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1 Introduction and summary

The understanding of strongly coupled quantum matter at finite temperature is an important

problem in physics. Its broad applications range from the basic experimental needs, since any



realistic quantum critical point would necessarily be at non-zero temperature, to fundamental
theoretical questions such as the thermalization of many-body quantum systems, where
highly excited states of the system are conjectured to be universally approximated by the
finite-temperature (thermal) state [1, 2], and furthermore to profound connections between
quantum gravity and quantum field theory dictated by the holographic principle [3-5], where
finite-temperature systems are believed to be dual to black holes, and therefore would provide
valuable information about the quantum nature of the latter.

Conformal Field Theory (CFT), which provides a non-perturbative formulation of critical
phenomena, offers a powerful approach to investigate the finite-temperature quantum system
near its quantum critical point. While the second-order quantum phase transition occurs
at zero temperature and is described by the CFT on the flat spacetime R4 1!, to turn on
finite temperature 7" amounts to compactifying the Euclidean time 7 ~ 7 + 8 with § = %
and imposing suitable periodicity conditions along 7. At thermal equilibrium, this boils down
to studying the Euclidean CFT (from Wick rotation) on S% x R4~1 (known as the thermal
background), and the basic observables are correlation functions of local operators on this
background, the simplest of which being the one-point function (7},,)g of the stress-energy
tensor which measures the free energy of the thermal state. On the one hand, such thermal
observables behave qualitatively different from the conventional flat space CFT correlation
functions due to the explicit breaking of conformal symmetry by the thermal background,
and for the same reason they appear much harder to determine in interacting models. On the
other hand, these thermal observables present a universal coarse-grained description of the
flat space operator data, through the asymptotic density of states in the CFT Hilbert space on
S9=1 and operator-product-expansion (OPE) coefficients averaged over high energy states [6]
(see also the recent work [7]). In light of the AdS/CFT correspondence [3-5], this translates to
the expectation that the black hole solution in gravity is a universal coarse-grained description
that encodes a large number of underlying microstates. Nonetheless deriving such universal
formulas directly from the flat space OPE data is very challenging in interacting CFTs of
spacetime dimension d > 3. A main focus of this work is to provide explicit solutions to
thermal observables using field theory techniques in interacting CFTs in d = 3.1

There is an alternative interpretation of the CFT on Sé x R~ entirely as a zero-
temperature quantum system (or a classical statistical system in d dimensions) and conse-
quently a reinterpretation of the results we present in this paper. Instead of taking S}g to be
the compactified Euclidean time, we can choose it to be a compactified spatial circle (and
keep the new Euclidean time along one of the R?~! directions). This way, it describes the
quantum system confined to a finite interval of length S with certain periodic boundary
conditions, also known as the Kaluza-Klein compactification of the CFT. Here an important
and universal observable is the Casimir force, which underpins the quantum nature of the
system. For instance, if we confine free electromagnetic field in cavity, the walls of the cavity
would feel the pressure due to the quantum fluctuations of the vacuum despite being at
zero temperature. Such an effect was firstly predicted by Hendrik Casimir in 1948 and later
confirmed experimentally. The Casimir effect exists for any quantum field theory, but in the
absence of a mass-gap, the Casimir pressure is expected to depend on the geometric moduli

Tt would be interesting to study our results in relation to the flat space OPE data. We leave that to
future work.



of the cavity algebraically. Consequently the Casimir force will be long-ranged and more
easily detected in a gapless phase, in contrast to a gapped phase where the Casimir pressure
decays exponentially as we increase the cavity size. Therefore, the Casimir force (pressure)
serves as a salient observable when the system undergoes a quantum phase transition (or a
second-order phase transition in the statistical model), which is often described by a CFT. It
is again measured by the one-point function (7},,)s but with the time and space directions
swapped. Similar reinterpretations hold for more general observables on Sé x R4-1,

In this work we study d = 3 CFTs on the background Sé x R2. The dimensionful
parameter (3 breaks the conformal symmetry explicitly to the Euclidean isometry on R? and
translation symmetry along Sé. As an immediate consequence, the one-point functions of
local operators are no longer constrained to be zero. Instead the residual symmetry and
dimensional analysis require the one-point function of a primary operator O#1-#¢ of scaling
dimension A and spin ¢ to take the following form with an overall constant by [6],

(Ot (x))g = Zi(e’“ ...ef't —traces), e =(1,0,...,0), (1.1)
and the descendant operators all have vanishing one-point functions. The dimensionless one-
point function coefficients by are the most basic building blocks in the finite temperature CFT
and they determine the most general correlation functions together with the flat OPE data.

For instance, the stress-energy tensor has the following one-point function at finite
temperature (we keep d general for the moment),

f foij
(Too)s = (d — 1)@» (Tij)p = — ﬂdj , (Toi)p = 0. (1.2)
where the constant f = %T determines the free energy density of the CFT thermal state via
f

which is negative by the positivity of energy [6].2 When the S%j is regarded as a spatial circle,
f is referred as the critical Casimir amplitude which determines the Casimir pressure from
changing the circle size . This universal quantity f have been measured for a variety of
systems in experiments or from the Monte-Carlo simulations (see [8] for an extensive review).
Yet only limited results are available from the theoretical side for d > 3 [6, 9-15]. One main
purpose of this paper is to compute the free energy coefficient (equivalently critical Casimir
amplitude) f explicitly in interacting d = 3 CFTs that are solvable in some regime, and
similarly for one-point functions (1.1) of more general local operators.

Importantly these one-point functions also give access to flat space CF'T data that are
hard to obtain otherwise. Regarding the background S}g x R41 as a limit of Sé X S%_l as
% — 00, we can see the free energy coefficient controls the asymptotic density of high energy
CFT states on S4 1, equivalently heavy local operators by the state-operator correspondence.
Explicitly, the partition function S}f X S%_l that counts states in the Hilbert space Hgi-1
graded by dilatation operator A is determined by the free energy coefficient f in this limit,

R V.
B8 BA BT —d-1
Zgy st = Try, e 7%= /dAp(A)eRA L 5 Zgy g1 =e 7T ! (1.4)

2Note that the Lorentzian energy density (which is positive) is related to the temporal component of the
Euclidean stress tensor (in (1.2)) by Wick rotation Tgg™e™“an = j2gguclidean,



d
where p(A) is the density of states and V;_; = Sy 1R = FQL;R”Z*I is the area of S?{l.
2
Performing an inverse Laplace transform, this implies the following asymptotic density of
heavy operators [16],

‘ o (—fSa) AT (1.5)

log p(A) 224 A5

Similarly, the one-point function of a general local operator O#*1-#7 on Sé X SC}{I is determined
by the thermal one-point function (O)g for O = ett ... et7 OF1+#7 in the same limit,

B L0 b
Oyt = 7—— 2 @O@Io) k> =5 O@)s = 5. (Lo)
SEXSE ! geHa 1

where ¢ labels an orthonormal basis in Hgs-1. The inverse Laplace transform then produces
an asymptotic formula for the averaged OPE coefficients [17],

A
= T VOB s (B YF )
A p(A) (1—d) fSa-1

Note that all of the above are completely determined by the one-point function coefficient

(210])

bo (including the free energy coefficient f as a special case).

In general, CFTs are strongly coupled and thus inaccessible via small perturbations
near some integrable theory. A class of d = 3 models with a large number N of scalars
and fermions governed by O(N) (or U(XN)) invariant interactions, which we will refer to
collectively as large N vector models, circumvent this obstacle by admitting an expansion in
% and thus providing an ideal playground to study interacting CFTs (see [18] for a review).
Surprisingly, this simple-looking vector model has proven to be an excellent description of
real-world critical systems. In the case of scalar vector models, the UV Lagrangian for the
scalar fields ¢* with i = 1,2,..., N takes the following form

1 ) 1 S o
S = /dsx (26%1513“051 + §m(2)¢l¢l + 40(¢Z¢Z)2) . (1.8)

The special cases with N = 1,2,3 correspond to the Ising model, the XY model and the
Heisenberg model respectively, each of which has experimental realizations both as zero-
temperature quantum phase transitions and classical (thermal) phases transitions in statistical
systems and can also be simulated on a lattice.® Furthermore, the limit N — 0 describes
the statistics of polymers [20]. In the case of the Ising and the XY model, the free energy
coefficient f in (1.3) (equivalently the critical Casimir amplitude) has been computed by the
Monte-Carlo techniques [21, 22] and using the € expansion and functional renormalization
group [23]. The results are summarized below,

MC = —0.1527, fME = —0.3066, fR¢, =-0.181, fRS, =-0353. (1.9)

3See [19] for a comprehensive review on the O(N) CFTs including their conformal data and physical appli-

cations.



In the large N limit, the leading contribution to the coefficient f was determined in [24],

fNN_L() = —0.153051N (1.10)

up to subleading corrections in % Notably this is in rather good agreement with the

Monte-Carlo simulations and the RG computations for the Ising model (N = 1) and the
XY model (N = 2) despite the small values of N. It is then natural to ask about the
nature of the % corrections.

Famously, the % expansion in the large N scalar vector model (similarly for fermionic
models) coincides with a semi-classical expansion where % plays the role of the Planck constant
R [18]. This semi-classical expansion is facilitated by introducing the Hubbard-Stratonovich
auxiliary field o and rewriting the action (1.8) in a form that is quadratic in the elementary
fields ¢'. Path-integrating over ¢’ then produces a non-local effective Lagrangian F (o) for
the o field which is amenable to saddle-point analysis due to the small A ~ % In the scaling
region, the saddle-point ¢ = o, in the N — oo limit and the value of the effective Lagrangian
F (o) determines the O(N) CFT completely to the leading order in N. The first correction
comes from the one-loop determinant around the saddle o = o, which is suppressed by %

For the large N critical O(N) scalar model, the % correction to the free energy coefficient
fin (1.3) was first computed in [9]. The calculation requires a subtle numerical procedure
which we will clarify here. We also provide several approaches to access the same observable.
Together they lead to the following expression for the free energy coefficient for the O(N)
model including the first % correction,

2(()

Jony = N +0.06399553 + O(N 1), (1.11)

which improves significantly on the precision of the result from [9]. It is immediate to note
that the correction is comparable to the leading term at small N. This is related to the fact
that we solve these models using the saddle-point approximation, which generally produces
asymptotic series in the expansion parameter.

We further analyze the % correction to the free energies of fermionic large N vector
models using our numerical procedure. These models all arise from the critical points of N
Dirac fermions with different types of four-fermion interactions. They include the Gross-Neveu
(GN) model with the maximal global symmetry and its closely related variations with reduced
symmetry such as the chiral Ising Gross-Neveu (¢cGN) model and the Nambu-Jona-Lasinio
(NJL) model. The results are summarized below,

Jany = feany = —L()N 0.01340099 + O(N 1),

3(( ) (1.12)

fNiLy = ———2N —0.02680198 + O(N1).

We see that all these models have the identical free energy density at leading order in the
large N expansion, which coincides with that of the free fermions [10, 11]. While the NJL
model is distinguished from the GN and the ¢cGN models at the subleading order in %
The free energy density of the cGN model only starts to differ from the GN model at the

. . 1
next-to-subleading order in .



The fermionic large N models present additional subtleties that are absent in the bosonic
models. For instance, the large N saddle-point equation in the scaling region has multiple
solutions in addition to the one producing (1.12). The analog of the Hubbard-Stratonovich
field here is a pseudoscalar ¢ and the solution ¢ = 0 gives (1.12). The additional solutions
¢ # 0 break the parity symmetry (and come in a complex conjugate pair) lead to the
following free energy density

fon'. = —KN +0.14222693 + O(N ),
N (1.13)
fag = —kN —0.44297273 + O(N 1),
N
with 5 5
k= 3 Cla(m/3) - C?E) = 0.54908554 , (1.14)
7T

where Cly is the second Clausen function (see (3.28)). Since these solutions have a lower
free energy compared to (1.12) one may naively expect them to describe the actual CFT
at finite temperature. However a careful inspection of these fermionic large N models
reveals that these saddle-points are not on the steepest descent contour that is obtained
from deforming the original integration contour for ¢ that defines the unitary QFT [18, 25].
Therefore these saddle-point solutions are spurious for the study of the unitary models and
do not describe the corresponding unitary fermionic CFT. Instead we propose that they
potentially describe non-unitary cousins (analogs of the Lee-Yang CFT) after a rotation
of the defining integration contour.

We also study an interesting class of 3d CFTs that share the same U(N) global symmetry.
They are described by the 3d Chern-Simons Quantum Electrodynamics (CSQED) with N
charge one Dirac fermions and Chern-Simons level k. In the 't Hooft limit, namely N, |k| — oo
with the 't Hooft coupling A\ = % fixed, they give rise to a one-parameter family of CFTs
labelled by A. We find that while the free energy coefficient in this case is independent of A
in the leading large N order, the subleading piece is a nontrivial function g(\) as in,

3¢(3)

fesqepy, = == =N +9(A)+O(NTY, (1.15)

which has the following limiting behaviors,

li = —0.21211 li =
/\1_1209()\) 0 735, )\lir(l)g()\) 0, (1.16)

corresponding to QED with vanishing Chern-Simons level £ = 0 and the free limit (with
infinity Chern-Simons level) respectively. The former agrees with the previous result in [12].

In addition to the free energy coefficient f in (1.3), we also develop diagrammatic methods
in the large N vector models to compute the one-point functions of other primary operators
as in (1.1). Because of the unbroken global symmetry, only singlet operators with respect to
the symmetry acquire nontrivial one-point functions. In the large N vector models, a family

of such operators are known as the single-trace higher-spin currents J; ,  which takes the
following schematic form in the scalar vector model [26-31],
s ~ HEAM Hs AL
Toyoppe ~ 91O 0N @' — traces, (1.17)



with even spin s. These operators are conserved currents in the N = oo limit but develop
anomalous dimensions at the order % Their thermal one-point function coefficients b, in the
N = oo limit of the scalar O(N') model has been previously computed in [6] using the inversion
formula. Here we provide a direct diagrammatic derivation of b, for both bosonic and fermionic
large N vector models in the leading large N limit. We also describe explicitly the procedure
to obtain their % corrections where the inversion formula in [6] does not obviously apply.

