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ABSTRACT: For any unitary conformal field theory in two dimensions with the central charge
¢, we prove that, if there is a nontrivial primary operator whose conformal dimension A
vanishes in some limit on the conformal manifold, the Zamolodchikov distance ¢ to the limit
is infinite, the approach to this limit is exponential A = exp(—at + O(1)), and the decay
rate obeys the universal bounds ¢~ /2 < o < 1. In the limit, we also find that an infinite
tower of primary operators emerges without a gap above the vacuum and that the conformal
field theory becomes locally a tensor product of a sigma-model in the large radius limit and
a compact theory. As a corollary, we establish a part of the Distance Conjecture about
gravitational theories in three-dimensional anti-de Sitter space. In particular, our bounds
on « indicate that the emergence of exponentially light states is inevitable as the moduli
field corresponding to ¢ rolls beyond the Planck scale along the steepest path and that this
phenomenon can begin already at the curvature scale of the bulk geometry. We also comment
on implications of our bounds for gravity in asymptotically flat spacetime by taking the flat
space limit and compare with the Sharpened Distance Conjecture.
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1 Introduction and summary

Over the past couple of decades, it has become increasingly clear that there are constraints on
the low-energy effective theories of quantum gravity that cannot be captured by the standard
Wilsonian paradigm. These constraints delineate the boundary between the Landscape and the
Swampland [1]. For gravitational theories in asymptotically anti-de Sitter (AdS) spacetimes,
we can formulate such constraints and aim to prove or falsify them using the AdS/CFT
correspondence. For example, it was proven in [2, 3] that any global symmetry in a quantum
gravity theory in AdS would lead to an inconsistency in its dual conformal field theory (CFT).

The Distance Conjecture [4] has been one of the most well-tested among Swampland
conditions. The conjecture claims the following set of properties about continuous moduli
of quantum gravity theories, starting with:

Conjecture 0 The moduli space M is parametrized by expectation values of massless scalar

fields.

If this conjecture holds, the moduli space is endowed with a natural metric given by the
kinetic term of the moduli fields, which defines a notion of distance d(p, p’) between any two
points p,p’ € M. Among other conjectures formulated in [4] are:

Conjecture 1 Choose any point pg € M. For any positive t, there is another point p € M
such that the distance d(p,po) between p and py is greater than t.

Conjecture 2 Compared to the theory at pg € M, for sufficiently large t, the theory at p
with d(p,po) >t has an infinite tower of light particles starting with mass of the order of
exp(—at) for some o > 0. In the t — oo limit, the number of extra light particles of mass
less than a fized mass scale becomes infinite.



For gravitational theories in AdS, Conjecture 0 can be shown as follows. If there is a
continuous parameter in AdS, there is a corresponding parameter in the dual CFT. Such
a parameter is believed to be associated with an exactly marginal operator in the CFT,
which then corresponds to either a massless scalar field in the bulk or (when the marginal
operator is double-trace) a continuous deformation of the boundary condition at the infinity
of AdS. In particular, continuous parameters in the bulk Lagrangian must be expectation
values of massless scalar fields.

However, this conjecture alone does not lead to a sharp constraint on a low-energy
effective Lagrangian, since the parameters of the Lagrangian may have been fixed at high
energy, e.g., by potentials for the corresponding scalar fields. This is analogous to the absence
of global symmetry [2, 3|, which also does not produce a sharp constraint on a low-energy
effective Lagrangian since the low-energy theory may have an accidental symmetry, which
is broken or gauged at high energy. The analogy can be made more precise by interpreting
Conjecture 0 as the absence of (—1)-form global symmetry. On the other hand, if a can be
bounded, Conjecture 2 will give a sharp constraint on low-energy effective theories.

The AdS versions of Conjecture 1 and 2 have been proposed in [5] for bulk spacetime
dimensions > 4. The main claim is that all theories at infinite distance in the bulk moduli
space have an emergent higher spin symmetry, generated by an infinite tower of conserved
currents. Since the bulk moduli space is identified as a conformal submanifold of the dual
CFT, which we will also denote as M, these conjectures can be stated precisely in CFT
terms and therefore are called the CFT Distance Conjectures. They include:

Conjecture 1 All points with emergent higher spin symmetries are at infinite distance

on M.
Conjecture 11 All CFTs at infinite distance on M are higher spin points.

For supersymmetric theories, Conjecture I was proven in [5] by using the fact that higher
spin symmetries imply the existence of free decoupled sectors in their dual superconformal
theories. More recently, it was proven for any unitary CFT with an energy-momentum
tensor in [6]. Conjecture II remains open.

For CFT in two dimensions, these conjectures need to be modified since there are always
higher spin currents constructed from composites of the holomorphic stress tensor [5, 7-9].
In this paper, we prove the following four theorems about two-dimensional CFTs.

Theorem 1 If there is a geodesic on the conformal manifold M along which the conformal
dimension A of a primary operator vanishes in some limit, then the geodesic distance t to the
limit measured by the Zamolodchikov metric is infinite.

Theorem 2 In the limit, A vanishes exponentially as A = exp(—at+O(1)) with the universal
upper bound o < 1.

Theorem 3 The compact CFT of central charge ¢ in the limit of vanishing A contains a
subalgebra of local operators which are described by the sigma-model on RY for some positive
integer N < c.

Theorem 3 shows that the limit can always be understood as the decompactification limit of an
emergent target space of CFT and confirms the conjecture of Kontsevich and Soibelman in [7].



In general, the parameter a defined in Theorem 2 depends on the geodesic to reach
the limit as well as on the primary operator we follow along the geodesic. For the optimal
choice of geodesic (which we assume to be in the direction of a parity-even exactly marginal
operator) and primary operator, we can derive the following lower bound on «,

Theorem 4 There exists a geodesic and a primary operator with a vanishing conformal
dimension along the geodesic such that the exponential decay rate obeys N~Y2 < .

Since N < ¢, this theorem also implies the lower bound ¢~1/2 < o.Combining these results,
we obtain the upper and lower bounds on «,

1
— <a<l. (1.1)

NG

These bounds are sharp, and we will find necessary and sufficient conditions to saturate each

bound at & = ¢~ /2 and a = 1. For superconformal CFTs, the lower bound is strengthened

to /3/2 1?2 < a.

To prove these four theorems, we do not need to assume that the CF'Ts have holographic
duals in AdS or that the central charge c is large. We only assume that the CFTs are unitary
and each have a normalizable conformally invariant vacuum (away from the limit), there
is an exactly marginal operator for each tangent vector on their conformal manifolds, and
the genus-zero four-point functions of the light primary operators are well-defined in the
limit of vanishing gap Agap, — 0. To prove Theorems 1 and 2, we do not even assume the
existence of a local stress tensor. Therefore, these theorems also apply to the conformal
manifolds of surface defects in d > 3 CFTs (such as the Gukov-Witten surface defects in
the N' = 4 super-Yang-Mills theory [10]).

Furthermore, Theorem 3 does not assume that the family of CFTs is related by defor-
mation with an exactly marginal operator. Therefore, it also holds for a discrete sequence
of CFTs under the assumptions stated in the above. For example, the large k limit of the
level k& Wess-Zumino-Witten model for a compact Lie group G is locally equivalent to the
theory of free non-compact bosons with ¢ = dim G, and the large k limit of the Ag-type
Virasoro minimal model CFTs is locally described in terms of a non-compact boson at ¢ =1
with a pair of walls in the target space infinitely distant from each other [11, 12]. If we can
also generalize Theorems 1, 2, and 4 to include discrete families of CFTs, it would open
the possibility to study the flat space limits of AdS gravities and test the conjecture in [13]
(see also related discussions in section 1.2).

1.1 General structure of conformal manifolds

Let us review general properties of conformal manifolds for d-dimensional CF'Ts relevant
for this paper. We take A’ to be the coordinates on the conformal manifold M. Locally
on M, the CFT action reads

1

SO+ 03) = S(N) + 37—

/ da SN M (x) | (1.2)

where M, are exactly marginal operators labeling the tangent directions on M and V;_4
is the volume of the unit sphere S%1.



It is understood that the conformal manifold M is endowed with a natural Riemannian
metric, namely the Zamolodchikov metric [14], defined by the two-point functions of O;,

9i(A) = |2 (M;(x) M;(0))x, (1.3)

which is manifestly positive definite as a consequence of unitarity. Note that (1.2) fixes a
canonical normalization for the distance on M measured by (1.3).

The conformal manifold M may have singularities due to orbifold quotients by duality
groups [15, 16], divergent Riemann curvature [17] and emergent exactly marginal operators
at special loci [18-20]. Furthermore, the conformal manifold M is naturally geodesically
complete with respect to (1.3), yet in general non-compact. The non-compact directions
where the geodesic distance diverges give rise to infinite distance limits of M.

In addition to these intrinsic geometric features, the conformal manifold M hosts a great
deal of extra structure by consideration of how CFT data varies with respect to A, which
abstractly define certain fiber bundles over M. It is natural to ask if and how such structure
are constrained by the intrinsic geometry on M (see for example [21-28]). Here we will focus
on the interplay with infinite distance limits on M.

Of particular interest are universal quantities such as the conformal dimension gap in
the CFT 7T, at a point A on the conformal manifold M,

Agap(A) = inf{A[(A, ja) € Th}, (1.4)

where A labels the scaling dimension and j, labels the representation of SO(d) in terms of
spins on the |d/2| orthogonal two-planes for the local operators at 7. Similarly for operators
with sufficiently high spin, we define the twist gap tgap,

[4/2]
tap(Xi Ja) = Inf{A = D7 [jal [(A,Ja) € Ta}}- (1.5)

a=1
These quantities offer a glimpse of how the spectrum of local operators vary over M. Note
that both quantities are non-negative and bounded from below by the corresponding unitarity
bounds. It has been conjectured in [5, 7, 9] that the behavior of these quantities approaching
their unitarity bounds are correlated with infinite distance limits on M.! For CFTs in
dimension d > 3, it was recently proven in [6] that the vanishing of tgap(A; jo) — (d — 2) for
operators in the symmetric traceless representations of SO(d) of high ranks (also known as
higher-spin operators) directly implies infinite distance on M. While the converse statement
has not been proven, criterion on infinite versus finite distance on M was provided in terms

of the CFT data in [6].

