
1500 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

A Nonblocking Multistage Switching Network

for Distributed Quantum Computing

Yu Liu , Yingling Mao , Xu Xu, Xiaojun Shang , Member, IEEE, Fan Ye , Fellow, IEEE,

and Yuanyuan Yang , Life Fellow, IEEE

Abstract— Quantum computing, utilizing the unique properties
of quantum mechanics, has the potential to revolutionize various
fields. However, current quantum processors face challenges in
scaling the number of qubits, limiting their practical applica-
tions. In response, Distributed Quantum Computing (DQC) has
emerged as a promising paradigm where multiple interconnected
Quantum Processing Units (QPUs) collaborate to execute quan-
tum circuits. In this paper, we focus on designing networks to
interconnect QPUs for the implementation of DQC. We find that
in real-world experiments and systems, the photon collection
and coupling efficiency is low, leading to significant performance
degradation in direct connection networks. To address this
limitation, we propose a novel multistage switching network
tailored for DQC, which has low system complexity and high
entanglement generation rates. The proposed switching network
comprises log

2
(N) stages and N/2 binary switches at each

stage, where N represents the number of QPUs. We prove that
the proposed network is nonblocking and develop an efficient
routing algorithm with a time complexity of O(N log(N)).
Additionally, we show the success probability of entanglement
generation in the proposed switching network. Extensive simula-
tions demonstrate that our network significantly outperforms the
highly efficient circuit-switching Beneš network and three direct
connection networks.

Index Terms— Quantum computing, quantum networks, and
interconnection networks.

I. INTRODUCTION

QUANTUM computing leverages quantum mechanical

phenomena such as quantum entanglement and super-

position to perform computation. Quantum computers offer

significant advantages in performing some specialized tasks

that classical computers are unable to solve within a feasible

timeframe. For example, they can factorize large integers [1],

perform approximate optimization [2], and execute Gaussian

boson sampling [3] with substantially greater efficiency. The

practical applications of quantum computing are far-reaching,

Received 29 March 2024; revised 12 November 2024; accepted 27 January
2025; approved by IEEE TRANSACTIONS ON NETWORKING Editor
D. Elkouss. Date of publication 27 February 2025; date of current version
20 August 2025. This work was supported in part by the National Science
Foundation under Grant 2231040 and Grant 1191278. (Yu Liu and Yingling

Mao contributed equally to this work.) (Corresponding author: Yu Liu.)

Yu Liu is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, and also with the Department of ECE, Stony Brook
University, Stony Brook, NY 11790 USA (e-mail: yu-y.liu@polyu.edu.hk).

Yingling Mao, Xu Xu, Fan Ye, and Yuanyuan Yang are with the Depart-
ment of ECE, Stony Brook University, Stony Brook, NY 11790 USA
(e-mail: yingling.mao@stonybrook.edu; xu.xu@stonybrook.edu; fan.ye@
stonybrook.edu; yuanyuan.yang@stonybrook.edu).

Xiaojun Shang is with the Department of CSE, The University of Texas at
Arlington, Arlington, TX 76019 USA (e-mail: xiaojun.shang@uta.edu).

Digital Object Identifier 10.1109/TON.2025.3544319

with the potential to address global challenges. For instance,

by solving large integer factorization problems, quantum com-

puters could break certain encryption schemes, and quantum

simulations and machine learning algorithms could facilitate

drug discovery processes [4]. Numerous entities are making

significant strides in the development of quantum computers.

For example, Google has unveiled ‘Sycamore’ [5], a quantum

computer with 70 qubits, and IBM has introduced ‘Osprey’,

a quantum processor equipped with 433 qubits [6].

Despite the significant development of quantum computers,

current quantum processors still fall short of the capabilities

for real-world applications. For example, it is estimated that

breaking RSA-2048 encryption may require millions of physi-

cal qubits [7]. However, it is challenging to build a large-scale

quantum processor with sufficient physical qubits due to

various reasons, e.g., qubits interaction, resource requirement,

fabrication, and control challenges [8]. Until now, no quantum

computing platform has achieved scalable expansion of qubit

numbers without compromising performance or incurring dis-

proportionate costs, energy consumption, or footprint [9].

A promising approach to building large-scale computing

systems capable of supporting real-world applications is the

Distributed Quantum Computing (DQC) paradigm. Under this

paradigm, multiple interconnected Quantum Processing Units

(QPUs) collaborate to execute quantum circuits, which each

QPU cannot execute individually [10], [11]. There are vari-

ous platforms for constructing quantum processors, including

superconducting qubits [6], trapped ions [9], nitrogen-vacancy

(NV) centers [12], and neutral atom [13]. This paper focuses

on trapped ion quantum computers for several reasons. First,

trapped ion quantum processors have a high quantum vol-

ume [14], a result of their long coherence time, high gate

fidelity, and high qubit connectivity [15]. As of June 25, 2023,

the top three quantum processors, in terms of quantum volume,

are based on trapped-ion technology. Second, it is possible to

establish remote entanglement between two distinct trapped

ion-based QPUs at a relatively high rate [16]. Specifically,

under the trapped ion platform, two QPUs can be connected by

linking them with the same Bell State Analyzer (BSA) using

optical fibers (as shown in Fig. 4). If two QPUs are connected

to the same BSA, a shared Bell state can be generated between

them, which is then used for performing remote quantum gate

operations (see Section III for details). It is worth noting that

the results of this paper could also be directly applied to

other platforms such as NV centers and neutral atom quantum

platforms.