It was shown recently in [32] that by incorporating global symmetry twists one can obtain
a refined version of the asymptotic density of states (1.5) labelled by the representations
of the symmetry group. More specifically, let us consider a CFT with continuous global
symmetry G on S}g X Sjl{_l as around (1.4). We focus on a U(1) subgroup of the full symmetry
generated by a charge @ and turn on a U(1) holonomy g = e along the S! factor. The

resulting symmetry twisted partition function is

Zg

. _B A4 Xr(g) -
xsg1(9) = Ty e moTHe = IZ(G) dimr /dAp(A’r)e =%, (1.18)
rclrrep

1
B
where the sum is over irreducible representations r of G, x, is the corresponding group
character and p(A,r) is the symmetry-resolved density of states of the CFT. In the high

temperature limit, symmetry twist leads to additional contributions in the thermal free energy,

V.
Zg1 xsi-1(9) it Zg) xra-1(9) = ¢t iG], (1.19)
and the leading effect at small p valued in the Lie algebra g is captured by the Wilson
coefficient b above as introduced in [32] where tr(-) denotes the Killing form on g.* In
particular b is argued to be positive based on the relation to the domain wall tension for
the g-twisted sector [32]. As was derived in [32], the twisted free energy is related to the
one without symmetry twist by

> dim r e (g)e Va1 28

relrrep(G)

(1.20)

Zslngdfl (1) \ bVaa

dim G
Zsyami1(9) (Waazl)z
where ca(r) is the second Casimir for r and we have omitted terms suppressed by higher
powers of 5. Using (1.18) and (1.19) together with (1.20), we can determine the asymptotic
behavior of the refined density of states p(A,r) normalized by (1.5),
d—1
p(Ar) } As1 c2(r) ((1 - d)de_1> a

B (1.21)
p(A)(dimr)? b A

log {

where we have omitted terms that are representation independent in this limit. In [32], the
b coefficient was determined for free theories and holographic CFTs from the gravity dual.
Here by studying the large N vector models at finite temperature with nonzero chemical
potential, we provide the first results for the b coefficient directly from interacting CFTs, as
summarized below for the O(N) global symmetry of the O(N) CFT, the O(2N) symmetry

4Note that our normalization of b differs from that of [32] by the volume a unit sphere (i.e. bghere = Sd—1bhere)-



of the GN CFT and the O(N) symmetry of the NJL CFT (with N Dirac fermions),

2 arccos (%)2 +2 (5 + 2 arccosh (%)) arcsinh % 0.42424

bo(n) = ,
O(N) \/57‘( N

2log2  0.1338 (1.22)
bany = r N

2log2  0.2676
bniLy = TN

where we have included the leading % correction. We have also determined the coefficient
b for the non-unitary cousins of the GN CFT (see (3.35)), as well as for the CSQED to
leading order in N (see (4.11)).

Our normalization is such that for a free complex scalar or a Dirac fermion with U(1)
symmetry, the corresponding b coefficient is®

3 2log 2

bscalar = bferrnion = .
T T

(1.23)

We now discuss a number of potential applications and future directions of our work.
As the Monte-Carlo simulations are being pushed to study vector models at higher N, it
would be interesting to see how our results on the % corrections compare to these numerical
investigations. It would also be interesting to see if these large N systems can be realized in

experiments (e.g. by stacking and twisting existing finite N setups), which would measure the
1
N
N as a coupling constant and finding the non-perturbative corrections to the large IV results

corrections we have found. Another interesting direction involves treating the parameter

using the techniques developed by Lipatov [33, 34] and renormalons [35]. As special instances
of the AdS/CFT correspondence [3-5], the d = 3 large N vector models are expected to be
dual to certain versions of Vasiliev’s higher-spin gravity on AdS, [36-40] (see also [41, 42]
for recent works and see e.g. [43] for subtleties in formulating consistent interactions in the
bulk). The critical large N vector model at finite temperature should then correspond to
a black brane solution of Vasiliev’s higher-spin gravity. Such a solution is known in the
linearized limit, but not yet in the full non-linear theory due to the high complexity of the
bulk interactions in the higher-spin gauge theory [44, 45]. Furthermore, it is not known how
to reproduce even the leading N free energy from a bulk action for the higher-spin gravity.’
Nonetheless in light of the successful matching between one-loop effects” (i.e. order O(N?)
contributions to the free energy) for the CFT on S and the higher-spin gravity on AdS,
in [54], it would be interesting to compare the one-loop contributions from higher-spin gauge
fields on a putative thermal geometry and the finite temperature % corrections we find on the
CF'T side, which will provide a nontrivial test on the bulk solution and offer some insights on
the structure of the bulk solution. Finally, it would be interesting to compare our predictions
for the asymptotic density of states obtained from the thermal effective action (which includes
refinement by global symmetries) to explicit operator counting.

®Note that for the free scalar the divergent zero mode contribution is removed (e.g. by an orbifold).

5Note that the collective field method of [46-51] and the recent development in [41, 42] rely on gauge-fixing
to the AdS4 background in the bulk which cannot describe the (deconfined) thermal state.

"There is a still mismatch between these corrections for theory with fermions in odd dimensions [52, 53].



The rest of the paper is organized in the following way. In section 2, we consider the
critical scalar O(N) model at finite temperature in detail. We compute the two-point function
of the o field at finite temperature, and then numerically obtain the first correction to the
free energy coefficient in the large IV expansion and comment on subtleties in the numerical
procedure. We also include the dependence of the free energy on a particular U(1) chemical
potential. In addition, we show explicitly how the same result follows from the computation
of the one-point function of the stress-energy tensor by explicitly summing Feynman diagrams.
We then generalize the diagrammatic analysis to higher-spin currents of even spin s > 2.
In section 3, we apply the developed techniques to study fermionic vector models including
the Gross-Neveu model and the Nambu-Lasino-Jonas model. In section 4, we investigate
thermal one-point functions in the d = 3 Quantum Electrodynamics with a large number
of flavors and Chern-Simons level k in the 't Hooft limit. In the appendices, we provide
technical details for intermediate steps in the main text.

2 Scalar O(N) vector model

2.1 Review of the critical O(IN) model and large N expansion

Here we review some basics facts about the scalar O(N) vector model. We start in general
spacetime dimensions and later specialize to d = 3. The action of the model is defined as

1 ; o1 DY o
§= / d'z (QM@W +5mad'e’ + f(qﬁw)?) : (2.1)

where mg and Ag are the bare mass and coupling and ¢’ belongs to the vector representation
of the O(N) global symmetry group. Famously, the model admits a large N limit where
physical observables such as the correlation functions of local operators can be extracted
using a saddle-point approximation (see [18] for an extensive review). To see that, we
apply the Hubbard-Stratonovich (HS) trick using the auxiliary o field, also known as the
HS field, whose original integration contour is along the imaginary axis [18]. Then up to
a constant shift, we have

S = /ddx Ly P oMt + laqsiqbi o + 17’00 (2.2)
2" 2 4h 2 ’ '
with ro = T—? Note that o field can be thought as a mass of the field ¢'. Integrating out
i

the fields ¢, we arrive at the following effective Lagrangian for o,

1 o 1
F(o) = =Nlogdet (-0 —— 4+ =rgo. 2.3
(0) = 5N logdet (- +0) I 2707 (2.3)
By demanding \g = )‘—A‘t}, ro = Nrf with Aj, ) held fixed in the large N limit, we see that 3
plays the role of an effective Planck constant which gives rise to a semi-classical expansion.
For that purpose we first need to solve the equation of motion for o,

Go(z, ) = “iz) — 7k, (2.4)



where the Lh.s. coincide with the coincident limit of the propagator for ¢,
(-U+0)Go(z,y) =d(z —y). (2.5)

Assuming the homogeneous ansatz o(x) = o, the saddle-point equation for o is given by,

dk 1 o

| s 5 20
which is also known as the gap equation since o determines the mass gap for the scalar fields.
The Lh.s. of the above equation is divergent for d > 2 and needs to be regularized. It is
straightforward to check that the divergences could be absorbed in the redefinition of the
bare coupling constants rf. To study the CFT, we bring the system to a critical point by
further fine-tuning this parameter. Note that for d < 4 near the free Gaussian point, the
composite operators ¢'¢’ and (¢'¢')? are both relevant and thus we should fine-tune them
at the same time to reach the free fixed point. Perturbed away from the Gaussian point
by the (¢'¢")? operator, the theory can flow to an interacting critical point, where (¢'¢?)?
becomes irrelevant. In this case, we only need to fine-tune the mass rg. This critical point
describes the second-order phase transition between the ordered and the disordered phases of
the O(N) model. The actual value of the parameter ro where the system becomes critical is
scheme-dependent and we will label the regularization scheme by R. The phase transition
occurs at o = 0 (for o < 0 there are tachyonic instabilities) since o controls the correlation
length. It is thus more convenient to parameterize the bare coupling 7 as

dik 1
¢ ¢
gt —, 2.7
=t f 7
where the r.h.s. is computed with the chosen regularization scheme in the UV. Note that
this equation has a solution only for d > 2 since at d = 2 the integral acquires an IR
divergence. This is a manifestation of the Coleman-Mermin-Wagner theorem stating that

there are no Goldstone modes in d < 2. Substituting the value of 7§ (2.7) in the gap
equation (2.6), we obtain

d?k 1 1 o,
N DA 2.8
/R (27)d <k2 s k2> XN (2.8)

Now by tuning r* we can bring the system to the critical phase transition. Indeed, with
o > 0, we obtain the following equation

b d’k 1
= - N / d |2 (k2 : (2.9)
o A r (2m)4 k2(k? + o)

Expanding the r.h.s. of the above equation for small o at 2 < d < 4 gives [18]

rt— % ~ Kyt 't Ino+ .., (2.10)

0
where K, is a scheme-independent constant

Kd__r(l—;‘) (2.11)

,10,



and I is a constant that depends on the regularization scheme R. The terms that are
subleading when o — 0 are omitted in (2.10). Near the critical point, we have the scaling
behavior rt ~ Kdag_l. If we further set \j = —i then the corrections due to the finite-size
effects would become suppressed. This value should be carefully chosen when adopting a
numerical lattice regularization scheme (see appendix A for further comments). For the
analytical treatment, we find the dimensional regularization to be the most convenient. For

2 < d < 4, this gives,

dek 1 d_o
/ Cri (2 o) - B

1 d

— =0, rt = Kdai_l,

AL (2.12)
dimreg

so to reach the critical point we set r = 0 (equivalently r§ = 0) and to cancel subleading

corrections we pick \j = oo in this scheme. Consequently, the corresponding CFT on flat

space is governed by the following action

1 . A
S = / ddx <28u¢laﬂ¢l + 20¢1¢1> , (2.13)
and similarly the effective Lagrangian for ¢ at the critical point is

Flo) = %Nlogdet (-O0+0) . (2.14)

To determine observables at the subleading order in the % expansion, we also need the

propagator for o, which follows from the large N Lagrangian (2.3),
G;! = 5@ N 2.15
o ($7y)——*7 (l'_y)_g (;S(xvy) ( . )

The negative signs reflect the fact that the original integration contour for ¢ runs parallel
to the imaginary axis [18]. At the critical point in the dimensional regularization scheme
(see (2.12)), we have from (2.5),

o) - 7T (g) Nyt Go0) sin (Ld) Td—1)

2
o B (471')% sin (%d) I'(d—-1) 5T (% _ 2) T (%) Nzt

(2.16)

so that the scaling dimension of the composite operator o x (¢%)? is A, = 2 and independent
of the spacetime dimension (thus different from the mean-field value for general d, a hallmark
of interacting CFT).

Here we are mostly interested in the d = 3 CFT on the background S}j x R? which is
flat but has nontrivial topology. This is described by the same action (2.13) with periodic
boundary conditions for the fields along Sé. The gap equation (saddle-point equation) for

o now takes the following form,?

1 A2k
0=— /q 2.17
p 2. k2 +w2+o (2.17)

nez

8In the following we will simply write k as k for the two dimensional momentum to simplify the notation.
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where w, = 2”7" are the bosonic Matsubara frequencies and the UV divergence is regulated in

the same way as in flat space. As we review in the next subsection, the saddle-point solution
o = 0, is no longer zero for finite 8 and corresponds to a finite mass-gap generated by quantum
effects. Equivalently, it determines the one-point function of o ~ (¢*)? in the large N limit,

o [ @
<(¢ )?en>/3 - sin (%d) F(d _ 1) ﬁQ

(2.18)

where (¢?)2,, is the renormalized primary operator with the normalized two-point function
on flat space
(620 (Vo)) = = (219
(z —y)
2.2 Large N free energy and the subleading correction

Here we derive the free energy density of the scalar O(N) CFT on Sé x R2,

1

non—extensive ~
where V5 regulates the infinite spatial volume and we focus on the non-extensive (in Sé)
part of log Zq1 g2 which is free from counterterm ambiguities. The free energy density has
the following large N expansion,

F(B) = Fo(B) + F_1(8) + O(N 1), (2.21)

where Fj denotes the leading contribution of order O(N) and F_; is the first subleading
contribution at O(1).
We start with the effective Lagrangian for o,

d2
Flo) = gtr log(-O+0) = 2]\; > / (2;;2 log (p2 + w2+ 0’) ) (2.22)
nez

2mn

where w, = 5 In the large N limit, the leading free energy density is determined by

*

the saddle-point ¢ = o,

Fy(B8) = Fren(04) , (2.23)
of the renormalized Lagrangian Fren(o) for F(o),

N ([1 d’p d?pdw
Fr N —_ | = 1 2 2 t / 1 2 2 7
en(0) 5 (ﬂ%/R(QﬂF og(p +wn+a)+roa . @) og(p —i—w)
(2.24)
where we work in a general regularization scheme R, keep only terms that are non-vanishing

for constant o (sufficient for the leading large N analysis) and restore r (which vanishes in
the dimensional regularization). The last term in the above expression is the cosmological
constant counterterm.
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A key point is that the sum-integral in (2.24) has the following large energy momentum

N 1 d? 1
fren(U):? (U (/BZZ R(27'('I))2]?2—|—u)2+r6> +) s (2.25)
ne n

where the omitted terms are absolutely convergent thus independent of the regularization

expansion,

scheme R. Furthermore, the first term in the bracket is also absolutely convergent which
follows from (2.6) at 0 = 0 (zero temperature). Consequently Fren(o) is scheme-independent.

To facilitate the analytic calculations, we perform dimensional regularization on the
two-dimensional momentum integral and zeta function regularization on the Matsubara sum.
Implementing this procedure to (2.22), we first obtain

dimre N
Flo) 228 Z(wz +o0) (log(wi +o0)— 1) . (2.26)
87(6 nez
The following identity (which holds in zeta function regularization) will be useful [55],

2
Z log (a + (m + a) ) = B0 + log (1 - e_ﬁ‘/g“ﬂa) + log (1 - e_ﬁﬁ_iﬁa) . (2.27)

nez ﬁ

Integrating in o, we then obtain the renormalized Lagrangian?

Fren(0) = — 47]:;3 (; (520)% 1 28y/oLis (e_ﬁ‘/g ) 1 9Lis (e—WE )) . (2.28)

The integration constant is fixed by requiring,

Foun(0) = ~5556(3). (2:29)

which follows directly from (2.26) by zeta function regularization.
Extremizing Fren (o) with respect to o, we find the thermal gap equation (the regularized
version of (2.17))

0= B0 +2log (1 - e—WE) , (2.30)

with the following solution

A? 1 2¢(3) N
Consequently, the leading free energy density for the O(N) CFT is
2¢(3) N
= — —. 2.32
FO(ﬁ) 5 Bg ( 3 )

9Note that in a general regularization scheme we will need to subtract off the extensive piece of the free
energy to obtain the scheme-independent part of the free energy density F' (see (2.20)). Such an extensive
contribution to F' in a CFT on Sé x R? can only come from the cosmological constant (3 independent). For
our choice of regularization scheme here, such a constant is absent, since the last two terms in (2.24) vanish in
this scheme.
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Let us briefly comment on a subtle point in this calculation. The CFT is Lorentz
invariant at zero temperature (i.e. 5 = 00). It is a priori not obvious whether the short-
distance regulator implemented above (a combination of zeta function and dimensional
regularizations) respects the Lorentz symmetry at scales much smaller than . In fact, as
we will see momentarily, this regulator is not compatible with the Lorentz symmetry at the
subleading order in the % expansion. Nonetheless, as explained after (2.24), in the leading
large N limit, the scheme independence is enhanced.