In this work, we study conformal manifolds of CF'Ts in dimension d = 2 and investigate
infinite distance limits on the conformal manifold M and corresponding behavior of the CFT

More precisely, in [7, 9], the metric on the conformal manifold is not specified, rather an analogy was
made to the Gromov-Hausdorff metric for a family of Riemannian manifolds based on the connection with
d = 2 CFTs defined via sigma-models. In a similar way, the degenerating d = 2 CFTs were compared to
the degeneration limits of the manifolds. In particular, it is conjectured in [7, 9] that the subspace of M
where the dimension gap is bounded from below Agap(A) > € for € > 0 is compact in a suitably defined
Gromov-Hausdorff (metric) topology. Furthermore, by including the degenerating limits, one can define a
compactification M of M in the Gromov-Hausdorff topology. See [29, 30] for explicit examples.



data. As was already noted in [5, 7-9], because of the enhancement of the conformal symmetry
to Virasoro symmetry in d = 2, instead of the twist gap (1.5), the dimension gap (1.4) is
potentially the universal indicator for infinite distance on M. Indeed for bosonic CFTs defined
by a sigma-model on the flat torus 7" = R" /A for integral lattice A, this correspondence
between vanishing Ag,, and infinite distance on the Narain moduli space is immediate: in
a fixed T-dual frame, infinite tower of momentum operators develop vanishing dimensions
along directions of T that decompactify. More generally, for CFTs defined by N = (2, 2)
supersymmetric sigma-models on compact Calabi-Yau manifolds, infinite operators come
down to vanishing dimensions in a large volume limit of the target manifold (equivalently in
a large complex structure limit of the mirror target manifold). Furthermore it is conjectured
in [7] that such degeneration limits of CFT (where Ag,, vanishes) are always associated
with emergent geometries that describe a closed sector of the full CFT. A main goal of the
paper is to argue that these are indeed universal phenomena in d = 2 CFTs, regardless of
whether a sigma-model description exists in the interior of the conformal manifold. The
main results are summarized in Theorem 1, 2, 3, and 4.

We emphasize that the CFT in the limit Ag,, — 0 does not obey the usual axioms of a
compact unitary CFT (e.g., the genus-one partition function diverges) but we assume the
sphere correlation functions of light operators are well-defined in this limit. Degeneration
limits of this type have been discussed in [7] and later defined in precise CFT language in [8]
but it is not established if such a limit exists in general. Our findings further clarify features
of the limiting theory and provide a consistency check on the assumption of well-defined
sphere correlators in this limit.

1.2 Constraints on gravitational theories in AdS3 and flat space

For the purpose of understanding the implications of our CFT results for quantum gravity,
it is useful to translate the bounds (1.1) on « in the units appropriate for a gravitational
theory in AdSs. If we normalize the kinetic term of the massless scalar field ¢ in AdSz dual
to the geodesic coordinate ¢ on the conformal manifold of CFT5 as

L= %(a¢)2+-.-, (1.6)

without the inverse of the Newton constant in front, by the AdS/CFT dictionary we can
identify the asymptotic value of ¢ with the geodesic distance ¢ on the conformal manifold as
¢p=t- (8L Ads)_l/ 2 where Lagqs is the curvature radius of AdS [31, 32].2 Correspondingly,
aags = - (87Laqs)'/? controls the exponential decay e~®Ads? of the energy gap in the
bulk. Using the relation

_ 3Lagas 3

= = 8mL
¢ 2G N TLAdS

2This follows by comparing the normalization of the exactly marginal operator that couples to ¢ on the

. , 1.7
2LPlaan ( )

AdS boundary and that to the proper distance ¢ defined with respect to the Zamolodchikov metric (1.3),
(2A —a)I'(A)

Ld_l¢2 —
rA —d/2) P

2 )
Vd*l

with A = d where the Lh.s. follows from standard bulk computation [32] and the r.h.s. is a consequence of our
normalization of the deformation (1.2).



where G is the Newton constant and Lpjanck = 87mG v is the reduced Planck length in three
dimensions. The inequality (1.1) can then be expressed in terms of the bulk variables as,

9 1/2 12
<3LP1anck> < aags < (8mLags) /" . (1.8)

The lower bound means that the emergence of exponentially light states with energy A is
inevitable when ¢ rolls beyond the Planck scale at ¢ = (2Lpjanck/ 3)*1/ 2 along the path of
the steepest descent, while the upper bound implies that this phenomenon can begin already
at the AdS curvature scale ¢ = (8mLaqgs) /2.

If the theory is supersymmetric, the lower bound is strengthened as stated below (1.1),
and can be translated in the AdS units as

(Lptanck)/? < aaqs < (8mLaqs)? . (1.9)

These bounds on the decay rate of the AdS energy can be translated to that of the mass
for the corresponding particles using the standard AdS/CFT dictionary [32]. The energy
A and the mass m for scalar fields in AdSs are related by

A=1+/1+m?L3,q, (1.10)

where the plus sign corresponds to the standard quantization and the minus sign corresponds
to the alternative quantization, which is valid for m? < 0. Furthermore, unitarity requires
the Breitenlohner-Freedman (BF) bound, m?L3 4 > —1 [33]. The light scalar particle states
arise from the alternative quantization of the scalar field dual to the light scalar operators
in the CFT. Therefore, while the energy of these scalar particle states approach zero from
above, their masses-squared approach zero from below as in

9 2 2

m” ~ =g — A= — 5 —exp(—aaasd + 0(1)), (1.11)
AdS AdS

which is a phenomena specific to gravity in AdSs at infinite distance on the moduli space (since

unitarity bounds in higher dimensions are stronger). Note that, in addition to the exactly

marginal operator corresponds to ¢, other marginal operators may emerge at infinite distance

(see section 4). They correspond to scalar fields in AdSs with the standard quantization

and their masses-squared approaching zero from above.

Furthermore, there are also infinite towers of massive spinning particles whose masses-
squared approach zero from above in the limit, in a way similar to what happens in higher
dimensional AdS gravity as described in [5]. Indeed they are associated with massive (higher)
spin fields which correspond to (higher) spin (quasi-primary) operators in the CFT that only
become conserved in the limit (i.e. vanishing twist). In this case, the dictionary between
the energy (scaling dimension) and the mass is

A=1+,/(s— 1)+ m2L3q (1.12)

for s > 1 (and the alternative quantization is only possible for s = 1 at m = 0). Therefore,
for the massive particles with spin s > 2 whose energy approaches the unitarity bound A = s
in the limit, their masses-squared approach zero from above as for the twist in

2N2(s—1) 2(s—1)

(A—s)=
Lg&ds L2AdS

exp(—aaas® + O(1)) . (1.13)



For the special case of massive vector (i.e. s = 1), this becomes

L a-1)=

m prd
Il Laas Laas

eXp(—OzAdsgb—i-O(l)) . (1.14)

In the dual CFT, such higher spin particles correspond to spinning operators constructed
from products of the emergent currents in the infinite distance limit3 and this is how the
last equalities in (1.13) and (1.14) are deduced.

Let us now comment on the implications of our bounds in AdS on the decay rates of
the masses of light particles for the similar question of quantum gravity in asymptotically
flat space (i.e. Conjecture 2 in flat space). To this end, we note that a lower bound on the
mass decay rate in the effective field theory in D-dimensional flat space was proposed in [34]*
under the name of the Sharpened Distance Conjecture. It claims the existence of an infinite
tower of light particles with exponentially descreasing mass of the order exp(—aga, Dqg) with
the coefficient aga,p bounded below as,

(D-2)/2

Planck,D
Qffat,D = (

D_72)1/27 (1-15)

where Lpjanck,p is the reduced Planck length in D dimensions and the modulus field gz; is
canonically normalized as in (1.6). As explained in [35], this bound follows from the Emergent
String Conjecture [36], which states that an infinite distance limit of its moduli space either
decompactifies, or reduces to an asymptotically tensionless, weakly coupled string theory.
This bound was further supported by evidence from supergravity [34].

By taking an appropriate flat space limit Lags — 0o (whose details such as the scaling
of other parameters in the putative limit depend on the theory [37-39]), our bounds for the
AdS3 gravity should produce bounds for quantum gravity in asymptotically flat spacetime
of dimension D = 3 + n > 3 where n counts the internal dimensions that decompactify in
this limit.> Our lower bound (1.8), after taking into account the canonical normalization
in D dimensions,® implies that

I (p-2)/2
Qflat,D = %L%’lancl)({D7 (116)

and for the supersymmetric case a stronger lower bound follows from (1.9),

1 _(p-2)/2
Qflat,D > §L§31ancl)<{D : (117)

3They are Virasoro primary operators (and their quasi-primary descendants) that are descendants with
respect to the emergent current algebra in the limit. See section 4 for details.

4We thank José Calderén-Infante for bringing this paper to our attention.

5Tt was conjectured in [13] that such a decompactifying internal space always exists in any AdS gravity.
Though the KK modes on the decompactifying internal space also become massless in the flat space limit, we
are interested in the contribution to the mass that do not vanish in this limit.