2998-4157 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NONBLOCKING MULTISTAGE SWITCHING NETWORK FOR DISTRIBUTED QUANTUM COMPUTING 1501

In this paper, we focus on designing networks to inter-

connect QPUs for the implementation of DQC. There are

two types of networks: direct connection networks (static

networks) and switching networks. Direct connection networks

such as line, ring, and grid networks have static connections

between neighboring nodes. In a static network, when two

non-neighboring QPUs request a shared Bell state, routes

between them must first be selected. Subsequently, a shared

Bell state is generated on each link along the chosen routes,

followed by the execution of quantum swapping at the inter-

mediate QPUs. In contrast, switching networks offer dynamic

connections. By carefully configuring the switches based on

the requirements of the QPUs, QPUs that request a shared

Bell state can be connected directly to the same BSA, thereby

establishing a link between them. Switching networks present

two primary advantages over static networks. First, QPUs in

static networks require multiple photon collection modules and

associated control modules, increasing the system complexity

and posing significant implementation challenges. Second,

static networks suffer from low entanglement generation suc-

cess rates due to the low photon collection and coupling

efficiency experienced in real-world systems, a problem that

our switching networks effectively mitigate.

Given the advantages of switching networks, this paper is

centered on designing switching networks and the correspond-

ing algorithms to enhance the efficiency of DQC systems.

While some existing switching networks, such as the Beneš

network, could potentially be adapted to interconnect QPUs

for implementing DQC, their direct application is unsuitable

due to their high cumulative insertion loss. This issue is

particularly detrimental to the fragile photonic links between

QPUs. Consequently, there is a clear necessity to design

switching networks that are specifically tailored for DQC.

Unlike traditional circuit-switching networks that establish

direct communication paths between sources and destinations,

our DQC network demands a distinct architecture. Specifically,

two QPUs must be linked to the same BSA to generate a

shared Bell state. Our goal is to devise a network capable

of simultaneously accommodating all potential entanglement

requests from a collection of distributed QPUs.

This paper contributes to DQC in several significant ways.

First, we propose a multistage switching network specifically

designed for DQC and a corresponding routing algorithm. This

network interconnects N QPUs and N/2 BSAs via log2(N)
stages of switches. Secondly, we prove that the proposed

switching network is nonblocking and can simultaneously

support all possible quantum entanglement requests from the

connected QPUs. In addition, we devise an efficient routing

algorithm for the network, which operates with a time com-

plexity of O(N log(N)). Lastly, we evaluate the performance

of our proposed switching network through extensive simu-

lations under real-world parameters. Our results indicate that

the proposed switching network has a significant performance

advantage over existing networks, including the traditional

Beneš network and various static networks. Specifically, the

average time for successful entanglement generation in our

network is significantly faster than that in the Beneš, grid,

ring, and line networks.

The remainder of this paper is organized as follows.

Section II provides an overview of related works. Section III

discusses trapped ion-based distributed quantum computing.

Section IV shows the limitations of static networks. Section V

presents our proposed network design along with a dedicated

algorithm. Section VI presents the simulation results. Finally,

Section VII concludes the paper.

II. RELATED WORK

DQC is recognized as a promising paradigm for supporting

large-scale quantum circuits [10]. A central challenge of

DQC is establishing entanglement between QPUs [17], [18].

Shared Bell states are required to perform remote quantum

gates on qubits located in different QPUs. There have been

several studies dedicated to link layer entanglement generation

using various quantum technologies [12], [16], [19], [20].

Notably, Stephenson et al. demonstrated generating Bell states

of trapped-ion qubits at an average rate of 182 Hz [16]. In [20],

Hannegan et al. introduced a networking architecture leverag-

ing neutral-atom-based nondestructive single-photon detection

and single-photon storage to improve entanglement rates in

quantum networks based on trapped ions. Simulation results

based on experimental parameters showed that the proposed

architecture can significantly increase the remote entanglement

generation rates.

Moreover, there has been research focusing on generat-

ing remote entanglement between two non-directly connected

nodes via entanglement swapping in the context of the

quantum internet [21], [22], [23], [24], [25], [26]. In [24],

Pant et al. considered the entanglement routing problem in the

quantum internet and proposed a routing algorithm allowing

multiple quantum processor pairs to generate entanglement

simultaneously. In [23], Shi et al. studied the entanglement

routing problem for concurrent entanglement request pairs and

arbitrary network topologies and introduced an entanglement

routing algorithm tailored to the unique properties of quantum

networks. In [22], Farahbakhsh et al. designed an opportunistic

entanglement routing algorithm for the quantum internet and

showed that the opportunistic approach outperforms conven-

tional approaches. However, these works focused on static

networks. In contrast, this paper underscores the advantages

of switching networks for DQC and, therefore, focuses on

switching networks.

Switching networks such as the Beneš, Omega, and

Banyan networks have been widely studied in the fields of

telecommunications, data center networks, and network-on-

chip systems, primarily for establishing direct connections

between source and destination nodes. The Beneš network

is a non-blocking network with 2 log2(N)-1 stages, ensuring

connections between N inputs and their corresponding outputs

without blocking or contention [27]. The Omega [28] and

Banyan [29] networks are a blocking switching network with

log(N) stages. In this paper, our goal is to generate shared

Bell states between QPUs. To achieve this, we need to connect

both QPUs to the same BSA. The Beneš network can be

adapted to DQC by treating the QPUs as inputs and the

BSAs as outputs. However, this adaptation leads to a low

entanglement generation rate, as the photon loss probability

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

1502 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

in switches increases exponentially with the number of switch

stages. As for the Omega network, it is inherently blocking in

the DQC scenario we are examining.