As a consistency check, we also evaluate (2.24) with a manifestly Lorentz-invariant
regulator [9] by performing sum-integral with the following Lorentz-invariant hard cutoff

pPHw? < AZ, (2.33)

and obtain the same results numerically as in (2.31).°

We are mostly interested in the first subleading correction in % denoted by F_i(5)
n (2.21). According to the semi-classical expansion in the large N vector model, this is
computed by the log-determinant of the second variation of the effective Lagrangian (2.3)
with respect to o (equivalently from the inverse propagator G, 1), subject to regularization
and renormalization that we explain below,

1 d*p _
Fa®) - 5532 / g 108 167 (). (2.34)

Explicitly, the inverse propagator on S}; x R? in momentum space (from (2.15) with A\ = 00)
is proportional to the self-energy IIz (where a factor of N is extracted for convenience),

G, (wn,p) = —NTg(wn, p), (2.35)

and Il takes the following form

1 1
Ig( ) 2.36
neZ/ 2+(Q_wn)2+0*q2+w721+0'* ( )

with o, as in (2.31). We take the integral over the spatial momentum using the Feynman
parametrization and evaluate the sum over the discrete frequencies exactly. The detailed
computation is presented in appendix B, and the resulting expression is

dr sinh (,6’\/0* +(Q2+p? )(x—x2)>
167 ) /o (4 7) (@ —22) cos (5) —cosh (/o T (24 p2) (@ —7) )
(2.37)
To evaluate (2.34) using (2.37) requires a further regularization. Indeed, we see that the o

HIB(Q7p) =

self-energy at large momentum behaves as (see appendix B.1 for details),

1 d? 202 —p?1—6v 3
T5(9, p) = +< N qn€q>+ Pﬁp ToZ ..., (238

16P P2 67

10We emphasize that r§ # 0 at the critical point in this regularization scheme.
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where 1
2 _ 02, .2 _ _
P =Q%+p°, =\ +o0x, n(e):eﬂei_l. (2.39)

The first term in this expansion (2.38) corresponds to the flat spacetime propagator and
should be cancelled to obtained the renormalized free energy. We thus arrive at the following
expression for the renormalized free energy at the subleading order in %,

3
Fa() = BZ/ 2108165 @)l = 5 [ e 108165 (P)

d? 1
— 252/(27:;21% {16\/},2 +W%Hﬁ(wnap):| + WC(?)%

where the last term in the second line follows from (2.29) (see appendix B for further details).

(2.40)

The second term in (2.38) is proportional to the gap equation (2.30) and vanishes for
the special point ¢ = o, from (2.31) relevant for describing the finite temperature CFT.
If this term were nonzero, we would encounter a quadratic divergence in the subleading
free energy (2.40) that is linear in the temperature, which would be inconsistent with the
structure of UV divergences in local quantum field theory.

The next term in the large momentum expansion (2.38) no longer vanishes at the critical
point ¢ = o, and consequently

— 6y 2w p? 1
02 1 2 _ 3 1
log {16 D +wnH5(wn,p)} = 16 o A @2+ p )5/2 +0 ( 4> . (2.41)

The further subleading terms in the above expansion converge absolutely and we don’t need

to worry about them. On the other hand, the first term on the r.h.s. is dangerous since it
contributes an apparent logarithmic divergence to (2.40) and could lead to regularization
ambiguities. To see this explicitly, we consider the following sum-integral,

2 pidS"
ﬁz/n 2m)? <w2+p 3) 52 2m)? /BMn (P +w2)s (242)

where M™ for fixed n is a region in the full two-dimensional momentum space and plays the

role of a regulator for the momentum integral. In the second equality, we have used the fact
that the first integrand is a total derivative. If we choose M" to be R? independent of n,
naively this sum-integral is regulated to zero. If we instead implement the regularization
procedure used earlier (dimensional regularization for the momentum integral and zeta
function regularization for the Matsubara sum), we also find the answer is zero. However, as
we have already emphasized below (2.32), in general one has to be careful with choosing the
correct regulator that is compatible with the symmetry that is preserved under renormalization.
Here we assume Lorentz symmetry (at zero temperature) in the renormalization procedure and
consequently should use a Lorentz-invariant UV regulator, such as (2.33), which corresponds
to choosing M™ = {p|p? + w? < A?} in (2.42).}1 This gives

1= 312 +0 <51A> (2.43)
which determines the contribution from this term to the free energy (2.40). In the next
section, we will evaluate (2.40) numerically taking into account this regulator subtlety.

"We thank Subir Sachdev for discussions on this point.
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2.3 Numerical calculation

Now we are in position to compute numerically the subleading correction to the free energy
for large N critical vector model, by evaluating the sum-integral in (2.40). Because of the
oscillatory behavior of Ilg (see (2.37)), this sum-integral needs to be handled with care. Below
we explain the strategy for this numerical evaluation which we implement in mathematica.
We start by rescaling all momentum and energy in (2.40) by £,
p Wn
pP— =, Wy — 3

5 (2.44)

such that the 8 dependence is completely factored out and given by % The goal is to
determine the dimensionless coefficient in F_1(f).

We first need an efficient way to evaluate the o self-energy IIg(wy,p) to high precision.
The expression (2.37) for IIg(wy,, p) is a highly oscillating integral at large momentum, thus
converges very slowly. Therefore, to optimize the numerical evaluation of Ilg(wp,p), we
introduce two spherical shells of radius Ag and A, with Ag < A. Where A is the UV
cut-off and Ay is chosen in such a way that the difference between the actual value of the
self-energy (2.37) and its large momentum expansion (B.10) would be negligible.

For wy,, p within the spherical shell p? +w?2 < A2, we evaluate directly the sum-integral of
log [16\/Wﬂg(wn,p)] in (2.40) for |wy,| < Ag and p < y/A% — w2 to high precision. We
find that the optimal range for Ag is 250 < Ay < 450, where the difference between the direct
computation of (2.37) and its large P = \/w2 + p? expansion (B.10) is of the order ~ 10714,

Between the two spherical shells A2 > w2 + p? > A2, we can use the large P expansion of
the o self-energy to compute the sum-integral to the desired precision, by keeping all terms
in (B.10). Finally, the relativistic UV cutoff A is taken to infinity numerically. Note that this
resolves the regularization ambiguity which we have discussed near the end of the last section.

Implementing the procedure outlined above in Mathematica and taking different values
of 250 < Ag < 450 and 10* < A < 108, we find that the sum-integral in (2.40) evaluates to

1 d*p S 0.03166112
%;/ (2n)? log {wmﬂﬁ(wnm)} == 5 (2.45)

and consequently the subleading correction to the free energy of the O(NN) vector model reads,

0.06399553

Fony,-1(8) = 7 (2.46)

2.4 Turning on chemical potential

One natural extension of our analysis of the finite temperature free energy of the O(N)
CFT in the previous section is to include a background for its global symmetry. Here for
simplicity, we consider N even and take the U(1) subgroup of O(NN) with commutant SU(N/2)
(such that the complex scalars ¢; + ipj Ny for j =1,.. ., N/2 have charge 1 under this
U(1)). We turn on an imaginary chemical potential parameterized by u € [0,27) for this
U(1) subgroup, via a background gauge field with nonzero temporal component Ay = %
Consequently the energy spectrum for the scalar fields are shifted to S&, = 2mn + u. The
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Fo(B.1)

—02l

Figure 1. The leading large N free energy Fy(S3, 1) of the O(N) CFT as a function of the imaginary
chemical potential p (here 8 = 1).

effective Lagrangian in this case is

~ N d2p ~2 2 | =
Flo,p) = 25 gn / @) log (wn +p°+ a) , (2.47)
and its renormalized version reads
N [ pB353/2 Bt e
ren(0 = - — Li BVatin Li BVG—in
Fren(0, 1) PRE ( 5 T (e )+ 13 (e ) (2.48)

—i—ﬁ\/ngg (e_ﬁﬁ—ﬂﬂ) + ,3\/5[;12 (6_’8\/5_7;“)) .

When g = 0, this reduces to the case considered previously (see (2.28)). The gap equation
is given by,

BV +log (1— e AVaFiK) L log (1 — e Vo) = 0. (2.49)
We denote its solution by ¢ = &.(u) whose explicit form is given below,
5 (11) = h2[1+ } (2.50)
= — ar — . .
T 5 arccosh™ | o +cos

The free energy in the leading large N limit follows from

Fo(B, 1) = Fren(04(1), 1) 5 (2.51)

which is plotted in figure 1.2

Moving onto the subleading order in the % expansion, we will determine the free energy
F_1(B, u) by performing the sum-integral as in (2.24) which now involves the o free-energy
Hg that depends on u (see (B.4) for its explicit integral representation). Implementing the
numerical procedure explained in section 2.3, we compute the F_ (3, 1) as a function of the
chemical potential and the result is presented in figure 2.

'2A5 a consequence of the charge conjugation symmetry in the O(N) CFT, the special points = 0 and
u = 7 are extrema of the free energy as evident from figure 1 and figure 2.
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F-1(B.p)

Figure 2. The subleading correction F_1(f, 1) to the free energy of the O(N) CFT as a function of
the imaginary chemical potential p (here 8 = 1).

As discussed in the introduction (around (1.19)), in the expansion of the thermal free

energy F(B3,u) at small chemical potential'®

1N

F(B,p) = F(B) + ZE“% +.r, (2.52)

the positive coefficient b governs the asymptotics density of (high energy) states refined by
the O(N) global symmetry of the CFT. From our explicit result for F (3, u), we find that
up to the first subleading order in the % expansion,

N
b= Nbo+b1+ O(N7Y), (2.53)

with!?

arccos (%) 2 + (5 +2arccosh (%) ) arcsinh %

by = ,
0 NG

b_, =—0.21212+0.00005. (2.54)

2.5 One-point function of the stress-energy tensor

As explained in the introduction, the thermal free energy of the CFT contains the same
information as the one-point function of the stress-energy tensor at finite temperature
(see around (1.2)). So far we have analyzed the free energy of the O(N) CFT using the
semi-classical expansion in the large N limit. It would be useful to understand how the
same physical quantity can be computed using the standard Feynman diagrams for this
Lagrangian field theory. In particular, this second diagramatic approach will have immediate
generalizations to determining the thermal one-point functions (1.1) of more general operators
in the CFT, which we will discuss in the next section.

13Here we have used the relative normalization tr = %trfm,d between the Killing form and the trace in the
fundamental presentation for O(N).
YThe error for b_; is a standard error that is estimated using function NonLinearModel in Mathematica.
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Too Too Too Too Too

Figure 3. Examples of Feynman diagrams (on the right) containing ¢’ loops that contribute to the
thermal one-point function (Tyg)o,5 at the leading order in % They resum to the diagram on the left
with the large N exact propagator for ¢ represented by a thick line.

Figure 4. Examples for the four families of Feynman diagrams that can contribute to the thermal
one-point function (Tpo)—_1,3 at the first subleading order in % All internal lines are large N exact
propagators for ¢°.

From the general structure of the thermal one-point function (1.2), it suffices to focus
on the temporal component Ty of the stress tensor T}, which in the O(N) CFT is given

by, up to the improvement total derivative terms,'®

Too = — (_; (ao¢)2 + % (aa¢)2 + % (¢’¢’)2 + improvement terms) . (2.55>

The explicit relation between the thermal one-point function and the free energy in the
d = 3 CFT is

(Too)s = 2F(B), (2.56)

and similar to the r.h.s. analyzed previously (2.21), the l.h.s. admits an % expansion in

the O(N) CFT
(Too) g = (Too)o,s + (Too)-1,8 + O(N 1) (2.57)

which can be seen explicitly by reorganizing the Feynman diagrams at large N.

The leading large N result (Tpo)os for the thermal one-point function only receives
contributions from the expectation values of the first two terms in (2.55) and comes from
resummation of the Feynman diagrams with increasing number of ¢’ loops (see figure 3),

5Note that the improvement terms are conformal descendants which have vanishing thermal one-point
functions and consequently do not affect the subsequent evaluation of (Too)s.
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which induces a non-zero value for the sigma field. Therefore we have, from the one-loop

diagram with the large N exact ¢’ propagator,

-p* ’p
(Toodo,g = 262/ w2+p +o, 2&6’ [2/ log wn + P’ Jrg*)
(2.58)

which confirms the relation (2.56) upon comparing with (2.22) with 0 = ¢* as in (2.31).

We now compute the % correction to the thermal one-point function (Tp)3. The Feynman
diagrams that contribute at this order come in four families which are given in figure 4 with
increasing number of ¢’ loops with ezact propagators, independent of the temperature (or
more general spacetime background). Each family of these diagrams can be resummed in the
IR using the o self-energy (inverse propagator) Ilg(wy,p) (which captures the contributions
from a chain of ¢' loops) given explicitly in (2.37) and together they determine (Tpo)_1 s,

(Too)—1,6 = (T4 —1.5 + (Ted) 1.5 + (TS 1.5 + (Tig ) -1 5. (2.59)

Explicitly the first two contributions could be written as

2
1y / /d 1 m—4
T —
Vi1 62; 27r2H3 n,p)[ (27)? (Qn—wm)*+(p—0)* +0u (w3, +42+0.)°

@) d? 1 1
Too)-1,5= 4p3 Z/ (2m)2 Hg( n,p) U (2m)% (U —wm)?+(p—q)2 +04 (W2, +¢%+0,)°

1 d?k wf —k?
. H,@(()?O) [/ (27T)2 (W?+k2+g*)2] ’ (2.60)

The second equation above can be further simplified to

(T66") 1.5 = 252/ (27)2 T4 ( n,p>

1 —0.+2log [2sinh (247 )| tanh [ 2]
X BZ/ 2 —wm)2_|_(p_q)2+a* (w?n+q2—|-o-*)2

Z d? 1 —0x

T2 mn/ 2m)2 Tg( mp) / (2m)2 (U —wm)?+(p—q)* + 0w (W2 +q2+0.)°
(2.61)

where we have used in the last equality that the saddle o = o, in (2.31) satisfies

%log {2 sinh <ﬁ\ga)] tanh {ﬁ\ga] =0. (2.62)

The contributions from the first two terms in (2.59) then combine to,

(1) (2) _
(To0) 1,5+ (To0 ) -1,5= Z/ 27)2 I g( n,P)
(2.63)

x/ 1 4"+ 0
(27)2 (Q—wp)*+(p—q)2+ 04 (W2, +¢2+0.)°
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Similarly, the third family of diagrams in figure 4 resum to

@@, Z/ - 2H5 % Ts(@n.p). (2.64)

Finally, the fourth family of diagrams in figure 4 vanish,

(4) Greg(,7)
T
(Too") 1,5 = 42T14(0, 0) T;;/ 27)2 Tlg( n7p)

(2.65)

d? 1 1
X 2 2 2 2 2 2| — 0 ’
(2m)% (Qn = wm)” + (p = )% + 0% (W3 + ¢% + 04)
where Gieg(, x) is the regularized two-point function of @' at coinciding points which vanishes

as a consequence of the gap equation (2.17). Combing the above all together, we arrive at
the full subleading % correction to the stress tensor one-point function,

Too)—1,5 = = BQZ/ (2m)2 Tg( n,p)

y / d*q 1 3w2, + 30, — ¢*
(2m)2 (Q — W)+ (P — Q)2 + 0w (WL + 2 +0.)°)

Let us compare the above expression with that of the free energy. We have from section 2.2

(2.66)

Fq( 262/ 5 10g T3(Qn, 1) |,y (2.67)
where the explicitly renormalized expression is given in (2.40). From (1.2) and (2.67), we
have the simple following relation'¢

<T00>_1 8= (ﬁF_ = —= Z/ a (Q p) s (268)
P o 2m)? (2 ,p) ap

where the last term clearly coincides with (2.66) after using (2.36).