5Since both ¢ and ¢ are canonically normalized in D and 3 dimensions, respectively, they are related as
¢ = Vrl,/f 3 b, where Vp_3 is the volume of the internal dimensions that decompactify in the limit. Therefore
QAdS = VD_EQQ afat,p in the flat space limit. On the other hand, Lpianck,3 = Ll?l;?ck,D/VD—3' Combining
these, (1.8) gives (1.16) in the flat space limit.



Naively, these bounds can be further strengthened by a factor of 2, due to the faster decay of
the mass of spin s = 1 particles in (1.14). However, from known top-down examples, we expect
these vector fields to be governed by a one-derivative action to leading order in AdS3 and
their mass-squared in the flat space limit obey the same exponential decay rate as the other
light particles.” We emphasize that taking the flat space limit generally involves a discrete
sequence of AdS/CFT dual pairs (e.g. with increasing central charge ¢) [37-39], and when
deducing the bounds above we have assumed that the direction parametrized by ¢ (or ¢) on
the AdS moduli space (CFT conformal manifold) is common to all instances in the sequence.

Curiously the lower bound (1.17) for supersymmetric theories agrees with the Sharpened
Distance Conjecture (1.15) at D = 6 [34]. Indeed, well-known supersymmetric AdS3;/CFTs
examples such as type IIB string theory on AdSz x S x M for M = T* or M = K3 dual
to the D1-D5 CFT [41, 42] are described by 6d supergravity in the flat space limit.® On
the other hand, the Sharpened Distance Bound may be violated without supersymmetry,
as we will discuss at the end of section 4. Below we will provide more details on this
agreement between our result (1.17) and that of [34] in the supersymmetric setting using
the aforementioned example of the D1-D5 CFT.

In this case, the CFT is constructed from a system of parallel N; D1 branes and Ny
D5 branes and described by a supersymmetric sigma-model on the symmetric orbifold
Sym™1Ns (M) with central charge (see e.g. [41] for details)

C:6N1N5. (1.18)
The length scales in the AdS dual are determined as follows,
11 3 1 11
Lads = (N1N5)3g@ls,  Lplanck = 27(N1N5) " 9g¢ls,  Lplancks = (47°)3géls, (1.19)

in terms of the string scale ¢; and the 6d string coupling defined by

2 _ 93(27%5)4
6 VM )

where g, is the type IIB string coupling and Vj; is the volume of the internal four-manifold

9 (1.20)

M in the string frame. The appropriate flat space limit here amounts to taking Lags/¢s — o0
and keeping gg fixed.

The moduli direction saturating the lower bound in (1.9) amounts to the large radius
limit of the seed CFT which is universal to the symmetric orbifold CFTs (see section 4
for the general discussion). Here it maps to the large radius limit in the target space M.
Therefore, the light operators approaching vanishing gap in the infinite distance limit of
the CFT naturally correspond to Kaluza-Klein (KK) modes on M with vanishing mass
in this limit. To identify the mass decay rate of such KK modes, we start with the IIB
action in the Einstein frame [52],

Sig = % /dl%\/g (R - %(acp)? +. ) (1.21)

"In particular, by continuity, the massless limit of these massive vector field is governed by a Chern-Simons

action as derived in [40].

80Other supersymmetric examples include type IIB string theory on AdSz x S® x S® x S' [43-47] which has
a 9d flat space limit and M-theory on AdS3 x S? x CY3 [48-51] for a compact Calabi-Yau three-fold denoted
CY3 which has a 5d flat space limit.



with the standard convention g, = e® for the dilaton and x = L%lanck,lO’ and perform KK
reduction on the product metric

ds® = e Pdst + ePds3, (1.22)

where p is a 6d scalar encoding the radius modulus of the internal manifold M. The resulting
6d action including the kinetic terms for the moduli scalars ¢ and p reads

1 1
Sy = 272/61% 7 <R6 ~ L0®)? —200p)? + .. ) (1.23)
K§ 2
where kg = L%lanekﬁ. Now the KK mass for large M, in the 6d Planck units, is

mgg ~ e ”, (1.24)

where one factor of e~ comes from the inverse radius of M in (1.22) and the other factor of
e”% comes from the difference between the 10d and 6d Planck lengths due to the internal
volume. In terms of the canonically normalized scalar p = v/2p (in 6d Planck units), the mass
decays as myg ~ e P/ V2 as in [34] and appears faster than predicted by the CFT in (1.17).

However the particular direction towards infinite distance as inherited by taking the flat
space limit of the AdS result must involve varying dilaton ®. Indeed, it follows from (1.20)
that the 6d string coupling depends on the moduli fields,

go < 272, (1.25)

where we have used Vj; o« e®*?” in the string frame. Consequently to hold gg fixed in
this procedure requires the following identification between the moduli fields ®, p and the
canonically normalized scalar ¢ in (1.6) inherited from the theory in AdS,

1
D=6, p=50. (1.26)
It then follows from (1.24) that
miK ~ e 29 (1.27)

as predicted by (1.9), in agreement with [34].”
It would be interesting to generalize this analysis to more general CFTs and also to
higher dimensions, and compare with the conjectured flat space bounds.

1.3 Organization of this paper

This paper is organized as follows. In section 2, we discuss examples of singularities of
conformal manifolds. There are singularities at finite distances, where Ag,, remains non-zero,
and there are singularities at infinite distance (also known as cusp points), where Agyp
vanishes. We also present examples with the decay rate saturating the upper bound a =1,
where all marginal operators are exact in the limit, and with a < 1, where there could
be marginal operators that are not exact in the limit. In section 3, we prove Theorems 1
and 2 using conformal bootstrap for the four-point function of the operator with vanishing
conformal dimension. In section 4, we prove Theorems 3 and 4. We end with discussion
on future directions in section 5.

9As explained in [34], this same decay rate is also saturated by the string oscillator modes.



2 Examples of conformal manifold in d = 2

To illustrate the theorems we prove in concrete terms, let us discuss in more detail three
examples of conformal manifolds in d = 2 CFTs.

2.1 Narain moduli space of ¢ = 2 toroidal CFT

The first example we consider is the ¢ = 2 toroidal CFT defined by a sigma-model on the
two-torus T2 = RQ/A for integral lattice A = Ze; @ Zes and target coordinates X = X'e; +
X2ey € R2. The CFT action reads!'?

1 .
S = E/d?z (GU +B¢j)6X18X], (21)

where G;; = e; - ¢; is the metric on the T? and B;; = —Bj; is the B-field.

The full ¢ = 2 conformal moduli space has a complicated branch structure [53]. Here
we focus on the conformal submanifold that parameterizes geometric deformations of (2.1),
namely those generated by the four exactly marginal operators 9 X?0X7 which change Gij, Bij
in (2.1). This conformal submanifold is known as the Narain moduli space,

Myarain = O(2,2;Z)\0(2,2;R) /O(2) x O(2) (2.2)

which is an orbifold of a symmetric space of real dimension 4 and the left quotient by O(2,2;Z)
implements the identifications due to duality transformations. The local primary operators
with respect to the u(1)? current algebra

O, = ePLMW) X tipp(mu)-Xp  p _PLPL 5 PR'PR. (2.3)

’ 2 2
are parametrized by momentum and winding vectors m € A and w € A* respectively where
A* denotes the dual lattice and their left and right conformal weights are also listed above.
Here X7, Xr denote the left and right components of the scalar field X and py,pgr are the
left and right momenta measured by the corresponding u(1) symmetries. The pair (pr,pr)
defines an embedding of the charge lattice A ® A* as an even self-dual lattice in R?? (i.e pr,
and pp live in the positive and negative R? subspaces respectively), as required by locality and
modular invariance of the CFT. The Narain moduli space (2.2) then naturally parametrizes
such embeddings up to automorphisms of the charge lattice.

There is another representation of the Narain moduli space (2.2) which is more convenient
for the ¢ = 2 case here [53],

H, _ H,
PSL(2,Z) ~ PSL(2,Z)

MNarain = ( ) /ZQ X ZQa (24>
where o = 01 + 09 is the complex structure moduli and p = p; + ip2 is the complexified
Kéhler moduli for the target T2, both taking values in the upper half plane H. The duality
groups PSL(2,Z) act on o and p respectively. The residual Zy x Zs corresponds to a swap

19We follow the convention of [52] with o' = 2.
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(mirror) (o,p) — (p,0) and a reflection (o, p) — (=, —p). In this parametrization, the left
and right conformal weights in (2.3) are

1 1

hr = mg — mio — p(wy + weo 2, hgr =
4paoo | ol ) 4paoo

Ima — mia — p(wy +wea)|?, (2.5)

where my, mo, w1, ws € Z denote the momentum and winding charges.
The Zamolodchikov metric on the Narain moduli space respects the symmetric space
structure (2.2) and in terms of (2.4) it follows from the Poincare metric on the upper half plane,

2 _ 2dodo n 2dp2dp ' (2.6)

ds
g % P2

We restrict o, p to their standard fundamental domains F C H, which are subject to further
discrete identifications by Zg x Zg in (2.4). The overall normalization of the metric above is

fixed by (1.2). More explicitly, for rectangular torus, p; = o1 =0, pa = @ and o9 = %,
the metric reduces to
2 4 2
i=1""1
where each summand is the Zamolodchikov metric for the S! sigma-model [54] in our
normalization.!!

The infinite distance points on Mpyarain are located at the cusp p = ioco (for any o) up
to a choice of the duality frame, where the shortest geodesic distance to any point (o*, p*)
in the interior of F is

1
t=12 (log2 p—i + log? Uz> ’ (2.8)
P2 02
which diverges as
t = V/2log py + finite, (2.9)

as po — oo when oy is fixed, or

t = log pao9 + finite , (2.10)

ifp2:§02—>oofor7>0.
It’s immediate from (2.5) that an infinite tower of operators with zero winding charge
w1 = wg = 0 obtain vanishing conformal weights at infinite distance as stated in Theorem 1.

