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Abstract: Gauging is a powerful operation on symmetries in quantum field theory (QFT), as
it connects distinct theories and also reveals hidden structures in a given theory. We initiate
a systematic investigation of gauging discrete generalized symmetries in two-dimensional
QFT. Such symmetries are described by topological defect lines (TDLs) which obey fusion
rules that are non-invertible in general. Despite this seemingly exotic feature, all well-known
properties in gauging invertible symmetries carry over to this general setting, which greatly
enhances both the scope and the power of gauging. This is established by formulating
generalized gauging in terms of topological interfaces between QFTs, which explains the
physical picture for the mathematical concept of algebra objects and associated module
categories over fusion categories that encapsulate the algebraic properties of generalized
symmetries and their gaugings. This perspective also provides simple physical derivations
of well-known mathematical theorems in category theory from basic axiomatic properties
of QFT in the presence of such interfaces. We discuss a bootstrap-type analysis to classify
such topological interfaces and thus the possible generalized gaugings and demonstrate the
procedure in concrete examples of fusion categories. Moreover we present a number of
examples to illustrate generalized gauging and its properties in concrete conformal field
theories (CFTs). In particular, we identify the generalized orbifold groupoid that captures
the structure of fusion between topological interfaces (equivalently sequential gaugings) as
well as a plethora of new self-dualities in CFTs under generalized gaugings.

Keywords: Discrete Symmetries, Global Symmetries, Topological Field Theories

ArXiv ePrint: 2311.17044

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2024)127

mailto:od2051@nyu.edu
mailto:cl4682@nyu.edu
mailto:yw6417@nyu.edu
mailto:qgw1@nyu.edu
https://doi.org/10.48550/arXiv.2311.17044
https://doi.org/10.1007/JHEP03(2024)127


J
H
E
P
0
3
(
2
0
2
4
)
1
2
7

Contents

1 Introduction and summary 1

2 General properties of non-invertible symmetries and their gauging 5
2.1 Topological defect lines and fusion category 5
2.2 Algebra objects and generalized gauging 9
2.3 Half-gauging, topological gauging interfaces and self-duality 10
2.4 General topological interfaces and (bi)module categories 13
2.5 Sequential gauging, generalized orbifold groupoid, and module categories for

group-theoretical fusion categories 18
2.6 Simple dimensional constraints for generalized gauging 20

3 Generalized gauging in Rep(H8) and Rep(D8) 23
3.1 NIM-reps for TY(Z2

2) fusion ring 24
3.2 Algebra objects in Rep(H8) 26
3.3 Module categories and the orbifold groupoid for Rep(H8) 27
3.4 Algebra objects in Rep(D8) 30
3.5 Module categories and orbifold groupoid for Rep(D8) 31

4 Examples of generalized gauging in CFT 33
4.1 Ising2 CFT and infinite non-invertible self-duality 34
4.2 Generalized gauging and orbifold groupoid in irrational CFT 39
4.3 Binary algebras and gauging in Wess-Zumino-Witten CFT 40

1 Introduction and summary

Symmetry is arguably the most powerful principle in physics and a crucial concept ingrained
in the foundation of Quantum Field Theory (QFT). There is plenty of evidence that QFT
dynamics is extremely rich from both experiments and numerical simulations, thanks to
a myriad of strong coupling effects. However in a typical parameter regime, a controlled
calculation is often not possible and a naive extrapolation can be misleading. This is where
symmetry plays an important role. It allows us to bypass the barrier of strong interactions
and deduce nontrivial dynamical properties of physical systems, ranging from selection
rules on probability amplitudes, constraints on phase transitions, to predictions for the
destinies of renormalization group flows. This is possible by virtue of a notion of rigidity
associated with symmetries which produces simple mathematical invariants for complicated
QFT observables, and such invariants can often be calculated by going to weakly-coupled
corners in the parameter space. These invariants encode finer features of symmetries, such
as the ’t Hooft anomaly for a symmetry group G, and a thorough examination of such
invariants can greatly strengthen the predictions from symmetries on the QFT dynamics. It
is well known that a universal and elegant way to probe such invariants of symmetry is to
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couple the QFT to background gauge fields; the ’t Hooft anomalies are then obstructions
to gauging, which corresponds to promoting these gauge fields to become dynamical while
satisfying the basic axioms of QFT. When the symmetry G of a QFT T is anomaly free,
gauging G produces another healthy QFT T /G, and many known QFTs are generated this
way. Various different parts of the QFT theory space are then connected by gauging. This
can be used to shed light on the properties of one QFT from another, which may be obscure
without this extra perspective.

The past decade has witnessed a major paradigm shift in how to think about symmetries,
leading to the notion of generalized symmetries represented by topological defect operators
D(Σ(p)) in a QFT defined over a p-dimensional closed submanifold Σ(p) of the spacetime [1]
(see also [2–7] for recent lecture notes and reviews). In this language, ordinary symmetries cor-
respond to a family of topological defects Dg(Σ(d−1)) defined on codimension-one submanifolds
and labeled by group elements g ∈ G. There are two immediate directions to generalize the
above: one could consider topological defects of higher codimensions or consider topological
defects no longer labeled by group elements. The former has led to the notion of higher
form symmetries whereas the latter has ushered in the non-invertible symmetries. Given the
importance of gauging to both detecting anomalies and relating potentially different QFTs,
it is imperative to understand how to implement gauging for these generalized symmetries.
This question is particularly intriguing for non-invertible symmetries, as the composition of
corresponding symmetry transformations now carries a fusion algebra structure generalizing
that of a group and thus requires a new mathematical language to describe the corresponding
gauge fields and a generalized notion of anomaly to describe potential obstructions.

Here we focus on the physics of gauging non-invertible symmetries (also known as
generalized gauging) in d = 2 spacetime dimensions. In this case, the generators of the
symmetry are topological defect lines (TDLs), which we will denote in general by L [8–10].
The relevant mathematical language here is well established and given by the theory of
fusion categories [11] (see also the appendix of [12] for a concise review). Consequently
these symmetries are also sometimes referred to as fusion category symmetries. Each fusion
category C has a two-layer structure: the top layer encodes the TDLs Li as objects in a
fusion algebra (i.e. operator product between the TDLs) via the Grothendieck ring K(C) of
C; the second layer contains the F-symbols which package finer invariants of the symmetry
C akin to the ’t Hooft anomaly for ordinary finite group symmetry G. Indeed, the latter
becomes a special case of a fusion category symmetry with C = VecωG where ω ∈ H3(G,U(1))
characterizes the anomaly, also known as a pointed fusion category. Large families of
TDLs have been identified in numerous d = 2 QFTs and non-invertible symmetries have
proven to be at least as ubiquitous as ordinary symmetries [8–10, 13–44]. Their power in
constraining QFT dynamics is illustrated in many examples where ordinary symmetries are
insufficient [10, 28, 29, 33, 34, 45–56]. In particular, a generalized notion of ’t Hooft anomalies
for these non-invertible symmetries was put forward in [28] motivated by the requirement
that an anomaly should forbid a trivially gapped symmetric ground state, give an efficient
way to diagnose the fate of renormalization group flows, and constrain the phase diagram
at large distance. As aforementioned, this is thanks to the rigidity of symmetry invariants.
In the case of non-invertible symmetries, this rigidity manifests itself as algebraic equations
the F-symbols must satisfy and these equations only have finitely many solutions, which is
a result know as Ocneanu rigidity in category theory [11]. The same rigidity also implies
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that not all fusion algebras realize full fledged categories which may make one worry about
TDLs with spurious fusion rules. Nevertheless, it follows from the basic axioms of locality
and unitarity in QFT together with the fundamental topological property that such algebraic
constraints are automatically satisfied [10], and thus QFT provides a gigantic factory for
fusion categories, most of which are beyond the existing classifications in mathematics (see
for example [57–63] for previous attempts).

Intuitively, gauging a non-invertible symmetry C amounts to decorating the QFT observ-
ables with the corresponding TDLs in C, which generalizes the gauge field for discrete group
symmetries (see e.g. figure 2), and then summing over the TDL configurations created by
their topological junctions, subject to consistency conditions that the resulting observables
obey basic axioms of QFT such as unitarity and locality. In particular, these consistency
conditions enforce gauge invariance that manifests itself through invariance under topological
changes of the TDL configuration (Pachner moves in the dual triangulation). For a symmetry
represented by a discrete G, this amounts to a trivialization of the anomaly ω ∈ H3(G,U(1)),
i.e. the symmetry has to be non-anomalous. In the more general context of non-invertible
symmetries, the criterion differs in a subtle way. Unless one attempts to gauge the whole
fusion category, even an anomalous fusion category may admit consistent ways of gauging
a subset of the non-invertible TDLs.1 Heuristically this is possible because non-invertible
TDLs tend to admit more topological junctions and thus more possibilities for the decorated
observables to be physically consistent. Indeed, these consistency conditions (see figure 4)
pick out special objects in the relevant fusion category, whose full algebraic structure is that
of a symmetric separable Frobenius algebra (A,m) with A ∈ C given by a direct sum of a
collection of TDLs and m is the so-called multiplication morphism that specifies a particular
trivalent topological junction among A (see figure 3) [64]. Gauging A for a C-symmetry
QFT T then comes from decorating observables in T with TDL networks formed by A

with trivalent junctions m, which produces observables in the gauged theory. The resulting
gauged theory is denoted as T /A.

It is natural to ask if general properties in gauging ordinary discrete group symmetries
continue to hold with non-invertible symmetries. The former is extensively studied in the
d = 2 CFT where it is known as orbifolding [65]. In particular, orbifolding by a discrete
group G maps one CFT T to another T /G with the same central charge c, and relates the
local operator spectrum as well as the defect (boundary and interface) spectrum of the two
CFTs in a precise manner. Relatedly, orbifolding by a discrete abelian group G produces
a dual symmetry G∨ ∼= G, known as the quantum symmetry [66], and gauging again by
the dual symmetry one recovers the original theory T /G/G∨ ∼= T . Furthermore, when it
happens that the theory is self-dual under gauging, namely T /G ∼= T , the G symmetry of
T is enlarged by a non-invertible TDL known as a duality defect [33, 67], which generalizes
the Kramers-Wannier duality of the Ising CFT for G = Z2 [18, 20]. All these properties
carry over for gauging non-invertible symmetries. Just like the symmetries themselves, their

1In [56], motivated by the consideration of symmetric boundary conditions, two distinct notions of anomaly-
freeness were introduced for non-invertible symmetries described by a fusion category C. A fusion category
C is called strongly anomaly-free if C admits a fiber functor, and it is weakly anomaly-free if there exists an
algebra object A ∈ C such that every simple TDL appears in A. Here in the main text, by anomaly-free we
mean the strongly anomaly-free condition of [56].
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gauging (for discrete symmetries) can be formulated in a purely algebraic manner, and there is
extensive mathematical literature on this in the language of module categories and bimodule
categories over the relevant fusion category C [11, 68–71] as well as closely related works in
the context of d = 3 Topological Quantum Field Theory (TQFT) described by the modular
tensor category (MTC) Z(C) via the Drinfeld (quantum) center (see for example [72–76]).
However, the details and implications in general QFT have not been fully worked out.

One of the main purposes of this work is to provide a physical picture for the categorical
concepts involved in generalized gauging. This is achieved by formulating gaugings as
topological interfaces in QFT.2 Similar to the way that topological defects naturally lead to
generalized symmetries described by fusion categories as a consequence of basic axioms of
QFT (unitarity and locality), considerations of QFT in the presence of topological interfaces
immediately produce the algebraic structures of module categories. Further mathematical
structures are encoded in the fusion of the topological interfaces. In particular the algebra
objects arise from the fusion of the corresponding topological interface and its dual, while
the fusion between general topological interfaces captures the physics of sequential gauging.
The full fusion structure of interfaces is encapsulated by a groupoid which we refer to as the
generalized orbifold groupoid generalizing the work of [46]. This physical perspective also
motivates a bootstrap type procedure to classify topological interfaces (thus module categories)
by exploring consistency conditions from interface fusion. The constraints produced are quite
powerful and in the examples we have studied they essentially pin down the module categories
up to a few spurious possibilities.3 Another main goal here is to provide explicit examples of
nontrivial QFTs to illustrate the aforementioned general properties of gauging non-invertible
symmetries. Moreover we will take advantage the richness in gauging the non-invertible
symmetries to find many new TDLs even in familiar CFTs, and we will provide one example
here in section 4.3.2; further examples will be discussed in [79]. Finally generalized gauging
can relate very different looking renormalization group (RG) flows, and thus we can deduce
constraints on families of RG flows from just one member in each family [79].

The rest of the paper is organized as follows. In section 2, we briefly review non-invertible
symmetries, their mathematical description in terms of a fusion category, and describe general
properties of non-invertible gauging using the physical language of topological interfaces. In
section 3, we discuss explicit examples of fusion category symmetries where we classify all
possible gaugings and their corresponding algebraic properties by a bootstrap-type analysis
motivated by this physical perspective. In section 4, we employ these algebraic results
to understand generalized gauging in several nontrivial CFTs. Along the way we give
explanations to seemingly miraculous self-dualities under non-invertible gauging, provide
physical realizations of the generalized orbifold groupoid for fusion categories, and discover
new non-invertible symmetries in familiar CFTs.

2We emphasize that this idea is not new (for examples of this idea in specific settings see [9, 33, 67, 77, 78]).
However, we will work in the most general setting of d = 2 QFTs, and to the best of our knowledge many
physical consequences we derive from this perspective have not appeared before.

3Because of the correspondence between C-module categories and C-symmetric TQFTs in d = 2 [28, 46]
by a slab construction using the 3d TQFT associated with Z(C), our results also have implications for the
classification of gapped C-symmetric phases in d = 2 [79].
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Note added. As this work was being finalized, and was presented by one of the authors,
YW, at [80], an independent paper [81] appeared on arXiv which has some overlap (especially
section 4.1) with our results. We have attempted to minimize the overlap in the published
version here. The submission of this paper is also coordinated with [82], which studies a
similar subject.

2 General properties of non-invertible symmetries and their gauging

2.1 Topological defect lines and fusion category

The fundamental objects responsible for the generalized symmetries in d = 2 are the topological
defect lines (TDLs). The conservation property of conventional symmetries is captured by
the topological property of the TDLs that may join and split. Here we briefly review their key
physical properties and set up the mathematical language of fusion category to describe them.
We refer the readers to [18, 20, 21, 64, 83–85] for the original works on such symmetries in
rational conformal field theories (RCFT) and related 3d TQFT, and [9, 10] for further details
in general QFT. We will largely follow the conventions in the recent work [56].

Dual structure, direct sum and fusion product. We denote the trivial TDL by 1.
For each TDL L(Σ) extended on a curve Σ, we define the dual TDL by its orientation
reversal, namely

L(Σ) = L(Σ) , (2.1)

as an operator equation where Σ has the opposite orientation compared to Σ. Note that
a TDL can be self-dual (such as the identity TDL 1), i.e. L(Σ) = L(Σ). The TDLs have
a natural direct sum structure (denoted by ⊕) which amounts to

⟨(Li ⊕ Lj)(Σ) · · ·⟩ = ⟨(Li(Σ) · · ·⟩ + ⟨(Lj(Σ) · · ·⟩ , (2.2)

in general correlation functions. The indecomposable TDLs are also known as the simple
TDLs. The extended operator product of a pair of simple TDLs inserted at Σ and at Σϵ

which is slightly displaced transversely from Σ, defines the fusion product (denoted by ⊗),

(Li ⊗ Lj)(Σ) = lim
ϵ→0

Li(Σϵ)Lj(Σ) = ⊕kN
k
ijLk(Σ) , (2.3)

with fusion coefficients Nk
ij ∈ Z≥0. The fusion product of the simple TDLs then generates a

fusion ring. The simple TDLs are Li,Li such that N1
īi

= 1 .
A finite set of simple TDLs {Li} that closes under the operation of dual, direct sum,

and fusion defines a fusion category C which is a symmetry of the underlying QFT. The
objects of C are in one-to-one correspondence with these TDLs and the simple objects are
the simple TDLs which we denote collectively as Irr(C).