There are also some prominent works related to using

switches for DQC. In [30], Duan et al. proposed a hierarchical

approach to interconnecting trapped ion registers and photon

detectors using a switch network, but they did not provide

a specific switching network topology. In [31], Dong et al.

experimentally demonstrated an 8-input Mach-Zehnder mesh

network for remote entanglement generation, showcasing the

feasibility of interconnecting QPUs using a switching network.

However, the paper primarily focused on an 8-input system

and did not present the routing algorithm and its performance

for an arbitrary number of QPUs. In [32], Bartolucci et al.

proposed switch networks for single photonic fusion-based

quantum computers, while this paper focuses on interconnect-

ing multiple quantum processors.

III. TRAPPED ION-BASED DISTRIBUTED

QUANTUM COMPUTING

Among several suitable platforms for constructing quantum

computers, such as superconducting qubits, NV centers, and

topological qubits, trapped ion-based processors stand out

for their long coherence time, excellent qubit connectivity,

and high gate fidelity. For instance, the trapped ion-based

H1-2 Quantinuum device demonstrates significant improve-

ments over the superconducting qubit-based ibmq_mumbai

device. Specifically, the single-qubit gate, two-qubit gate,

and readout error of the H1-2 Quantinuum device are 2x,

12.9x, and 7.2x smaller, respectively, compared to those

of the ibmq_mumbai device [33]. Quantum volume is a

well-accepted metric originally proposed by IBM [14] to

measure the power of near-term quantum computers. Quantum

volume, denoted by VQ, is defined as

VQ = min
[

N, 1/(Nϵeff)

]2
.

In this equation, N represents the number of qubits, and ϵeff

denotes the average error rate of a two-qubit gate. So far, the

top three quantum processors in terms of quantum volume

were based on trapped ion qubits. Despite having a relatively

large number of qubits, superconducting quantum computers

often demonstrate lower quantum volumes than their trapped

ion-based counterparts for two primary reasons. Firstly, the

gate fidelity of trapped ion-based quantum computers gen-

erally surpasses that of superconducting quantum computers.

Secondly, trapped ion-based quantum computers exhibit excel-

lent qubit connectivity, allowing for efficient execution of

quantum gate operations. Notably, quantum gate operations

can only be performed on connected qubits. In the case of

the IBM-Melbourne superconducting platform, as shown in

Fig. 1.a, additional entanglement swapping gates are required

to perform a quantum gate operation on two non-neighboring

qubits, which leads to an increase in the average error rate of

two-qubit gates, i.e., ϵeff. In contrast, the qubit connectivity of

trapped ion-based quantum processors follows a mesh topol-

ogy as shown in Fig. 1.b. Consequently, this paper focuses on

trapped ion-based QPUs.

Fig. 1. Qubit connectivity comparison.

Fig. 2. Trapped Ion-based processor.

A. Trapped Ion Quantum Computer

Next, we will provide a brief introduction to the trapped

ion-based quantum computer. Under the trapped ion platform,

the electronic energy levels represent the states of each trapped

ion-based qubit, with the ions being trapped by an oscillating

radio-frequency electric field [9]. We can trap a number of

ions, typically located in a line as depicted in Fig. 2. There may

be other topologies for the trapped ions, but they may raise

additional difficulties, such as introducing extra decoherence

sources. The trapped ion qubits exhibit long coherence times,

e.g., ranging from 0.2s to around 600s, partially depending on

the energy levels used to represent the basis states [9].

To readout qubits, a laser beam with a particular frequency

is applied to the ion from one direction, as depicted in Fig. 2.

The ion will fluoresce if it is in state |0⟩, and the ion will

not interact with the laser if it is in state |1⟩. Then we detect

photons in a direction orthogonal to the laser beam. If photons

are detected, the ion is in state |0⟩, and in state |1⟩ otherwise.

The readout fidelity is pretty high, e.g., 99.99% [34]. As for

single qubit logic gates, we can perform gate operations on a

qubit by applying laser or microwave radiation depending on

the type of trapped ion used, where the fidelity can be up to

99.9999% [15]. Two-qubit gates, performed by leveraging the

Coulomb interaction between ions, can achieve a fidelity up

to 99.9% [35]. Much like single-qubit gates, these operations

are executed by applying carefully tailored laser pulses to

the target ions. This method allows us to perform two-qubit

gates between any pair of qubits, thereby establishing all-to-

all connectivity as shown in Fig. 1.b. While it is feasible

to trap a significant number of ions, the implementation of

the required optical and electronic control poses significant

challenges. Therefore, DQC becomes a necessity.

B. Remote Quantum Gate

While the DQC paradigm offers advantages in terms of

increased qubit capacity, it also introduces the challenge of

applying gate operations to qubits located in separate QPUs,

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NONBLOCKING MULTISTAGE SWITCHING NETWORK FOR DISTRIBUTED QUANTUM COMPUTING 1503

Fig. 3. Remote CNOT gate.

Fig. 4. Herald entanglement generation.

namely remote gates. All quantum circuits can be implemented

using single-qubit gates and CNOT gates [36]. Hence, the

focus of our discussion will be on the implementation of

remote two-qubit CNOT gates. Remote two-qubit quantum

gates can be implemented by leveraging a shared Bell state.

Fig. 3 depicts the circuit for implementing a remote CNOT

gate on two qubits, q1 and q4, located in different QPUs, while

consuming a shared Bell state, denoted as |Φ+⟩. It should be

noted that the shared Bell state does not necessarily have to

be |Φ+⟩, as any of the four Bell states, i.e., |Φ+⟩, |Φ−⟩, |Ψ+⟩,
and |Ψ−⟩, can be utilized. Due to space constraints, the proof

of this statement is omitted.