The bottom of the tower has m; = 1,ms = 0 and gives the dimension gap,

1
lim A =
p—1>rz'noo gap (U’ P) 2p2 (o]

(2.11)

Comparison with (2.8) confirms the exponential approach to vanishing gap with rate o = 1
for the limit (2.10) and o = % for the limit (2.9), in accordance with Theorem 2 and

"Note that it follows from (1.2) that our normalization of the Zamolodchikov metric for 2d CFT differs
from that of [54] by dsiere = (27)*dsZhere-
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Theorem 4, saturating the bounds thereof. Note that Theorem 3 is confirmed tautologically
in this case: in the limit (2.10), the CFT is described by the T? sigma-model with large
radius and in the limit (2.9), the CFT is described by a S! sigma-model with large radius
and another S! sigma-model of finite radius R = 7.

The other singularities on the conformal manifold Myapain are of the orbifold type and
locate at finite distance, corresponding to either the Zy fixed point at p =i or the Z3 fixed
point p = e on H, and similarly for H,. In particular, the maximal dimension gap
Agap = % is achieved at the simultaneous Zs fixed point p = ¢ = e%, as can be seen by
inspecting (2.5). This point on MNarain is described by the SU(3); Wess-Zumino-Witten
CFT and the gap is saturated by the nontrivial Kac-Moody primary operators.

2.2 Kaihler moduli space of ¢ = 9 quintic CFT

The second example we consider is the N' = (2,2) SCFT defined by a supersymmetric sigma-
model with target space defined by the quintic Calabi-Yau manifold realized as a hypersurface
W of degree 5 in P4. The CFT action again takes the form as in (2.1) with additional
fermion fields that furnish the supersymmetric completion. The quintic SCFT has a large
conformal manifold parametrized by 101 complex structure moduli and 1 complexified Kéhler
structure moduli 7 € H, which encode exactly marginal deformations of the target space
metric and B-field. Here we focus on the complex 1-dimensional submanifold Mxgzpjer (W)
parametrized by the Kéahler moduli 7, which couples to the exactly marginal operator
wijaXiéXj corresponding to the harmonic (1,1)-form on W where X*, X7 with i,j=1,2,3
are complex coordinates for W.

By mirror symmetry, Mgsnier(W) is equivalent to the complex structure moduli of the
mirror quintic I//I\/, defined as the hypersurface orbifold,

{[Z.) € P*| izj-wﬁzaz()}/z?’, (2.12)
a=1

a=1

2ming

where the Z3 are generated by rotations Z, — ¢~ 5 Z, on the homogeneous coordinates of
P* preserving the polynomial equation that defines the hypersurface. The orbifold restricts
possible complex structure deformations of the hypersurface, and the complex parameter v
is the unique moduli that survives. Moreover, redefinition of the homogeneous coordinates
Zg (e.g. 71 — e% Z1) induces an identification on v such that the true moduli space is

Mes(W) = Micsnier(W) = {1 € C|h ~ €5 9}, (2.13)

where the relation between the Kédhler moduli 7 and the complex structure moduli 1 are related
by the mirror map [17]. Equivalently, we work with a fundamental domain parametrized
by 0 < argy < 2%

The Zamolodchikov metric on the moduli space (2.13), up to an overall normalization, is
equal to the standard Weil-Petersson metric which is determined by the special geometry
relations in terms of the period integrals on the mirror quintic W [17, 55]. Let us now
summarize the singularity structures on MCS(W) (equivalently Mgznier(W)).

There are three singularities on MCS(W), which has the topology of a three-punctured
sphere. The three singularities are of different natures.
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Orbifold singularity. Firstly, there is an orbifold singularity at @) = 0 which is fixed by the
Zs5 identification in (2.13). This is known as the Gepner point on MCS(I//I\/), where the CFT is
completely regular and described by a Z3 orbifold of the A = 2 Landau-Ginzburg model with
superpotential 22:1 7?2, equivalently a tensor product of five copies of the Kazama-Suzuki
N = 2 supercoset model SU(2)3/U(1). The dimension gap at the Gepner point is,

AGepner — g (214)

gap 5’
which is saturated by a non-BPS primary operator of zero U(1)r charge that arises from a prod-
uct of BPS and anti-BPS primaries of dimension A = é in two copies of the supercoset model.

Conifold singularity. Secondly, there is a curvature singularity on the moduli space located
at ¥ = 1, known as the conifold point on MCS(W). In terms of the Kéhler moduli of the
quintic CY, this corresponds to a point of purely imaginary 7. The CF'T at the conifold
point is singular and develops a continuous spectrum above a nonzero gap

AConifold _ L

Cor 5 (2.15)

The continuum is described by the N = 2 Liouville CFT of central charge ¢ = 9 [56, 57],

which is equivalent to the N' = 2 cigar CFT defined by the Kazama-Suzuki supercoset

SL(2)1/U(1) [58], and the dimension gap (2.15) is saturated by the supercoset primary ®; ,,
1
2

polar coordinates by 1 = 1 + re?. The Zamolodchikov metric and its Ricci curvature scalar

with j = —1 and m = m = 0.!2 Let us parametrize the region near the conifold point in

R are locally given by the following [17]

1
ds* = —a®logr(dr?® +r2d9?), R= r<l, (2.16)

- 2ar?(—logr)?’
where a > 0 is a constant. Note that despite the curvature singularity, the conifold point is

at finite distance on MCS(W), which is consistent with our Theorem 1 and the non-vanishing
gap (2.15).13

2The N = 2 Liouville (cigar) operators are normalized in a different way than those of the canonical
normalization in the compact CFT, due to the divergent volume factor in the non-compact Liouville direction.
Consequently, finite correlation functions in the N' = 2 Liouville CFT translate into divergent correlation
functions of normalized operators in the quintic SCFT at the conifold point: the simplest example being
the chiral ring coefficient which measures the three-point function of (anti)chiral ring operators. See related
discussions in [59, 60] for the four-point functions of (anti)chiral ring operators.

B3 The fact that conifold points reside at finite distance on the moduli space of Calabi-Yau manifolds holds
in general [61, 62] and they are portals to connecting Calabi-Yau manifolds of different topology via geometric
transition [62-64]. Indeed, it was conjectured by Reid [65] (also known as Reid’s fantasy) that all Calabi-Yau
three-folds are connected this way and there is a complete universal moduli space for all (see also [66]). The
topology change comes from shrinking a two-cycle of the resolved conifold and expanding a three-cycle in the
deformed conifold (and vice versa) and this transition is smooth in the full string theory by including branes
wrapping the vanishing cycles [64]. It would be interesting to understand the corresponding connection in the
space of 2d N = (2, 2) supersymmetric QFTs and prove the Reid conjecture using QFT methods.
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Large complex structure limit. Finally, the remaining singularity on MCS(W) comes
from the large complex structure limit ¢ = oo of the mirror quintic I//[\/, which is equivalent
to the large volume limit 7 = 700 of the quintic. The mirror map that relates the two take
the following form in this limit [17],

T = 25—; log ¢ + finite . (2.17)
The Zamolodchikov metric and associated scalar curvature in this limit are'
s? = #dwdij = %drd%, R= —1, Y], 72> 1, (2.18)
|1h? log™ |¢)] T3 3

where the change of coordinates between 1 and 7 comes from (2.17). The sigma-model
on the quintic CY W in the large volume limit has an infinite tower of low lying states
coming from eigenfunctions of the scalar Laplacian on W and the eigenvalues correspond
to their scaling dimensions. By dimensional analysis, we conclude that the dimension gap
depends on the diameter L of W as follows,

1 1
gap ~ T3 Y (2.19)

A

where in the last step we have used fact that 7 measures the integral of the Kéhler class. On
the other hand, the geodesic distance to the infinite distance limit 70 — oo diverges as

t = V6log o + finite.. (2.20)

1
6
in accordance with Theorems 1, 2 and the prediction for o from Theorems 3 and 4. In

Consequently, we find that Ag,, vanishes exponentially in this limit with rate o =

particular, the compact CFT factor in this infinite distance limit has ¢ = 3 and is described
by the six fermions necessary for the N' = (2,2) supersymmetry. The generalization of
the above discussion to more general N' = (2,2) superconformal sigma-models (including
orbifolds) are straightforward.

2.3 Non-unitary counterexample

As emphasized in the introduction, the general results in this work apply to unitary CFTs.
Here to illustrate the importance of unitarity, let us describe a simple example of a non-
unitary CFT with conformal manifold where the Theorems 1, 2, 3, and 4 are no longer
applicable. In particular, we will see that in the non-unitary theory, the limit of vanishing gap
(scaling dimensions) on the conformal manifold can happen at finite distance with respect
to the Zamolodchikov metric.

The model we consider is a simple modification of the previous example. We take the
tensor product CFT 7 _ 15 of the quintic SCFT with ¢ =9 and a non-unitary minimal model
M3 g of central charge ¢ = —%. The M3g CFT contains, among other scalar operators, the
identity operator and a scalar primary operator of the lowest scaling dimension A = —%. This

4Note that our normalization of the Zamolodchikov metric (which follows from (1.2)) differs from that
of [55] by dS}%ere = 4d8‘?here'
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product theory 7__1s thus has a normalizable identity operator, a conformal manifold that
coincides with that of the quintic SCFT, and a discrete operator spectrum at generic points on
the conformal manifold. As in section 2.2, we focus on the conformal submanifold Mxznier(W).