We emphasize that a fusion category C in general describes a finite subcategory in the
full symmetry category of the QFT T which we denotes as CT ,

C ⊂ CT , (2.4)

where CT is generally a rigid C-linear monoidal category that is not finite.
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Morphisms and topological junctions. Importantly, TDLs admit topological junctions,
which correspond to morphisms in the fusion category. The topological junctions form a
vector space over C known as the junction vector space. It suffices to discuss the topological
junctions among simple TDLs as the general case follows from the distributive nature of
the direct sum. We assume there is no topological junction (end-point) for a nontrivial
TDL. This is equivalent to requiring the corresponding symmetry to be faithful, because
otherwise the TDL could break, retract to nothing, and thus cannot be detected by physical
observables. For two simple TDLs Li,Lj , the junction vector space is HomC(Li,Lj) ∼= C if
they are identical, otherwise it’s empty. For three simple TDLs, the junction vector space
between two ingoing TDLs and one outgoing TDL is denoted by HomC(Li ⊗ Lj ,Lk). In
particular the fusion coefficient satisfies Nk

ij = dim HomC(Li ⊗ Lj ,Lk). The dual structure
implies the following obvious isomorphisms

HomC(Li ⊗ Lj ,Lk) ∼= HomC(Lj ⊗ Lk,Li) ∼= HomC(Lk ⊗ Li,Lj) ∼= HomC(Li ⊗ Lj ⊗ Lk,1) ,
(2.5)

which in particular implies

Nk
ij = N ī

jk̄
= N j̄

k̄i
. (2.6)

The operator product between junction vectors v ∈ Hom(Li,L) and u ∈ Hom(L,Lj) is given
by composition of the morphisms which we denote as u ◦ v ∈ Hom(Li,Lj).4

A general topological configuration for C is constructed by gluing TDLs with topological
junctions, which represents a generalized background gauge field configuration for the sym-
metry C. Observables in the C-symmetric QFT are invariant under isotopy (i.e. deformations
of the TDL configuration that does not cross itself or other insertions).

Associator and F-symbols. As mentioned in the introduction, a key ingredient of non-
invertible symmetry is its intrinsically non-trivial F-symbols that encode a generalized version
of the ’t Hooft anomaly for conventional discrete group symmetries. In the context of the
above discussion, F-symbols arise from the associativity structure of fusion, which specifies a
particular isomorphism, known as the associator αi,j,k, between the fusion product of three
simple TDLs Li,Lj ,Lj in different orders,

αi,j,k ∈ Hom((Li ⊗ Lj) ⊗ Lk,Li ⊗ (Lj ⊗ Lk)) . (2.7)

More explicitly, after projecting the triple fusion product to simple TDLs Lℓ, this is captured
by the F-symbol F ℓijk which can be represented as a matrix (known as the F-matrix) with
components [F ℓijk](p,α,β),(q,γ,δ) determining the change of basis between the isomorphic four-
point junction vector spaces Hom((Li⊗Lj)⊗Lk,Lℓ) and Hom(Li⊗ (Lj⊗Lk),Lℓ), where p, q
label the simple TDLs Lp ∈ Li ⊗ Lj ,Lq ∈ Lj ⊗ Lk in the fusion channels and α, β, γ, δ label
the independent junction vectors at the corresponding trivalent junctions. As usual, these
matrix components of the F-symbol are basis dependent in general. Two sets of F-symbols
F ℓijk are equivalent if and only if their matrix components are related by a change of basis at

4Here by Hom we mean HomC. For notational simplicity, we will often drop the subscript on Hom when
there is no confusion from the context.

– 6 –



J
H
E
P
0
3
(
2
0
2
4
)
1
2
7

each trivalent junction vector space (i.e. there is a gauge freedom from [Mk
ij ]αβ ∈ GL(Nk

ij ,C)
for each triplet of simple TDLs Li,Lj ,Lk).

Physically, the F-symbols relate different topological configuration of the TDLs via the
so-called F-moves (i.e. 2-2 Pachner moves in the dual triangulation). In particular, one can
perform local fusion of TDLs using the F-moves. The F-symbols obey nontrivial algebraic
constraints known as pentagon equations, coming from the consistency condition under
consecutive changes of basis in the five-point junction vector space (which can be derived from
the isotopy invariance of the associated TDL configuration [10]). Unsurprisingly the pentagon
equations are direct analogs of the cocycle conditions for group cohomology H3(G,U(1)) that
classifies anomalies for discrete group symmetry. Once the pentagon equations are solved,
there are no further independent consistency conditions on the F-symbols, as a consequence
of the Mac Lane coherence theorem [11]. The pentagon equations have a finite number of
solutions, a result known as the Ocneanu rigidity and a given fusion ring may not even admit
a single solution [11]. It is an open question to systematically classify fusion categories, which
appears much richer than the classification of discrete groups.

Adjoint structure and unitarity. So far we have avoided dwelling upon an important
property of the QFTs that we consider here, namely unitarity. Correspondingly, non-invertible
TDLs in a unitary QFT are described by a unitary fusion category. At the level of the data
for the fusion category introduced above, unitarity is encoded in the adjoint structure of
the morphism spaces, which specifies an anti-linear map,

† : HomC(L,L′) → HomC(L′,L) (2.8)

for all L,L′ ∈ C. The map † defines a bilinear form via the correlation function ⟨u†v⟩ of
junction vectors u, v ∈ HomC(L,L′). The fusion category is unitary if this bilinear form
is positive definite, which follows from the reflection positivity of the underlying QFT. In
particular, there exists a gauge (i.e. choice of basis in each trivalent junction vector space)
such that the associator (equivalently F-symbols) is unitary

αijk ◦ (αijk)† = ⊕ℓ

(
F ℓijk ◦ (F ℓijk)†

)
= id(Li⊗Lj)⊗Lk

, (2.9)

where idL the canonical identity morphism associated to L ∈ C (physically this comes from
the bulk identity operator restricted on the TDL L). In terms of the F-matrix, (2.9) is
equivalent to,

[F ℓijk](p,α,β),(q,γ,δ)([F ℓ
′
ijk](q,γ,δ),(r,ϵ,ζ))∗ = δℓℓ′δpqδαϵδβζ . (2.10)

The above does not completely fix the gauge freedom of the F-matrix in general. It is natural
to impose the additional constraint that reflection symmetric TDL configurations are positive
since they naturally compute the inner product in the corresponding junction vector space,
which we refer to as the positive gauge for the F-matrix (see figure 1).5 We will work in
this gauge unless explicitly stated otherwise.

5By choosing a (conventional) gauge for the F-symbols (see e.g. [12]), we have θ2
ijk = ⟨Li⟩⟨Lj⟩⟨Lk⟩.
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α

β

jk i = δαβθijk

i j

=
∑
k

∑
α,β

⟨Lk⟩
θijk β

α

i j

i j

k

Figure 1. Positive configurations of TDLs in the positive gauge (θijk > 0) for the F-matrices.

Symmetry transformations, quantum dimensions, and defect Hilbert spaces. The
C-symmetric CFT enriches the algebraic structure of the symmetry by providing analytical
data such as the operator spectrum and correlation functions that transform under the
symmetry. In particular, shrinking a TDL L encircling a local operator O(x) produces
another local operator L̂ · O(x) in the same spacetime representation. The symmetry
transformation corresponding to the TDL L is encoded in the linear map L̂ which naturally
acts on the CFT Hilbert space HS1 on S1 by the operator-state correspondence, and it
preserves the conformal multiplets labeled by the primary conformal weights (h, h̄) with
respect to the left and right Virasoro symmetries. The linear maps L̂i for a collection of
TDLs Li obviously obey the same fusion rules (on the cylinder). For a CFT with a unique
conformally invariant vacuum, which is the focus here, the eigenvalue of Li with respect to
the vacuum |0⟩, is the quantum dimension of Li,

L̂i|0⟩ = ⟨Li⟩|0⟩ . (2.11)

Equivalently the quantum dimension is the expectation value of an empty TDL loop on the
plane (up to an isotopy anomaly [10, 86]). It follows then that ⟨Li⟩ obeys the fusion ring
relation (2.3). In unitary theories, the quantum dimension is always bounded from below,

⟨Li⟩ ≥ 1 , (2.12)

and the inequality is saturated if and only if Li is invertible [10].
By the locality of the underlying CFT, a TDL L extended in the (Euclidean) time

direction defines a new Hilbert space HL
S1 , that generalizes the conventional twisted sector

for discrete group symmetries. By the state-operator correspondence in the presence of the
TDL, states in HL

S1 are mapped to L-twisted sector operators, namely operators on which
L can end. For nontrivial L, by the faithfulness condition (vanishing tadpole condition
in [10]), the ground states in HL

S1 necessarily have conformal weight h+ h̄ > 0, and the spin
spectrum contains nontrivial information about the F-symbols involving L [10]. The latter
can be derived by studying how symmetries act in the L-twisted sector via configurations
involving other TDLs along the spatial direction. The defect Hilbert space HL

S1 generalizes
in the obvious way for multiple parallel TDLs in the temporal direction which we denote
as HL1L2...Ln

S1 . Now it is possible to have a topological operator, namely h = h̄ = 0, in the
twisted sector, and the h = h̄ = 0 subspace of HL1L2...Ln

S1 is the topological junction vector
space HomC(L1 ⊗ L2 ⊗ · · · ⊗ Ln,1).
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A

A

A

A

A

m†

m

Figure 2. Discrete gauging on the torus.

Figure 3. Trivalent topological junction m for the algebra object A which specifies the multiplication
morphism and m† for the comultiplication morphism.

2.2 Algebra objects and generalized gauging

We now review several key mathematical notions related to fusion category together with their
physical incarnations. We will use them in the ensuing sections to describe the generalized
gauging of fusion category symmetries in QFT.

Recall that gauging a non-anomalous discrete group symmetry G amounts to coupling
the G-symmetric QFT T to G background gauge fields and performing a weighted sum over
distinct configurations of the gauge fields. In the language of TDLs, this corresponds to
inserting a topological network of invertible TDLs Lg labeled by g ∈ G, which is equivalent
to a flat G background as Lg specifies the transition function from one patch to another in
the dual triangulation. Yet another equivalent way to view this is to consider the non-simple
TDL A = ⊕g∈GLg and insert a fine-enough mesh of A made of trivalent topological junctions
of a specific type m (and m†) among A on the spacetime manifold. In particular, the usual
G-orbifold at the level of the torus partition function can be represented as in figure 2, where
the topological junction m is not unique in general and physically inequivalent choices of
m are labeled by the discrete torsion H2(G,U(1)) (i.e. the weighting mentioned above in
the sum over gauge field configurations).

It is this last description that generalizes immediately to gauging TDLs in a general
fusion category symmetry C. The basis data that specifies the background gauge field consists
of a TDL A ∈ C which is non-simple in general and a trivalent junction m ∈ HomC(A⊗A,A)
known as the multiplication morphism which also gives rise to the co-multiplication morphism
m† ∈ HomC(A,A⊗A) by the adjoint structure. What replaces the anomaly-free condition
in the case of a discrete group G are the diagrammatic equalities known as the separability
and associativity conditions in figure 4, which are direct analogs of the gauge invariance
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Figure 4. The separability, associativity, Frobenius, and unit conditions on the algebra object
(A,m,m†, u, u†). Here we have written them in the positive gauge. In the general gauge, the
comultiplication morphism m† and the counit u† should be replaced by m∨ and u∨ to avoid confusions.

conditions for usual gauging and generate all topological moves connecting two different
TDL configurations [87].6 Furthermore, to ensure the vacuum survives after gauging, we
require the algebra object A to have a unit u ∈ HomC(1, A) that satisfies the unit condition
(similarly for the co-unit u† ∈ HomC(A,1)) in figure 4.

The full set of algebraic conditions on (A,m,m†, u, u†) that ensures the consistency of
gauging defines a symmetric separable special Frobenius algebra object in C [64].7 We will
simply refer to them as algebra objects in this work and denote them as (A,m) or simply as
A when there is no room for confusion. Note that in any fusion category, there is a trivial
algebra object corresponding to A = 1, which physically means trivial gauging.

2.3 Half-gauging, topological gauging interfaces and self-duality

As in the case of discrete group symmetries, instead of gauging an algebra A ∈ C for a
symmetry C of a QFT T on the entire spacetime, we can consider gauging on a submanifold S
of the spacetime. In particular, by choosing a topological boundary condition for the relevant
gauge fields at the boundary ∂S, this procedure produces a topological interface IT |T /A(S)
(which can be disconnected if S is) located at S interpolating between the original theory T and
its gauged cousin T /A. Due to the topological nature of this interface, to study its properties
it suffices to focus on the simplest setup where S is half of the spacetime as in figure 5.

Here, as explained in the last subsection, the sum over gauge field configurations for
A ∈ C is represented by a fine-enough mesh of A on S built from their topological junctions
m (and its adjoint m†). The topological boundary condition at ∂S is simply given by the
insertion of A itself. One can consider the fusion of the topological interface IT |T /A and
its orientation reversal IT /A|T as in figure 6, which produces gauging on the internal strip

6In d = 2, the two topological moves in figure 4 are known as the Matveev moves [87].
7Unitarity is not required to define a symmetric separable special Frobenius algebra object in a general

fusion category. In this more general scenario, the defining data for the algebra is (A,m,m∨, u, u∨) where
m∨ denotes the co-multiplication morphism and u∨ is the co-unit and they satisfy the same set of algebraic
constraints including those in figure 4. We emphasize that even for algebras in a unitary fusion category, if
the F-matrices are not in the positive gauge the co-multiplication morphism m∨ can differ from m†.
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T T /A

IT |T /A

Figure 5. Topological gauging interface from half-gauging algebra object A ∈ C.

T T

T /A

IT |T /A IT /A|T

=

T T

A

Figure 6. Fusion of topological gauging interfaces from half-gauging A.

and consequently the following simple fusion product,

IT |T /A ⊗ IT /A|T = A . (2.13)

Note that the fusion of the topological interface IT |T /A with TDLs in C from the left (and
similarly for IT /A|T from the right) produce other topological interfaces between T and
T /A (see section 2.4 for more discussions).

Furthermore if the region S is compact and contractible (e.g. a disk), one can consider
shrinking the topological interface enclosing S down to nothing, which produces a constant
multiplying the identity operator (since T and T /A have a unique vacuum), and this constant
defines the quantum dimension of the interface.8 Note that the quantum dimension of the
interfaces are invariant under orientation reversal. Together with the fusion rule (2.13),
it follows that

dIT |T /A
= dIT /A|T =

√
⟨A⟩ . (2.14)

8It coincides with the g-function for general conformal interfaces among 2d CFTs and is positive by unitarity
(in fact bounded from below by 1).
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This can be derived from (2.13) near the equator of S2 by shrinking the two interfaces towards
the two opposite poles, respectively, and using the fact that the theories T and T /A have
identical partition functions on S2, which has no nontrivial one-cycles.9

As is the case for any interfaces in QFT, an equivalent way to think about the topological
gauging interface is to use the folding trick and consider boundary conditions of the folded
QFT, here given by special boundary conditions of T × T /A. In d = 2 CFTs, there is a
canonical way to construct such a boundary condition using a generalization of the regular
brane for a discrete symmetry group G [33], and the fusion rule (2.13) then follows from
consideration of the cylinder partition function with this boundary condition at the two ends.