C. Herald Entanglement Generation

Since each remote gate on qubits in two QPUs consumes a

shared Bell state, we will briefly introduce how to generate

entanglement between two trapped ion qubits in different

QPUs. The entanglement generation of two trapped ion qubits

is illustrated in Fig. 4. The protocol for link-layer entanglement

generation is as follows. First, laser pulses from the same

source are split and used to simultaneously excite qubit A

in QPU 1 and qubit B in QPU 2. If successful, this process

will generate two entangled ion-photon pairs, establishing

entanglement between ion A and photon A and between

ion B and photon B. Subsequently, the emitted photons are

collected and coupled into fibers. If the BSA detects the two

photons, there are four possible outcome patterns of the same

probability, and only two patterns herald a successful Bell’s

state entanglement generation [16]. That is, if two photons are

detected by the BSA, the probability of a successful Bell state

generation is 0.5. If the BSA observes the desirable patterns,

it sends an acknowledgment signal to the two QPUs, and they

can use the shared Bell state to perform remote two-qubit

gates. Otherwise, the BSA sends a negative acknowledgment

signal to the two QPUs, and they can repeat the entanglement

generation process.

We use pp to represent the probability that each time

we excite an ion, it successfully generates an entangled

ion-photon pair, and the photon is successfully collected and

coupled to the fiber. We use pf to denote the probability of a

photon successfully traversing the fiber and reaching the BSA.

Furthermore, pd is used to represent the overall efficiency

of the BSA, specifically, the probability that the detectors

of the BSA will successfully detect two photons, given that

two photons have reached the BSA. For each entanglement

generation attempt, the success probability, denoted by pa,

is as follows:

pa =
1

2
p2

pp
2
fpd. (1)

D. Scalable Distributed Quantum Computing

To execute DQC, the process starts with the representation

of quantum algorithms as quantum circuits, utilizing the

quantum gates available to the specific platform being used—

in the case of this paper, the trapped ion platform. Each

quantum platform can support only certain types of quantum

gates, which possess unique parameters such as fidelity and

gate operation time [37]. Following this, the logical qubits

of the quantum circuit are mapped onto the physical qubits

within the QPUs. It is worth noting that to perform quantum

error correction, multiple physical qubits may represent a

single logical qubit [38]. The above-mentioned two steps

can be accomplished synergistically to enhance the overall

performance.

Subsequently, quantum gates are applied to the qubits as

determined by the quantum circuits. If a gate is applied to

qubits located on different QPUs, it consumes a shared Bell

state, which is generated through the interconnection network.

If two QPUs are directly connected to a BSA, the procedure

outlined in Section III-C can be used. However, if they are

not directly connected, as in the case of QPU 1 and QPU

3 in Fig. 5, entanglement swapping in intermediate processors

becomes necessary. As shown in Fig. 5, to generate a share

Bell state between QPU 1 and QPU 3, we initially create

two such shared states: one between QPU 1 and QPU 2,

and another between QPU 2 and QPU 3. Following this,

entanglement swapping is performed on QPU 2. If success-

ful, this results in a shared Bell state between QPU 1 and

QPU 3.

The physical layer of distributed quantum computing is

depicted in Fig. 6. Utilizing this architecture, we can assemble

a set of QPUs into a powerful distributed quantum computing

system. Moreover, it is possible to partition the entire quantum

computing system into multiple virtual quantum slices. These

slices can execute quantum algorithms in parallel, similar to

network slicing and virtual machines in classical computing

systems.

IV. PERFORMANCE LIMITATIONS OF STATIC NETWORKS:

EXTREME CASE ANALYSIS

In this section, we delve into an analysis of the performance

of static networks as employed in quantum internet. In partic-

ular, we examine their limitations under low photon collection

and coupling efficiency, pp. While low pp is encountered in

real-world systems, they are often overlooked in studies focus-

ing on the quantum internet. Furthermore, we demonstrate that

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

1504 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

Fig. 5. Entanglement swapping.

Fig. 6. DQC architecture.

TABLE I

NOTATION TABLE

entanglement swapping within static networks can result in a

degradation of the fidelity of the generated shared qubit pairs.

Important notations are listed in Table I.

A. Static Networks

To establish interconnections between QPUs, a common

approach employed in the context of quantum internet [23],

[24] is to create static links between them. This involves

positioning a BSA at the midpoint of each link as seen

in the line network example in Fig. 7.a. Mesh topologies,

requiring (N − 1)! links and N collection modules per

QPU, are non-scalable. Hence, non-mesh designs, like grid

or circular networks, are used, where entanglement swapping

Fig. 7. Static and switching networks.

in intermediate QPUs enables shared Bell state generation on

indirectly linked QPUs.

A typical protocol [24] for generating a shared Bell state

between two S-D QPUs (Source-Destination QPUs) connected

by intermediate QPUs (also known as repeaters in the context

of quantum internet) in the static topology is as follows.

The system operates in slotted time, where each time slot

should be less than the coherence time of the qubits. Each

time slot has two phases, namely external and internal phases.

First, in the external phase, each link on the routes between

the S-D QPUs attempts to generate shared entangled pairs

independently using the protocol in Section III-C. Let Te be

the duration of the external phase, and γmax be the maxi-

mum photon production rate of each QPU for entanglement

generation [20]. Therefore, the maximum number of link-level

entanglement generation attempts during the external phase is

ne ≜ Te · γmax. If we successfully generate shared Bell states

for all the links on a route between the S-D QPUs, we perform

entanglement swapping on each intermediate QPU along the

route in the internal phase. We use ps to denote the success

probability of each entanglement swapping process.