By taking products with the A = —% operator in the M3 g CFT, the continuum starting
at A = 3 (see around (2.15)) at the conifold point of the quintic SCFT is brought down to
A = 0, producing a continuum above the identity operator in the product theory 7 ._15. Since
the conifold point is at finite distance on Mxgznier (W), this clearly creates a counterzzxample
for our theorems in the case of non-unitary CFTs. Said differently, near the Gepner point of
Mkinter (W) with dimension gap (2.14) in the quintic SCFT, the product CFT T:% has an
almost non-negative operator spectrum except for a few low-lying states. The non-unitarity
becomes much more severe as one wanders around on the conformal manifold, in particular
after passing the conifold point where Ag,, = 0 and towards the large volume limit where
infinitely many non-unitary operators appear. This is possible because Ay, = 0 happens
at finite distance in this non-unitary theory. It may be interesting to formulate a modified
degeneration limit for non-unitary CFTs (e.g. accumulation in the spectrum to the lowest
state) and correspondingly a version of our theorems that would apply to the non-unitary
context but that is beyond the scope of this work.

3 From vanishing gap to infinite distance

In this section, we study the limits on the conformal manifold M where the conformal
dimension gap Ag,p, vanishes, and prove that they are at infinite distance from any interior
points of M measured with respect to the Zamolodchikov metric. More precisely, for any
geodesic A(t) on M parametrized by proper distance t and any finite 7' > 0, there exists
e > 0 such that Agap(t) = Agap(A(t)) > € for t € [-T,T]. We assume that the four-point
functions of light primary fields are well-defined in the limit. In particular we assume up
to rescaling there is a unique operator of conformal weights h = h = 0 which coincides
with the identity operator.
We will make use of the following formula from conformal perturbation theory [67],

diit) = —Cooum(t), (3.1)
which determines how the scaling dimension A(t) of a hermitian operator O changes along the
geodesic parametrized by ¢, in terms of the OPE coefficient with the exactly marginal operator
M that couples to t. Note that both O and M are normalized to have unit two-point functions.

We proceed by contradiction. We assume that there exists finite ¢, > 0 along a geodesic
A(t) such that A(t = t.) = 0. We will show that this is incompatible with (3.1) using
conformal symmetry and crossing invariance of the CFT. In particular, we note that if

the following limit exists,

. Coom(t)
NI (32)

then by integrating (3.1) for t — t, < t., we have
log A(t) —log A(ty) ~ —a(t — tx) . (3.3)
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However this is clearly impossible if A(t,) is vanishing since the left-hand side will diverge.
Therefore it suffices to derive (3.2) for a scalar operator O whose scaling dimension A(t,)
can be made arbitrarily small and such O exists by assumption.'® In the following, to ease
the notations, all the CFT quantities are assumed to be evaluated closed to t = t, and
we will simply denote A(t.) by A.

It follows from the d = 2 global conformal algebra s[(2,R) x s[(2,R) that the left and
right conformal descendants of O satisfy,

00 =ivVAJ, 80 =iVAJ, 8J=0dJ=iVAK, (3.4)

for a triplet hermitian operators J, J, K of conformal weights (%A +1, %A), (%A, IA+1)
and (%A +1, %A + 1) respectively, with unit-normalized two-point functions. This can also
be verified by taking derivatives of the two-point function

1

(0(2)0(w)) = m7 (3.5)
which upon acting with 0.9, and 0:0g gives
UEIW) = = +0A), (TTw) = = +08). 39
and from 9,04
_ A 9
V() Tw) = o + 0(8). (37

and similarly for the correlation functions involving the scalar operator K.

From the above, though .J, J and K are descendants of (@, they behave in the limit A — 0
as primary operators of conformal weights (1,0),(0,1) and (1,1) respectively. Naturally,
they arise from the decomposition of the generic global conformal multiplet approaching
the unitarity bound.

Let us now consider the three-point function,

C
(OEOWM) = & -G - e

By acting 0,05 on both sides of (3.8) and using (3.4), we obtain the following relation
between the OPE coefficients involving O and its normalized descendants J, J,

C@@M = ACJJM <1+O(A)) . (3.9)

Therefore, o« = C;7,, in (3.2) and it suffices to show that |C;7,,| < co. In fact, we are
going to derive a stronger statement that

Crim <1+ 0(4), (3.10)

5By the von Neumann-Wigner non-crossing theorem (see [68] for a CFT-related discussion), level-crossing
on the conformal manifold should only appear in higher codimensions. Hence close to the limit of vanishing
gap we can choose a geodesic transverse to the level-crossing loci.
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from the crossing invariance of the four-point function of the scalar operator O whose
dimension A can be made arbitrarily close to zero. We will also identify the necessary and
sufficient conditions to saturate the upper bound on C;jz,,.

In this paper, we do not assume that the CFT satisfies the CFT axioms in the A — 0
limit. For example, the genus-one partition function may diverge in the limit. What we
assume is that the CFTs satisfies the axioms before we take the limit and the four-point
functions of the light operators are well-defined in the limit. If we allow ourselves to examine
the four-point functions of J and J directly at the limit, we would have a simple derivation
of (3.10). Therefore, we will first present this simple but not rigorous derivation of (3.10) in
order to provide an intuitive understanding of it. We will then give a more rigorous proof
without making this additional assumption.

Here is the non-rigorous derivation of (3.10). Since J(z) and J(Z) are primary fields of
conformal weights (1,0) and (0,1) in the limit, the four-point function (J(w)J(z)J(@).J (v))
is holomorphic in z,v and anti-holomorphic in w,u as A — 0. By (3.6), it has the ¢-channel
expansion as,

- 1

(J(@)J (2)J(@)J (v)) = FETE (3.11)

On the other hand, in the s-channel, it can be expanded as,

_ - G9C5m.Crin
(@) T ()T @) 0)) = e

(3.12)

where we introduced a hermitian basis of such operators denoted by M; for i = 1,2,...
and define a metric G;; by
(M) My w)) = 0 (313)
2 —wl|t
A subset of them are exactly marginal which we choose to be M, with a = 1,2,...,dim M
and G, for them is the Zamolodchikov metric, and M; with ¢ > dim M are not exactly
marginal if they exist.

It turns out that the global conformal block for the identity exchange in the ¢t-channel
and that for the marginal operators exchange in the s-channel take the identical form of
(z —v)"2(w — w)~2 in (3.11) and (3.12) respectively.!® Contributions of other operators
indicated by (---) in these equations have different functional dependence on ¢ and are
suppressed in the A — 0 limit. Comparing (3.11) and (3.12), it follows from the associativity
of the OPE directly in the limit that

GijCJjMiCJjMJ_ =1. (3.14)

Since the exactly marginal operator of interest M is a linear combination of M; and has
a unit two-point function, we deduce that

1611 fact in both cases it captures the entire Virasoro block for the given set of internal and external weights.
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This derivation is not rigorous since we have used unitarity and associativity of OPE for J and
J directly in the limit, despite the fact the limiting CFT does not obey the usual axioms of
compact unitary CFT. In particular, the fact that the ground state becomes non-normalizable
with vanishing gap in the limit raises a concern.'” We have also assumed that the identity
and marginal operator exchanges in (3.11) and (3.12), respectively, are linearly independent
of other terms in the expansions indicated by (---), and this requires a proof.

In the following we present a more rigorous derivation of the same inequality. The
four-point function of O’s can be expanded into a sum over s-channel global conformal
blocks as below,

1+ 401 1Coos|* Fi, (O)F;, (¢

(3.16)

where we have separated the contribution of the identity operator from those of the nontrivial
normalized global primaries ¢ with conformal weights (hg, i_zd,). The holomorphic conformal
cross-ratio ( is defined as

(z —w)(u—v)

- u)w—"v)’

and similarly for the antiholomorphic cross-ratio (. The corresponding global conformal

¢= (3.17)

blocks are denoted as Fj, (¢) and .7:',-%(5 ), which are independent of A and explicitly given by,

Ty (€) = ("o F1(hg, hg, 2h4;C) . (3.18)

Taking the derivatives 0,030z0, on the two sides of (3.16) and using the relation (3.4),
we obtain
Cooy|> 0*Fn,(C) 82]'_—/34,(5)

()27 w) = Y 1909l TPl TID) L o) g
71

where we have dropped the identity contribution in the s-channel OPE since it is of order
O(A?) from (3.7). In the above equation we have also used the assumption that the (J.J.JJ)
correlator is well-defined in the A — 0 limit,'® thus the first term on the r.h.s. is of order
O(1) and the derivatives on the denominator in (3.16) give terms of order O(A).

Let us investigate the contributions from marginal operators (which include M) on the
r.h.s. of (3.19). Using the explicit form of the global conformal block for marginal operators,

F1(¢) = C2F1(1,1,2;¢) = —log(1 - (), (3.20)

TFor example, in such a CFT, vanishing right (resp. left) conformal weight does not necessarily imply

holomorphicity (resp. antiholomorphicity) of the operator. A typical example is the SO(n) rotation symmetry
currents X “@LX I for n non-compact bosons X with s = 1,...,n, whose components are neither holomorphic
nor anti-holomorphic. See [69] for a recent discussion on such currents and how they arise from the vanishing
gap limit of Wess-Zumino-Witten CFT as the level k — oo.

18This can be inferred from the assumption that correlators of @ remain well-defined in the A — 0 limit. To
see this, it suffices to argue that (9090IOI0) is of order O(A?) in the limit. Using conformal Ward identities,
this latter four-point functions can be expressed as a linear combination of the amplitudes (u|OO|v) with O(1)
coefficients and |u), |v) are descendant states of O such that (u|v) = O(A?) (e.g. |u) = |90),|v) = A|dO) or
[u) = |v) = |#BO)). Then the desired property follows since O approaches the identity operator in the limit.
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and the relation (3.9), which holds for general marginal operators in place of M, we find
that M; contributes to the r.h.s. of (3.19) by the following,

PR PR GYCumCriu,
JIMi 9200 owou (2 —v)2(w—u)?’