One can also consider the fusion of the topological gauging interface and its orientation
reversal in the opposite way,

IT /A|T ⊗ IT |T /A = A∗ , (2.15)

producing a (non-simple) TDL in the theory T /A, which we denote as A∗, that must have
the same quantum dimension as A

⟨A∗⟩ = ⟨A⟩ . (2.16)

As we explain in the next subsection, A∗ naturally defines the dual algebra object such that
gauging A∗ brings back the original theory,

T /A/A∗ ∼= T . (2.17)

An interesting case is when the gauged theory is isomorphic to the original theory,

T ∼= T /A , (2.18)

then the topological gauging interface becomes a topological defect in the same QFT T . In
particular, it corresponds to a TDL N and its dual N ,

N = IT |T /A , N = IT /A|T , (2.19)

with fusion rules

N ⊗N = A , N ⊗N = A∗ , (2.20)

where the isomorphism in (2.18) is implicitly used to identify TDLs in T /A with those in T .10

Note that, in general A and A∗ are non-isomorphic as TDLs. Furthermore, the F-symbols
involving the TDL N (and its dual) will depend on the multiplication morphism m for the
corresponding algebra A that implements the self-dual gauging.

9For topological interfaces that are self-dual (this can happen for IT |T /A if T ∼= T /A), there is a notion of
interface Frobenius-Schur indicator which can be detected from the “boundary crossing relation” in [34] and
in a related way by the module trace [88].

10The full set of fusion rules involving the simple TDLs in A and A∗ with N and N will be captured by
the category of right and left A-modules, respectively (physically these correspond to other possible simple
topological interfaces between T and T /A). See section 2.4 for related discussions.
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Conversely, if a QFT T admits TDLs N ,N that obey the fusion rules in (2.20), A
is guaranteed to be an algebra object with a unique multiplication morphism determined
by the F-symbols involving N ,N (similarly, there is an algebra object associated to A∗).
The QFT then satisfies self-duality under gauging either A or A∗. Intuitively, this follows
from the fact that an arbitrary A-mesh can be constructed by starting from a contractible
oriented loop of N , deforming it and bring it around various nontrivial cycles of the spacetime
manifold. Therefore, the A-mesh produces identical observables in T as is the case without
it (similarly for the A∗-mesh).

The above generalizes the self-dual gauging for a discrete abelian group symmetry G, in
which case the TDL N is self-dual N ∼= N (consequently A ∼= A∗ in (2.20)) and generates
a well-studied Z2 extension of the group category VecG known as the Tambara-Yamagami
fusion category TY(G,χ, ϵ), where the F-symbol, up to equivalence relations, is entirely
determined by a symmetric non-degenerate bicharacter χ : G×G→ U(1) and the Frobenius-
Schur indicator ϵ = ±1 for the self-dual TDL N [89, 90]. Here N explains the self-duality
of the QFT with TY symmetry under G-gauging, and thus N is often referred to as the
duality TDL (for G-gauging). Here we see a vast generalization of such duality TDLs which
arise when considering non-invertible gauging.

To summarize, we have shown that

Theorem 1. A C-symmetric QFT T is self-dual under gauging an algebra object A ∈ C if
and only if T admits a duality TDL N (and its dual N ) with fusion rules (2.20).

Note that either N ∈ C or the QFT T must have a large symmetry (sub)category C′

that extends C by N (in any case N ∈ CT defined in (2.4)). In the former case, one easily
comes up with numerous examples of self-dual gauging from any self-dual TDL in any fusion
category C that describes a subcategory of the full symmetry category of the QFT T (see
section 4.1). The simplest nontrivial example is perhaps A = 1⊕W in the Fib category with
two simple TDLs {1,W}; this category describes the symmetries of many CFTs, including the
tri-critical Ising CFT. The corresponding self-duality defect is simply N = W . Alternatively,
this provides a way to discover TDLs in the potentially vast symmetry category CT of a
given T that exhibits self-duality under gauging. For example, this is how various self-duality
defects for invertible gauging were discovered in irrational CFTs in [28, 33, 44] where one
lacked the algebraic tools to directly identify the full symmetry category.

As we explain in section 2.4, Theorem 1 also means that any self-dual gauging in QFT
T produces a Morita trivialization of the corresponding algebra object A in a subcategory
of the full symmetry category of T .

2.4 General topological interfaces and (bi)module categories

In the last subsection, we saw that performing half-gauging using an algebra object A in
the C-symmetric theory T with Dirichlet boundary conditions produced a distinguished
topological gauging interface IT |T /A between the original theory T and its gauged cousin
T /A. In fact, as we explain below, any topological interface between two QFTs T and
T ′ corresponds to a topological gauging interface for an algebra object A in the symmetry
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Figure 7. A sequence of topological moves that relates a topological interface to gauging on the torus.

category of T (and similarly for an algebra object A∗ in the symmetry category of T ′). In
other words, we establish the following simple theorem11

Theorem 2. Two QFTs T and T ′ are related by discrete generalized gauging if and only if
there exists a topological interface IT |T ′ between T and T ′. The corresponding algebra object
in the symmetry category C of T comes from the fusion of the topological interface and its
dual, namely A = IT |T ′IT ′|T .

The fact that A = IT |T ′IT ′|T defines an algebra object simply follows from the topological
property of the interface IT |T ′ . Starting from a contractible bubble of IT |T ′ separating T from
T ′, one can freely deform its shape by stretching and pinching its sides to produce solutions
to the defining equations for an algebra object. The above theorem follows immediately.
In figure 7, we illustrate how this works on the torus by deriving a relation between the
partition functions of the two theories T , T ′, as expected from generalized gauging. Below
we elaborate on this perspective and describe general features of generalized gauging in
terms of the topological interfaces.

Module categories as categories of topological interfaces. As mentioned in section 2.3,
topological interfaces naturally come in families, obtained from fusing TDLs from both left
and right. Furthermore, there is a natural direct sum structure on the set of topological
interfaces between two QFTs T , T ′ which respects the locality property of these extended
objects. In particular, each pair of topological interfaces I1 and I2 between T and T ′ is

11The connection between discrete gaugings and topological interfaces was already pointed out in [9] which
translates related results in category theory into the QFT language. Here we emphasize the physical picture
which involves the fusion of topological interfaces among themselves and also with bulk TDLs.
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associated with a Hilbert space HI1I2
S1 on a transverse S1 bi-partitioned into two segments, and

the direct sum structure on the interfaces naturally corresponds to the direct sum structure on
this Hilbert space. By the folding trick, each interface is equivalent to a boundary condition
for the product theory T × T ′, and states in the above Hilbert space naturally map to
states in the Hilbert space of the product theory on a strip with the corresponding boundary
condition at the two ends. In CFT, the states in HI1I2

S1 correspond to interface-changing
operators between I1 and I2. As for the TDL twisted Hilbert space, the topological operators
are captured by the h = h̄ = 0 subspace of HI1I2

S1 , and the simple (irreducible) interfaces
are those that admit a unique topological operator (up to rescaling) on their worldvolumes
from the identity operator in the bulk.

Let us define {Ia} as a set of simple topological interfaces between T and T ′ that
close under fusion with simple TDLs Li representing symmetry C of T . Consistency with
locality and fusion requires Li to act linearly via non-negative integer matrix representations
(NIM-reps [91]) of the fusion ring for C,12

Li ⊗ Ia = ⊕bPia
bIb , Pi · Pj =

∑
k

Nk
ijPk , (2.21)

where Piab has non-negative integer entries and counts the number of independent topological
junctions between Li, Ia and Ib. There is an analog of the F-matrix for the change of
basis matrix in junction vector spaces between bulk TDLs and interfaces. Consistency from
isotopy invariance in the presence of multiple topological junctions along an interface leads
to an interface analog of the pentagon equation (see [56] for a recent review). The full
mathematical structure (up to equivalence from basis change at the junction vector spaces)
is captured by a left C-module category, which we denote as M ∈ Mod(C). In this language,
the simple interfaces Ia are the simple objects in M, the topological junction vector space
between two general interfaces I, I ′ (from direct sums of Ia) is identified with the Hom space
HomM(I, I ′). In particular, the NIM-rep gives

Pia
b = dim HomM(Li ⊗ Ia, Ib) . (2.22)

Without loss of generality, we focus on indecomposable (simple) module categories M in
which case the corresponding NIM-rep {Pi} is also indecomposable. Physically, the C-module
category M is the category of topological interfaces between T and T ′ that close under
fusion with TDLs in C.

Algebra objects from interface fusion and internal Hom. For each simple interface
Ia between the theories T and T ′, the corresponding algebra object A ∈ C that relates the
two by discrete gauging follows from the interface fusion,

A = Ia ⊗ Ia , T ′ ∼= T /A , (2.23)

according to Theorem 2. This gives a physical picture of the internal Hom Hom(·, ·) ∈ C
introduced in [68] and defined by the isomorphism,

HomM(L ⊗ Ia, Ib) ∼= HomC(L,Hom(Ia, Ib)) , (2.24)
12See [92, 93] where NIM-reps in RCFTs (for Cardy branes) have been studied extensively.
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Figure 8. Internal Hom space from interface fusion.

for general TDL L ∈ C. In general, the internal Hom is a non-simple TDL obtained from
the interface fusion (see figure 8),

Hom(Ia, Ib) = Ib ⊗ Ia , (2.25)

and (2.23) is a special case.
The algebra objects obtained from fusing a simple topological interface and its dual

in (2.23) contain the trivial TDL without degeneracy,

HomC(1, A) ∼= C , (2.26)

and are known as haploid (or connected) algebras.13 In the rest of the paper, all algebras
are haploid unless otherwise noted explicitly.14 The algebras from different simple interfaces
Ia ∈ M (also for non-simple interfaces) in the C-module category give rise to physically
equivalent gaugings of TDLs in C.

Conversely, given an algebra object A ∈ C in the symmetry category of T , one can
reconstruct the topological interfaces between T and T /A and thus the correspondingly
C-module category, in a canonical way. As aforementioned, general observables in the
gauged theory T /A are constructed from observables in the original theory T decorated by
a fine-enough A-mesh. Topological interfaces between T and T /A are then constructed by
configurations of the A-mesh ending topologically on TDLs Li ∈ C in T from the right15 in a
way that respects the algebra structure of A, which ensures the invariance under topology
changes in the A-mesh. Such topological interfaces have the natural structure of right A-
modules in C, and they may admit topological interface changing operators that respect the
A-module structure. Together they define the category CA of right A-modules in C, which
admits a natural action from TDLs Li ∈ C by fusion from the left, and is equivalent to the
left C-module category M [68]. The simple objects in the module category M correspond to

13Note that haploid is a stronger condition than simplicity on an algebra object A. The latter only requires
A to be simple as a bimodule over itself whereas the former requires A to be simple as a left-module over
itself. One simple example of an algebra object that is simple but not haploid is a finite dimensional matrix
algebra Matn(C) in the category Vec of finite dimensional vector spaces over C.

14Physically gauging haploid algebras preserve the condition of having a unique vacuum in the QFT.
15Here we focus on the subset of topological interfaces that arise universally from the symmetry category C

alone. The theory T may (and typically does) admit a larger symmetry than C and correspondingly there are
more topological interfaces to other theories.
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simple A-modules. In particular, the algebra object A itself is the obvious A-module which
corresponds to the topological gauging interface discussed in section 2.3 by half-gauging
A with the Dirichlet boundary condition and is identified with the simple object Ia ∈ M
by (2.23). General simple A-modules are identified with general simple objects Ib ∈ M via the
internal Hom Hom(Ia, Ib). Any two algebra objects A,B ∈ C that produce an isomorphism
CA ∼= CB as C-module categories are said to be Morita equivalent in C and lead to physically
equivalent gaugings of TDLs in C (in which case A and B can be recovered by the internal
Hom from objects in CA). The Morita equivalence classes of algebra objects in C, namely the
physically distinct gaugings, are precisely captured by the inequivalent C-module categories.
In section 2.3 (see Theorem 1), we have seen that an algebra A is Morita trivial (equivalent
to A = 1) in C if and only if A = N ⊗N for a TDL N ∈ C which comes with the canonical
algebra structure. More generally, a sufficient condition for two algebras A,B ∈ C to be
Morita equivalent is the existence of a TDL N ∈ C such that

B = N ⊗A⊗N , (2.27)

again with a canonical algebra structure induced from that of A on the r.h.s. [94].

Symmetries after gauging and the dual fusion category from the category of
(A, A)-bimodules. A subset of the TDLs in the gauged theory T /A can be determined
simply from the gauging procedure algebraically, and they generate a finite subcategory
ACA ⊂ CT /A known as the dual category of C with respect to A. They come from TDLs L ∈ C
with A-mesh ending topologically from either sides. Consistency conditions from invariance
under topology change in the A-mesh with topological junctions between L and A (from
either side) produce (A,A)-bimodules. Such (A,A)-bimodules have a natural tensor product
structure ⊗A and a corresponding associator, together defining a fusion category ACA via
the category of (A,A)-bimodules, which captures the dual symmetry in the gauged theory
T /A and generalizes the quantum symmetry Ĝ in an ordinary orbifold by a finite abelian
group G. Intuitively, we refer to ACA as the dual category to C with respect to the algebra
object A ∈ C. As expected from the above discussion, the dual category ACA only depends
on A via its Morita equivalence class which is specified by the module category CA. Thus we
can also say that ACA is dual to C with respect to CA. Furthermore CA, which describes the
category of topological interfaces between T and T /A, has a natural action by fusing TDLs
in ACA from the right and thus the structure of a (C,ACA)-bimodule category.

Bimodule categories and categorical Morita equivalence. More generally, a (C, C′)-
bimodule category for fusion categories C and C′ represents a category of topological interfaces
where TDLs in C and C′ can end topologically from the left and from the right respectively.
The bimodule categories have a natural tensor product from the fusion of the topological
interfaces, which is mathematically defined as M⊠C′ N for a (C, C′)-bimodule category M
and a (C′, C′′)-bimodule category N [71]. A (C, C′)-bimodule category M is called invertible
if Mop ⊠C M ∼= C′ (equivalently M⊠C′ Mop ∼= C) as bimodule categories where Mop is the
(C′, C)-bimodule category defined by orientation reversal. Physically, any simple object in an
invertible bimodule is a topological interface I such that the fusion product contains the trivial
TDL without degeneracy I ⊗ I ∋ 1C and I ⊗ I ∋ 1C′ . When this happens, the two fusion
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categories C and C′ are said to be categorically Morita equivalent [71]. The (C,ACA)-bimodule
category M = CA obtained from gauging is precisely of this type, where I is the topological
gauging interface for the haploid algebra A = I ⊗I and A∗ = I ⊗I is the dual algebra object.
The A-gauging can be undone by further gauging A∗. In fact, two fusion categories C and C′

are categorically Morita equivalent if and only if each is the dual of the other by gauging.
The categorical Morita equivalence is in fact a 2-equivalence between certain 2-categories [11,

69, 71, 95]. Here the 2-category Mod(C) contains as objects module categories M,N over a
fusion category C, the 1-morphisms are given by C-module functors FunC(M,N ), and the
2-morphisms by the natural transformations of C-module functors. Equivalently, the simple
objects in Mod(C) can be thought of as the set of haploid algebras A ∈ C (referred to as divi-
sion algebras in [95]) up to Morita equivalence, while the 1-morphisms and the 2-morphisms
are given by objects and morphisms respectively in the category of (A,B)-bimodules. In
physical terms, the objects M,N label distinct gaugings of TDLs in the symmetry sub-
category C of the theory T , the 1-morphisms correspond to topological interfaces between
(potentially) different gauged theories, and the 2-morphisms describe topological interface
changing operators. This 2-equivalence implies a bijection N → FunC(M,N ) between the
module categories over a pair of fusion categories C and ACA that are dual with respect
to the C-module category M. In particular, for N = M, this implies the isomorphism
ACA ∼= (C∗

M)op as fusion categories with C∗
M ≡ FunC(M,M).