Next, we analyze the probability of successfully generat-

ing a shared Bell state on a route between the S-D QPUs

within a given slot, denoted by pr. Assume that there are

N − 1 repeaters1 [23], [24] (intermediate QPUs) in the

route between the S-D QPUs. Then, the success probabil-

ity of a link in the route successfully generating a shared

Bell state during the external phase, denoted by pe, is as

follows:

pe = 1− (1− pa)ne . (2)

Here, pa from (1) represents the success probability of each

entanglement generation attempt. Then, the success probability

pr is as follows

pr = (pe)
Nps

N−1. (3)

Here, (pe)
N represents the probability that each link of the

N links on the route has successfully generated a shared

Bell state, and ps
N−1 is the probability that the quantum

swappings on the N − 1 intermediate QPUs are successful.

Generally speaking, pa = 0.5p2
pp

2
fpd is small. Therefore,

to get some intuition about pr, we express pr as Taylor series

1Quantum repeaters function as specialized quantum processors that employ
entanglement swapping to establish long-distance quantum entanglement
across a network.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NONBLOCKING MULTISTAGE SWITCHING NETWORK FOR DISTRIBUTED QUANTUM COMPUTING 1505

at pa = 0 as follows:

pr = pN−1
s (nepa)N (1 + o(pa))

∼ pN−1
s (0.5nep

2
pp

2
fpd)

N . (4)

Next, we will discuss why repeaters are favored in the

context of quantum internet, while it may not be the best

choice for distributed quantum computing. Assume L is the

distance between the S-D QPUs, and the N − 1 intermediate

QPUs are equally distributed between these two QPUs. As a

result, the distance between each pair of adjacent QPUs is

L/N . From [23] and [24], we have, pf = e−kf
L
N , where kf

is the parameter measuring the fiber loss. In the context of the

quantum internet, QPUs are typically located far apart, and

pf often becomes the bottleneck, and pp is not considered in

their formulation, i.e., pp = 1 in [23] and [24]. Under this

case, by adding N − 1 repeaters between the S-D QPUs, the

success rate pr is as follows:

pr ∼ pN−1
s (0.5nepd)

Ne−2kf L. (5)

From (5), if 0.5nepdps > 1 which is true in general, the

success probability increases as the number of intermediate

nodes, N , increases when pf is close the 0.

Despite the advantage of using intermediate nodes in

the context of quantum internet, it may cause performance

degeneration in distributed quantum computing. Within the

framework of DQC, QPUs are typically positioned in close

proximity to each other. For instance, they might be located

within the same room, mere meters apart, or even consolidated

onto a single board [9]. Additionally, quantum frequency

conversion can be utilized to decrease the probability of photon

loss in the fiber [20]. Assuming a fiber loss rate of 30 dB/Km,

the likelihood of experiencing photon loss in a 10-meter fiber

segment is approximately 0.933. Therefore, pf is no longer

the bottleneck in this case. On the other hand, it is difficult to

collect the photon emitted by trapped ions and couple it into

the fiber [20], [39], [40], [41]. For example, a typical value

of pp is measured to be 0.021 in [41]. From (4), when pp is

sufficiently small, the success rate decreases as N increases.

Even if ne is sufficiently large (assuming infinite coherence

time) such that pa = pe = 1, we find that pr = pN−1
s

still limits the success probability of each time slot. As an

illustration, assuming ps = 0.9 as reported in [42], for a

network consisting of N = 16 hops and assuming an infinitely

large ne, the probability pr is 0.185.

Furthermore, the process of entanglement swapping on

the intermediate QPUs may result in fidelity degradation.

The generated shared qubit pair on each link is subject to

imperfections, making them susceptible to bit and phase flip

errors [43]. Assume we want to establish the state |Φ+⟩ along

each link. Nonetheless, there is a probability pb for a bit

flip error in the generated qubit pair on each link, where we

ignore the phase flip error for simplicity. Consequently, the

density matrix representing the shared qubit pair on each link

is expressed as:

ρ0 = (1− pb)|Φ
+⟩⟨Φ+|+ pb|Ψ

+⟩⟨Ψ+|, (6)

resulting in a fidelity of (1− pb). Let us consider the scenario

where the objective is to generate a shared qubit pair between

Fig. 8. Success probability vs. number of QPUs.

source and destination QPUs, interconnected by a line network

with N − 1 intermediate QPUs. Initially, shared entangled

qubits are generated on each link, each with a density matrix

ρ0. Following successful entanglement swapping at each of

the N − 1 intermediate QPUs, the resulting end-to-end entan-

glement between the source and destination QPUs is described

by the density matrix

ρN = fN |Φ
+⟩⟨Φ+|+ (1− fN)|Ψ+⟩⟨Ψ+|, (7)

where fN = 2N−1
(

1
2 − pb

)N
+ 1

2 is the fidelity of ρN , with pb

denoting the probability of bit-flip errors per link. The proof

of (7) is omitted due to space limitations, and the main idea

of the proof is mathematical induction. As N goes to ∞, the

fidelity of ρN will go to 1/2, and the generated entanglement

becomes useless. In addition, based on (7), we can prove the

average fidelity of successfully generating shared Bell states

between each pair of QPUs in a line network with N links,

denoted as E[F (N)].
Theorem 1: The average fidelity of successfully generated

shared Bell states between each pair of QPUs within a linear

static network comprising N+1 QPUs is given by:

E[F (N)] =
1− 2pb

2Npb

+
(1− 2pb)

(

(1− 2pb)
N+1 − 1

)

4N(N + 1)p2
b

+
1

2
.

The proof of Theorem 1 is omitted due to space limitations.

As N goes to ∞, the average fidelity E[F (N)] goes to 0.5.