2.6 One-point function of higher-spin currents

Using the ideas from the previous section, we can compute the % corrections to the thermal
one-point function of more general local operators, which, as emphasized in the introduction,
are the basic building blocks for the most general correlation functions in the finite tempera-
ture CFT. For illustration, we focus on the so-called higher-spin current operators in the

O(N) CFT, which are O(N) invariant primary operators J;; transforming in the rank

1. Us
s symmetric traceless representations of the Lorentz group for positive even integer s (also
refers to as the spin s representations) [26-31]. These operators are constructed out of O(N)

singlet bilinears of the scalar field ¢ together with s derivatives,

J,il s ( $iOu, - O, i — traces> + descendants , (2.69)

SNote that the subtraction term in (2.40) disappears after the 3 derivative.
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up to total derivatives which are fixed by demanding the lL.h.s. to be a primary operator.
They generalize the stress-energy tensor which appears at s = 2 (as well as the singlet
scalar operator (¢%)%, at s = 0).

Using the residual symmetries of the thermal background, the one-point function of the
higher-spin current of rank s is constrained to take the following form

(Jl‘jl M5>IB ﬂA (€ui€ps - - €, — traces), e, =(1,0,0), (2.70)
with the scaling dimension
As=s+14ns, (2.71)

where ~; is the anomalous dimension which is suppressed by % in the large N limit and thus
the O(N) CFT is said to have a slightly broken higher-spin symmetry [28]. It is convenient
to introduce an auxiliary complex null polarization vector &* = ¢ (1,4,0) and write!”

1 s
VHED TR Nqi)i (£"04)° ¢i + descendants , (2.72)

whose one-point function is

bs&*
pa

where we have used (2.70). Therefore to determine the one-point function of the higher-spin

(g, = (2.73)

S
current J;

In the large N limit, the thermal one-point function (J¢)s admits a

it suffices to focus on the component Jg .
L ~ expansion similar
o (2.57) for the stress tensor. At the leading order, the same famlly of diagrams as in

figure 3 contribute and give

(ipy 5“)8
Vel B Z/ w2 +p?+o’ (2.74)

where o, is given in (2.31). As usual, the UV divergences in the sum-integral above is

regulated by subtracting the flat space expression in the given regularization scheme. To
simplify the computation, we introduce the generating function

ipuf”

Jg)
Gpol§) = Z< o _ ﬁ > / Ehr - (2.75)

|
s=0 ok n=-—00

where the regularization of the last term above is implicit. This generating function is just
a specialization of the coordinate-space propagator for ¢!, which for general any spacetime
separation r, = (ro,7) is given by

G 1 X oo (ro+pm)?+72
so(r) = 2 —
m=—co \/(ro + fm)" + 7T

1"Note that these are bare operators (also (2.69)) which will be subjected to renormalizations (suppressed
by +). See around (2.85) and (2.90).

, (2.76)
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which follows from (2.75) by Poisson resummation. Physically, each summand above represents
the contribution from a worldline instanton of mass /o, = % propagating along a geodesic
on the thermal background that connects the two ¢* insertions. The m = 0 term coincides
with the flat space-time propagator in the short distance limit. After subtracting that, we
obtain the regularized version of Gg(§), which gives

6_\/a mﬁ(mﬂ_2€)

sgo 5! 4%%0 vmpB(mp —2§)

(2.77)

The one-point function coefficient b, in the leading large N limit (which we will denote as b2)
of the spin s current is obtained immediately by the small £ expansion of the r.h.s. above,

1 G2 st (2s—n)! o »
0 _ n_o7T: — B0«
b, yp nEZO TP frod Lisi1-n (e ) , (2.78)

which agrees with the results obtained in [6] from a different method (up to an overall
normalization factor that only depends on s).

Alternatively, we can directly regulate the integrals (2.74) as follows (setting 8 = 1
below and using (2.31)),

(ipp€f)® (2 ap? A2
(J¢ oﬁ—llgcl) Z/ w2—|—; > Az® (wa+p*+A%)% (2.79)

By standard contour manipulation, the above can be rewritten as

s . 53 . d2p dz (pl—z) —e(22—€2)2 z
o=~ i [ 55 }5 i 2o (cn(3)-1) e

where €, = \/p? + A? and ~ is a contour that circles the simple poles at z = 2min with
n € Z in the counter-clockwise direction.'® Deforming the contour to infinity, we obtain

by Cauchy theorem that,

boz/(de (=) 1 (2.81)

s 2m)2 g er—1"7

for positive even s, which again reproduces the same result (2.78), after implementing a
straightforward change of variables and using the following integral identity

Lig (e72) = F(ls)/:o dz(z;ﬂﬂ. (2.82)

The first subleading correction to the one-point function of higher-spin currents

The subleading correction to the one-point function of higher-spin currents can be computed
using Feynman diagrams as in the case of the stress-energy tensor in section 2.5.

8The —1 shift in (2.80) does not affect the integral by Lorentz invariance (writing z = ipo where po is the
energy component of the three-momentum).
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The dynamical data in the one-point function (2.73) of the higher-spin currents, namely
the overall constant coefficient b5 and the anomalous dimension 7, (see (2.71)) have the
following % expansions,

bl Al

bs:b2+ﬁ+..., Vo= (2.83)

The % corrections Al to the scaling dimensions of these operators have been computed
n [26, 30, 31, 56],

Al _16(s —2)

s = 3225 — 1) (2.84)

Consequently, the first correction in the % expansion of the one-point function of bare
operator (2.73) takes the following form,

b2 1
<ngare>ﬂ = <ﬁ5i1 N ,35+1 [bl + bOAl log (BA)}> fs + ..., (285)

where A is a UV regulator and the UV divergence could be treated by proper renormalization
of the operator. In the above equation, we have reintroduced the subscript on the higher-spin
current J¢gy, . to emphasize this is the bare operator. For the stress-energy tensor, its scaling
dimension does not receive corrections (A3 = 0) and therefore the logarithmic correction
is absent, which simplifies the computation.'?

Following the strategy of the previous section, we start by incorporating the first %
correction to the ¢; propagator as follows,

. 1
Gy (wn,p) =wp + 9 + 00+ 0 (wn,p) (2.86)

where X(wp, p) is a self-energy part for the matter field ¢; where o, is the large NV saddle-point
for o (as given in (2.31) in the dimensional regularization). Note that the self-energy ¥ (wy, p)
also contains the information about % corrections to the one-point function of o ~ (¢;)?
(i.e. correction to o).

The bare self-energy > (wy,p) is computed from the second and third diagrams in the
figure 5, which produce

e
Qn,p) = Z/ g 5Go (Qn—wm,p—q) Gy (Wi, q)

Z/ d2q d’k G5(0,0)Gy(wm,q) 1
iz 27?2 (K24wi+o.)’ (B+a)+(wtwn) 4o

(2.87)

The expression (2.87) contains a logarithmic divergence that does not depend on the
temperature explicitly and can be explicitly subtracted with the use of counter-terms in the
following way in the cut-off scheme with UV regulator A [18],

Yren(Wn, p) = X(wp, p) — 382 (w +p*+ a*) log (BA) . (2.88)

“Note that the logarithmic term in (2.85) indicates a scheme dependence for the one-point function
coefficient b} at the subleading order in % This scheme dependence can be removed by normalizing with
respect to the two-point function of J¢ in the flat spacetime computed in the same scheme.
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‘]Es ,bare Jﬁs ,bare Jf ,bare Jﬁs ,bare Jf ,bare 0 Jf
Figure 5. The Feynman diagrams that contribute to the one-point function of the higher-spin

current <J§> 8 at the leading and the first subleading order in % The dotted lines correspond to the
propagator of o field and crosses to the counter-term vertices that are computed in the flat spacetime.

Then the one-point function to this order in the % expansion is then

< ¢ bare ﬁ ﬁ Z/ (puﬁ“z +.... (2.89)

w% +p2 + Oy —|— NZren(wnﬂp)

Note that the above expression contains a UV divergence that renormalizes the operator itself,
which could be accounted for by the following counter-term to the first subleading order in %,

Z/ (Pug")® Al log BA Z/ (Pu€")®

Vele=1 )2 W2 +p2 0+ % Sren(Wn,p) *wn+piton
(2.90)

where Al is given in (2.84). This incorporates contributions from all diagrams in the figure 5.

We then obtain the following sum-integral expression for the correction to the one-point
function coefficient by,

o, 1,1 (Pu&")?
bs+ﬁb8—6 2/ - - (2.91)

n=—oo W727, +p*+os+ Nzren(wnap)

Specializing to the case s = 2 and expanding the integrand, we obtain exactly (2.60) that
produces the right answer for the one-point function of the stress-energy tensor.

In (2.91), a Lorentz invariant UV regulator for the sum-integral is implicit (see
around (2.33)). More explicitly, assuming that Yye,(wp,p) is analytic and does not con-
tain additional poles in wy,, we can follow the derivation of (2.80) to obtain the following
contour integral expression at general even spin s,

]. ]. d2p dZ (p]. o Z)S .
T _/ i " <> ’ 2.92
S S 2) (@) J, 2mi 2% — & — §Vren(=i2,p) 2 (2.92)

where 7 is the same contour as in (2.80) and ¢, = /p? + A2. Pushing the contour to infinity
(we have implicitly suppressed the regulator € in (2.80) and the divergences in € are cancelled
by counter-terms), we obtain

bl :/ d*p (p1 — Ep)s Eren(_ifp?p)
(

B 2m)2  (2¢,)3 sinh? &
(2¢p) 1 2 (2.93)
X <<ep + w sinh ep> + €, sinh €, O log Eren(—z’ep,p)> .
P1—¢€p
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The above expression is manifestly finite but still challenging to evaluate numerically due
to the complicated expression for ¥ (wy,,p) as in (2.87).%

3 Gross-Neveu model and variations

We now apply the methods developed in section 2 to study thermal observables in d = 3
fermionic CFTs with vector-like large N limits. We will focus on the Gross-Neveu (GN)
model as well as its closely related variations.

3.1 Review of the Gross-Neveu model and large IN expansion

We start by reviewing the celebrated Gross-Neveu (GN) model [57] (see also [18]), keeping
spacetime dimension d general for the moment. This model describes N interacting Dirac
fermions 1; governed by the following action

Sen = —/ddx (W&Mi - 2;()(&%?) ; (3.1)

which has an obvious U(N) global symmetry that rotates the Dirac fermions, as well as

a Zg parity symmetry that acts as,?!

Zo:x— 7= (—x1,29,...,24), @) —=nE), ()= —p(@)y, (3.2)

which forbids the U(N) invariant Dirac mass term ma;1;. For d > 2, the quartic interaction
is non-renormalizable and this theory needs a proper UV completion. This is provided for
2 < d < 4 [25] by the Gross-Neveu-Yukawa (GNY) model which has in addition a real
pseudoscalar ¢ (which is Zs parity odd) and the following action,

Sany = /ddﬂﬁ (;(&P)Q — P P + g + g2 + 94804> : (3.3)

Correspondingly, in contrast to the O(N) scalar model, the fixed point of the GN model
resides in the UV, which coincides with the IR fixed point of the GNY model. This U(N)
symmetric and parity invariant critical point is commonly referred to as the GN or the GNY
CFT. It describes the second-order order-disorder phase transition with order parameter
¢ ~ 11p and characterized by the spontaneous Zs parity symmetry breaking and dynamical
mass generation for the fermions (see [18] for a more extensive review).

In d = 3, which will be the focus here, the GN (or GNY) CFTs of N (two-component)
Dirac fermions have an enhanced O(2N) global symmetry that rotates the 2N Majorana
fermions.?? Relatedly the theory is well-defined for N € % by imposing the Majorana
condition on the Dirac fermions. For different values of NV, these fermionic CFTs govern the

290One may hope to derive a simpler expression for the one-point function coefficient b} as we have done for
the s = 2 case in (2.67) (see also (2.40)) directly in terms of the leading self-energy Ilg(wn,p) for the o field
whose explicit form is given in (2.37).

21 This comes from a time-reversal symmetry in the Lorentzian signature after Wick rotation.

22A small subtlety is that for N = %, the CFT is properly defined only in the GNY description as the
four-fermion coupling vanishes for a single Majorana fermion. Interestingly, this model has emergent N = 1
supersymmetry at the fixed point [58] and is also known as the A" = 1 super-Ising CFT [59].
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universality classes of quantum phase transitions in a variety of condensed matter systems of
interacting fermions, including the quantum critical points in d-wave superconductors [60—62]
(for N = 4) and the spontaneous breaking of parity (time-reversal) symmetry at the boundary
of a topological superconductor (for N = 1) [63]. The O(2N) symmetric GN (GNY) CFT
also has closely related cousins [64] defined with a different four-fermion coupling (equivalently
a different Yukawa-type coupling in the GNY description with possibly additional scalar
fields) and reduced global symmetry, such as the chiral Ising GNY model with O(N)? x Zghiral
global symmetry which we discuss in section 3.6 and the chiral XY GNY model with
(SO(N) x U(1)) x Z§ symmetry (also known as the Nambu-Jona-Lasino model) which we
will come to in section 3.7. They describe various quantum phase transitions for spinless and
spinful fermions on lattices including graphene [65-68]. There has been recent progress in
determining the flat space CFT data in these fermionic CFTs using the bootstrap method
(see [69] and references therein).
The large N solution of the GN model at criticality can be deduced in a similar way as
for the critical vector model. We introduce an auxiliary scalar field ¢, analogous to the o
field for the O(N) vector model and implement a Hubbard-Stratonovich (HS)transformation
i i 909*
Sen = —/ddI (WW% + Q' + 2) : (3.4)
We will set go = Ngi to obtain the proper large N limit with g held fixed. Integrating out
the fermions, we arrive at the following effective Lagrangian for ¢,

t 42
Fon(¢) = =N (tr log (@ + ¢) + g02d>> : (3.5)
As explained in [25], the GN and the GNY models coincide in the scaling region where the
HS field ¢ coincides with the Yukawa pseudoscalar ¢ up to a normalization factor.
In the large N limit we can again argue that the path integral over ¢ is dominated by
its saddle-point, which satisfies the so-called gap equation

dk 1
/RWU" Fro —90% (3.6)

or equivalently (for ¢ # 0)
dk ¢y "
J— — e T 3'7
o = 0

where ¢4 = tr 1 counts the components of the Dirac spinor in d spacetime dimensions (i.e.
c3 = 2 in the case of interest). This equation again contains divergences, that we cancel
by introducing a renormalized coupling constant g‘,

A% 1 dk 2
¢ t K42
g _gO+Cd/R(27T)dk?_Cd/R(27T)d (k2 + ¢?)k? = Caladt T (38)

where K, is scheme-independent and given by (2.11) and in the last equality above we have
neglected further corrections that are scheme-dependent (and suppressed near the critical
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point). To reach criticality, we fine-tune g' such that ¢ = 0 so that the fermions become
massless.?? One can check that at this point the HS field ¢ is also massless. Indeed, the

inverse propagator for ¢ is,? in the dimensional regularization scheme,

. . A% k- (k 1
63w =o'~ [ Ga i aap ) (39)

The second term on the r.h.s. above vanishes as p — 0 and we have G;l(O) = —g'. Therefore
¢ is massive unless ¢! = 0.