Therefore, we can isolate the contributions from marginal operators on the r.h.s. of (3.19) as

(3.21)

= . GYC 0, Crin, o 0 Fn,(C) 32]3@(6)
T @IIE) = o * 2, % a0 awon * O G2
where we have defined,
. |C 2
o3 = im 190001 (3.23)

In the following, we will show that for operator ¢ that does not asymptote to the identity
or marginal operators, ag must vanish at least as AY 2, as a consequence of the consistency
of the four-point function in the limit A — 0.
In the t-channel, the same four-point function (J(w).J(z).J(u)J(v)) can be expanded as
, O2F,(1—¢) 0°F;,(1—C)

()T 0)I0)) = gz + 203 g i+ 04,
P#1

(3.24)
where we have isolated the identity contribution in the first term on the r.h.s. using (3.4).
By combining the identity,

2
e S (Ra g g I P (3.9

which holds for any function f({) of ¢, with the defining differential equation for hyper-

geometric functions,

d2

(1= 05 +

d¢

we find that the t-channel global conformal blocks Fj (1 — () from (3.18) are eigenfunctions
of (z — v)%0,0, as below,

202}71(1—0 _ - -
(=P - - P R0 k- mAO -0, B20)

(2h — (2h + 1)<)i — h2] oFy(h,h,2h;¢) =0, (3.26)

Thus, we can write the t-channel expansion (3.24) as,

)
- - 1+ S 42102 haho(l — hy)(1 — hg)F —OF (1-¢
(J(w)J (2)J (u)J (v)) = 971 % Mo ¢<(z—f}))(2( ¢)) hs (1= O F5,(1—0)

+O(A).

(3.28)
As a consequence of (3.4), J and J are holomorphic and anti-holomorphic respectively to the
leading order in A. By applying the differential operators (2 — ©)20:05 and (u — w)28,0,, to
the above equation and using the analogs of the eigenvalue equation (3.27), we find

S" a2 B3R3(L — hy)*(1 = hyg)2Fi, (1= Q) Fj (1 C) = O(A). (3.29)
¢#1
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It then follows from the convergence of the t-channel OPE [70-72] and the positivity of the
conformal blocks Fp,, (1 — C)fﬁ¢(1 — () for ¢ = ¢ € Ry [73] that a, must vanish in the limit
unless the conformal weights of ¢ obey hghy(hy — 1)(hg — 1) = 0.

Since the spin of ¢ is quantized, ay can be non-zero only if

(hgy hg) € {(n,m) € Z>o ® Zxo | nm(n — 1)(m — 1) = 0}. (3.30)

With this restriction and the fact that F¢(¢) = 1, only conformal families with primary
conformal weights (n,1) and (1,n) with n > 2 contribute in the s-channel expansion (3.22)
and consequently,

(J(w)J (2)J (w)J (v))
CGIC I Cn Yy Bud00F Q) | S0 BudidaFn(C) (3.31)
S Cowe—ar T @—ar T Goor 9@
where
By = > af, and f3, = > aj . (3.32)
¢:(h¢v}_l¢):(n71) ¢:(h¢7ﬁ¢):(lvn)

On the other hand, the t-channel expansion gives simply (J(w).J(2)J(u)J(v)) = (z—v)"2(w —
u)72 + O(A) as we have seen in the above.!” The crossing invariance of the four-point
function therefore demands,

GY CJJ'M,- CJij—l -1

= (z —v)? i a30:00Fn, (¢) + (0 — u)* f: a30z0uFj,, (C) + O(A)
hym2 - (3.33)

= (1—4)2;2 [CCZZ@LEL(C) +0(4).
n=2

ad - ada & -
+(1=9) i l( ng:gﬁ (©)

To solve the above bootstrap equation at leading order in A, we define the following
linear functional by a contour integral around ¢ = 0,

i]:_n
wa(f(Q) = fé d ! <f1n<<>+d““)> FQ. (334

—o 2min(n —1)¢(1—¢) n(n —1)

It implements the projection to the contribution from the conformal families with primary
conformal weight (n,2) in the s-channel in (3.33) thanks to the following property

on (1= 03¢ ¢ Fnl@)]) = B (3.35)

This follows from basic hypergeometric identities such as (3.27) (see [74] for a similar
projection functional). A similar linear functional can be defined by the corresponding
contour integral in C.

9The fact that the correction is of order O(A) as opposed to O(A'/?) follows from (3.4) and the assumption
that the correlators among J, J, K are well-defined in the limit A — 0. In particular the would-be O(AI/ 9
contribution to the four-point function (J.J.J.J) is proportional to (KJJJ) or (JKJJ) (up to permutations)
which vanish in this limit. See also (3.29).
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As explained in [70-72], the s-channel conformal block expansions in unitary theories,
such as that in (3.33), are uniformly convergent for , ¢ treated as separate complex variables
valued in the cut-plane C\[1,00). Furthermore, since F, and F, are holomorphic in the
cut-plane, the sum in (3.33) converges to holomorphic functions of ¢ and ¢ respectively.
We can therefore apply the linear functional defined in (3.34) to both sides of (3.33).%°
Consequently we conclude 8, = 8, = 0 with n > 2 to this order, which implies

af =0(A), (3.36)

for any operator ¢ that does not approach either identity or marginal operators in the limit, and
O - -

GYCyn,Crim, =1+ 0(4). (3.37)

Since Gi; is positive definite, (3.37) implies that |C;7,, | are bounded above for all i
in the limit. In particular, since M is a normalized hermitian linear combination of the

exactly marginal operators M,, we conclude that
Cypg S1+0(A), (3.38)

which is what we wanted to show.?!:2? As a by-product, we also deduce from (3.23) and (3.36)
that, the OPE coefficient between the operator ¢ and the light operator O satisfies

|Coos| = O(A%?), (3.39)

except for ¢ that asymptotes to the identity or marginal operators in the limit of vanishing gap.

The inequality (3.38) not only establishes that vanishing gap requires infinite distance
on the conformal manifold, but also constrains the rate at which the conformal dimension
gap A approaches zero as follows. Using Riemann normal coordinates t* dual to M, near the
limit of vanishing gap and introducing «, as the limit of C;7,, , equations (3.1) and (3.9)
can be generalized to

% log A = —C, 1y (1+ O(A)) = —aa(1+ O(A)). (3.40)

We can then integrate this to obtain
A = exp(—aqt® + O(1)). (3.41)

By equation (3.37), the length ||a|| = v/G%a,ayp of the vector oy is bounded above, ||a| < 1,
and the bound is saturated if and only if C; 7, = 0 for all non-exactly-marginal directions
(ie. i > dimM).

20Using the fact that the expansions in (3.33) come with non-negative coefficients i.e. 8., 5, > 0, we can
exchange the integral and the sum by the dominated convergence theorem.

2INote that we do not assume the existence of a local stress tensor in the proof. Therefore, the results in
this section also apply to the conformal manifolds of surface defects in d > 3 CFTs.

22To make the argument here completely rigorous, it would be desirable to identify a family of linear
functionals on the crossing equation for the four-point function in (3.16) that produces a bound Coonm <
A + 0(A) in the limit A — 0. One apparent difficulty in finding such a functional is the vanishing gap in the
intermediate OPE channel in the limit. We leave this to future investigation.
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It is convenient to parametrize the Riemann normal coordinates t* as t* = e%t, where ¢
is the geodesic distance and e® is a unit vector defined by

e® = cosf G®ay +sinf e? | (3.42)

where € is a unit vector satisfying aq,ef = 0. We choose 0 < 6 < 7/2 so that the geodesic
length grows toward the direction of G®q;. With this parametrization, equation (3.41)
becomes

A =exp(—at + 0(1)), (3.43)

with a = cosf||a|| < 1. The upper bound is saturated if and only if § = 0 and ||a|| = 1,
when the geodesic points in the direction of G*®qy, and all non-exactly-marginal directions

4 Properties of limiting CFT

Here we describe features of the CFT in the limit of vanishing gap Aga, — 0 as one moves
on its conformal manifold M. In particular we will derive the emergence of a large target
space in this limit, establishing Theorem 3 and 4.

In the previous section, we have focused our attention to one of the primary operators
with vanishing conformal dimensions. In general there exists a set of linearly independent
primary operators {O,,} whose conformal dimensions vanish simultaneously. The CFT may
also contain other primary operators whose conformal dimensions remain finite or diverge
in this limit. It is convenient to set a scale Agpjte such that the conformal dimensions of
all such states are greater than Agpite in the limit.2

For each such primary operator O,, we define its normalized descendant J, by

00, = i/ Andy (4.1)

where O,, and J,, have conformal weights ( %An, %An) and (%An +1, %An) respectively, and
similarly for J, and K, as in (3.4). As we explain below, the operators J,,, J,, are emergent
currents in the limit of vanishing gap while K, are emergent marginal operators, but they
are not necessarily all linearly independent in the limit. We will focus on the operators J,
and the linear relations among them that emerge in the limit A, — 0.

For example, the S' sigma-model described by a periodic scalar field X ~ X + 27R
contains the infinite tower of momentum eigenstates whose conformal dimensions vanish
in the large radius limit R — oco. In this example, it is convenient to use a complex basis
for these light operators,

O, = exp <ZnX) . nez, (4.2)
R
with scaling dimension A,, = (n/R)? and correspondingly a complex basis for the descendants,

00, = @Jn ) 00_p = — \ JANIY S y nE Z-l— ) (43)

23In other words, the direction G®®wy, is the fastest way to achieve vanishing gap.
24In particular, Agnite < 1 since the descendant of an operator @ with vanishing dimension may become a

primary operator in the limit as we saw in section 3.
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with
J,, = i0X exp (iZX) . ncz. (4.4)

Though the operators J, are linearly independent at finite R, they all become i{9X in the
limit of R — oc.