B. Switching Networks

The second way to interconnect QPUs and BSAs is using

optical MZI switches [31]. The success probability of attempt-

ing n times using the switching network that we proposed in

Section V-A is shown in (10). We express (10) as Taylor series

at pp = 0 as follows:

p′r(n) = 0.5np2
pp

2
fp

2log2(N)
i pd + o(p2

p). (8)

In this equation, pi is a probability related to the insertion

loss of switches. As observed in Equation (10), when pp

is small, the success probability in our proposed switching

network contains the factor p2
p, while the success probability

of the line network as given in Equation (4) contains the

factor p2N
p . Therefore, in the extreme case where pp is close

to 0 and becomes the bottleneck, the proposed switching

network exhibits superior performance compared to the static

line network.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

1506 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

Fig. 9. Average Fidelity vs. number of QPUs.

Next, we present numerical results comparing the success

entanglement generation probabilities in (3) and (10) for

the static line network and the proposed switching network,

respectively. These results were derived using real-world

parameters from experiments. As shown in Fig. 8, the

switch network outperforms the static line topology. In addi-

tion, assuming that there bit flip error exists, we compare

the average fidelity of successfully generated shared Bell

states between each pair of QPUs within a linear static

network and our proposed switching network. As depicted

in Fig. 9, the average fidelity of the shared qubit pairs

generated within our proposed switching network exceeds

that of the static line network. Note that in Fig. 9, only

bit-flip errors are considered, and while switching networks

may not affect quantum properties on certain platforms, they

may introduce fidelity degradation on others. The analysis

in this section is intended to demonstrate the advantages of

switching networks over static configurations, and we will

investigate the platform-specific fidelity impacts of switches

in our future work. Consequently, our proposed switching

network demonstrates the capability to produce entangled

qubit pairs of superior quality and with a higher probability of

success.

V. SWITCHING NETWORK AND ALGORITHM DESIGN

In this section, we design a multistage switching network

for DQC and analyze its performance.

A. Multistage Switching Network Design

We consider building a multistage switching network using

2× 2 binary switches. Each binary switch has two inputs and

two outputs and can operate in two states: Straight and Cross.

In the Straight state, input 1 connects to output 1, and input

2 connects to output 2. Conversely, in the Cross state, input

1 links to output 2, and input 2 connects to output 1. We focus

on interconnecting N QPUs with N/2 BSA. Each QPU has

an output, and each BSA has two inputs as shown in Fig. 4.

To facilitate our discussion, we define two functions,

Sl(i, n,N) and Sr(i, n,N), which represent the left circu-

lar shift and right circular shift, respectively. The function

Sl(i, n,N) generates a number by first expressing integer i as

a binary number with log(N) bits, then performing an in-place

left circular shift on the last n bits, while the remaining bits

outside of the last n are left unchanged. For instance, if N

equals 16 and we want to calculate Sl(6, 3, 16), we represent

Fig. 10. 8-input QMSN.

6 as a log(16)-bit (4-bit) binary number 01102. We then apply

an in-place left circular shift on the last three bits, resulting

in 01012, or 5 in decimal notation. Similarly, the Sr(i, n,N)
function generates a number by first expressing integer i as a

binary number with log(N) bits. It then applies an in-place

right circular shift on the last n bits, leaving the remaining bits

outside of the last n unchanged. For example, if we want to

calculate Sr(5, 3, 16), we represent 5 as 01012. Then we apply

an in-place right circular shift on the last three bits, resulting

in 01102, or 6 in decimal notation.

Next, we present the structure of the proposed multistage

switching network, named Quantum Multistage Switching

Network (QMSN). Fig. 10 shows an instance of an 8-input

QMSN. The N -input QMSN consists of log(N) stages of

switches, and each stage has N/2 binary switches. The two

inputs of the i-th switch in each stage are labeled by 2i and

2i + 1, where i ∈ [N/2] ≜ {1, 2, · · · , N/2}. Similarly, The

two outputs of the i-th switch in each stage are labeled by

2i and 2i + 1, where i ∈ [N/2]. Moreover, the inputs of the

i-th BSA are labeled by 2i and 2i + 1, where i ∈ [N/2]. Next,

we illustrate the interconnections between the QPUs, switching

stages, and BSAs. For any given i ∈ [N], QPU i is connected

to input i of stage 0. Then, the i-th output of stage 0 is

connected to the Sr (i, log(N), N)-th input of stage 1. For

example, in Fig. 10, outputs 0, 1, · · · , 7 of stage 0 are con-

nected to inputs (Sr(0, 3, 8), Sr(1, 3, 8), · · · , Sr(7, 3, 8)) =
(0002, 1002, 0012, 1012, 0102, 1102, 0112, 1112) of stage 1,

respectively. For each stage j ∈ {1, 2, · · · , log(N) − 1},
the i-th output connects to the Sl(i, j + 1, N)-th input of

the next stage (or BSA stage if j = log(N) − 1). For

instance, in Fig. 10, outputs (0, 1, · · · .7) of stage 1 are

connected to inputs (Sl(0, 2, 8), Sl(1, 2, 8), · · · , Sl(7, 2, 8))=
(0002, 0102, 0012, 0112, 1002, 1102, 1012, 1112) of stage 2.