2.5 Sequential gauging, generalized orbifold groupoid, and module categories
for group-theoretical fusion categories

The physical picture of arbitrary discrete generalized gauging represented by a topological
interface between a pair of QFTs makes it clear that sequential gauging simply follows from
the fusion of the corresponding topological interfaces. Up to Morita equivalence (which
keeps track of physically distinct gaugings), this is captured by the Deligne tensor product of
the corresponding invertible bimodule categories. For example, let’s consider the sequential
gauging by an algebra object A ∈ C and then by another algebra object B ∈ C′ in the
dual category C′ = ACA which produces another dual category C′′ = BC′

B. Let’s denote the
corresponding invertible bimodule categories in the two steps by M and N , respectively.
Then this sequential gauging is equivalent to the one-step gauging using the invertible (C, C′′)-
bimodule category M⊠C′ N and the corresponding algebra object in C follows from interface
fusion as explained in section 2.4.

Generalized orbifold groupoid and Brauer-Picard groupoid BrPic. The fusion
categories related by discrete gauging in this way form a graph where each connected
component consists of nodes labeled by fusion categories that are categorically Morita
equivalent and connecting edges corresponding to inequivalent invertible bimodule categories.
This is the generalized version the orbifold groupoid introduced in [46] where it was studied in
detail for invertible gaugings.16 This generalized orbifold groupoid structure is mathematically
captured by the Brauer-Picard groupoid BrPic; a 3-groupoid which is a special case of a
3-category whose objects are fusion categories, 1-morphisms are invertible (C, C′)-bimodules

16A slight difference with [46] is that self-dual gaugings do not create a separate node in the definition here
(and in [11]).
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between fusion categories C and C′, 2-morphisms are equivalences between such invertible
bimodules, and 3-morphisms are isomorphisms of such equivalences (see [11] for more details).
Here we focus on the truncated 1-groupoid which is a connected subgroupoid that contains
a seed fusion category C which is denoted simply as BrPic (where the C dependence is
implicit [11]). Obviously, the definition of this groupoid is independent of the fusion category
up to categorical Morita equivalence. Physically, the groupoid BrPic keeps track of the
fusion structure of topological interfaces described by invertible bimodule categories over
fusion categories that are related by discrete gauging (generalized orbifold) to C. As we will
illustrate in examples in section 4, this immediately predicts the fate of sequential gauging in
a C-symmetry theory T without knowing details of the dynamical content of the theory (i.e.
it tells when seemingly different gauging sequences are equivalent). In particular, the Morita
auto-equivalences of C (i.e. invertible (C, C)-bimodule categories) form a group denoted by
BrPic(C) and captures potential nontrivial isomorphisms of C.17 Such nontrivial isomorphism
can come from an automorphism of the fusion category (e.g. a permutation of TDLs that
respect the fusion rules) or stacking with a topological counter-term, equivalently an SPT for C.

Module categories for group-theoretical fusion categories. The groupoid structure
from categorical Morita equivalence can also be used to understand the module categories
of fusion categories from a small amount of input. We illustrate how this works for group-
theoretical fusion categories where the module categories have been classified [68, 96–98] and
provide the physical picture in terms of topological interfaces and their fusion.

We first recall that group-theoretical fusion categories are usually denoted as C(G,ω,H, ψ)
where the defining data consists of a finite group G, its group 3-cocycle ω ∈ H3(G,U(1)), a
subgroup H ⊂ G, and a 2-cochain ψ ∈ C2(H,U(1)), subject to the condition that dψ = ω|H .
The special case C(G,ω, 1, 1) is the group category VecωG with a ’t Hooft anomaly captured
by the 3-cocycle ω. The more general cases arise as dual categories under gauging algebra
objects A(H,ψ) in VecωG, which are simply characterized by non-anomalous subgroups
H ⊂ G, with a choice of the discrete torsion in H2(H,U(1)) (ψ is a torsor under this
group). This coincides with the defining data of C(G,ω,H, ψ) up to auto-equivalence. The
corresponding module category is denoted as M(H,ψ), which is determined by (H,ψ) up
to conjugations in (G,ω) [68, 97] and is the invertible bimodule category for the Morita
equivalence between the two fusion categories. For example, Rep(G) = C(G, 1, G, 1) is
dual to VecG by the module category M(G, 1), which has rank 1 (unique simple object),
equivalently from the category of (A(G, 1), A(G, 1))-bimodules and A(G, 1) = ⊕g∈Gg is the
regular representation of G. Such a rank 1 module category M(G, 1) ∼= Vec realizes a fiber
functor F : C → Vec = Fun(Vec,Vec) (here for C = Rep(G)) [11]. Physically, the module
category M(G, 1) ∼= Vec corresponds to the topological interface from imposing Dirichlet
boundary conditions for the G-gauge fields in the half-gauging picture (see section 2.3). The
more general topological interfaces associated with the module category M(H,ψ) correspond
to partial Dirichlet (or mixed Neumann-Dirichlet) boundary conditions where only H-gauge
fields are frozen at the interface.18

17We emphasize that while the underlying QFT T retains the C-symmetry after the discrete gauging which
corresponds to the (C, C)-bimodule category, in general T is not necessarily self-dual under this gauging.

18The discrete torsion ψ in M(H,ψ) is introduced in the half-gauging picture for the H-gauge fields.
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Figure 9. Topological interfaces for group theoretical fusion categories from invertible gauging and
interface fusion.

As explained in section 2.4, (left) module categories over C are simply the categories
of topological interfaces on which TDLs in C can end topologically from the left. Here we
can construct such topological interfaces for C(G,ω,H, ψ) by starting with the topological
interfaces for VecωG corresponding to the module category M(L, ξ) with subgroup L ⊂ G

and 2-cochain ξ satisfying dξ = ω|L and fusing with the topological gauging interfaces that
relate the two or, equivalently, by gauging the non-anomalous subgroup with discrete torsion
(H,ψ) in a strip (see figure 9). This gives an intuitive explanation for the classification of
indecomposable module categories over C(G,ω,H, ψ) in [97, 98] by

MH,ψ(L, ξ) = FunVecω
G

(M(H,ψ),M(L, ξ)) , (2.28)

and MH,ψ(L, ξ) and MH,ψ(L′, ξ′) are equivalent if and only if (L, ξ) and (L′, ξ′) are related
by conjugation in (G,ω).

2.6 Simple dimensional constraints for generalized gauging

While there are only limited results on the classification of (bi)module categories for fusion
categories, there are a number of explicit and simple constraints on their quantum dimensions
(both as a whole and for simple objects therein) from the quantum dimensions of the TDLs
in the associated fusion categories. Such constraints are useful in identifying the possible
generalized gaugings and symmetry properties of the gauged theories. Thus we review them
below. All of these dimensional constraints have been proven for unitary fusion categories
and can be found in the classic textbook [11]. Below, as we review them, we will also provide
alternative arguments from basic axioms of QFT that realize such fusion category symmetries.
It will become clear that all such dimensional constraints are simple consequences of unitarity
(positivity) and locality of the underlying QFT, which is no surprise since the fusion categories
and their (bi)module categories are just algebraic formulations of symmetries in QFT and
the rigid structures of these categories are guaranteed by axioms of QFT.

An important and elementary property of the NIM-rep {Pi} for a left C-module category
M of rank r is that the r × r matrices Pi share a common positive eigenvector dM known as
the dimension vector of M that contains the quantum dimensions of the r simple topological
interfaces Ia ∈ M with a = 1, . . . , r,

Pi · dM = ⟨Li⟩dM , dM = {⟨Ia⟩} . (2.29)
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Ia

T

Li

T ′ = ⊕bPia
b T ′

Ib

T

Figure 10. Dimension vector as the Frobenius-Perron eigenvector of the NIM-rep from fusion between
TDL and interface.

This follows immediately from the defining equation for the NIM-rep (2.21) by taking the
vacuum expectation value on the cylinder as in figure 10. The dimension vector dM is
also the simultaneous Frobenius-Perron eigenvector of the non-negative matrices Pi (the
corresponding eigenvalue bounds from above the absolute value of all eigenvalues of Pi).
It is a simple consequence of (2.29) that the diagonal entries of Pi are bounded by the
quantum dimension of the TDL Li,

Pia
a ≤ ⟨Li⟩ , (2.30)

and the inequality is strict if ⟨Li⟩ /∈ Z+. We refer to the distinguished algebra A when (2.30)
is saturated as the maximal algebra (which may admit multiple inequivalent multiplication
morphisms m),

Amax = ⊕i⟨Li⟩Li . (2.31)

The maximal algebras in C are in one-to-one correspondence with fiber functors F : C → Vec,
which exist if and only if the C symmetry is anomaly-free in the definition of [28].

The general haploid algebra object associated with the interface Ia,

A = Hom(Ia, Ia) = Ia ⊗ Ia = 1⊕Pa
ia
i ̸=1 Li , (2.32)

is restricted by (2.30) to a small number of possibilities. Since all haploid algebra objects arise
this way [68] (see also section 2.4), this reduces the classification of them to a finite problem
(where the multiplication morphism m has to be determined from the algebra conditions).

The total quantum dimension of a fusion category C is commonly defined as

dim(C) ≡
∑
i

⟨Li⟩2 , (2.33)

by the quantum dimensions of its simple TDLs Li. We define the total quantum dimension
of a C-module category M in the analogous way,

dim(M) ≡
∑
a

⟨Ia⟩2 , (2.34)

in terms of the simple interfaces Ia ∈ M. We then have the following equality

dim(M) = dim(C) , (2.35)
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for any indecomposable C-module category M, which obviously bounds the rank of M by

rank(M) ≤ dim(C) . (2.36)

In fact we have the stronger equality

RM ≡
∑
i

⟨Li⟩Pi = dMdtM , (2.37)

from which (2.35) follows by using (2.29). To derive (2.37), one first notes that

R2
M = dim(C)RM , (2.38)

using the NIM-rep and reciprocity properties of the fusion coefficients Nk
ij , which means the

only nonzero eigenvalue of RM is dim(C). Since RM is a positive Hermitian matrix, the
strongest version of the Frobenius-Perron theorem implies that RM has a unique eigenvector
(up to overall normalization) with eigenvalue dim(C), which is none other than dM. Therefore
RM is a rank-1 matrix proportional to dMdtM, and the proportionality constant is fixed
to 1 using (2.32).

Finally we note that the fusion category and its dual category under generalized gauging
have identical total quantum dimensions [11],

dim(C) = dim(ACA) . (2.39)

In other words, categorical Morita equivalence preserves the total quantum dimension of
the fusion category, and by (2.35) also the total quantum dimension of its indecomposable
module categories.19 This follows from the fact that Morita equivalent categories C and
C′ have identical Drinfeld centers Z(C) = Z(C′) whose total quantum dimensions satisfy
dim(Z(C)) = dim(C)2 [11]. We also note the following as a simple consequence of representing
gauging by A as topological interface Ia where the algebra object is recovered by interface
fusion as in A = Ia ⊗ Ia. The dual algebra object A∗ that undoes the gauging is simply
A∗ = Ia ⊗ Ia from interface fusion in the opposite way, consequently A and A∗ share the
same quantum dimension,

⟨A⟩ = ⟨A∗⟩ = ⟨Ia⟩2 . (2.40)

This relation (together with (2.30)) will become handy to identity the dual algebra object
A∗ in explicit examples. For sequential gauging C → C′ → C′′ implemented by haploid
algebras A and A′ successively with corresponding simple topological interfaces I and I ′, if
the topological interface between C and C′′ resulting from the fusion I ′′ = I ⊗ I ′ remains
simple,20 the one-step gauging is simply implemented by the haploid algebra A′′ = I ′′ ⊗ I ′′,
which implies that, in particular,

⟨A′′⟩ = ⟨A⟩⟨A′⟩ , (2.41)

generalizing the familiar result for invertible sequential gauging.
19However the ranks of the indecomposable module categories may change under this 2-equivalence.
20This is not the case if C′′ ∼= C and I′ ∼= I which represents the topological interface that undoes the A

gauging by A∗, and (2.41) does not apply.
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3 Generalized gauging in Rep(H8) and Rep(D8)

To illustrate the general features of generalized gauging discussed in section 2, we study two
examples of fusion categories Rep(H8) and Rep(D8) here in detail, which admit a variety
of non-invertible TDLs that can be gauged. Furthermore these fusion category symmetries
are realized in large families of CFTs, and as we will see in section 4, so are their extensive
structures under generalized gauging.

We first recall that Rep(H8) and Rep(D8) are two inequivalent fusion categories of rank
5 with simple TDLs {1, η, η′, ηη′,V} such that η, η′ are invertible Z2 TDLs that generate
a VecZ2×Z2 subcategory, and the self-dual V provides a non-invertible Z2-extension with
the following fusion rules,

V ⊗ V = 1⊕ η ⊕ η′ ⊕ ηη′ , Vη = ηV = Vη′ = η′V = V , (3.1)

which generates the Tambara-Yamagami (TY) fusion ring TY(G) for abelian group G =
Z2 × Z2 [89]. The non-invertible TDL V is often referred to as the duality defect and
the TY symmetry as the duality symmetry because of the relation to Kramers-Wannier
duality in d = 2 [18].

Each TY fusion ring TY(G) admits a finite set of inequivalent F-symbols that define the
corresponding fusion category [89]. Here there are four possibilities TY(Z2

2, χ, ϵ) determined
by a symmetric non-degenerate bicharacter χ = χs,a on Z2

2,

χs(i1, i2; j1, j2) = (−1)i1j1+i2j2 , χa(i1, i2; j1, j2) = (−1)i1j2+i2j1 , (3.2)

for i1, i2, j1, j2 ∈ Z2 and the Frobenius-Schur indicator ϵ = ±1 for the duality defect V. In
this notation, the Rep(H8) and Rep(D8) fusion categories are

Rep(H8) = TY(Z2
2, χs,+) , Rep(D8) = TY(Z2

2, χa,+) , (3.3)

which makes clear that the corresponding TY category admits a fiber functor and can be
realized as the representation category of a finite group or more generally a Hopf algebra.
Here D8 is the dihedral group of order 8 and H8 is the unique dimension 8 Hopf algebra of
Kac and Paljutkin that is neither commutative nor cocommutative [99].21

The nontrivial F-symbols for Rep(H8) and Rep(D8) in the positive gauge (see figure 1)
take the following form

[FV
VVV ]g,h = 1

2χ(g, h)−1 , [F hVgV ]V,V = [FV
gVh]V,V = χ(g, h) , (3.5)

where χ = χs,a and all other components of the F-symbols are 1 (if the fusion channel
exists) or 0.

21The Kac-Paljutkin Hopf algebra H8 is also the lowest dimensional semisimple Hopf algebra that is not the
group algebra C[G] of a finite group G. It has generators x, y, z which satisfy the following algebra relations

x2 = y2 = 1 , z2 = 1
2(1 + x+ y − xy) , zx = yz , zy = xz , xy = yx , (3.4)

which obviously contains a Z2 × Z2 group subalgebra.
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Finally, both Rep(H8) and Rep(D8) are also group-theoretical fusion categories,22

Rep(H8) = C(D8, γ,Zs2, 1) , Rep(D8) = C(D8, 1, D8, 1) , (3.6)

where Zs2 ⊂ D8 is the non-anomalous non-normal subgroup ⟨s⟩ in the following standard
representation of D8,

D8 = ⟨r, s|r4 = s2 = 1 , sr = r−1s⟩ , (3.7)

and γ ∈ H3(D8,U(1)) ∼= Z4 × Z2
2 is an order-two 3-cocycle taking values in {±1} ⊂ U(1) as

follows: γ(sm1rn1 , sm2rn2 , sm3rn3) = 1 unless m1 is odd and we are in one of the following
three cases: n2 = 1 and sm3rn3 ∈ {r2, sr3}; n2 = 2 and sm3rn3 ∈ {r, r2, sr3, s}; n2 = 3
and sm3rn3 ∈ {r3, sr2}.23

Consequently the module categories of Rep(H8) and Rep(D8) have been classified by
methods in [97, 98] specialized for group-theoretical categories. In the following we will
re-derive these results in a different way that has the potential to apply in much greater
generality [79]. We also present explicit expressions for the algebra objects that were not
available previously. Finally we will determine the Brauer-Picard groupoids for these fusion
categories that capture identifications between different sequential gaugings.