3.2 Free energy at the subleading order

The thermal free energy density or equivalently the one-point function of the stress-energy

tensor in the GN CFT has the same structure as a series in % as in (2.21) for the critical

O(N) model. In this section we will compute the leading contribution Fgn o oc N and the first

subleading correction Fgn,—1 o< N Y in this expansion. The computation of both contributions

is similar to the critical O(N) model. We will comment on the differences and the subtleties
associated with these fermionic CFTs along the way.

We start with the leading contribution Fgno(3). We assume that at finite temperature,

the dominant configuration for the HS field ¢ is homogeneous and thus the free energy density is

2
Fon(é) =~ o +0) = 5 2 [ hrost? vt 40t @)

ﬁ ne”L

where the saddle-point value of ¢ will be fixed shortly. There are two spin-structures
for the fermions that are compatible with the O(2N) global symmetry, corresponding to
either periodic or anti-periodic boundary conditions along Sé. Correspondingly the allowed
frequencies in the sum of (3.10) are,

2 2 1/2

mn antiperiodic : w, = n(n+1/2) , (3.11)

B " B

and the latter is the standard thermal boundary condition for fermions. In the periodic

periodic : w; =

case, the free energy density (3.10) as a function of ¢ can be read off from (2.28) by
comparing (3.10) and (2.22),

IGPN((b) = _Q-Fren((bg)- (312)

One finds from (2.31) that the saddle-point and the final free energy density are

6= V5 = 5 log (3 *f) L Bl = P = S5 )

ZFor greater g°, the gap equation admits a nonzero solution for ¢ which describes the Zs parity symmetry
breaking phase [18].

?The pseudoscalar ¢ here (with propagator Gy) is not to be confused with the scalar fields ¢; in the O(N)
scalar model studied in section 2.

25Note that there is also a saddle at ¢ = 0 which sub-dominate.
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Note that F£N7O is positive, naively implying that the specific heat of such model is negative,
but we are considering the periodic boundary condition, which does not define a conventional
thermal ensemble.

In the anti-periodic case, following a similar derivation to (2.28), the free energy density
before plugging in the saddle-point for ¢ reads (see also [10, 11]),%

N
2B

Fan(9) (; (89)° + 28 Lis (—e ™) + 2Liy (—e5¢)) : (3.14)

Formally, fé§(¢) has three critical points,

271
p=0, qﬁ—j:qb*—j:ﬁ. (3.15)
The last two solutions ¢ = +¢, are equivalent by the Z, parity symmetry and have lower
free energy density than the first solution.

However we should remember that in the GN model the path integral contour for
the HS field ¢ is along the real axis (in contrast to the scalar O(/N) model) [18]. This is
obvious from its unitary UV completion, the GNY model (3.3), since ¢ is identified up to
a real rescaling with the real pseudoscalar field ¢. Furthermore, one can check that this
defining integration contour is a steepest descent contour for constant ¢ where ¢ = 0 is the
stable saddle-point, whereas the other complex saddle-points ¢ = +¢, are unstable when
approached in the real direction.

Consequently to describe the large N GN CFT at finite temperature, we pick ¢ = 0
in (3.15) as our saddle-point solution. Then the leading contribution to the free energy density

3N(¢(3) ~ 0.28696995.V
471.53 - ﬂ?’ )

F&lo(B) = F&R(0) = — (3.16)
coincides with that of N free Dirac fermions, as was found in [10, 11]. Nonetheless, we will
see that at the subleading order in %, this coincidence is lifted.

The subleading % corrections to the free energy density in the GN CFT comes from the
fluctuations of ¢ around its saddle-point. This is related to the computation of the propagator
for ¢ in such a background. In this case, as shown in appendix C, the ¢ propagators take the
following forms for the periodic and anti-periodic spin structures respectively,

(Gg)‘l (Q,p,d4) =N [1 log (2 sinh %

Lyl
(GQP)_I (Q,p,¢_)=N [wlﬁ log (2 cosh 5?) +2 (P2 + 4¢%) HE(QJ))} )

) +2 (p2 + 4¢>’i) HE(Q,p)]
(3.17)

where P = (£, p) is a short-hand for the three-momentum with P? = Q2 +p?, and ¢, = /0,
and ¢_ = 0 are the corresponding saddle-points. For fermions obeying the periodic boundary
condition HE(Q, p) = (2, p) as is given in (2.36) (see also (2.37)) and for the anti-periodic
case 115 (€2, p) is given in (C.8).

26This is also studied for various d in [70].
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The subsequent % correction to the free energy density of the GN CFT with the periodic
boundary condition is related to the O(N) answer as follows,

FgN,—1(5) = —222/

23 Z/ log P2 +40*) + Fony,—1(8) ;

2
sz 08 [GE . V70
(3.18)

where we have already computed the second term in the last line in (2.46) and the first term
after proper renormalization follows from (2.28),

! p 2 0.25927703
Qﬁ;/wlog (P +40'*) m N]:ren(4(7*) = _T' (3.19)
We thus arrive at the final answer of the subleading free energy density for the GN CFT

in the periodic spin structure,

1 0.19528150
FgN,fl(/B) = FO(N),fl(/B) + N-Fren(40*) = _T . (320)
For the anti-periodic spin structure, we have instead
FGN *1 = 2,8 Z/ Og GAP(wnupa 0) . (3.21)

Proceeding as above, after renormalization, it is given by,

STIAR (wn, p, 0) —0.01340099

FAP d’p log Lz (0)= 3.22
GN—I 2,82/ \/W%Tp +ﬁ ren()_Tv ( )

where the self-energy HGN is given in (C.8) and in the last step we have applied the numerical

procedure as in section 2.3 to evaluate the sum-integral above.

3.3 Chemical potential dependence and phase transition

Analogously to the critical O(/N) model analyzed in section 2.4, here we study the GN
model with a non-zero imaginary chemical potential. We consider the U(1) C O(2N) global
symmetry subgroup for the GN CFT under which the Dirac fermions ; all have charge 1
and introduce an external constant electromagnetic potential Ay = % with p € [0,27). It
amounts to shifting frequencies of the fermions to S, = fw, + p. Note that in particular
@ = m corresponds to the periodic spin structure for the fermions. The leading free energy

density as a function of p and the one-point function of ¢ field (denoted by é below) is

Fon(f,p) = 52/

N
- 233

log O 4p —l—aﬁ)

<¢3 +¢L12( _¢+iu) +$L12 (—6_&_"“) +Li3(_6_¢;+iu) +Li3(_6_q~s_iu)> i
(3.23)
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Figure 6. The dependence of the leading free energy density Fon,o(8, 1) Fanr,o(8, 1) of the GN
(solid) and GN’ (dashed) CFT as a function of the imaginary chemical potential y (here 8 =1). The
middle portion (colored in red) is dominated by the nontrivial real saddle (3.24).

which coincides with (3.14) for ¢ = 0 and with (3.12) for 4 = 7 as expected. The gap
equation is modified by the nontrivial chemical potential. While the real solution ¢ = 0
remains valid, the pair of complex solutions in (3.15) are deformed to,

b+ (1) = arccosh [; — cos /L} , (3.24)

which becomes real for 2% < u< %’r and is purely imaginary elsewhere for u € [0,27).

Furthermore for this intermediate range of p around p = 7, it is the nonzero saddle (3.24)
that is stable and dominates the free energy, which is consistent with what we found for
the periodic spin structure in (3.13). This implies a phase transition as we dial g up from
# = 0 where the real stable saddles exchange dominance. This transition is first-order
and characterized by the nonzero expectation value of ¢ ~ 1%);, which signals breaking
of the spatial parity.?” See figure 6 for the resulting free energy density Fan,o(B, i) in the
leading large N limit.

To compute the % correction, we proceed as before using the propagator of the ¢ field
on such a thermal background with imaginary chemical potential (see (C.10) for the explicit
expression) and the resulting free energy density Fon,—1(53, 1) is plotted in figure 7, taking
into account the switching of branches at p = 2?”, 4% between which the relevant saddle
is given by (3.24).

As before, from the dependence of the free energy on u, we can extract the Wilson
coefficient b in (1.19) which governs the symmetry resolved density of states (1.21) at high
energy. Here for the O(2N) symmetry of the GN CFT, we find

Nb=Nby+b1+0(N!), (3.25)

2"This is a parity transformation that reflects a spatial direction on R? and is preserved by the chemical po-
tential.
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Figure 7. The subleading contribution to the free energy density Fon,—1(53, 1) as a function of the
imaginary chemical potential p of the GN CFT (here 8 = 1). The middle portion (colored in red)
comes from fluctuations around the nontrivial saddle (3.24).

with28 5 lon2
o= —282  p = —0.1338 & 0.0002. (3.26)
T

3.4 The alternative Gross-Neveu model and parity breaking

As alluded to before, the large N analysis of the Gross-Neveu model after the HS transforma-
tion, suggests an alternative Gross-Neveu Model defined by a different integration contour
for the zero mode of ¢ which runs along the imaginary axis. We refer to this new model as
GN’ to distinguish from the usual GN model. As a consequence of the contour rotation, we
expect the GN’ theory to become non-unitary. Nonetheless, at least in the large N limit,
the conformal phase at finite temperature exists in the GN’ model, which shares similarities
with the Lee-Yang edge singularity (see also [71]).

In this case, with the rotated contour, the relevant saddle-point at zero chemical potential
is given by ¢ = +¢, = :l:%—%i from (3.15) which breaks the Zg parity. The leading contribution
to the thermal free energy density is

N

7 _ 0.54908554 N
4733

(et - 5om) = -2 (3.27)

Féll\?’,O(ﬂ) = ﬁg

where the Clausen function is related to usual polylogarithms by
Cly(z) = Im Liy(e?) . (3.28)

The leading % correction to the free energy can be obtained in a similar way as in the
case of the unitary GN model,

FA% () = 2}2 / (327:;2 [1og (P2+4¢3) —|—logH§(P)} . (3.29)

28 As in the case of the critical O(N) model, the error for b_; is a standard error that is computed using
NonLinearModel in Mathematica.
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At first glance, for ¢? < 0 the integrand becomes imaginary for some range of the integral-
sum, and therefore seems unphysical. However, we should remember that the contour of
integration for the field ¢ needs to be deformed (to be the steepest descent contour) in
order to implement a proper saddle-point approximation. To this end, we just need to take
the absolute value of the argument of logarithm (that corresponds to a slight tilt of the

contour of integration), we then arrive at

1 d? 1 1
R (0) =55 % / gl <16\/w% PRI p)) — g Fen(0) F 1 Fren(462)

0.14222693
= T s
(3.30)
where we have used from (2.28),
1 d’p 9 9 1 9 0.53611329
% ;/ (271')2 IOg ’P + 4¢* renormalize Nfren(4¢*> N ,83 ’ (331>
and also (2.29).
For the periodic spin structure, a similar calculation gives
((3) N
Fno(8) = 25, (3.32)

which comes from (3.12) with ¢ = 0. At the first subleading order in %, taking into account
the fluctuations of the HS field ¢, we find?”

0.08 £ 0.005
5
We can also determine the Wilson coefficient b for the O(2N) global symmetry of the

Fév1(8) = (3.33)

GN’ model from the dependence of its free energy on the chemical potential. The result is
Nb=Nby+b1+0 (N (3.34)

with 9
\/g )

One might wonder how the GN and GN’ models could have such different free energies

by = b_y = —0.562 & 0.005 . (3.35)

given that these two theories coincide at the perturbative level. These different free energies
translate into drastically different behavior for the asymptotic density of states in the putative
CFTs. This difference could arise only at the non-perturbative level, which can be studied
with the methods developed in [72]. We see that if we consider the GN” model and integrate
the HS field ¢ over the imaginary contour we wouldn’t encounter additional instantonic
contributions while in the GN model such contributions are present. Consequently, the scaling
dimensions of the GN’ and the GN models would differ non-perturbatively.

The error in this computation is significantly bigger than in the analogous computation in the unitary
GN model due to the spurious divergences (that eventually cancel) when the self-energy of the HS field ¢ is
computed around ¢ = 0.
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3.5 One-point functions of higher-spin currents

As explained before, the free energy density of the CFT determines the thermal one-point
function of the stress-energy tensor. The stress-energy tensor belongs to a tower of spinning
operators known as the higher-spin currents, which in the GN model are given by the
following, with s > 1,

S

~ 1
T = <N ;;W@m Yy Oug i — traces) + descendants, (3.36)

similar to those in the O(IV) scalar model case (see (2.69)).3Y As before, at finite temperature,
the one-point functions are required to take the following form

= A (€u; - - . eu, — traces), (3.37)

where e, is a unit vector along the Sé and A, is the scaling dimension of the (weakly
broken) higher-spin current,

As=s+147s, (3.38)

with the anomalous dimension 7, that is suppressed by % and can be found in [56, 73-75].
The + subscript in (3.37) refers to the choice of spin structure along the Sé. To compute the
coefficients b4  in the leading large N limit, we introduce an auxiliary null three-vector £ as
in section 2.6 (see around (2.72)). Following the same procedure there with the same type of
Feynman diagrams (the propagating bosons are substituted by the fermions), we find that

s i€ / zpuf“)s
where for ¢4 = /0, we sum over Sw;” = 27n, and for ¢_ = ¢, we sum over Sw, = 7(2n+1)

with n € Z. The UV divergences in the above expressions are regularized as for the critical

O(N) model.
By comparing (3.39) with (2.74), for the periodic boundary condition ¢ = /o, and all
one-point functions are related to those in the critical O(N) model simply by?3!

by, =20 (3.40)

For the anti-periodic boundary condition, we consider the following generating function
similar to (2.75),

[e%9) [3(1 5 s 2 zp &M 1 —dx/mP(mPB—2¢
> ’851 / - 5= 5 Z(—l)me : (3.41)
25T T § 2 PAptgl | 2m mB(mB—2¢)

m=#0

308ee also recent work [70] which studies the thermal one-point functions of higher-spin currents for general d.
31This is no longer true at the subleading order in % as we have seen for the stress-tensor one-point function
which follows from (3.18).
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Expanding the r.h.s. of the above equation we find that 59,5 = 0 for s odd as expected
and for s even we have,
0 1 2n st (2s —

— n)' n nT ; — B
bl = %;::0 PR TR e (—e ), (3.42)

We can also derive an alternative formula for 13(17 starting from (3.39). Following the

S
procedure around (2.80), we arrive at the following integral expression (setting 8 = 1 below),

for even spin s,

z ’p (e —p1)° 1
v = -2 & 3.43
0 / (2m)2 g e 41’ (343)
where €, = \/p? + ¢2. The above integral reproduces the sum expression (3.42) thanks to
the following integral identity,

. 3 1 00 ”— ¢* s—1
Liy (—e™%) = F(S)/d)* dz(ez_i_)l. (3.44)

The subleading % corrections Bi s to the one-point functions of these higher-spin currents
in the fermionic CFT can be in principle computed in a similar way as describe near the
end of section 2.6 for the O(N) scalar model.