The network we’ve designed bears similarities to the Beneš

and Banyan networks. However, there exists a distinct differ-

ence: while the Beneš and Banyan networks aim to connect

inputs to corresponding outputs, the QMSN is purposefully

designed to route two paired inputs to the exact same BSA

for herald entanglement generation. That is, the proposed

network has a different purpose from the Beneš and Banyan

networks. In addition, the Beneš network with N inputs has

2 log2(N)−1 stages, while the proposed network has log2(N)
stages. Therefore, compared with the Beneš, the proposed

approach has a lower cumulative insertion loss and a high

entanglement generation rate. Moreover, the looping routing

algorithm for the Beneš network and the self-routing algorithm

are not feasible for our proposed network, and we need to

propose a dedicated routing algorithm.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NONBLOCKING MULTISTAGE SWITCHING NETWORK FOR DISTRIBUTED QUANTUM COMPUTING 1507

As for the placement of laser sources for the proposed

QMSN, an additional multistage switching network, e.g., as a

reversed QMSN, can be employed to direct laser pulses to the

QPUs. N/2 laser sources first pass through beam splitters, and

then the QMSN routes them to the appropriate QPU pairs to

excite the qubits.

B. Performance Analysis

Next, we show that QMSN is nonblocking and design a

routing algorithm for it.

Consider a DQC system with N QPUs. In the system,

at most N/2 pairs of QPUs may request shared Bell states

at any given time. Therefore, we specifically examine the case

where N QPUs concurrently request N/2 shared Bell states.

The number of all possible request patterns is 1 · 3 · 5 · . . . ·
(N − 1), equivalent to the total number of ways to partition

N distinct elements into N/2 pairs. For any request pattern,

if a network can simultaneously connect each pair of QPUs

to the same BSA, we refer to it as nonblocking. We use R

to denote the request pattern, which is the set of QPU pairs

requesting shared Bell state. As QPU pairs are rerouted to the

inputs of each stage of switches, for simplicity in notation,

we will refer to QPU pairs as ‘input pairs’ at each stage.

For instance, R = {(0, 3), (1, 7), (2, 6), (4, 5)} represents that

the input pairs (0, 3), (1, 7), (2, 6), and (4, 5) are concurrently

requesting shared Bell states.

In what follows, we demonstrate that the proposed QMSN

is nonblocking – specifically, it is rearrangeably nonblocking.

To prove it, we first introduce the following lemmas. In partic-

ular, Lemma 1 guides the design of the routing algorithm for

stage 0, while Lemma 2 guides the design for the subsequent

stages.

Lemma 1: For any request pattern R consisting of N paired

inputs, we can partition the inputs into two sets such that:

• for each i ∈ [N/2], input 2i and input 2i + 1 are always

in different sets,

• each pair of inputs is divided between the two sets.

Proof: We begin by constructing a constraint graph

with N vertices, each representing one of the N inputs.

We add edges to the graph in the following manner. First,

for each i ∈ [N/2], add a red-colored edge between nodes

2i and 2i + 1. Then, for each pair of inputs in the request

pattern R, add a blue-colored edge between them. Note that

there are N edges and N vertices in the graph, and each

node is connected to two edges of different colors. As an

example, let’s consider a scenario where N = 16 and R =
{(0, 9), (1, 2), (3, 5), (4, B), (6, D)(7, C), (8, A), (E,F)},
where A, B, · · · , F represent hexadecimal numbers. The

resulting constraint graph would be as follows:
The lemma can then be restated as demonstrating that

the constraint graph is 2-colorable for every possible request

pattern. In a graph where each node has a degree of 2, and

the number of nodes equals the number of edges, the only

possible configuration consists of cycles. Nodes with terminal

or branching structures cannot exist, as they would necessitate

more or fewer than two edges per node, which contradicts the

stated conditions. Next, we show that each cycle in the graph

Algorithm 1 switchAlg0 (for Stage 0)

Input: R

Output: d0, routing decision for stage 0
Initialization: d[j]← NaN for each input j in R

// constructing a constraint graph

1 foreach input i in R do

2 if i mod 2 == 0 then

3 add an edge between node i and node i + 1;

4 end

5 end

6 foreach request pair (i, j) ∈ R do

7 add an edge between node i and node j;

8 end

// making routing decisions

9 d0[0]← 0 ; /* decision for input 0 */

10 i⋆ ← 0 ; /* latest processed input */

11 while ∃i such that di = NaN do

12 if i⋆ has a neighbor j and d[j] == NaN then

13 d0[j]← |1− d0[i
⋆]|;

14 i⋆ ← j;

15 else

16 i⋆ ← randomly chosen j where d0[j] == NaN;

17 d0[i
⋆]← 0;

18 end

19 end

20 return d0;

Fig. 11. Type I constraint graph for Stage 0.

must contain an even number of nodes by proceeding with a

proof by contradiction. Assume that a cycle has an odd number

of nodes. If we start at a node and follow the cycle, the first

edge is red, the second edge is blue, and so on, alternating

between colors. However, when we reach the end of the cycle

(i.e., come back to the starting node), since the number of

nodes (and thus edges) in the cycle is odd, the color of the

last edge must be the same as the color of the first edge. This

contradicts our condition that each node must be connected

to edges of two different colors. Therefore, each cycle has an

even number of nodes. Since each cycle has an even number

of nodes, we are able to traverse through the nodes in each

cycle, applying alternating colors as we progress, which is also

the algorithm to partition the set.