3.1 NIM-reps for TY(Z2
2) fusion ring

As a preparation towards fully classifying the algebra objects (and the corresponding module
categories), we first study the possible NIM-reps, which capture the first layer of data in the
module categories, using only the data of the fusion ring of the underlying fusion category.
Even without putting in the information of the F-symbols this is already quite constraining, as
is emphasized in [95, 102] which studies the algebra objects and the Brauer-Picard groupoid
for the Haagerup fusion category and its generalizations.

We adopt the following strategy that improves upon the algorithm presented in [95, 102].
The details and general applications will be addressed in [79]; here we will briefly summarize
the main ideas in the physical picture using the topological interfaces introduced in section 2.
For the moment we keep the underlying fusion category C (and its fusion ring) general and
will later specialize to the TY(Z2

2) case that is relevant here.
We first enumerate the possible non-simple TDLs A = 1 ⊕ni

i ̸=1 Li ∈ C subject to the
condition ni ≤ ⟨Li⟩ from (2.30). We then study the interface fusion equation (2.23) on the
cylinder, sandwiched between simple TDLs Li,Lj ∈ C (here for Rep(H8))

Li ⊗A⊗ Lj = Li ⊗ (Ia ⊗ Ia) ⊗ Lj . (3.8)

Projecting onto the ground state on the circle (e.g. taking the cylinder to be thin), we have

Mij ≡ dim Hom(Li ⊗A,Lj) = tr (Pi · P tj ) , (3.9)

22We emphasize that one given group-theoretical fusion category may have multiple representations
C(G,ω,H, ψ) that differ in the group-theoretical data.

23We have explicitly checked that this is desired cocycle using GAP [100] and SageMath [101] and applying
the universal coefficient theorem for group cohomology.
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where the trace is taken over the basis of simple objects {Ia} in the putative C-module
category CA. The matrix Mij is easily determined from the fusion ring and the candidate A.
We then perform matrix factorization to find possible NIM-rep matrices Pi satisfying (2.21) of
dimension r subject to the dimensional constraints in section 2.6, which also further restricts
A. Each NIM-rep M = {Pi} derived this way has a corresponding dimension vector dM from
the Frobenius-Perron eigenvector (see section 2.6). Two NIM-reps M = {Pi} and M′ = {P ′

i}
of the same dimension r are equivalent if they are related by an Sr permutation of {Ia} (in
particular dM = dM′ up to permutation). The above procedure produces a collection of
irreducible and inequivalent NIM-reps which are candidates for full-fledged module categories
for the fusion categories that share the input fusion ring. For each of these NIM-irreps, the
corresponding algebra objects can be read-off from the diagonal entries of Pi as in (2.32).

Before we present the resulting list of (irreducible and inequivalent) NIM-reps for TY(Z2
2)

we first note that this fusion ring has a nontrivial “triality” outer-automorphism

Out(TY(Z2
2)) = S3 , (3.10)

that permutes the three invertible TDLs. Consequently, the NIM-reps, in general, come in
families related by this S3 automorphism which, in general, does not act faithfully on the
NIM-reps due to the equivalence relation by permuting the basis elements.

Starting with the highest rank NIM-irrep, we first have a unique rank 5 NIM-irrep that
coincides with the regular NIM-irrep that exists from any fusion ring,

NR1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 ,


0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 ,


0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

 ,


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
1 1 1 1 0




, A1 = 1 ,1⊕ η ⊕ η′ ⊕ ηη′ ,

(3.11)

and we have also listed the corresponding haploid algebra objects which are Morita equivalent.
We next have a family of 3 =

(3
2
)

rank 4 NIM-irreps related by the S3 automorphism
to the following,

NR2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0


 , A2 = 1⊕ ηη′ ,1⊕ η .

(3.12)
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There is another family of 3 =
(3

2
)

rank 4 NIM-irreps related by S3 to,

NR3 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0


 , A3 = 1⊕ ηη′ ,

(3.13)

There is no NIM-irrep of rank 3. At rank 2, there are 3 =
(3

2
)

NIM-irreps related by S3 to,

NR4 =
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 1
1 0

)
,

(
1 0
0 1

)
,

(
1 1
1 1

)}
, A4 = 1⊕ ηη′ ⊕ V , (3.14)

and another rank 2 NIM-irrep that is S3-invariant,

NR5 =
{(

1 0
0 1

)
,

(
1 0
0 1

)
,

(
1 0
0 1

)
,

(
1 0
0 1

)
,

(
0 2
2 0

)}
, A5 = 1⊕ η ⊕ η′ ⊕ ηη′ . (3.15)

Finally, there is a unique rank 1 NIM-irrep which is again S3-invariant,

NR6 =
{(

1
)
,
(

1
)
,
(

1
)
,
(

1
)
,
(

2
)}

, A6 = 1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2V . (3.16)

3.2 Algebra objects in Rep(H8)

In the previous section, we have seen that consistency of interface fusion produces a small
list of candidate algebra objects (and corresponding module categories). We now finish the
classification by solving the algebra conditions for the candidate A objects using the explicit
F-symbols. We emphasize that, in general, there could be multiple multiplication morphisms
m for a given A as a non-simple TDL in C.

For C = Rep(H8) with F-symbols given in (3.5), carrying out the above procedure,
we find 8 different algebra objects which are listed in table 1. They fall into 6 Morita
equivalence classes where the Morita trivial class includes two algebra objects given by A = 1

and A = V ⊗ V (see around Theorem 1), a Morita non-trivial class includes A = 1 ⊕ η

and A = 1 ⊕ η′, and the remaining Morita classes have unique algebra objects. Most of
these algebra objects have an invertible origin, namely, they are associated with gauging
subgroups of the non-anomalous Z2 ×Z2 subcategory with discrete torsion; the corresponding
multiplication morphisms are listed below,

A = 1⊕ η : m1
11 = mη

1η = mη
η1 = m1

ηη = 1√
2
, (3.17)

and similarly for A = 1 ⊕ η′ and A = 1 ⊕ ηη′ by relabeling the legs of mi
jk. For Z2 × Z2

gauging, there are two choices of discrete torsion,

A = 1⊕ η ⊕ η′ ⊕ ηη′ : mgh
g,h = 1

2


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ,
1
2


1 1 1 1
1 1 i −i
1 −i 1 i

1 i −i 1

 , (3.18)
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L ⊂ D8 Algebra object A Module Category CA Dual Fusion Category ACA
⟨s⟩ 1,1⊕ η ⊕ η′ ⊕ ηη′ NR1: Rep(H8) Rep(H8)

⟨s, r2⟩ 1⊕ η,1⊕ η′ NR2: {A, η′ ⊕ η′η,V1,V2} Rep(H8)
1 1⊕ ηη′ NR3: {A, η ⊕ η′,V1,V2} VecγD8

⟨r2⟩ (1⊕ η ⊕ η′ ⊕ ηη′)⋆ NR5: {A, 2V} VecγD8

⟨sr⟩ 1⊕ ηη′ ⊕ V NR4: {A, η ⊕ η′ ⊕ V} Rep(H8)
⟨sr, r2⟩ 1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2V NR6: {A} Rep(H8)

Table 1. Algebra objects A in Rep(H8) grouped according to the Morita equivalence classes together
with the corresponding module categories CA (simple objects therein and the corresponding NIM-rep
from section 3.1) and dual fusion categories ACA. The ⋆ subscript denotes nontrivial discrete torsion
for the corresponding algebra and module category. The first column labels the module categories
using group-theoretical data in D8 according to (2.28) for (H,ψ) = (⟨s⟩, 1).

where g, h ∈ Z2 × Z2. We differentiate the cases by the ⋆ subscript in table 1. Finally, we
highlight the two non-invertible gaugings given by

AI ≡ 1⊕ ηη′ ⊕ V , AII ≡ 1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2V , (3.19)

with the following unique multiplication morphisms

A = AI : m1
11 = mηη′

1,ηη′ = mηη′

ηη′,1 = m1
ηη′,ηη′ = mV

1V = mV
V1 = m1

VV

= mV
ηη′,V = mV

V,ηη′ = mηη′

VV = 1
2 ,

(3.20)

and finally the unique maximal algebra object (see (2.31) for definition)

A = AII : mgh
g,h = 1

2
√

2


1 1 1 1
1 1 −i i

1 i 1 −i
1 −i i 1

 , mV
1V = mV

V1 = m1
VV = 1

2
√

2

(
1 0
0 1

)
,

mV
ηη′,V = mV

V,ηη′ = mηη′

V,V = 1
2
√

2

(
1 0
0 −1

)
,

mVβ
η,Vα = mVα

η′,Vβ = mVα
Vβ,η = mVβ

Vα,η′ = mη
Vα,Vβ = mη′

Vβ,Vα = 1
2
√

2

(
0 −e

πi
4

e
3πi

4 0

)
αβ

.

(3.21)

3.3 Module categories and the orbifold groupoid for Rep(H8)

Having classified the algebra objects (A,m) in Rep(H8), the corresponding NIM-irreps
immediately follow from section 3.1 and are listed in table 1. Note that the S3 automorphism
of the TY fusion ring (3.10) does not preserve the F-symbols (3.5) for Rep(H8) except for
the Z2 subgroup that exchanges η and η′ [90],

Out(Rep(H8)) = Z2 . (3.22)
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Module categories for Rep(H8). The rank of each indecomposable module category
M follows from that of the corresponding NIM-irrep, and in the second column of table 1
we list the simple objects in M as simple right A-modules (written as non-simple TDLs in
C) using the equivalence M ∼= CA [68]. Note that all simple A-modules can be determined
from (submodules of) induced A-modules (namely A ⊗ Li for simple TDLs Li ∈ C) in a
standard procedure [64], by taking into account possible nontrivial endomorphisms of the
induced module that dictates how such an induced module splits into simple A-modules.24

Here this splitting happens for the two rank 4 module categories, where the induced module
A ⊗ V decomposes into two simple A-modules that are differentiated by the subscript on
V, and the corresponding NIM-irreps are given in (3.12) and (3.13). For the algebra object
A = 1 ⊕ η ⊕ η′ ⊕ ηη′ there are two inequivalent multiplication morphisms that differ by
the discrete torsion H2(Z2

2,U(1)) = Z2 (differentiated by the subscript ⋆ in table 1). One
of them is Morita equivalent to trivial gauging where the multiplication morphism is the
trivial canonical one for A = V ⊗ V, and the induced module A⊗ V splits into four simple
A-modules. The resulting module category is the regular module category that is universal
to any fusion category with the corresponding NIM-irrep (3.11). In the other case, this
splitting is forbidden due to the nontrivial multiplication morphism, and the resulting module
category is rank 2 and corresponds to the NIM-irrep (3.15). Finally the two non-invertible
gaugings where V ∈ A produce a rank 2 module category and a rank 1 module category with
NIM-irreps (3.14) and (3.16), respectively. The rank 1 module category Vec with the unique
maximal algebra object realizes the unique fiber functor for Rep(H8) [90].

Finally these module categories can also be derived using group-theoretical methods
and are denoted as MZs

2,1(L, ξ) for a subgroup L ⊂ D8 and 2-cochain ξ satisfying dξ = γ|L
(up to conjugations in D8) in (2.28) [98]. The nontrivial 3-cocycle γ ∈ H3(D8,U(1)) of
order 2 is such that the following subgroups of D8 (up to conjugacy) are non-anomalous
(i.e. γ is trivialized in L),

L = 1 , ⟨s⟩ , ⟨sr⟩ , ⟨r2⟩ , ⟨s, r2⟩ , ⟨sr, r2⟩ . (3.23)

The last two subgroups in the above list can support a nontrivial discrete torsion (SPT) from
H2(Z2 × Z2,U(1)) = Z2. However, the mixed anomaly (due to the 3-cocycle γ) between
⟨s⟩ and ⟨sr, r2⟩ (similarly ⟨sr⟩ and ⟨s, r2⟩) means that the SPT phase can be absorbed
by implementing an s symmetry transformation, which is a d = 2 discrete version of the
famous chiral Adler-Bell-Jackiw (ABJ) anomaly. Consequently, adding the discrete torsion
to subgroups in (3.23) does not produce physically distinct gaugings in VecγD8

, and the
inequivalent and indecomposable module categories are simply MZs

2,1(L, 1) for L in (3.23).
They are in one-to-one correspondence with the six module categories for Rep(H8) we have
found as tabulated in table 1 [98].

Dual fusion categories for Rep(H8). Having determined the module categories we move
on to discuss the dual fusion categories ACA, which capture a universal part of the symmetries
of the theory after gauging A. The dual fusion category is equivalent to the category of

24This is the direct generalization of the usual fixed point resolution in ordinary orbifold [103] for both local
operators and defects.
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(A,A)-bimodules [68], and the latter can be worked out in a similar way, although more
tedious, as for the A-modules, using induced bimodules [64]. Here, instead, we will argue
based on the general structure of generalized gauging and consistency conditions thereof
(see section 2, in particular, section 2.6), that the dual categories are given by those in
the last column of table 1.

We start with the realization of Rep(H8) as a group-theoretical category given in (3.6),
which says Rep(H8) is the dual category to VecγD8

under gauging the Zs2 subgroup, or
equivalently in terms of the notation mentioned at the end of section 2.4,

Rep(H8) = ((VecγD8
)∗M(Zs

2,1))
op , (3.24)

where the module category M(Zs2, 1) over VecγD8
defines the category of topological interfaces

that interpolate between the two dual fusion categories. Conversely, as is the case for any
invertible gauging of a finite abelian group G, there is a dual invertible symmetry Ĝ ∼= G

(known as quantum symmetry [66] in orbifold models), that can be gauged to undo the
G-gauging. Here this means there must be a gaugeable Z2 subcategory in Rep(H8) that
implements the reverse gauging,

VecγD8
= ((Rep(H8)∗M(Ẑ2,1))

op , (3.25)

where the Rep(H8)-module category M(Ẑ2, 1) is equivalent to the opposite of the VecγD8
-

module category M(Zs2, 1) as an invertible bimodule category over (Rep(H8),VecγD8
). All

Z2 symmetries in Rep(H8) are clearly gaugeable, however the special one Ẑ2 needed here
must be the subgroup generated by the invertible TDL ηη′ which is distinguished by having
trivial F-symbols (i.e. 1 if the fusion channel exists) with all TDLs in Rep(H8). This ensures
that the duality defect V under this Ẑ2 gauging can split consistently into a pair of conjugate
invertible TDLs that correspond to generators of the Z4 subgroup of dual D8 symmetry. We
thus identify VecγD8

as the dual category for gauging A = 1 ⊕ ηη′ in table 1.
The rest of the list of dual fusion categories then follows by sequential gauging starting

(see section 2.5) from VecγD8
by gauging L ⊂ D8 in (3.23). For example, gauging the non-

normal subgroups L = ⟨s⟩ , ⟨sr⟩ again gives Rep(H8) while gauging the center L = ⟨r2⟩
produces VecγD8

, which is a consequence of the nontrivial extension,

1 → Zr
2

2 → D8 → Z2 × Z2 → 1 (3.26)

characterized by a nontrivial class of H2(Z2 × Z2,Z2) = Z3
2 in the presence of a nontrivial

mixed anomaly γ [104].
We finish this analysis of dual symmetries under gauging algebra objects by remarking

that the dual category of the representation category Rep(H) of a general semisimple Hopf
algebra H with respect to a fiber functor (i.e. for module category Vec and e.g. the forgetful
functor) is given by Rep(H∗)op for the dual Hopf algebra H∗ [11]. The dimension 8 Kac-
Paljutkin algebra H8 is self-dual H8 ∼= H∗

8 , which follows from the uniqueness property
mentioned around (3.4). Consequently, the dual category under gauging the maximal algebra
object in Rep(H8) is equivalent to Rep(H8) itself.25 Of course this is consistent with the
analysis above based on sequential gauging from VecγD8

.
25Here we have used that Rep(H8) ∼= Rep(H8)op, which is obvious from its fusion rules and F-symbols.
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Rep(H8) Vecγ
D8

Z3
2 Z3

2

Figure 11. Generalized orbifold groupoid for Rep(H8).