To understand in general the emergent linear relations among J,,’s in the limit A,, — 0,
it is useful to consider the operator product algebra of O,’s,

On(2)Om(w) = > CF, |2 — w|Ak AT AR O (1) 4+ O(|z — w|Anite), (4.5)
k

Here we are assuming that the operators O, are hermitian. The OPE is dominated by
light operators that have vanishing scaling dimensions in the limit (the first term on the
r.h.s. of (4.5)). To derive linear relations among J,,’s, we act by (9, + 0,,) on both sides
of (4.5), taking the limit A,, — 0, and then set z — w. Since we assume the light operators
to have well-defined sphere correlation functions in the limit, CX, cannot diverge and we
obtain the following linear relations,

VALI(2) + VA Tm(2) = Y oV ArJi(2).- (4.6)
k

For example, in the S' sigma-model example discussed above, these relations for J,
defined as in (4.3) become

ndy +mdpm = (n 4+ m)Jntm , (4.7)

and the unique solution is J,, = Ji. For the S! sigma-model, (4.6) clearly give a complete set
of linear relations among J,,’s in the A,, — 0 limit. Since the operator product algebra (4.5)
contains all the information about operatorial relations among O,,’s, we expect that this is
the case in general, i.e., all the linear relations among J,,’s defined by (4.1) are given by (4.6).

We can also derive the operator product algebra of the operators J,, by acting 9,0, on
both sides of equation (4.5) and taking the limit A,, — 0 and then w — Z to suppress the
O(|z — w|®nite) terms. We obtain the following,

Ap— Ay — Ay 1 iV Ay
In(2)Im(w) = chm ( - Jr
’ VALAL (z—w)? z-w

(w)) + regular . (4.8)

The unconventional coefficient of ﬁ is due to the linear relations (4.6) among J,,’s. By

choosing an orthonormal hermitian basis,

TH=Y"U"J,, (4.9)
k

taking into account the relations (4.6), we can put their OPE in the standard form below,

v v
g 5 2 J?(w) + regular, (4.10)
w

THN2) T (w) =

(z —w) z—

for some constant f4", valid in the limit A, — 0. In the following, we take the number of
linearly independent emergent currents to be N.
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Note that f4* would vanish in the limit if the ratio A,, /A, for any pair n, m remains
non-zero and finite, due to the additional factor of v/Ay, in the (z — w)~! term on the r.h.s.
of (4.8). Although there is a logical possibility that different A,, are scaled in differently
so that a nonzero [} survives in the limit, we will argue below that unitarity requires
Jh" to vanish identically.

The OPE (4.10) defines a Kac-Moody algebra. Since the Killing form for the algebra is 6#”
and positive definite, consistency demands that f}" is proportional to the structure constant
of a compact Lie group G. The conventional Kac-Moody currents obey a normalization such
that the leading OPE singularity is %(z —w)~2 where k € Z, is the level of the Kac-Moody

algebra. Comparison to (4.10) indicates that f4” is given by the structure constant of G

multiplied by the factor /2.

Let us now show that f/ = 0, which amounts to saying that the underlying group
G is abelian. Suppose to the contrary that the group G contains a simple non-Abelian
subgroup, for which f/* does not vanish. It is well-known that the Kac-Moody algebra
generators can be constructed using massless free scalar fields and parafermion fields [75]. In
particular, the current Jp in a direction H of the maximum torus of the group G normalized
as in (4.10) is given by,

Jn = 10X, (4.11)
for a periodic scalar field X, which in the limit becomes free with the two-point function

0X (2)0X (w) ~ —(z — w)~2. Because of (4.1) and (4.9), there must be a light primary
operator O of scaling dimension Ay such that

00 = qJg = iq0X , (4.12)
for some real number ¢ near the limit Ap — 0. By integrating this equation, we obtain
O(z,2) = 9% 8(%) (4.13)

for some operator S(z) that only depends on z. Since the scaling dimension of such an
operator is bounded from below Ap > ¢, we need ¢ to vanish in the limit. This is a
contradiction since q is the charge carried by O with respect to the current Jy and must
be quantized in any unitary representation of a simple compact non-Abelian Lie group.
Therefore, the group G cannot contain any non-Abelian subgroup (with finite Kac-Moody
level k), and f}"” must vanish as claimed earlier.

Since f}” = 0, all the currents that descend from the light operators in the limit can
be represented as

T (z) = i0X", (4.14)
in terms of free bosons X*. For each X*, there must be a primary operator O such that
00 = iqo X", (4.15)

for some real number ¢. Since the scaling dimension of O vanishes in the limit, we must
also have

00 = igd X", (4.16)
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for another free boson X* and another real number ¢. By integrating the above two equations,
we obtain the following representation of the light operator O,

O = 1X1(2)+igX (2) , (4.17)
where X/ is a projection of X* to its holomorphic part and X i is a projection of XH to its
anti-holomorphic part. The fact that O has to be a scalar requires ¢ = +¢. Since ¢ — 0 in
the limit, mutual locality of operator spectrum requires that only one of the two possibilities
is realized which we take to be ¢ = ¢. Consequently we can write,

O = X" (4.18)

where X# = X' + Xllfz- By taking OPE of O above with itself, we can generate an infinite

—maX" from their hermitian

tower of light operators ¢™%X" for any positive integer n, and e
conjugates. Since we can approximate any real number p by ng with ¢ — 0 and n — +o0, we
find that the spectrum of the theory must contain e?X” for any real number p in the limit.
One can identify p as the momentum charge for the current J* in (4.15) in the limit.

By repeating the above procedure for all currents J* that emerge in the limit and taking
products of the resulting primary momentum operators, we find that the CFT in the limit

contain primary operators of the form
Op, (2,2) = e 2nPr X" (22 (4.19)

for any real N-vector p,. They describe a continuum of scaling dimensions A = 3, pi
without a gap above the vacuum. It shows that the CFT in this limit contains a subsector of
local operators described by the sigma-model with a non-compact target space RY.

The limiting CFT may contain other primary operators with scaling dimensions at or
above Agpite. Moreover, the limit may not necessarily factorize into a tensor product of
the RY sigma-model and a compact CFT. Instead they can be coupled together by an
orbifold or a more general fibration.

As an example, let us consider the orbifold CFT on S'/Zs, where the compact boson
X of radius R is subjected to an identification by the Zs reflection X ~ —X. The limit of
vanishing gap here is obviously R — oo (up to choosing a duality frame) and the limiting
theory is described by the Zs orbifold of the R sigma-model. In this case, the emergent
current from (4.1) lives in the twisted sector of a dual symmetry which we explain below.
In the untwisted sector, the conformal dimension A,, = (n/R)? of the Zs-invariant operator
O,, = V/2cos(nX/R) with n € Z, vanishes in the large radius limit R — oco. The operator
Jpn as defined in (4.1) is given by

Jp = i0X0,, (4.20)

where O,, = V2sin(nX/R).2> Though O, may secem to vanish in the R — oo limit, it
remains a nontrivial operator in the limit. Since it has a nontrivial monodromy relation
with operators in the Zs twisted sector, the proper way to think about it is a topological

%51t is properly normalized as O, (2)On(w) ~ |z — w| 22" — \%|z —w|*A" Ogp(w) + - - -
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(i.e. dimension 0) operator at the end-point of the topological defect line that implements
the quantum Zo symmetry of the orbifold [76]. Another way to say this is that, the operator
10X belongs to the twisted sector of the quantum Zo symmetry and thus is attached to
the Zs topological line (which ends on @n) More generally, the emergent currents (4.14)
should be interpreted as descending from operators in the twisted sector of a topological
defect line £ and consistency requires the ground state in the L-twisted sector to have zero
conformal dimension in the limit A — 0.%6

In the example above, the compact sector in the limit is trivial (simply a gapped vacuum).
As another simple example but with a nontrivial compact sector, we can consider the SU(2)
CFT with the exactly marginal deformation M = J3.J5. Using the orbifold equivalence

SU(2)x/U(1) x U(1)a
Ly, '

SU(2), = (4.21)
between the SU(2); CFT and a product of the Zj parafermion CFT and the compact boson
CFT at radius R = v/2k where Z;, acts diagonally on the two factors,?” we can identify
this one-dimensional conformal manifold generated by M as that for the compact boson
factor. Consequently, in the limit of vanishing gap which corresponds to large radius limit
of the compact boson, the limiting CFT is described by the Z; parafermion CFT and the
R sigma-model coupled together by the Z; orbifold.?

After taking into account the above caveat, what we have shown in this section is that
the limiting CFT contains the operator algebra of N free non-compact bosons as a subalgebra
of its local operators, modulo such topological defect lines. We conclude that the full CFT
central charge ¢ puts the upper bound N < ¢ on the number N of emergent non-compact
directions in the limit of vanishing gap. We have thus established Theorem 3 regarding
the behavior of the CFT in this limit.

Let us move on to prove Theorem 4 about the lower bound on «. Marginal operators
in the limit consists of either

MM (z,2) = 0X X", (4.22)

which make a linearly independent basis of the marginal operators emergent from 85(’)%
by (3.4) and (4.19) or operators which entirely commute with 9X#. For M*", the three-point
function with the emergent currents (see (4.14)) J” and J° is

SPu§oV

(z —w)?*(w —u)*’

(TP (2) T () M (u, ) =

(4.23)

up to terms that vanish in the A — 0 limit. This is consistent with (3.38) as expected. The
marginal operators which commute with 0. X* have zero three-point functions with J# and do
not contribute to our estimate of «. Note that these operators M do not in general survive
as exactly marginal operators away from the limit of vanishing gap. In the example of quintic

26 A necessary condition for this to happen is to have a trivial spin selection rule in the £-twisted sector,
which is equivalent to the anomaly free condition for invertible symmetries [77].