3.6 The chiral Ising Gross-Neveu-Yukawa model

As it was explained in the previous section, another interesting generalization of the usual GN
or GNY model is the chiral Ising GN or GNY model with a different symmetry, which has
many applications in condensed matter systems including the semimetal-insulator transition
in graphene [65-67]. The chiral Ising GN model is defined by splitting the N Dirac fermions
into two groups as ¥; = (x%, x%) where a = 1,. . ., % with the following action that has a
different quartic interaction compared to (3.1),3?

_ _ 1 _ _
SecaN = —/dd$ (x“é’*xé + gyl — TQO(XLQXaL - XRaXf)2) . (3.45)

Consequently the global symmetry of the model is reduced to (U(N/2)r, x U(N/2)g) x Zghiral
where the so-called “chiral” Z$M"®! exchanges x% and . In d = 3, this symmetry is enhanced
to O(N)? x Z§"ral as mentioned previously.

For 2 < d < 4, the UV completion of the model (3.45) is provided by the chiral Ising

GNY model, with one additional real pseudoscalar ¢ and the following action,
1 _ _ _ _
Seany = / d'x (2 (90)” = X"k = X IxE + i (X Xk = X8 ) + 9207 + gw“) :
(3.46)

Note that ¢ is odd under both the “chiral” Zg""™! and the parity (3.2) thus invariant
under the diagonal combination. The latter is identified with the preserved parity (time-
reversal) symmetry at the semimetal-insulator transition in graphene for which ¢ is the

32 Again there is little difference to the description of the model when N is odd for spacetime dimension
d = 3, in which case we simply write the action in terms of the Majorana fermions.
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order parameter [65-67] (see also [69]). In the scaling region, the chiral Ising GN and GNY
models are expected to coincide [25].

Implementing the HS transformation, the action (3.45) can be recast into the follow-
ing form

—La —Ra —La —Ra 1
Sean = — / d'x (xL Ixt + XD+ o (XPxk - Xl + 2go¢2) : (3.47)

where the HS field ¢ is again identified up to an normalization with the pseudoscalar ¢ in
the chiral Ising GNY model (3.46). We then integrate out the fermions and arrive at the
following effective Lagrangian for the field ¢

Feon(9) = =N (trlog (i + 9) + trlog (68— ) + 56467 (3.45)

where gy = g N as before with g} held fixed in the large N limit. Note the two terms in (3.48)
where ¢ comes with opposite signs. For a general configuration of ¢, these two terms are
not related to each other and that’s why the chiral Ising GNY (or GN) model is different
from the usual GNY model. Nonetheless, as we explain below, it is easy to show that the
leading and the first subleading corrections to the free energy demnsity coincide.?® This is
because for constant ¢, the first two terms in (3.48) are identical and the saddle-point of
¢ obeys the same gap equation as for the GN model,

dk 1
/R 7(277)61 tr 7@% i = —gégzﬁ, (3.49)

and by fine-tuning the coupling g§ we can bring system to criticality as before. The free
energy density of the chiral Ising GN model has the same large N expansion as before,

Faan(B) = Figno(B) + Fign—1(B) + Fian—o(B) + - -, (3.50)

where F.an o scales as IV I+ The above discussion indicates that the leading N contributions
agree F C%N,o = FéEN’O. Furthermore, the first subleading corrections also coincide F £N7_1 =
Fécm_l because the large N propagator of the field ¢ is an even function of its constant
saddle-point value (see (3.17)). However it is easy to see that already at the second order,
there is a difference between the two versions of the GN model in the free energy density,
namely chéN,—Z =+ F§N7_2, which arises from the different contributions of the vacuum
diagrams in figure 8 at non-zero temperature. The same conclusion holds for the thermal
one-point function of general higher-spin currents defined in (3.36).

3.7 The Nambu-Jona-Lasinio (NJL) model

Another important generalization of the GN model reviewed in section 3.1 is the Nambu-
Jona-Lasinio (NJL) model. It is commonly defined in terms of four-component Dirac fermions
U; with ¢ = 1,..., Ny (which naturally arise in the d = 4 model) with the following action,

St = — / iy <\M\1; - 2;0 (w2 - (@iwyi)?)) , (3.51)

33In fact the same analysis below easily extends to the free energy on Sé x 8% and the same conclusion that
the free energies for the GN model and its chiral version only differ at the % order continue to hold. It would
be interesting to study this difference in free energies in relation to the difference in the operator spectrum as
was analyzed in [69].
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Figure 8. The first two diagrams in the % expansion whose contributions to the free energy density
differ between the GNY and the chiral Ising GNY models (due to the choice of signs at the cubic
vertices in the latter). The solid lines denote the propagators for the fermions v; and the dotted lines
for the pseudoscalar .

where 75 is the usual chirality matrix for d = 4 Dirac spinors.>* The global symmetry

of the theory is (U(Ny) x U(1)) x ZS where U(Ny) is the obvious flavor symmetry that
rotates the Dirac fermions U;, the extra U(1) “chiral” symmetry acts by ¥; — €750,
and Zg is the charge conjugation symmetry. For d = 3, the global symmetry is enhanced
to (SO(2Ny) x U(1)) x Z§ .

As is the case for the other fermionic models with four-fermion interactions, the
model (3.51) is non-renormalizable for d > 2 and its UV completion for 2 < d < 4 is
provided by the Nambu-Jona-Lasinio-Yukawa (NJLY) model which contains one complex
scalar field ¢ = @1 + w2 and has the following action [25],

1 . . '
SNILY = /dd% (2\390!2 — VPV, + g1V (o1 + iv502) Vi + gal ol + 9490|4> . (3.52)

The scalar field transforms under the chiral U(1) symmetry as ¢ — ¢/®p. In the scaling
region, the NJL and the NJLY models are expected to coincide [25], where the theory
undergoes a second-order phase transition with order parameter ¢ and spontaneous U(1)
chiral symmetry breaking.

The NJL (NJLY) model is also known as the chiral XY GN (GNY) model in the condensed
matter literature, where it describes various quantum phase transitions with complex order
parameters (see for example [77-81]). In particular, it governs the superconducting phase
transition in graphene at Ny = 2 [77, 78] and the semimetal-VBS (valence bond solid)
transition in graphene and graphene-like material for various values of Ny [79] as well as
the critical surface states of certain topological insulators with emergent supersymmetry
at Ny = 1 (78, 82, 83].3

To solve the NJL model in the large N = 2Ny expansion, we proceed by introducing
a complex HS field ¢ = ¢1 + i¢2, which is identified (up to an overall normalization) with
the complex scalar ¢ in the NJLY model near the critical point. We then integrate out the
Dirac fermions and obtain the following effective Lagrangian, with

Fron(@) = 5 (trlog (9 + 61 + ins62) + ablof) (3.53)

34We follow the gamma matrix conventions in [69] (see also [76]). In particular, the four-fermion interaction
of the chiral Ising GN model with N = 2N discussed in section 3.6 takes the form (U'W¥,)? in terms of these
four-component Dirac fermions and the chiral symmetry Z§"™! acts by ¥ — ~50.

35The corresponding CFT has 3d N = 2 supersymmetry and is also known as the A = 2 super-Ising model
whose operator spectrum has been analyzed using conformal bootstrap [84].
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where the rescaled coupling gf is related to the coupling constant in (3.51) by go = Ngf and
kept fixed in the large N limit. Again by fine-tuning g we can bring the model to its critical
point which is described by the chiral XY GN (or GNY) CFT. We exploit the semi-classical
approximation in the large N limit as before and derive the gap equation that governs the
dominant saddle which we assume to be described by a homogeneous configuration of the
complex HS scalar ¢p. Taking advantage of the U(1) symmetry, we can always set ¢o = 0.
At zero temperature, the gap equation is then equivalent to the one for the ordinary GN
model (3.7) with ¢ = ¢ and the same critical value of the coupling g applies with the CFT
vacuum described by ¢ = 0. The same equivalence holds for the gap equation and its solution
at finite temperature for either periodic or anti-periodic spin structures. Consequently, the
leading large N contribution to the free energy density of the critical NJL (or NJLY) model
with Ny = % agrees with that of the critical GN (or GNY) model with N two-component
Dirac fermions (see (3.13) and (3.16)),

Fino(8) = Fiio (). (3.54)

Nonetheless, as we show explicitly below, they start to differ at the first subleading order in %
To obtain the % correction Fﬁjﬁp_l to the free energy density, we compute the induced

propagators for the HS fields ¢1, ¢2, which take the following form

_ 2 2
(¢5) " () = frvﬁlog (2 sinh W*) <1 O) +oN (P Tdos 0 ) (Q.p),  (3.55)

2 01 0 P2
and
-1 N Bop_\ (10 P244¢2 0\
(G¢) (Q,p) = %log <2 cosh 2) <O 1) +2N ( 0 P2> I;(Q,p), (3.56)

with ¢4 and Hg(Q, p) the same as around (3.17) where the £ label the periodic and anti-

periodic spin structures respectively. Note that the additional zero of (Gi);; at P2 =0
corresponds to the Goldstone boson for the chiral U(1) symmetry, which contributes to the
% correction to the free energy density of the critical NJL model. Comparing with the
analysis in section 3.2 for the GN model, we find that the full % correction in the NJL

model for the free energy density is given by,

0.32259927
Fl\FI)JL,—l(/B) = 2F£N,—1(B) — Fren(404) + Fren(0) = _T ) (3.57)
for the periodic spin structure, and analogously for the anti-periodic (thermal) spin structure,

the result is

—0.02680198
P () = 2R851(8) = — (3.59)

As promised, the above clearly differ from the results in the GN model (see (3.20) and (3.30)).
Similar to the GN’ model obtained from contour rotation compared to the familiar

GN model, the NJL model also has an analogous cousin at large N which we refer to as
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the NJL/ model. Once again, to the leading large N limit, its free energy coincides that
of the GN’ model,

Fiiro(8) = Faio(B). (3.59)
whereas this degeneracy is lifted at the subleading order,
0.44297273
-

The Wilson coefficient b for the SO(N) symmetry of the NJL model is straightforward
to obtain given the above discussion, after turning on a chemical potential. It is easy to see

Fléﬁ/,—l(ﬂ) = 2Fé§’7_1(6) - fren(4¢z) + Fren(o) - (3.60)

that the leading contribution coincides with the answer for the GN model and the subleading
contribution is twice of that for the GN model because of the presence of two real HS fields.
Thus we have the following (comparing to (3.26)),

_ 2log2  0.2676

b
T N

(3.61)

Let us now consider more general thermal observables given by one-point function of
the higher-spin currents in the critical NJL model. They are defined in a way analogous
to (3.36) but in terms of the four-component Dirac fermions,

. 1 S
inope = <Ns Z U0, Yy Op Vi — traces) + descendants . (3.62)
(=1

The corresponding one-point function coefficients by ; (defined in a similar way as in (3.37))
can be computed from Feynman diagrams as in section 3.5. As one may expect from the
discussion around (3.54) that concerns the free energy density (equivalently the stress-energy
tensor one-point function), these more general one-point functions in the critical NJL model
also coincide with those in the ordinary GN model (see (3.40) and (3.42)) to the leading
order in the % expansion, namely

0y, =02 ,. (3.63)

We expect this agreement to fail at the subleading order which we have demonstrated
explicitly for s = 2 (see around (3.57) and (3.58)) and for general s by an analysis parallel
to that in section 2.6.

4 Chern-Simons quantum electrodynamics

We now study finite temperature observables in d = 3 vector-like large N CFTs whose
definition involves dynamical gauge fields. For concreteness, we focus on perhaps the simplest
class of nontrivial gauge theories, namely the quantum electrodynamics (QED) with N
massless Dirac fermions and Chern-Simons coupling k (which we refer to as CSQED), and
present explicit results for its free energy density at the subleading order in the % expansion

as a function of the 't Hooft coupling A = @.
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4.1 Review of the CSQED and large N thermal observables

The CSQED model in d = 3 describes the interaction of N two-component Dirac fermions
with the electromagnetic field A,

™

1 — _ k
SQED = /d3x [MFil, — Ayt (8H + Z'Au) W — mo*h; + IE”VpAMa,,AP , (4.1)
0

with Maxwell coupling eg, fermion bare mass mg and Chern-Simons coupling &k that satisfies
the quantization condition k + % € 7.%6 The theory has a U(N)/T x ZS global symmetry
where the U(1) subgroup of U(N) comes from the topological symmetry (under which the
monopole operators are charged), the SU(IV) subgroup is the flavor symmetry of the Dirac
fermions, Zg is the charge conjugation symmetry and the discrete quotient I' C U(1) ensures
that the symmetry acts faithfully on the local operators [86, 87].%7

There is substantial evidence that at sufficiently large N, upon tuning the bare mass my,
the 3d CSQED flows to a nontrivial U(N) invariant CFT at long distance [88-93], which we
will refer to as the conformal CSQED.3® This is particularly well-established by considering
the limit of N — oo and studying the % expansion (see for example [12, 101-105]).3 See
also [107-110] for recent works on bootstrapping the corresponding CFTs directly at finite N.
Such CFTs are known to describe exotic phases of quantum matter in two spatial dimensions
including the Dirac spin liquid [111-116] for vanishing Chern-Simons level £ = 0 and various
values of N depending on the underlying two-dimensional lattice. For nonzero Chern-Simons
level k # 0, they also emerge near the quantum phase transitions between different quantum
hall states [117]. Below we explain how to extract finite temperature observables for these
quantum critical points in the large N limit, taking into account the subleading effects.