Generalized orbifold groupoid for Rep(H8). Now that we have completed explicitly
specifying all algebraic properties of generalized gauging in Rep(H8), we are ready to
present the corresponding generalized orbifold groupoid (Brauer-Picard groupoid) that neatly
packages the Morita equivalences between categorically Morita equivalent fusion categories:
namely, the dual symmetries that arise under generalized gauging (see figure 11). As explained
in section 2.5 for the general case of a connected subgroupoid denoted as BrPic containing
fusion category C, such Morita equivalences are in one-to-one correspondence with invertible
bimodules over a pair of fusion categories dual to C, and these invertible bimodules all arise
from indecomposable module categories. In particular, the (C, C)-bimodule categories generate
the group of automorphisms, denoted as BrPic(C), which include outer automorphisms of C
on top of the discrete gaugings (C-module categories) that produce C as the dual category.26

It is obvious from the groupoid structure that all automorphism groups are isomorphic
BrPic(C) ∼= BrPic(C′) for C, C′ ∈ BrPic. Coming back to the case at hand, the Rep(H8)
admits 6 inequivalent and indecomposable module categories, and 4 of them produce Morita
autoequivalences of Rep(H8), while the remaining two produce Morita equivalence with the
pointed category VecγD8

(see table 1). Consistency of sequential gauging further implies that
the 4 autoequivalences generate a Z2 × Z2 subgroup of BrPic(Rep(H8)), which together
with the Z2 outer-automorphism of Rep(H8) (3.22) gives,

BrPic(Rep(H8)) = Z3
2 , (3.27)

as is found in [105]. The full groupoid BrPic consists of 8 × 22 = 32 invertible bimodule
categories (Morita equivalence relations) whose composition laws are all commutative.

3.4 Algebra objects in Rep(D8)

We now follow the same strategy as in section 3.2 to classify haploid algebra objects in
(D8). We find that, by going through the candidate algebras listed in section 3.1 and solving
the algebra conditions with the explicit Rep(D8) F-symbols in (3.5), there are 12 different
algebra objects which are listed in table 2; all of them are Morita inequivalent except for
the pair A = 1,V ⊗ V in the Morita trivial class.

The multiplication morphisms for Z2 gauging A = 1 ⊕ η, 1 ⊕ η′, 1 ⊕ ηη′ and Z2 × Z2
gauging A = 1 ⊕ η ⊕ η′ ⊕ ηη′ are the same as in (3.17) (up to relabeling the legs of mk

ij)
and (3.18), respectively, for Rep(H8) in our gauge fixing convention.

26For example, the corresponding module category for trivial gauging (i.e. A = 1) is C itself. However, as a
(C, C)-bimodule category, C may possess inequivalent bimodule actions of C that come from composition with
an outer-automorphism of C from one side.
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L ⊂ D8 Algebra object A Module Category CA Dual Fusion Category ACA
1 (1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2V)1 NR6: {A}1 VecD8

⟨r2⟩ (1⊕ η ⊕ η′ ⊕ ηη′)⋆ NR5: {A, 2V} VecαZ3
2

⟨sr⟩ 1⊕ ηη′ ⊕ V NR4: {A, η ⊕ η′ ⊕ V2} Rep(D8)
⟨s⟩ 1⊕ η′ ⊕ V NR4: {A, η ⊕ ηη′ ⊕ V2} Rep(D8)

⟨s, r2⟩ 1⊕ ηη′ NR3: {A, η ⊕ η′,V1,V2} VecD8

⟨s, r2⟩⋆ (1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2V)2 NR6: {A}2 VecD8

⟨sr, r2⟩ 1⊕ η′ NR3: {A, η ⊕ ηη′,V1,V2} VecD8

⟨sr, r2⟩⋆ (1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2V)3 NR6: {A}3 VecD8

⟨r⟩ 1⊕ η NR3: {A, η′ ⊕ ηη′,V1,V2} VecD8

D8 1,1⊕ η ⊕ η′ ⊕ ηη′ NR1: Rep(D8) Rep(D8)
D8⋆ 1⊕ η ⊕ V NR4: {A, η′ ⊕ ηη′ ⊕ V} Rep(D8)

Table 2. Algebra objects A in Rep(D8) grouped according to the Morita equivalence classes together
with the corresponding module categories CA (simple objects therein and the corresponding NIM-rep
from section 3.1) and dual fusion categories ACA. The subscripts on the algebra object A label different
multiplication morphisms. The first column labels the module categories using group-theoretical data
in D8 according to (2.28) for (H,ψ) = (D8, 1).

For non-invertible gauging with algebra object A = 1 ⊕ η ⊕ V we find the following
unique multiplication morphism,

m1
11 = mη

1η = mη
η1 = m1

ηη = mV
1V = mV

V1 = m1
VV = mV

ηV = mV
Vη = mη

VV = 1
2 ,

(3.28)

and similarly for 1⊕ η′⊕V and 1⊕ ηη′⊕V related by the S3 triality automorphism in (3.10).
Finally for gauging the maximal algebra object A = 1⊕η⊕η′⊕ηη′⊕2V the multiplication

morphism is

mgh
g,h = 1

2
√

2


1 1 1 1
1 1 −i i

1 i 1 −i
1 −i i 1

 , mV
gV = (mV

Vg)t = mg
VV = 1

2
√

2
(12, σ1, σ2, σ3) , (3.29)

and the other two solutions obtained by cyclically permuting the Pauli matrices σi with
i = 1, 2, 3 in the last equality. These three solutions are again related by the S3 auto-
morphism (3.10).

3.5 Module categories and orbifold groupoid for Rep(D8)

From the complete list of haploid algebras (A,m) in Rep(D8) found in the last subsection,
we can immediately read off the corresponding NIM-irreps from section 3.1 and they are listed
in table 2. Below, we will explain how we obtain the rest of the gauging data summarized
in table 2 as well as the generalized orbifold groupoid for Rep(D8). We will be brief about
similar steps that we have gone over in more detail for Rep(H8) in section 3.3 and focus
on the new features for Rep(D8). We first note that the F-symbols for Rep(D8) from (3.5)
respects the S3 automorphism of the fusion ring [90],

Out(Rep(D8)) = S3 , (3.30)

which will play an important role in the structure of the relevant (bi)module categories.
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Module categories for Rep(D8). There are 11 indecomposable module categories for
Rep(D8) corresponding to the 12 haploid algebra objects described in the last subsection,
two of which are in the Morita trivial class, given by A = 1,V ⊗V , and produce the universal
regular module category with NIM-irrep (3.11). For the other module categories we list the
simple objects as A-modules (using induced modules) in table 2 as we have done in section 3.3.
One novelty here compared to the previous case is that, there are three inequivalent algebra
structures on the maximal algebra object (see (2.31)) A = 1 ⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2V given
by multiplication morphisms m in (3.29), which correspond to the three inequivalent fiber
functors of Rep(D8) permuted into each other by the S3 triality [90]. They produce three
inequivalent rank 1 module categories with the same NIM-irrep (3.16) but differ in the
module structure on Vec. Similarly the rank 2 module categories also come in a family of
3 related by S3 with the same NIM-irrep (3.15). On the other hand, the rank 4 module
categories, which also come in a family of 3, are distinguished by their NIM-irreps (3.14)
on which the S3 triality acts nontrivially. Note that the other rank 4 NIM-irrep (3.12) does
not give rise to a Rep(D8)-module categories.

Since Rep(D8) is group-theoretical, we can compare our classification with existing
results from group-theoretical methods [68, 96–98] (see also related discussions in [28] based
on the phases of the D8 gauge theory). After realizing Rep(D8) as the dual category of
VecD8 under D8 gauging as in (3.6), we can identify module categories of Rep(D8) with
those of VecD8 by sequential gauging as described in section 2.5. These module categories are
labeled as MD8,1(L, ξ) as in (2.28) for subgroups L ⊂ D8 (up to conjugacy) and 2-cocycles
ξ ∈ H2(L,Z2),

Lξ = 1 , ⟨s⟩ , ⟨sr⟩ , ⟨r2⟩ , ⟨r⟩ , ⟨s, r2⟩ξ , ⟨sr, r2⟩ξ , D8ξ , (3.31)

where ξ is Z2 valued (from H2(Z2
2,U(1)) = H2(D8,U(1)) = Z2). Physically they correspond

to mixed Dirichlet-Neumann boundary conditions for the D8 gauge fields. Moreover the
module category MD8,1(L, ξ) is the category of projective representations of L where the
projective phase determined by ξ and the corresponding NIM-irreps follow immediately from
the fusion rules for such representations. We thus establish the correspondence between
group-theoretical data Lξ in (3.31) with the module categories in table 2.27

Dual fusion categories for Rep(D8). The dual categories for generalized discrete
gauging of Rep(D8) can also be determined from sequential gauging starting from the
obvious relation with VecD8 by gauging the entire D8,

Rep(D8) = ((VecD8)∗M(D8,1))
op , (3.32)

and the reverse gauging that returns VecD8 by gauging the dual maximal algebra A = (1⊕
η ⊕ η′ ⊕ ηη′ ⊕ 2V)1 in table 2,

VecD8 = ((Rep(D8)∗MD8,1(1,1))
op . (3.33)

We can then go down the list of L in table 2 to determine the dual fusion category ARep(D8)A
for each algebra A and the corresponding L, using well-known results in gauging non-
anomalous abelian subgroups of finite groups [9, 10, 33, 104]. When L = D8 (with or without

27This involves choosing a specific S3 triality frame.
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discrete torsion), we get back Rep(D8) as is evident from the above discussion. All other
subgroups of D8 are abelian. When L is a non-normal subgroup (i.e. L = ⟨s⟩ , ⟨sr⟩), this
discrete gauging again creates the non-invertible symmetry category Rep(D8), where the
non-invertible duality TDL comes from the direct sum of TDLs in the nontrivial L-orbit.
When L is an abelian normal subgroup, then the dual symmetry is again a group of order 8
containing normal subgroup L̂ ∼= L. The full group structure depends on whether L gives a
nontrivial extension of the quotient D8/L by L.28 Here for D8 the only nontrivial extension
arises for the exact sequence (3.26), in which case we obtain the well-known result that the
dual symmetry is VecαZ3

2
where the nontrivial extension leads to an anomaly characterized

by the following 3-cocycle in H3(Z3
2,U(1)) = Z7

2 [106],29

α(g1, g2, g3) = eπig1g2g3 , gi ∈ Z2 . (3.34)

In all other cases where L is a proper normal subgroup, the dual symmetry is clearly just
VecD8 itself. We have thus finished explaining the gauging data in table 2.

Generalized orbifold groupoid for Rep(D8). Compared to the case of Rep(H8), the
Rep(D8) fusion category admits a richer gauging structure which is reflected in its generalized
orbifold groupoid BrPic. In particular the 11 module categories in table 2 lead to 4 Morita
auto-equivalences for Rep(D8), 6 Morita equivalences between Rep(D8) and VecD8 , and 1
Morita equivalence between Rep(D8) and VecαZ3

2
. These 4 Morita auto-equivalences again

form a Z2 × Z2 group and after combining with the S3 outer-automorphism (3.30) which
permute the three Z2 generators (see table 2) they together produce 24 auto-equivalences
(i.e. invertible (Rep(D8),Rep(D8))-bimodule categories) that form the Brauer-Picard group

BrPic(Rep(D8)) = S4 , (3.35)

reproducing the result of [107].
The full (connected) groupoid BrPic is presented in figure 12. It consists of three

nodes representing the Morita equivalent fusion categories Rep(D8), VecD8 , and VecαZ3
2

connected by Morita equivalence relations (invertible bimodule categories). There are a total
of 24 × 32 = 216 invertible bimodule categories.

4 Examples of generalized gauging in CFT

In this section, we apply what we have learned in section 2 to concrete examples of generalized
gauging in 2d CFTs.

28A group extension given by the short exact sequence

1 → N → G→ Q→ 1 ,

is nontrivial if the extension class H2(Q,N) is taken to be nontrivial. Equivalently, a trivial group extension
corresponds to a split exact sequence which means G = N ⋊Q is a semi-direct product (which includes the
direct product G = N ×Q as a special case).

29In the original context [106], this explains the equivalence between the twisted 2 + 1d abelian Dijkgraaf-
Witten gauge theory DW[Z3

2]α (where α specifies the TQFT action and the untwisted non-abelian gauging
theory DW[D8].
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Z32

Figure 12. Generalized orbifold groupoid for Rep(D8).

4.1 Ising2 CFT and infinite non-invertible self-duality

The first example we study is one of the simplest nontrivial CFTs at d = 2; it is the theory
constructed from the tensor product of two copies of the Ising CFT, which we refer to as the
Ising2 CFT. As was analyzed in [28, 33], despite its simplicity, this CFT hosts a rich zoo
of non-invertible symmetries that provide an ideal playground to study generalized gauging
of non-invertible symmetries.

4.1.1 Operator content and Verlinde TDLs in Ising2 CFT

We start by reviewing the operator content of the Ising2 CFT and its generalized symmetries.
The Ising2 CFT has conformal central charge c = 1 and is a rational CFT (RCFT) with
respect to the chiral algebra VIsing2 ≡ Virc= 1

2
× Virc= 1

2
. The primary operators with respect

to VIsing2 are given by tensor products of those in each Ising factor,

Hprimaries
S1 = {1, ϵ1, σ1} ⊗ {1, ϵ2, σ2} , (4.1)

where ϵi is the h = h̄ = 1
2 energy operator and σi is the h = h̄ = 1

16 spin operator. The
full operator content (including the descendants) of the Ising2 CFT is captured by its torus
partition function

Z(Ising2) = (|χ1|2 + |χϵ|2 + |χσ|2)2 , (4.2)

where χ1, χϵ, χσ are the usual chiral Ising characters.
As an RCFT, the obvious symmetries come from the Verlinde TDLs, which generate

a subcategory of the full symmetry category CIsing2 ,

Ising ⊠ Ising ⊂ CIsing2 , (4.3)

from the symmetry category of each Ising factor

CIsing = Ising = {1, η,N} , N 2 = 1⊕ η , η2 = 1 , Nη = ηN = N . (4.4)

However, unlike a single Ising factor whose symmetry category is finite and fully determined,
the Ising2 CFT has many more symmetries due to the much richer operator content; in fact,
CIsing2 contains uncountably infinitely many simple TDLs [28, 31, 33].
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4.1.2 Infinite generalized symmetries on c = 1 orbifold branch
The Ising2 CFT comes with an exactly marginal parameter that generates a one-dimensional
conformal manifold which corresponds to the orbifold branch of the c = 1 CFT. Such CFTs
are known to be described by a free compact boson ϑ ∼ ϑ+ 2π with the following action

S = R2

8π

∫
d2x ∂µϑ∂

µϑ , (4.5)

and identification (orbifold) by the ZC2 symmetry that sends ϑ to −ϑ. The radius R in (4.5)
parametrize the continuous orbifold branch of the conformal moduli space at c = 1 [108].
T-duality leads to an equivalence relation among the orbifold CFTs by

R↔ 2
R
, ϑ↔ φ , (4.6)

where φ denotes the dual compact boson with the same 2π periodicity; therefore, the
inequivalent CFTs on the orbifold branch can be parametrized by R ≥

√
2 and the T-duality

fixed point R =
√

2 represents the famous Berezinskii-Kosterlitz-Thouless (BKT) point
where another continuous branch of the c = 1 moduli space emerges that describes the
compact boson (4.5) without orbifolding (also known as the circular branch which is again
parametrized by R ≥

√
2 from (4.5)).