2THere the Z; symmetry of the SU(2)x/U(1) coset CFT descends from the standard Z; symmetry of the
parafermions and that of the U(1)2x CFT is the non-anomalous Z; momentum (shift) symmetry.

28More precisely, there are k copies of the R sigma-model related by the Z; symmetry that is gauged.
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SCFT in the large volume limit discussed in section 2.2, the number of decompactifying
directions is N = 6 but only 1 out of the 36 operators is exactly marginal, which corresponds
to the overall volume deformation in the limit.

The exactly marginal operator M that couples to ¢ in Theorem 2 should become a linear
combination of M in the limit,

M=k M"™. (4.24)
v

Since M is canonically normalized, the coefficients x,, are normalized as

> (k) =1. (4.25)

214

For an operator described by (4.19) with momentum p in the limit, the decay coefficient a(p)
for its conformal dimension A = exp(—a(p)t + O(1)) in the direction of M is given by

Z,W RuvPuPv

SRR (4.26)

a(p) =

which follows from (3.1). Below we will derive a lower bound on the maximum decay coefficient
a(p) that can be achieved for any p. Intuitively this amounts to picking the operator whose
conformal dimension decays the fastest along the geodesic given by M, and consequently the
lower bound is an intrinsic property of M that specifies the approach to the limit.

The sector of the CFT described by the N noncompact free bosons has the standard
positive-definite kinetic terms and is parity invariant. Since we add o [ d?zM(z) to the
CFT action and take t — oo to reach the limit, the integral of M should be a positive and
parity preserving operator. In general, M itself may have a parity-odd component (from the
antisymmetric part of x,,) but that is a total derivative in the limit. Here we assume that in
a neighborhood of the limit, we can choose M such that it is parity even.?? Correspondingly
ke should be symmetric and positive semi-definite.

It then follows from standard linear algebra that «(p) in (4.26) is bounded from above
by the largest eigenvalue of k,, and the bound is saturated when p is aligned with the
corresponding eigenvector. Since k,,, is normalized by (4.25), its largest eigenvalue is bounded
from below by 1/v/N. Therefore we conclude that

1

VN

Combining with the unitarity bound N < ¢, we have shown that, given an exactly marginal

< max ,cgny a(p) - (4.27)

operator M that specifies the limit to vanishing gap, there is always an operator for which
the decay rate « of its conformal dimension is bounded below by

<a. (4.28)

Sl

?Note that this does not require the whole CFT to be parity invariant (see the example discussed
around (4.21)).
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The bound is saturated if and only if ¢ = N and Ky, = 0,/ VN so that the exactly marginal
operator M scales uniformly the N emergent decompactifying directions.3’

The above analysis generalizes straightforwardly if extra conserved currents are preserved
as the CFT approaches the Ag,, — 0 limit. For example, if the limit is supersymmetric, the
emergent scalar fields X* must be paired with real fermions ¥*. It is conventional to write
the superconformal CFT (SCFT) central charge as ¢ = 3¢/2. Then the compact sector of
the limiting CFT is also an SCFT with central charge ¢t = ¢ — N and consequently the
lower bound (4.28) on « is strengthened to ¢~/2 < a.

As discussed in the Introduction, this lower bound can be translated in the AdS units as

(Lptancc)/? < aaas - (4.29)

As explained in section 1.2, after taking a flat space limit, this coincides with the Sharpened
Distance Conjecture (1.15) for D = 6 [34]. For example, let us consider the supersymmetric
sigma-model on Sym’ (T*), which is dual to Type IIB string theory on AdS3 x S? x T*. In
this case, the lower bound for apqs can be saturated, for example, by Kaluza-Klein modes
in the large volume limit of 7% (see section 1.2).

On the other hand, consider the bosonic sigma-model on Sym®™ (7). This model is
conformal at least on the orbifold locus (the orbifold blowup modes are not exactly marginal).
Without supersymmetry, the lower bound on « is weaker as in (4.28), which in the AdS units is

9 1/2
<3LPlanck> < aads- (4.30)
This lower bound is saturated in the large volume limit of the seed T* sigma-model. Though
the Sharpened Distance Conjecture is violated in this example, we do not claim it as a strict
counter-example since it is not clear whether the large N limit of this bosonic sigma-model
has a weakly coupled gravitational dual in AdSs.

The analysis in this section shows that, once there is one primary operator with A — 0,
there appears an infinite tower of operators whose conformal weights vanish simultaneously.
In the bulk AdS, there is a corresponding tower of light states. Since aaqs is bounded below
by ( LPlaan)l/ 2 in supersymmetric theories and by (%Lplanck> 2 in non-supersymmetric
theories, the infinite tower of light states inevitably appears when ¢ travels much more
than (Lplanck)*l/z. On the other hand, since apqg is bounded above by (87rLAdg)1/2 (cor-

~1/2 in order to

responding to @ < 1 in the CFT unit), ¢ must travel more than (Laqgg)
see this phenomenon.

Before we close this section, it may be worthwhile to point out that, although the proof of
Theorems 1 and 2 in section 3 assumes the existence of an exactly marginal operator for each
tangent vector on the conformal manifold M, we did not use this assumption in the proof of
Theorem 3 in this section. We have only assumed that there is an infinite sequence of CFTs
with a suitably identified common set of light operators whose conformal weights vanish in

the limit and the four-point functions of these light operators are well-defined in the limit

30The inequality can be improved when c is fractional, in which case |¢| > N and |¢]™*/? < a. When

c € QQ, this improved inequality can be saturated only if c — N = m

sector is described by a Virasoro minimal model. When c is irrational, this inequality is always strict.

) for m € Z4+ so that the compact
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(see [8] for a detailed discussion of this general limiting procedure). Thus, Theorem 3 may be
applicable to a larger class of families of CF'Ts. For example, let us consider the £k — oo limit
of the Ap-type Virasoro minimal model CFTs, where the central charge approaches ¢ = 1 and
Agap vanishes as 1 — ¢ oc 1/k?. In [11], it was shown that the limiting CFT is described by a
non-conventional non-compact boson. More recently, it was found in [12] that there is a pair
of walls in the target space with a tachyon-dilaton profile and that the distance between these
walls becomes infinite in the £ — oo limit. These results appear consistent with Theorem 3
since the limiting CFT in this case is described by the R sigma-model away from the walls.

5 Discussion

In this paper, we have shown that for d = 2 unitary compact CFTs, any point on the conformal
manifold M where the conformal dimension of a nontrivial primary operator vanishes is at
infinite distance with respect to the Zamolodchikov metric on M. We have discussed how
this limit is approached and derived the universal bounds ¢~1/2 < a < 1 on the parameter
« in the exponential decay of conformal dimensions A = exp(—at + O(1)) with respect to
the geodesic distance t. We have also deduced universal properties of the limiting CFT such
as the emergence of a large target space. Moreover, we have extracted the implications of
our CFT results for mass decay on the moduli space of quantum gravity. The immediate
question is whether the converse statement can be proven or falsified: namely, what happens
when we travel infinite geodesic distance on the conformal manifold M?

Though we have derived these results assuming that there is a continuous family of
unitary CFTs at the same central charge and four-point functions of light operators are
well-defined in the limit, some of them can be proven under weaker assumptions. In particular,
Theorem 3 is applicable to discrete families of CFTs with varying central charges. This
unlocks the potential to study flat space limits of AdS gravities (see also section 1.2) and
verify the conjecture in [13]. It would be interesting to find out whether the other theorems
also hold for discrete families with a suitable measure.

In higher dimensions, Conjecture I, which is analogous to our Theorem 1, has been proven
for supersymmetric theories in [5] and more recently for general CFTs in [6]. However except
for special classes of supersymmetric theories [5], no universal bounds on the exponential
rate (analogous to « in two dimensions) are known. Here our universal upper bound on
a follows from the bootstrap equation for the four-point function, and it is natural to ask
whether this idea is useful in higher dimensions. As a more direct application of the bootstrap
philosophy to gravity, it may also be interesting to apply the S-matrix bootstrap (see [78] for
a recent review) to find constraints on the effective theory of massless scalar fields coupled
to gravity in asymptotically flat spacetime. Furthermore, it remains an open question to
prove or falsify the converse, as for the d = 2 CFT/d = 3 gravity.

There are many other intriguing features of conformal manifolds that appear to be
universal and worth further investigating. For example, in d = 2, the singularities on the
conformal manifolds seem to be one of the following four types with distinct features: orbifold
point (enhanced symmetries), conifold point (continuous spectrum with a non-zero gap above
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the vacuum),*! branching point (accidental exactly marginal operators), and infinite distance
limit (vanishing gap).?? It would be interesting to understand if they are all the possibilities
for d = 2 conformal manifold and what are the global constraints on their existence. One
could ask the same questions for higher dimensional CFTs. In particular, the sum rules
derived in the recent paper [28] relating Zamolodchikov curvature to OPE data in the CFT
could be useful to address these questions.

Another potentially interesting direction is to study topological constraints on the
conformal manifolds. In [4], the following conjecture was proposed in addition to Conjectures 0,
1, and 2.

Conjecture 3 There is no non-trivial 1-cycle with minimum length within a given homotopy
class in M.

This conjecture has been proven for gravitational theories in flat space with more than eight
supercharges [79]. Since it was motivated by the absence of global symmetries in quantum
gravity, which has been proven in AdS by the consistency of CFT [2, 3], it may be possible
to prove Conjecture 3 for general AdS gravities similarly.

Finally, it would be interesting to further develop and generalize the bootstrap analysis
in [59, 60] for d = 2 CFTs and in [80, 81] for d = 4 to probe more refined CFT data
over the conformal manifold,?? such as general constraints on the perturbative expansion
around the infinite distance limit (cusp point) in terms of the anomalous dimensions of
protected operators.
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