T2 and line defects. In contrast to the familiar
correspondence between states on S? and local operators in a 3d CFT, the state-operator
correspondence on a spatial 72 is much more mysterious. In particular, as explained in [8],
a basic difficulty comes from the obstruction in realizing the ground state on T2 via a
Euclidean path integral over a compact three-manifold that fills in the 72. It is natural to
expect line defects to play an important role in the construction of states on T2. After all,
this is how states on T2 in a 3d TQFT are constructed. They come from anyons threading
the non-contractible cycle of the solid torus that fills in the 7?2 [96]. For general 3d CFTs,
while it is not clear what states on 72 can be constructed by threading a non-topological
line defect in the solid torus, one can turn the question around and deduce constraints on
the line defects in the CFT. This is currently under investigation.
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A Regularization of lattice sum on torus

In the main text, we have encountered the following sum over lattice momentum vectors
on a torus of complex moduli 7,

1

: Al
2z, Tmr FaP + AA Y (A1)
The sum with s= —% appears in the expressions for the Casimir energy on 72, and the

sum with s:% appears in the gap equation (e.g. for the O(N) model at large N). This
sum is convergent for s > 1, and will require regularization otherwise. In this appendix we
discuss regularization of such sums using a generalization of the real analytic Eisenstein
series.
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In [50], a regularization of (A.1l) is provided by analytic continuation in both s and d
(the rank of the lattice) via the integral representation in the last equality below,

1
S
nmezd/? (!m+a2+ (n+ay) T\2+72)
dm A

/ dAN " exp [—w)ry2—2 ((a17'2)2+(a2+a17'1)2)} @()\,Q(T),Vﬂd/2
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nez?

Here aj,a9 €[0,1) keep track of possible twisted boundary conditions for a complex scalar
along the two independent cycles of T2.

The regulated expression above from [50] is finite at d =2 and s = 41/2 which are the
cases relevant for the Casimir energy and gap equation in the O(N) scalar CFT. However
we find the integral formula cumbersome to deal with both analytically and numerically.

Here we derive alternative but equivalent representations of the regulated lattice sum
which will be more efficient for our analysis and will also make more explicit the modular
properties. We start by defining the following generalized Eisenstein series,

T s
|(m+a2)—(n+a1)712+A27'22> ’

GS(T,A,al,aQ):%fsr(s) > (

n,me”L

(A.4)

where the extra 75 factor compared to (A.2) is introduced so that G transforms nicely
under PSL(2,7Z).3* In this paper, we only make use of G4(7,A,a1,a2) with a; =as =0 (5.14)
which is a modular invariant function as long as 79A?(7) is modular invariant. For general
ai, Gs(T,A,a1,az) transforms as a non-holomorphic Jacobi form. In the following we keep
a; general since the manipulations we present work uniformly regardless of the values of
a; and the general case will be useful when incorporating symmetry twists in subsequent
work.

34Note that in going between (A.2) from [50] and our (A.4), there is a notation change L®™°™® = L}ere.
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We will offer two different regulated expressions for the generalized Eisenstein series G
defined in (A.4), which are complementary and will both be useful for different situations.
One is given by a sum of Poincaré series,

’ TOYAN )
Gs(r Aar,a9) = (mfimw*sm_s(27rA\n+mr!>e2m<am+azm>
mnel (A.5)
—l—M(ﬂTgAZ)l’S,

2

and the other in terms of a Fourier series in 7,

1-2s

. 1 ——=5
Gs(T,A,al,CLZ): Z Z 627rzm(n7'1—a2)|m|8—%7_22 <A2—|—n2> 1 K%—S(QT‘” /A2_|_n2‘m|7-2)

n€Z+a; m#0
AN'T* I'(s—1
4275 " Z () K1_8(277An)cos(27rna1)+g(7rTgA2)1*S.
nezt K 2
(A.6)

We first derive (A.5) from the expression in the second line of (A.2) (see footnote 34
for the notation change) by performing Poisson resummations in both n and m for the
modes of the Riemann theta function © labeled by n=(n,m), and then further splitting
the new sum into the nonzero modes (n# (0,0)) and the zero mode (n=(0,0)),

s—1 oo 2 A2
GS(T,A,al,ag):TQT/O dit™ % exp (—WTQtA ) (@ (t,Q(T)*l,Vg)—l)

s—1 o0
+ T2 / dttsf2efﬂ't7'22A2 )
2 Jo

(A7)

The integral of the nonzero modes above produce the sum of Bessel functions in (A.5). The
integral of the zero mode is regulated by analytic continuation in s, yielding the remaining
term in (A.5).

The other regulated formula (A.6) for the generalized Eisenstein series is derived by
Poisson resummation in a different way. We split the Riemann theta function © into modes
n=(n,m) with m=0 or m#0, and perform Poisson resummation with respect to n. The
zero mode is regulated by analytic continuation in s as above. The resulting expression

in (A.6) then follows.
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