The CFTs on the c = 1 circular branch share an obvious invertible global symmetry30

Gcirc = (U(1)ϑ × U(1)φ) ⋊ ZC2 , (4.7)

where the two U(1) factors act as periodic shift symmetries in the (dual) boson fields ϑ and φ,
while the charge conjugation C (which generates ZC2 ) acts by reflection on ϑ and φ. Gauging
ZC2 sends the circular branch CFTs to the orbifold branch at the same R. Since ZC2 is a
non-normal subgroup of Gcirc, this creates non-invertible symmetries in the gauged theory by
summing over ZC2 orbits of invertible TDLs in Gcirc. The resulting non-invertible TDLs have
quantum dimension 2 and come in a two-parameter family first studied in [31],31

Ccont = {Lθ,ϕ | Lθ,ϕ ⊗ Lθ′,ϕ′ = Lθ+θ′,ϕ+ϕ′ ⊕ Lθ−θ′,ϕ−ϕ′} , (4.8)

where the parameters θ, ϕ are 2π-periodic and are identified by the ZC2 reflection via (θ, ϕ) ∼
(−θ,−ϕ). This continous family of TDLs are simple except at θ, ϕ = 0, π,

L0,0 = 1⊕ r2 , L0,π = s⊕ sr2 , Lπ,0 = sr ⊕ sr3 , Lπ,π = r ⊕ r3 , (4.9)

where s, r generate the D8 invertible symmetry (see (3.7)) on the orbifold branch that
comes from the nontrivial extension of the commutant Zϑ2 × Zφ2 ⊂ Gcirc of ZC2 by the dual
(magnetic) Ẑ2 symmetry as a consequence of the nontrivial mixed anomaly (as in (3.34))
for Zϑ2 × Zφ2 × ZC2 [33]. Consequently the dual symmetry to Ccirc given by the symmetry
group (4.7) on the orbifold branch is,

Corb = Ccont ⊠ VecD8/ ∼ , (4.10)

where the quotient implements the identifications in (4.9).32 We emphasize that, just as (4.7)
30This is believed to be the full symmetry at a generic point on the circular branch of the c = 1 moduli space.
31All such TDLs Lθ,ϕ are clearly self-dual and have the trivial Frobenius-Schur indicator (which can be

understood either from the ZC
2 gauging on the circular branch or by continuity from the trivial Frobenius-Schur

indicators at θ, ϕ = 0, π).
32There are further enhancements at special points on the orbifold branch [28, 33].
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is the symmetry shared by all points on the circular branch, (4.10) is preserved on the entire
orbifold branch (and plausibly the full symmetry category at generic R). The appearance
of two continuous families of non-invertible TDLs is also expected intuitively since discrete
(generalized) gauging preserves the total quantum dimension of the symmetric category (in
the finite case), and the case here can be thought of as coming from a certain direct limit
of fusion categories (and their duals) [33].

The infinite non-invertible symmetry Corb (4.10) contains many interesting fusion cat-
egories. In particular the Rep(H8) and Rep(D8) symmetries we have studied in detail in
section 3 are fusion subcategories of Corb. We can identify the non-invertible TDLs thereof
using TDLs in Corb,

VRep(D8) = Lπ
2 ,0 , VRep(H8) = sLπ

2 ,0 = Lπ
2 ,π

, η = sr , η′ = rs , ηη′ = r2 , (4.11)

following the same convention as in [33]. There is another copy of Rep(H8) and Rep(D8) in
Corb related to the above by T-duality (4.6). By taking L 2π

k
,0 (or L0, 2π

k
) for general positive

integer k ≥ 4, we can generate copies of Rep(D2k) in Corb. More generally, by considering the
subcategories generated by L 2πp

k
, 2πq

k
for p, q ∈ Zk and coprime with k, we obtain higher rank

analogs of Rep(H8) and generalizations. Finally we also note that the Tambara-Yamagami
symmetry TY(Z4, χ+, ϵ = +) (and another one with the conjugate bicharacter χ−) on the
orbifold branch [33] that explains the self-duality under gauging the Z4 = ⟨r⟩ subgroup of
D8 [109] is also contained in Corb and generated by Lπ

2 ,±
π
2
.

4.1.3 General fusion category symmetries in Ising2 CFT

Coming back to the Ising2 CFT that sits at the bosonization/fermionization radius R = 2
on the c = 1 orbifold branch, we note the symmetry is further enhanced beyond (4.10)
by (4.3) [33], and given the quotient of a bi-crossed product (or an exact factorization)
category [110, 111],

CIsing2 ⊃ (Ising ⊠ Ising) ⋊⋉ Corb/ ∼ , (4.12)

where the VecD8 subcategory of Corb acts on the Ising factors by an Z2 (exchange) automor-
phism and the identification is between the common Rep(H8) subcategory of Ising ⊠ Ising
and Corb given in (4.11). In particular we have the following relation between the duality
TDLs N ,N ′ in the Ising categories (4.4) and those from the continuous families (4.8) [31, 33],

Lπ
2 ,π

= NN ′ = VRep(H8) , (4.13)

We will also make use of the following fusion rules between the Ising duality TDLs and
those in Corb,

sN = N ′s , N ⊗Lθ,ϕ = Lϕ
2 ,2θ

⊗N , (4.14)

where the second equality follows T-duality on the orbifold branch (which establishes the
isomorphism between the Ising2 and its Z2 gauging by N 2 = 1 ⊕ η).
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4.1.4 Generalized gauging in Ising2 CFT and infinite non-invertible self-duality

Let us now consider generalized gauging in the Ising2 CFT using the symmetries identified
in (4.12). For brevity, we mostly focus on two subcategories, namely Rep(H8) and Rep(D8)
for which we have worked out their universal properties concerning generalized gauging in
section 3, and we will now see how they are realized in a nontrivial physical CFT.

We start with gauging the Rep(H8) symmetry of Ising2 CFT. The possible distinct
gaugings are classified in table 1. We note immediately that 6 of the 8 algebra objects (A,m)
in Rep(H8) become Morita trivial (with respect to a larger but finite subcategory) in the
symmetry category CIsing2 of the Ising2 CFT, because of the existence of simple TDLs in
CIsing2 that “square” to A,

N 2 = 1⊕ η , N ′2 = 1⊕ η′ , V2
Rep(H8) = 1⊕ η ⊕ η′ ⊕ ηη′ ,

L2
π
4 ,

π
2

= 1⊕ ηη′ ⊕ VRep(H8) ,
(
NLπ

4 ,
π
2

)2
= 1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2VRep(H8) ,

(4.15)

where we have used the identification (4.13) and (4.14). The only Morita nontrivial algebras
are two invertible gaugings,

A = 1⊕ ηη′ , (1⊕ η ⊕ η′ ⊕ ηη′)⋆ , (4.16)

which are Morita equivalent because (see around (2.27))

N ⊗ (1⊕ ηη′) ⊗N = 1⊕ η ⊕ η′ ⊕ ηη′ , (4.17)

with an induced multiplication map from the r.h.s. that is different from V2
Rep(H8) in (4.15),

which is Morita trivial and thus must coincide with that of A = (1⊕ η⊕ η′ ⊕ ηη′)⋆ in table 1.
Therefore, all except (4.16) gauging of Rep(H8) in the Ising2 CFT necessarily produce

self-duality.33 It is straightforward to check this explicitly at the level of torus partition
functions using the explicit form of the multiplication morphism given in section 3.

One can carry out the parallel analysis for gauging the Rep(D8) symmetry of the Ising2

CFT, whose algebra objects are listed in table 2. The 11 Morita equivalence classes of
algebra objects for Rep(D8) descend to 4 Morita equivalence classes with respect to a larger

33In particular,
NLπ

4 ,∓ π
2
∼= NL 3π

4 ,± π
2
, (4.18)

are the two self-duality TDLs D,D′ identified in the recent work [81] for gauging the unique maximal algebra in
a specific Rep(H8) symmetry of the Ising2 CFT [33]. They are related by fusing with the invertible generator
s ∈ D8 that swaps the two Ising factors and they generate two inequivalent fusion categories as Z2 extensions
of the Rep(H8). Such extensions of a fusion category C by G are classified using the Brauer-Picard groupoid
of C [71]. More explicitly, the inequivalent G-extensions correspond to homotopy classes of maps between
classifying spaces BG→ BBrPic(C) (which consists of a group homomorphism ρ : G→ BrPic(C) together
with a suitable 2-cocycle and a 3-cocycle for G that satisfy vanishing obstruction conditions) [71]. Here for
G = Z2 and C = Rep(H8), with the Brauer-Picard groupoid given in section 3.3 (see around (3.27)), there
are 8 inequivalent fusion categories from the Z2-extension of C = Rep(H8) parametrized by four distinct
choices of ρ : Z2 → Z3

2 and the Frobenius-Schur indicator ϵD of D [81]. In the Ising2 CFT, ϵD = 1 (see
Footnote 31) and two of the remaining four fusion categories (generated by D and D′ in [81]) are in one-to-one
correspondence with those in (4.18). We thank the authors of [81] for a correspondence that led to a corrected
statement above.
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symmetry subcategory. Among them, the Morita trivial class contains, in addition to those
in (4.15) and the trivial class in table 2, the following algebras

A = 1⊕ ηη′ ⊕ VRep(D8) , (1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2VRep(D8))1,2 , (4.19)

that are nontrivial in the Rep(H8) subcategory but trivializes in a larger subcategory of
CIsing2 . The corresponding self-duality TDLs are Lπ

4 ,0 ,Lπ
4 ,0N , and Lπ

4 ,0N
′, respectively,

L2
π
4 ,0

= 1⊕ ηη′ ⊕ VRep(D8) ,

Lπ
4 ,0N ⊗NLπ

4 ,0 = Lπ
4 ,0N

′ ⊗N ′Lπ
4 ,0 = 1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2VRep(D8) ,

(4.20)

where we have used (4.14) and34

L2
0,π

2
= 1⊕ s⊕ r2 ⊕ sr2 . (4.21)

Note that the self-duality TDLs in (4.20) are no longer self-dual unlike in (4.15).
The first nontrivial Morita class in CIsing2 from algebras of Rep(D8) coincides with (4.16).

The second nontrivial Morita class contains the following algebras

A = 1⊕ η ⊕ VRep(D8) , 1⊕ η′ ⊕ VRep(D8) , (4.22)

and the Morita equivalence relation follows from (as in (2.27))

N ⊗ (1⊕ s) ⊗N = 1⊕ η ⊕ VRep(D8) , N ′ ⊗ (1⊕ s) ⊗N ′ = 1⊕ η′ ⊕ VRep(D8) . (4.23)

The final nontrivial Morita class contains a single algebra from table 2,

A = (1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2VRep(D8))3 , (4.24)

which is Morita equivalent to gauging A = 1⊕ s⊕ r2 ⊕ sr2 without discrete torsion.
It is clear that the shear amount of simple TDLs in Corb creates many more Morita trivial

algebras (with respect to a fusion subcategory in CIsing2), such as the following

A = L2
θ,ϕ , (NLθ,ϕ) ⊗ (Lθ,ϕN ) , (N ′Lθ,ϕ) ⊗ (Lθ,ϕN ′) , (4.25)

for general θ, ϕ. They lead to infinitely many non-invertible self-dualities under generalized
gauging in the Ising2 CFT (and also on the entire orbifold branch for the first type of algebras
in (4.25)). Curiously it also includes a self-duality for invertible but non-abelian gauging,

NLπ
4 ,0 ⊗ Lπ

4 ,0N =
⊕
g∈D8

g , (4.26)

which explains the self-duality of the Ising2 CFT under gauging the entire D8 invertible
symmetry [33].

To complete this analysis, let us discuss what happens when we gauge the Morita
nontrivial algebras in CIsing2 . Under gauging either algebras in (4.16) (which are Morita
equivalent), the Ising2 CFT turns into the compact boson CFT on the circular branch at the

34Note that it follows from (4.14) that Lπ
4 ,0N = NL0, π

2
.
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same bosonization/fermionization radius R = 2, which is identified with the Dirac fermion
CFT upon bosonization (GSO projection).35 The dual symmetry for gauging A = 1⊕ ηη′

in Rep(D8) is VecD8 from table 2, which is an obvious non-anomalous D8 subgroup of the
invertible symmetry (4.7) on the circular branch generated by the Z4 subgroup of U(1)ϑ
together with ZC2 . On the other hand, gauging A = (1⊕ η ⊕ η′ ⊕ ηη′)⋆ in table 2 generates
the anomalous VecαZ3

2
symmetry that is identified with the Zϑ2 × Zφ2 × ZC2 subgroup of (4.7),

which has a mixed anomaly that involves all three Z2 factors [33]. Furthermore, gauging
the same algebras in Rep(H8) produces an anomalous dual symmetry VecγD8

(see table 1)
that is identified with another D8 subgroup of (4.7) generated by ZC2 and a Z4 translation
ϑ mixed with a Z2 translation in φ.

Finally, under gauging the extra Morita nontrivial class of algebras from Rep(D8)
in (4.22), the Ising2 CFT is mapped to another point on the orbifold branch at R = 4,
which corresponds to the U(1)8/Z2 CFT, using the equivalence to the invertible gauging
of Zs2 [33]. The dual category Rep(D8) is the familiar symmetry on the entire orbifold
branch [33]. When gauging the last Morita nontrivial class in (4.22), we obtain instead
the U(1)8 CFT on the circular branch at R = 4, where the dual category VecD8 is the
same non-anomalous D8 symmetry that come from gauging A = 1 ⊕ ηη′ above (but at
a different radius). It is interesting to see how the above discussions are consistent with
sequential gauging as there are many possible gauging sequences, especially in the Rep(D8)
case, thanks to the rich groupoid structure.

4.2 Generalized gauging and orbifold groupoid in irrational CFT

Generalized gauging in rational CFTs can be understood largely in an algebraic manner in
terms of the underlying chiral algebra A, equivalently the vertex operator algebra (VOA),
its representation category Rep(A), which defines a modular tensor category (MTC), and
condensations of anyons in the MTC [64]. However, the situation is much more complicated
for irrational CFTs, which do not have a finite number of conformal blocks with respect to
any chiral algebra. It is expected that generic CFTs are irrational; this is certainly the case
on the c = 1 conformal moduli space, where every point on either the circular or orbifold
branches such that R2 /∈ Q is an irrational CFT. Nonetheless, the properties of generalized
gauging that we have discussed at length in section 2 continue to apply, as they only rely
on the basic axioms of a compact unitary local CFT. Here we use the specific example of
the c = 1 orbifold branch to illustrate this point.