By integrating out the fermions, we arrive at the following effective Lagrangian for
the gauge field,

N N
Fesqep(A) = ngFﬁy — Ntrlog [§ +id, +mo] + Xie“”pAuayAp , (4.2)

where we have rescaled the couplings

, k=——, (4.3)

==e
B
3
=2

eg =

36Note that the mass term in (4.1) is parity-odd and SU(N) invariant. The CS level k here (also known
as the effective CS level) includes the formal % shift from the gauge invariant regularization of the fermion
determinant using the eta invariant exp (%m’n(A)) [85]. The theory is parity invariant only when N is even
and the effective CS level vanishes k = 0.

3TFor k < %, I' = Zny2—r and otherwise I' = Zy/211. See [86] for details.

38These abelian gauge theories are also related by conjectured IR dualities to certain nonabelian Chern-
Simons-matter theories [94-99]. Consequently our results for the abelian theories in the large N limit give
rise to predictions for the corresponding thermal observables in these nonabelian theories, which are strongly
coupled, due to the very nature of these level/rank type dualities. It would also be interesting to study these
nonabelian theories directly in the 't Hooft limit as in [100].

39At small enough even N < N, for even critical flavor number N., the QED model with vanishing
Chern-Simons level k = 0 is believed to exhibit spontaneously “chiral” symmetry breaking of SU(N) —
SU(N/2) x SU(N/2) x U(1) due to certain parity-even SU(N) invariant scalar operator (quartic in the
fermions) becoming relevant and inducing a nonzero expectation value for the order parameter (quadratic in
the fermions) [88, 89, 93, 106].
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Figure 9. The leading diagram in the % expansion that contributes to the photon self-energy. The
dashed line corresponds to the fermion loop and the curved lines correspond to the photon legs.

and we take the large N limit with gy and A kept fixed. Note that the gauge field A,
here plays the role of the ¢ field in the case of the GN model (similarly the o field for
the scalar O(N) model).

It is easy to see in the large N limit that the theory has a nontrivial fixed point in the
IR for any initial coupling g3. The quantum correction to the fermion mass in the IR can
be cancelled by properly fine-tuning the bare mass parameter mg (and in the dimensional
regularization scheme this corresponds to setting mg = 0).*° The propagator for the gauge
field A,, can be computed from standard Feynman diagrams (see figure 9) and in the Lorentz
gauge is given by (see also [12]),

k N
-1 _ 2 _
D,(P) = 2 (P G = PuPy) + =P+ 165 (P — PuP,) . (4.4)
and at large distance,
DYP) — Se, pr+ L (p2 P,P, (4.5)
MV( ) P_s0 XEHVP +16P( Juv — Iy V)a .

which indeed takes the right form that is required for conformal symmetry. In particular,
it implies that the gauge invariant operator F),, is a primary operator of scaling dimension
A = 2 in the large N limit. This also means that in the IR we can neglect the Maxwell
action since it is irrelevant.

We proceed as before to study this CFT on 81 x R? to determine its thermal observables.
The free energy density of the conformal CSQED has the same type of + ~ expansion as in (2.21)
for the critical O(NN) model, and we will be interested in the first two terms Fosqrp,o(f)
at order O(N) and Fosqep,—1(8) at order O(NY).

We can again argue that in the large N limit we can pursue a semi-classical approximation
where A, is homogeneous. Using gauge transformations we can set the spatial components
along R? to A; = Ay = 0, but we can not set Ag = 0 because of the non-trivial topology
of the thermal background. Nonetheless, we can fix

™|

B
/dTAO T,T) (4.6)
0

and compute the effective Lagrangian as a function of the holonomy u € [0,27/3),

Fosqep (u = Z/ d2 K(Qn;l)ﬁ + U)2 +p?

4ONo fine-tuning is required for k = 0 and N even due to the extra parity symmetry.

, (4.7)
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where we have imposed anti-periodic boundary conditions*' for the fermions along S%.
Implementing the regularization for the sum-integral as before (see in particular (3.23)),
we arrive at,

N . ‘
_ : B : —ip
Fosqep(u) = I [ng(—e’ ") + Liz(—e™" “)] . (4.8)
The homogeneous saddle-point for the holonomy w relevant for the thermal CFT and the
corresponding leading free energy density then follow,

3N¢(3)
433 7

us =0, Fesqep,o(B) = Fesqep (ux) = — (4.9)
which coincides with the free energy density of N free Dirac fermions. We emphasize that
Fcsqep (u) has another saddle-point at w = 7 which is a local maximum and thus unstable. We
see that effective anti-periodic boundary conditions on the fermions are energetically favored.

As in the previous sections we can introduce a chemical potential for the global symmetry
and determine the Wilson coefficient b from the symmetry twisted free energy. Here we will do
so for the SU(N) global symmetry of conformal CSQED for even N, where the symmetry twist
is implemented by g = (e**1 N/2s e~ ~/2)- In this case, the effective Lagrangian becomes

(4.10)
We find that u = u, = 0 is the minimum of Fcsqrp(u, i) for all p. Therefore, the thermal

N
4733

free energy of the CSQED, as a function of the chemical potential, is

3¢(3)  log2 ,

N
4.11

2133

]:CSQED(M) = [Li3(—€i‘u) + Lig(—e_i“)} =

2log 2
— -

which produces the leading large N answer for the b coefficient bcsqrp =

It is easy to repeat the analysis in the previous section to compute the one-point function
of the higher-spin currents defined in (3.36) in the large N limit of the conformal CSQED.
The one-point function coefficient b2 for the spin s current follows from (3.42) with ¢, = 0,

s 1
Egzimmsﬂ(_n:_(? BRLGAR (s+2)7 412
27 s! T2

which again coincides with the free fermions as expected in the leading large N limit of

the CSQED.

4.2 Subleading corrections to the free energy

The large N CSQED is of course very different from free fermions. Indeed, the distinctions
already manifest at the first subleading order in the % expansion of thermal observables
in the CFT. Below we demonstrate this explicitly for the free energy density (equivalently
the one-point function of the stress-energy tensor), which depends nontrivially on the 't
Hooft coupling .

41 This is without loss of generality since u changes the effective boundary condition for the fermions.
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—020f

Figure 10. The dependence of the subleading correction Fosqrp,—1(8, ) to the free energy density
of the conformal CSQED on the 't Hooft coupling A (here 5 =1).

To obtain the % correction to the free energy density, we compute the quantum propagator
for the gauge field A,. We first work with vanishing Chern-Simons level £ = 0. The photon
polarization tensor then reads,

a2k tr 'y“k'y %ﬂﬁ)]
M (S, p) = Z/ )2 k2 Ggp? @

from fermions running in the loop. One can check that it has the following structure as

(4.13)

2™
IB )

required by the residual symmetry at finite temperature and the Ward identity,

Qn‘]@

HOO(QTL) Q) = HE(Qn7 Q) ) HOZ(QTH Q) = HE(Q q)

0 (4.14)
244
I (0, ) = (4% — 005 s (R 0) + TJHE(QmQ) :

where I15(€y,, q) and II3;(€y,, q) are scalar functions (see appendix D for explicit expressions).
After taking into account the Faddeev-Popov ghosts, the % correction to the free energy
density of the conformal QED is given by,

2
Forn1(9) = 55> / (;if)’ log [y (2, ) TIp(2. q)] - (4.15)

Using the results of the appendix D and implementing the numerical evaluation of the
sum-integral above as explained in section 2.3, we find that,

0.21211735

FQED,—l(/B) = - /33 3

(4.16)
which agrees with the results in [12].
We now re-introduce the Chern-Simons coupling k£ and study the dependence of the

free energy density on the ’t-Hooft coupling constant A = #. Recall that the leading

— 43 —



contribution to the free energy density Fesqrp,o(3) is A independent. In this case, the photon
polarization operator is modified in a simple way to,

1
H;)J\,V(Qnﬂ Q) = HMV(QTw Q) + qupqp . (417)

Consequently, the free energy density at the subleading order reads,

2
Fesqep,—1(8, ) = ;B Z/(;lﬂl;zlog [HM(QnaQ)HE(QWQ) + % ; (4.18)

which now depends nontrivially on A and can be computed numerically from the method
outlined in section 2.3 (see figure 10). In particular, it interpolates between the free fermion
answer at A = 0 where there is no subleading correction to the free energy density (4.9)
and the pure QED answer (4.16) at A = oc.
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A Lattice regularization

Here we discuss an alternative approach to compute the thermal free energy of the critical
O(N) model in d = 3 using a finite lattice. First, we consider the system on an infinite
lattice Z3 with lattice spacing a [118]. It amounts to replacing the scalar propagators in
the following way

G l(p,m?) =p*+m? = G (p,m?) =6 — 2cosp, — 2cospy —2cosp, + m?, (A.1)

with normalized periodic momenta p,, . € [—m,7|. This automatically regulates the UV
divergences. The gap equation (2.6) becomes,

[ Pk o,
a 3 - 15 ) A2
| GyiCetia) = T =1t (A2)

T

expanding the left-hand side of this equation for small o we obtain,

d3k 1 o
[ oGt~ = L T =
with
. A3k t
== | Gy Calk,0) = 0252731, X = ~0.012, (A-4)

—T
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where \! is determined from numerically fitting the integral. To approach the critical point
we fine-tune rf to r!. In this case o = 0 is the solution and the system is gapless in the IR.
The other coupling A\ could be left arbitrary but it is better for the numerics to also tune
it to Aj = AL to cancel the leading finite-size corrections from the least irrelevant operator.
Indeed, the propagator for the HS field o in this limit becomes,

)= +/d3kc: (5,0)Ca(ktp,0) — — 1+ Lyom), (s
NN (2m)3 T " p0 8[pl Ny AL ’ ‘
—T
and if we set A = AL the leading correction to the conformal propagator is cancelled.
Now we study the same model at criticality on a finite lattice Z,, x Z2. For general
n,n: > 1 this correspond to the lattice approximation for studying the CFT on the torus
S1 X S1 X S with R . If we further take n > ny, the lattice setup approximates the
thermal background ]R2 >< Sﬁ with inverse temperature S = nsa. The scalar propagator
on this lattice is

27 21
G (p,o) =6 —2cosp, — 2cospy —2coSp; +0, Pry= nﬁ’y , Ppt= n—tt . (A.6)

where i, € Z. The gap equation is

27sz 21w, 27 o
Z ZG ( y7 t70>:_ri+A67 (A?)

mn n
Zxﬂ»y li=1 t

and we will attempt to set A ~ Al to reduce the leading finite-size corrections as discussed
above. We have checked numerically that the solution of this gap equation is o, = %22
t

which produces the leading free energy density (see (2.32)) with good precision for a lattice
of size n = 100 and n; = 40

1
NFonf’ ~ —0.160282036 . (A.8)

To obtain the subleading correction to the free energy density, we should study the propagator
of the HS field o, equivalently the self-energy (see also (2.36)),

HB(Q):21 2n2nt Z ZG (p,0:) Ga (P +q,04) - (A.9)

ig,iy=114t=1

In the limit of the interest n > n; > 1 and small ¢, we expect that Ilg(q) ~ nidly (qny).
Then the subleading correction to the free energy is

Z Zlog [H5 (2m’x, 2miy Qm'tﬂ | (A10)

iz,ly=11=1 n n n

F_i(n,ng) = 5,
¢

Limited by the precision for the value of AL in (A.4) and the size of the lattice we can consider
with the available computing power, we wouldn’t get the desired behavior

f- .

F_1(n¢) ~ const + —~
nj

(A.11)
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for the free energy density at the critical point (where f_; is the desired CFT observable
and the constant needs to be subtracted by numerical fitting).

To see this more explicitly, we estimate that the self-energy Ilg(q) behaves for n; >
qng > 1 as

1 1 1 g1 92

IIg(q) ~ — — — + . A.12
5(9) N 8¢ ¢ ¢tnd ( )

To achieve a good approximation to the critical behavior, we need to consider a sizable lattice
such as n ~ 500,n; ~ 25. For instance, in this parameter regime, the value of the o field
from solving the gap equation is o,n? = 0.9268 which is close to the critical value (2.31).
But then to evaluate the sum in (A.10) accurately requires large processing powers that
we don’t have at the moment. For a smaller lattice such as n ~ 70 and n; ~ 10 however,
we obtain instead a*nf = 0.9409, which reflects a relative error of ¢,, ~ 1%. Since the
free energy density involves a sum over a logarithm of the self-energy which depends on
o, such a relative error is quite important.

For smaller lattices, the subleading corrections in (A.12) also need to be taken into
account, which requires setting \j = A\. with high precision. However the fact that we don’t
know A’ (see (A.4)) at high precision introduces a numerical uncertainty to the computation
of the IIg which again propagates to the numerical evaluation of the subleading piece F_1(n;)
of the critical free energy density. We expect the total error in (A.11) to be Ag_, ~ 0.01 for
nt ~ 10, which makes it hard to extract the small critical amplitude f_; (see (2.46)). To

improve the situation, we must know ! at least within a relative error of Ext ~ Ny 3,

B Self-energy of o in the O(IN) vector model

In this section we analyze the two-point function of the HS field o at finite temperature for
the critical O(N) model at large N and provide useful analytic expressions that will help the
numerical evaluation of subleading effects for thermal observables in the CFT.

From diagrammatic analysis (equivalently by saddle-point approximation of the path
integral), one finds that the self-energy for the o field (i.e. the inverse propagator) is,

0. = 55 > [ ok ! ! B1)
7q = a5 , .

’ 25 n=—00 (277)2 (wn - Q)2 + (li? — q)2 + 0« W% + k2 + o,

where w,, = 2”7” denotes the Matsubara frequency and o, is the solution to the gap equation

given in (2.31) (although the expressions below will not depend on its value unless explicitly
stated). Using Feynman parametrization, we take the integral over spatial momentum and
obtain the following,

1
g — 1
I3(92,q) = o= [ dx E 5 , (B.2)
32 0 n=-—00 (n — ﬁQl’) + ﬁ; M?
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where we have introduced M? = o, + (22 + ¢*) z(1 — z) > 0. Evaluating the sum in (B.2)
then gives,

5(2,9)

da sinh (ﬁ\/a* + (2 +¢?)z(1 - a:))
167 ) o + (7 + %) (1 = @) cos (8Qx) — cosh (By/on + (P + ) a(1 - 2))
(B.3)
If we introduce a chemical potential p for the U(1) C O(NNV) subgroup with even N as

described in section 2.4, the self-energy becomes,

% (1,92, 9, V5
1

da sinh (ﬁ\/a* + (2 + 2 ) (1—2x)

167w ) Vo + (4 ¢%) (1 =) cos (BQw — 1) — cosh (Wo* 2+ q?)a(l - rc))
(B.4)

\_/

)

where &, is the solution (2.50) of the modified gap equation (2.49).
The self-energy of the o field captures the subleading correction to the free energy density
of the critical O(N) model in the following way,

Z/ Tp 5 log |G, (2, p)| Z/ Ty 5 1og (U, p) , (B.5)

up to regularization and renormalization as described in section 2.2.