We first note that from the analysis in the last subsection, all algebra objects in Rep(H8)
and Rep(D8) as listed in table 1 and table 2, respectively, are Morita equivalent to gauging
invertible finite subcategories in the symmetry category Corb (4.10) that is preserved along
the entire orbifold branch. For example, the unique maximal algebra of Rep(H8) satisfies,

1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2VRep(H8) = Lπ
4 ,

π
2
⊗ (1⊕ η) ⊗ Lπ

4 ,
π
2
, (4.27)

and thus is equivalent to gauging the Z2 ⊂ D8 subgroup generated by η = sr. The rest of
the gaugings in table 1 follow from sequential gauging with invertible symmetries. Similarly,

35The bosonic Dirac CFT is also known as the U(1)4 CFT since it is an RCFT with respect to the U(1)4

chiral algebra.
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Figure 13. Generalized orbifold groupoid for the c = 1 orbifold branch.

the top maximal algebra of Rep(D8) in table 2 satisfies,36

1⊕ η ⊕ η′ ⊕ ηη′ ⊕ 2VRep(D8) = Lπ
4 ,0 ⊗ (1⊕ η) ⊗ Lπ

4 ,0 , (4.28)

and thus is again equivalent to gauging the same Z2 mentioned above. Gauging any other
algebras in the rest of table 2 follow from sequential gauging with invertible symmetries in D8.

The invertible gaugings on the c = 1 orbifold branch by subgroups of D8 were studied
extensively in [33], which connected different points on the orbifold and the circular branch
where R differed by a factor of 2, as illustrated in figure 14. Combining this with the
understanding that all generalized gaugings on the orbifold branch are Morita equivalent to
invertible gauging, we have thus identified the generalized orbifold groupoid (see figure 13)
for these irrational CFTs (at least for the algebra objects from Rep(H8) and Rep(D8)).

4.3 Binary algebras and gauging in Wess-Zumino-Witten CFT

4.3.1 Binary algebras

Perhaps the simplest type of nontrivial haploid algebras one can imagine is an object of
the following form,

A = 1⊕ Li , (4.29)

which involves a single nontrivial self-dual TDL Li ∈ C. We refer to such an algebra object with
a multiplication morphism that solves the full set of consistency conditions as a binary algebra.

For a binary algebra object (4.29), the quadratic equations from the separability and
associativity conditions are much simplified, and one can explicitly obtain the necessary and
sufficient conditions on the F-symbols of the underlying fusion C for the algebra to exist.

For example, when Li does not admit a trivalent topological junction with itself (i.e
N i
ii = 0), the only F-symbol involved in the algebra conditions is (in the usual gauge)

F iiii(1,1) = ϵi
⟨Li⟩

, (4.30)

36We have chosen a particular S3 triality frame for this to hold as algebra objects, where the r.h.s. carries
the canonical algebra structure for objects of the form L ⊗A⊗ L.
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⟨s, r2⟩⋆

⟨sr, r2⟩

⟨r⟩

⟨sr⟩

D8

⟨s⟩

D8⋆

⟨r2⟩⟨sr, r2⟩⋆ ⟨s, r2⟩

Figure 14. Explicit invertible bimodules from invertible gauging. The ⋆ subscript indicates nontrivial
discrete torsion.

and the associativity condition requires F iiii(1,1) = 1, so A can only be an algebra object
when it is invertible and its Frobenius-Schur (FS) indicator is unity, ϵi = 1. Such an algebra
object corresponds to gauging a Z2 symmetry generated by Li, and its FS indicator then
measures its ’t Hooft anomaly [10]. We have thus recovered the familiar obstruction to
gauging a Z2 symmetry.

Now let’s consider the next simplest case where the trivalent junction vector space for
Li has dimension N i

ii = 1. The associativity constraint can be written as follows, where we
have fixed the gauge such that mi

i1 = mi
1i = m1

ii = 1
⟨A⟩1/2 for any i ∈ C,

1 = F iiii(1,1) + F iiii(Li,1)⟨A⟩(mi
ii)2 ,

⟨A⟩(mi
ii)2 = F iiii(1,Li) + F iiii(Li,Li)⟨A⟩(mi

ii)2 ,

F iiii(1,Lj) + F iiii(Li,Lj)⟨A⟩(mi
ii)2 = 0 ,

(4.31)

where j ̸= i,1. Taking the F-symbols to be the input, one can derive the multiplication
morphism (or prove its non-existence) from these simple quadratic equations. On the other
hand, assuming we already know the existence of a multiplication morphism for the binary
algebra object (4.29), they can be used to derive a subset of the F-symbols without solving
the pentagon equations.

One of the simplest binary algebras for non-invertible gauging occurs for the Fib category
with simple TDLs {1,W}. The unique nontrivial non-invertible TDL W has the following
fusion rule and quantum dimension

W 2 = 1⊕W , ⟨W ⟩ = ζ ≡
√

5 + 1
2 . (4.32)
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The Fib symmetry is realized in large class of CFTs including the M(4, 5) Virasoro minimal
model and the (G2)1 Wess-Zumino-Witten CFT. The unique binary algebra in Fib is

A = 1⊕W . (4.33)

In the convention where (see e.g. [10])

FWWWW (1,1) = FWWWW (1,W ) = −FWWWW (W,W ) = 1
ζ
, FWWWW (W,1) = 1 , (4.34)

the multiplication morphism is fixed by (4.31) to

m1
11 = mW

1W = mW
W1 = m1

WW = ζmW
WW = 1

ζ
. (4.35)

We comment briefly on the case where the trivalent junction vector space for the self-dual
simple TDL Li has dimension N i

ii > 1 and discuss the constraint set upon the permutation
map F1

iii(Li,Li) by the quadratic equations (4.31), which are implied by the existence of
the binary algebra.37 In general, the different components of the multiplication morphism
for Li are related as follows,

mi,α
ii = F1

iii(Li,Li)βαm
i,β
ii . (4.36)

One can choose a basis of the trivalent junction vector space for Li such that F1
iii(Li,Li)βα

is diagonal, and (4.36) can be rewritten as

mi,α
ii = ωαm

i,α
ii , α = 1, . . . , N i

ii , (4.37)

where each ωα is a third root of unity. For any ωα ̸= 1, we immediately obtain mi,α
ii = 0.

The first message conveyed by this constraint is that we must have at least one direction in
the trivalent junction vector space which is invariant under the permutation map in order
to have an algebra object (from (4.31)38). When N i

ii = 1, this equation reduces to the
constraint F1

iii(Li,Li) = 1, which means the permutation map has to be trivial for the binary
algebra to exist. In addition, when N i

ii > 1, if the dimension of the permutation invariant
subspace in the trivalent junction vector space is 1, the quadratic equations (4.31) can be
used to determine the multiplication morphism mi,α

ii completely. An example is the 1
2E6

fusion category with simple TDLs {1, X, Y }, where the trivalent junction vector space for Y
is two-dimensional and there is only one direction that is invariant under the permutation
map so we can solve the multiplication morphism of the binary algebra object A = 1⊕ Y

from (4.31) without solving the full system of pentagon equations,

m1
11 = mY

1Y = mY
Y 1 = m1

Y Y = 1√
2 +

√
3
, mY

Y Y = 1√
2 +

√
3

(
1√
2
,

√
3 − 1
2

)
. (4.38)

This is derived in the gauge where

F1
Y Y Y (Y, Y ) = 1√

2

(
e−πi/12 eπi/6

eπi/6 e−7πi/12

)
, F YY Y Y (Y,1) = I . (4.39)

37Note that the pentagon equations also constrain the permutation map of the trivalent junction vector
space for Li [10].

38Technically (4.31) is written for the case N i
ii = 1, but a general form can be straightforwardly written

down from it; we refer to its generalized form when commenting on the cases N i
ii > 1.
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4.3.2 Gauging binary algebras in SU(2)10 CFT

For illustration, let us consider gauging binary algebras in the Wess-Zumino-Witten (WZW)
CFT for SU(2) symmetry. As an RCFT, it is constructed from k + 1 unitary integrable
representations of the affine Kac-Moody algebra ŝu(2)k for k ∈ Z≥1, labeled by 0 ≤ j ≤ k

2
(see [65] for details). The RCFT is completely specified by a choice of modular invariant;
this modular invariant then falls into the famous ADE classification, which includes the
An-type or diagonal modular invariant at all k = n − 1, the Dn-type or charge-conjugacy
modular invariant at even k = 2n− 4 for n ≥ 4, and the E6, E7, E8 -type exceptional modular
invariants at k = 10, 16, 28, respectively [112, 113]. In particular, the diagonal modular
invariant RCFT is particular simple and commonly known as the SU(2)k WZW CFT. Its
operator spectrum consists of k + 1 scalar primary operators in one-to-one correspondence
with the unitary integrable representations of ŝu(2)k. Correspondingly there are k+1 Verlinde
TDLs that we label as Lj , all of which are self-dual, and the Frobenius-Schur indicators are
given by ϵj = (−1)2j . The fusion rules of the Verlinde TDLs are

LiLj = L|i−j| + L|i−j|+1 + · · · + Lmin(i+j,k−i−j) , (4.40)

which generate the fusion category

C(su(2), k) ⊂ CSU(2)k
, (4.41)

as a subcategory of the full symmetry category CSU(2)k
of the SU(2)k CFT.

In the modern point of view all other RCFTs with respect to ŝu(2)k are related to
the SU(2)k WZW CFT by generalized discrete gaugings that commute with chiral algebra
ŝu(2)k (i.e. with TDLs in C(su(2), k)), and the different modular invariants correspond to
inequivalent indecomposable module categories for C(su(2), k) [64]. Indeed, one recovers the
ADE classification of [112, 113] this way [64, 68]. In particular, the algebra objects (up to
Morita equivalence) relevant for the Dn-type and E6-type modular invariants are binary
algebras of the type (4.29), which we will discuss in more detail below.

As an explicit example, consider the SU(2)10 WZW CFT. By solving the quadratic
equations in (4.31) with the explicit F-symbols for C(su(2), k)), which descend from the
6j-symbols for the quantum group Uq(sl(2)) [114] (we use the particular expressions in [64]),
we find three binary algebra objects,

AA11 = L0 ⊕ L1 , AD7 = L0 ⊕ L5 , AE6 = L0 ⊕ L3 , (4.42)

with unique multiplication morphisms that are in one-to-one correspondence with the three
indecomposable module categories for C(su(2), 10) and correspondingly the three possible
modular invariants of A11, D7, E6-types.

The first algebra AA11 in (4.42) is Morita trivial in C(su(2), 10) as AA11 = L1/2⊗L1/2 and
thus corresponds to trivial gauging in the SU(2)10 CFT. The second algebra AD7 in (4.42)
corresponds to gauging the non-anomalous Z2 symmetry generated by the invertible TDL
L5 with trivial FS indicator. The multiplication morphism is simply,

m0
00 = m5

05 = m5
50 = m0

55 = 1√
2
. (4.43)
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Gauging AD7 produces the RCFT with D-type modular invariant, also known as the
SO(3)5 CFT.

The more interesting case is the algebra AE6 in (4.42), which comes with the following
multiplication morphism39

m0
00 = m3

03 = m3
30 = m0

33 = 1√
3 +

√
3
, m3

33 = 21/4i√
3 +

√
3
. (4.44)

This algebra describes the non-invertible gauging from the SU(2)10 CFT to the Spin(5)1
CFT. In particular, in the gauged theory, there is an emergent larger chiral algebra ŝo(5)1
(which contains the subalgebra ŝu(2)10 via a conformal embedding), coming from extra
conserved currents in the L3-twisted sectors being liberated after gauging the binary algebra
containing L3.40

Since all generalized discrete gauging can be reversed, let us discuss the dual algebra
objects in the gauged theory that implements the reverse gauging to the SU(2)10 CFT.
For the SO(3)5 CFT, this amounts to gauging the charge conjugation symmetry, which
is the quantum symmetry for the Z2 generated by L5 in the SU(2)10 CFT. On the other
hand, reversing the non-invertible gauging by AE6 in (4.42), requires a dual haploid algebra
B ∈ CSpin(5)1 in the symmetry category of Spin(5)1 CFT of quantum dimension (see (2.40)),

⟨B⟩ = ⟨AE6⟩ = 3 +
√

3 . (4.45)

The Spin(5)1 CFT, in terms of the enhanced chiral algebra ŝo(5)1, contains three primary
operators, and, correspondingly, three Verlinde TDLs which generate a fusion category
Ising, with familar TDls {1, η,N}. In addition, CSpin(5)1 contains two 1

2E6 fusion category
symmetries [60, 115] related by conjugation (parity flip) [10]. However, it is easy to see
all TDLs thereof have too large quantum dimensions to realize B with (4.45). In [79],
we determine the dual symmetry category Cdual ⊂ CSpin(5)1 completely for gauging AE6 ∈
C(su(2), 10), which contains 12 simple TDLs. The Cdual category can be realized by the
quotient of the following Deligne tensor product,

Cdual = C6 ⊠ Cop
6 / ∼ , (4.46)

where C6 is a rank 6 fusion category that comes from a Z2-extension of the 1
2E6 category.

Explicitly, the simple TDLs in C6 are {1,D1,D2,D3, η,N}, which are all self-dual. The TDLs
{1, η,N} generate the obvious Ising subcategory that is identified in (4.46) among the two
tensor factors. The following fusion rules in C6 are commutative and given by

D2
1 = D2

2 = 1⊕D3 , D2
3 = 1⊕ η ⊕ 2D3 , D1η = D2 , D1N = D3 , (4.47)

39Here we work with the F-symbols of [64], which are in a gauge naturally inherited from the quantum
group 6j-symbols. However, it does not satisfy the positive gauge condition in figure 1, and this leads to the
factor of i in (4.44). In particular, the comultiplication morphism differs from the adjoint of m by m∨ = −m†

in this case.
40In the SU(2)10 CFT these conserved currents are point-like local operators attached to the L3 TDL,

and they produce a continuous family of TDLs for each Li such that L3 ∈ Li ⊗ Li following the general
argument in [33]. Here we see such continuous families have a natural interpretation in the gauged theory via
symmetry breaking. Namely su(2) preserving but so(5) breaking TDLs in the Spin(5)1 CFT necessarily come
in continuous families induced by a symmetry transformation in the bulk CFT.
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where we have omitted those that follow from associativity. In particular the 1
2E6 subcategory

is identified with the following subset of TDLs {1,D3, η}.
From the constraint on the quantum dimension (4.45) and general arguments in sec-

tion 4.3.1, we find that the dual algebra that reverses the AE6 gauging is given by the
following unique binary algebra,

B = 1⊕D′′
1 , D′′

1 ≡ D1D′
1 (4.48)

where D1,D′
1 come from the two C6 factors in (4.46), respectively, and have quantum

dimensions

⟨D1⟩ = ⟨D′
1⟩ = 1 +

√
3√

2
. (4.49)

It follows from (4.47) and (4.46) that ND′′
1

D′′
1 D

′′
1

= 1, and thus our analysis around (4.31) applies.
Since the existence of this algebra is guaranteed by the general properties of gauging discussed
in section 2, the multiplication morphism can be fixed using (4.31) even without knowing the
full set of F-symbols for C6. We work in the conventional gauge where

F
D′′

1
D′′

1 D
′′
1 D

′′
1
(D′′

1 ,1) = 1 , F
D′′

1
D′′

1 D
′′
1 D

′′
1
(1,1) = ⟨D′′

1⟩ = 2 −
√

3 , (4.50)

and we also know that D′′
1 = D1D′

1 has the trivial FS indicator since D1 and D′
1 are related

by parity-flip and must have identical FS indicator. The multiplication morphism for the
dual binary algebra (4.48) is then given by

m1
11 = m

D′′
1

1D′′
1

= m
D′′

1
D′′

11
= m1

D′′
1 D

′′
1

= 1√
3 +

√
3
, m

D′′
1

D′′
1 D

′′
1

=
√√

3 − 1 . (4.51)

It is straightforward to verify explicitly that the torus partition function of the Spin(5)1 CFT
decorated by B-mesh reproduces the diagonal modular invariant of the SU(2)10 CFT.
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