B.1 Large momentum expansion

To analyze the UV structure of the self-energy and the sum-integral in (B.5), it is useful
to have the large momentum expansion of (B.1) which we provide here, generalizing the
results in [9] to further subleading orders.

For this purpose, it is useful to use the following representation of the self-energy by
first implementing the sum in (B.1),

2 2
Hﬁ(Q,q):—l/ de L (P2+2q-k) 1) _20
4) (2m)? (P2 4+2q- k)" + 402w} Wotk Wk Wotk

+/ d’k n(Bwy) P?2+2q-k
2m)?  wi  (P2+42q- k)% +4Q%07

(B.6)
with P2 = Q% + ¢%, w? = k? + 0., n(Bw) denotes the Bose-Einstein distribution

1
efw —17

n(fw) = (B.7)

and we are keeping o, general. Note that the first line of (B.6) coincides with the self-energy
at zero temperature (but nonzero mass ,/0,) and can be evaluated exactly. Thus we arrive
at the following expression,

1 1 d’k n(Bwp) 1+z
S arctan [2\/071 4+ — / CISEh it :c)2 ) , (B.8)

(2, q) =

— 47 —



where we have introduced the following quantities for convenience,
2q -k 40202

p2 Y= Pt
Due to the exponential suppression for large z,y in (B.8), we can simply expand the integrand

(B.9)

r =

and integrate over the spatial momentum k to obtain the large momentum expansion of
the self-energy,

1 1 Al 202 -¢%1-6y - ) A
Hp(S2 q) = log |2 sinh A A?log |2sinh
5( ,q) 6P  2n BPQ Og{ sin } 336 o ﬁ?’PG og{ sin }
1 2.2 1
+W(_QQ ¢* (1291 + 7a) + Q* (892 =) + ¢ (373—74)> +O<PS> ,

(B.10)
where A = 3,/0, is a dimensionless number.

The leading % term in (B.10) is the conformal answer in flat spacetime which is subtracted
to obtain the renormalized free energy density and the dangerous % term goes away once
we specialize to A in (2.31) that solves the gap equation (see around (2.40)). Furthermore,
the various constants in (B.10) are

+0o0 +oo
1
7= A3 / don(w)w? =2.3241, v = / duwn(w)w?(w? — A?) = 22.8244
A A
+oo +oo
4 2 2\2 (B.11)
v2 = [ dwn(w)w® =24.7434, v3 = [ dwn(w)(w*—A%)" =21.3181,
A A
AND

Y4 = = = 0.660574 ,

where the explicit values are computed for A as in (2.31). Similarly, in the presence of
chemical potential, using the same methods, we can represent (B.4) in the following form

P
(1, 2, ¢, V54) = S—Parctan {2\/5}
k1 P2 4+2k-q
+ [ ———(n(Bwr +ip) + n(Bwr — 1 ,
[ oy (B4 )+ B — ) TR T Senom
(B.12)

with the large momentum expansion of the form (we set § = 1)

1 Pt —24%5, 202 — 1 -67

n ~\ =
I (p, 2, ¢, VGs) = 6P~ 4P log (2 {— cos p + cosh \/J*D + 76 o G2
- (—292 2 (1291 + Aa) + Q1 (82 — A4) + ¢* (393 — 7 ))+O =
P10 q M+ Y2 —Y4) T4 (573 — Y4 ps ) o (B.13)
with the following constant coeflicients,
“+o0o
Y=y [ dog (i) + (e i) )?
= 73 wo | nlw +ip) +nlw —ip) Jw
Vo
400 ]
= / dw§ <n(w +ip) + n(w — i,u,))wQ(w2 —04),
VG
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1
g = / dw§ (n(w +ip) + n(w — i,u))w4,
VG

o= [ dog (nle i) + (o - in) ) (@2 - 52,
NG

(B.14)

which coincide with (B.10) for p = 0.

C Self-energy of ¢ in the Gross-Neveu model

In this section we compute the two-point function for the HS field ¢ ~ 1)"); in the critical
Gross-Neveu model (equivalently the self-energy of ¢). We consider both periodic and
anti-periodic boundary conditions for the fermions and with a U(1) chemical potential.

C.1 Periodic boundary condition

We start with computation of the self-energy of ¢ at finite temperature in the periodic spin
structure with generic mass ¢,

1 1
HGN(Q q, ¢+ Z/ <2k+¢+ Z%_Z¢+¢+>

1
ﬁ§/ o A ©)
/ ko: 2¢2+Q2+q wfQ—q-k 1
B ae Q)2+(lc—q)2+¢>%r (wWit)2 + k2 4¢3

where § = kM, includes the time component k° = w;" (see (3.11)). The first term in the
second equality above can be further simplified,

2
—;Z/ (;ljj ! —log [251nh ,3\/@] . (C.2)

o)+ Rz O 2

Using Feynman parametrization and summing over the Matsubara frequency in the
second line of (C.1), we arrive at the following expression,

By

2

1 p?
Mo (g, b)) = p log [2 sinh +4 <2¢i + 2) II5(92, q)

1

Q sin (6Qx)
N (P , C.
A 0/ cos (8Qz) — cosh (6\/¢i + P2z(1 — x)) (©5)

where P2 = 0? + ¢% and Ilg is the self-energy for the o field in the bosonic O(N) CFT
(see (B.1)) where we need to replace o, — ¢ . The second line in the above equation vanishes
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because its integrand is odd under x — 1 — x. Therefore, we finally have

+2(P?+4¢2) 15(2,9), (C4)

2
IEn(Q, g, 64) = 7ﬁ log [2 sinh B\é;

whose large momentum expansion follows from that of IIz in (B.10), and has the following

form (with p=1):
4¢i 2sinh \/E]
2

T8 (O -9
an(,9,94) —p?

log

1 202 g?1-
+2(P2+4¢i)< 4 67

2
2
6P po 8+ podh log

2
[2 sinh \/;ﬁj] +

( 202¢% (1271 +74) +Q* (8v2 —y4) +¢* (373—’74))+O (;8>>
(C.5)

+7TP10

where all the constants are defined in (B.11). The first term in (C.5) is proportional to the
gap equation which follows from (3.12) and therefore it vanishes in the CFT.
C.2 Anti-periodic boundary condition and general chemical potential

In the anti-periodic (thermal) spin structure, the self-energy of ¢ takes a similar form, with
the frequency sum from (3.11) with generic mass ¢_,

1 1
ox(a. ﬂz/ (i%m_i%—z‘waﬁ_):
1
:_BWZ/(%)Q w;)2+k2+¢2 (C.6)
ko: 2¢2+92+q —w, Q—q-k 1
52/ (wr =)+ (k= ® + 62 (wa) +h2 492

)

where the first term in the second equality can be simplified,

2 / d’k 1 Bp_
—= — log [2 cosh } C.7
ﬁ% Cm” (w)” + k2 + 62 “ﬁ ()
After performing the sum in the second line of (C.6), we obtain
Bo- _
AR 0,9-) = — log |2cosh = | +2(P? + 462 115 (). (C3)
with
1
1 1 sinh ( 81/¢% + P%z(1—x)
I (€2,q) = 167T/ ( \/ ) (C.9)

\/¢2 + P2x(1—2x) cos (BQx)+cosh (5\/¢2 + P2z (1— )) '
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If we further introduce a chemical potential p for the U(1) C O(2N) global symmetry
as in section 3.2, we have instead

GN(MaQ 4, ) = flog (2 [COSM—FCOShB(f;*])

L ldac 203+ P2(1-x) i (ﬁ d;erP%(l_x))
4 0 ¢2+ P2 (1-x) cos (8Qx — p)+cosh <B q~ﬁ+P2x(1x))
1
—Q/dx sin (BQz—p) 7
Am o cos(BQx—pu)+cosh (6 $2+P2m(1—x)>
(C.10)
where we used that (with ©, = w, + p)
1 1 -
3 Z/ TN e =50 log (2 [cosu + coshﬁaﬁ*D . (C.11)

C.3 Large momentum expansion of ITy

The large momentum (i.e. large P) expansion of the self-energy Iy (€, q) in the anti-periodic
spin structure can be obtained by using the same methods developed in appendix B.1. Here
we present the resulting formula (with g = 1),

- 1 1 -7 | 20 —¢* xo ¢
I1; (22 log [2cosh — | + —————5— + —— ¢~ log |2 cosh —
T 27rP20g{COS 2]+ 5 6r 7 ¢ Og[cos 2} (©.12)
1 2 2 4 4 1 '
+ —po (—2X1Q q" + x20 + x3q ) +O0 {55 )
where the definitions of the constants involved and their numerical values for ¢_ = %
are given below,
+oo
Xo=¢> +6 / dwnp(w)w? =20.7,
4 5
:—12/dwnF (W?— ¢%) + %:—401.2977,
oo (C.13)
L 4>
x2 = -8 [ dwnp(w)w” — 5 = —146.4644 ,
.
2 22 492
x3 = -3 [ dwnp(w)(w”—¢2)* — 5 = —145.7247,
and np(w) is the usual Fermi-Dirac distribution,
1
nr(fw) = o1 (C.14)
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Combining (C.8) and (C.12) we obtain that at large momentum

<f> 1 L 202 —¢* xo
16P PS  6rx

Héﬁ(ﬂ,q,d)_) = - ——5 log [2cosh ¢ } +2 <P2+4¢2,)

QQ 2 P 2 2 4 4 1
FQL log l:QCOSh 2] + (—2)(1(2 q°+x22%+x3q )—i—@ (P8>] ,

(C.15)
where the first term after the equality sign is proportional the gap equation which follows
from (3.14) and thus vanish for all solutions in (3.15).

In order to find the large momentum expansion of (C.10) in the presence of chemical

1
P10

potential y, it is more convenient to use the following expression (with g = 1)

N

P2 42k ]

GN(M, 0, q, ) = % log (2 [cosu + cosh QB*D +2 <P2 + 4@33)

_ / <d2k1 (np(wk +ip) +np(wy — W))

2m)? 2wy, (P2 +2q- k) 4 40202

(C.16)
where w? = k? + ¢2. In the case of y = 7, this reproduces (C.4) and for p = 0 it gives (C.8).
Also, one can see that (C.16) can be written in terms of (B.12) as

AR (11, Q, ¢, 6s) = 777 log (2 {cosu + cosh gZ;*D +2 (P2 + 4@35) 1T (,u +7,9Q,q, d~>*) )
(C.17)

Using the same methods as above we deduce that its large momentum expansion takes
the following form

Héﬁ (:ua Qv q, &*) =

- iﬁ log (2 [cos p+cosh .| ) +2 (P2+442) L;P + 29;?2 é% (C.18)

+ 2:]36 qu log (2 [cosu—i—cosh é*} ) + ﬂ]}no ( 2X1Q2q2+X294+X3q )+O (;8) ]

where the constants involved are defined below,

+oo
Xo =0} +6 / %w (g (0 +ip) + np (w — ip)) w?
.
- Jroodcu ) ‘ . 4(55
X1 =—12 / - [np (w+ip) +np (w—ip)] w?(W? — ¢?) + 5* ,
e ) (C.19)
to=—8 [ S lnr (i) + e (w— i)t - 2
[oxs
- +Oodw ) . _ 445
X3=—3 / o5 np (w+ip) +np (w—ip)] (W? — §2)% — 5* )
X
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D Polarization tensor of the large N QED

The polarization tensor for the large N conformal QED at finite temperature takes the general
form in (4.14) and is determined by two scalar functions I1g(2, p) and II;;(€, p) which we
refer to as the electric and the magnetic polarizations respectively. Below we provide their
explicit expressions and their large momentum expansions which are used in the main text
for the evaluation of subleading effects in the conformal (CS)QED at finite temperature.

D.1 Electric polarization and large momentum expansion

We start with the electric polarization in (4.14). After introducing the Feynman parametriza-
tion, and explicitly separating the divergent part of the polarization tensor, we arrive at

P’k wp(Qtwy) k- (k+p)
=32 | e e e

neZ
Z/ n (3Q—4Qx) 20222 —2P%20(1—2)+ Q2+ p?(1—2) (D.1)
27rﬁ net) (wn+Qx)2+P2:c(1—a:) .
1 2 d?k 1
Ry
G2 5L | G

with w, = w,, as in (3.11). After implementing the sum (with zeta function regularization)
in the second equality of (D.1), we obtain the following simplified expression for the electric

polarization,
sinh (BM) P2 9 o
g —2(P*+Q 1-—
Mcos (6Qx) 4 cosh (BM) ( ( + )x( z)
(D.2)
1 Qx sin (6Qx) 1
— —log 2
T /dxcos (BQx) + cosh (BM) T RCE

with

M = Py/z(1 —x). (D.3)

The large momentum expansion of (D.2) can be deduced using the same methods as in
appendices B and C and is given below (for convenience we set § = 1),

1 P?2-0? d?k (k*+k-p) (P2+2k-p) —k? (2% —p? —2k-p)
Me(p)=35—p gy (R (P21 2k-p)2+4Q2k?
1p* 3 . p* 45 p*(p?P—40%) 2835 p?(p*—12p°Q2480") 1
(D.4)

D.2 Magnetic polarization and large momentum expansion

We now move onto the magnetic polarization in (4.14). Using rotation symmetry on the
plane, we work with (p1,p2) = (0,p), then

d2l<: k3 — (wm(Q + wm) + ka(ka + p2))
m(€p) = Bp 2z:/ (Wm + Q)2+ (k+p)?) (w2, +k2)

(D.5)

,53,



Employing the same tricks as in the previous subsections, we arrive at the following simplified
expression,

1

1 1 sinh (BM)
Iy (2, p) ~ dnp? /dxM cos (8Qx) + cosh (BM) {2 (
0

0% + p2) x(1— x)}

X (D.6)

1 Qz sin (5Qx)
- 2mp? /dxcos (BQx) + cosh (BM)

0

where we have restored rotational invariance and M is defined as in (D.3).
Similarly the large momentum expansion of the magnetic polarization is given by (again
first with (p1,p2) = (0,p)),

(0 )_1P+1/ d?k . (’k‘)(kg—k%+kgp2) (P2 +2kops) — k2 (022 —p®—2kaps)
MUESP) =162 p2 | w2k F (P24 2kops )2+ 40212
1P 3 02—2p% 45, 4p*r—27p*Q02 4404
=5+ —CB)—=5——<(5) 358

16p= = p*P s p*P
2835  _ 6p°—101p*Q2 +116p?Q*—80° 1 1

o ¢(7) 2 P12 +*20 (8) :
™ p=P p P

(D.7)
Combining (D.4) and (D.7), we obtain the large momentum expansion of the logarithm
relevant for the evaluation of the subleading piece of the free energy density in (4.15),

96 ¢(3) D2 —2p%\ 1440 ((5) [ p?—4Q%  4p*—27p* Q2 +40*
2 = e—— —
log (16 HEHM)_P3 o <1+ 7 |t s o = 51
_1(96g(3)>2 1+(Q2—2p2)2 +90720§(7) pt—12p202% +804
2ps 27 P4 P7T 2n P4
6p° —101p*Q2 +116p?Q* — 806 1
- 76 +O0( 55 ) (D.8)
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