Taking Fig. 11 as an example, we traverse the circles by

order of (0,1,2,3,5,4,B,A,8,9), (6,7,C,D), and (E,F). We put

(0,2,5,B,8,6,C,E) to the first set, and other nodes to the second

set. □

We formally state the algorithm we used in the proof of

Lemma 1 in Algorithm 1. In the algorithm, the set partition

decision for each input i ∈ R is denoted by d0[i] ∈ {0, 1}. For

each input i, if d0[i] = 0, we switch it to the upper output, i.e.,

output 2⌊i/2⌋. Otherwise, d0[i] = 1, and we switch input i

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

1508 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

Algorithm 2 switchAlg+ (for Stage n, n > 0)

Input: Rn, represented by inputs of stage n
Output: dn, routing decisions for stage n > 0
Initialization: dn[j]← NaN for each input j in Rn

// constructing a constraint graph

1 foreach input i in Rn do

2 if i mod 2 == 0 then

3 add an edge between node i and node i + 1;

4 end

5 end

6 foreach request pair (i, j) in Rn do

7 add an edge between node i and node j;

8 end

// traversing nodes in cycles

9 foreach cycle in the graph do

10 start← a randomly selected node in the cycle;

11 i⋆ ← start;
12 j⋆ ← j such that (i⋆, j) ∈ Rn;

13 dn[i⋆],dn[j⋆]← 0;

14 d⋆ ← 0 ; /* decision for the latest

traversed two paired inputs */

15 repeat

16 if j⋆ mod 2 == 0 then

17 i⋆ = j⋆ + 1;

18 else

19 i⋆ = j⋆ − 1;

20 end

21 j⋆ ← j such that (i⋆, j) ∈ Rn;

22 dn[i⋆],dn[j⋆]← |1− d⋆|;
23 d⋆ ← |1− d⋆|;
24 until i⋆ == start;
25 end

26 return dn;

to the lower output, i.e., output 2⌊i/2⌋+ 1. Given the routing

decision at stage 0, the original request pattern, denoted by

R, can be represented using the input indices of stage 1,

which are symbolized as R1. Similarly, when the routing

decisions for the first n−1 stages are established, the original

request pattern R can be represented by the input indices of

stage n, which are denoted as Rn. In addition, we use dn

to denote the routing decision for stage n. Taking Fig. 11

for an example, if we switch inputs (0, 2, 5, B, 8, 6, C,E)
to the upper outputs, the original request pattern R =
{(0, 9), (1, 2), (3, 5), (4, B), (6, D)(7, C), (8, A), (E,F)} can

be represented by the input indexes of stage 1 as R1 =
{(0, C)(1, 8)(2, 9)(3, E)(4, D)(5, A)(6, B)(7, F)}, as shown

in Fig. 12.

Next, we focus on stage n > 0, where the request pattern

Rn is represented by the input indexes of stage n. We have

the following Lemma.

Lemma 2: For any request pattern Rn consisting of N
paired inputs, where one input from each pair belongs to [N/2]
and the other to [N] \ [N/2], we can partition the inputs into

two sets such that:

Fig. 12. Type II constraint graph for Stage n, n > 0.

Algorithm 3 Routing Algorithm

Input: number of inputs: N , request pattern: R

Output: routing decision D = {d0, . . . ,dlog(N)−1}
Initialization: Rn ← ∅ for n ∈ {0, 1, . . . , log(N)− 1}

// routing decision for stage 0
1 d0 = switchAlg0(R);

2 foreach (i, j) in R do

3 i⋆ ← 2⌊i/2⌋+ d0[i];
4 j⋆ ← 2⌊j/2⌋+ d0[j];
5 R1 ←

R1 ∪ (Sr(j
⋆, log(N), N), Sr(i

⋆, log(N), N));
6 end

// routing decision for stage n > 0
7 for n ∈ {1, 2 · · · log(N)− 1} do

// 2n−1 subnetworks at stage n
8 if n == 1 then

9 d1 ← switchAlg+(R1);
10 else

11 for k ∈ {0, 1 · · · , 2n−1 − 1} do

12 for (i, j) ∈ Rn do

13 if
⌊

i
2

⌋

mod 2n−1 == k then

14 Add pair (i, j) to R
k
n;

15 end

16 end

17 d
k
n ← switchAlg+(Rk

n) ;

18 dn ← dn ∪ d
k
n;

19 end

20 end

// switching to stage n + 1
21 foreach (i, j) in Rn do

22 i⋆ ← 2⌊i/2⌋+ dn[i];
23 j⋆ ← 2⌊j/2⌋+ dn[j];
24 Rn+1 ←

Rn+1 ∪ (Sl(i
⋆, n + 1, N), Sl(j

⋆, n + 1, N));
25 end

26 end

27 Return D;

• for each i ∈ [N/2], input 2i and input 2i + 1 are in

different sets,

• each pair of inputs from Rn is contained within the same

set.

Proof: The proof is similar to that of Lemma 1. The

basic idea is to construct a constraint graph that has N vertex.

There is an edge of red color between nodes 2i and 2i+1 for

each i ∈ [N/2]. In addition, for each pair of inputs in

the request pattern, we add an edge of blue color between

them. For example, let N = 16 and the request pattern

R1 is {(0, C)(1, 8)(2, 9)(3, E)(4, D)(5, A)(6, B)(7, F)}, the

constraint graph is as follows:

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NONBLOCKING MULTISTAGE SWITCHING NETWORK FOR DISTRIBUTED QUANTUM COMPUTING 1509

Fig. 13. An example of the designed routing algorithm for a 16-input QMSN.

Then, we can prove the graph contains only cycles, each

of which contains a number of nodes that is a multiple of

four. Assume a cycle has x blue edges, where one end of

each edge is in [N/2] and the other end is in [N] \ [N/2].
We have the cycle contains x nodes in [N/2] and x nodes

in [N] \ [N/2], resulting title 2x nodes in the cycle. Since

inputs 2i and 2i + 1 are in the same cycle, we have that the

cycle has 2y inputs in [N/2], where y is a positive integer. That

is, the number of nodes in each cycle is 2x = 2 · 2 · y = 4y.

Since the graph contains only cycles and each of which

contains a number of nodes that is a multiple of four, we

are able to traverse through the nodes in each cycle, starting

with a random node, with the initial step moving along the

direction of the blue edge. As we progress, we assign the first

two consecutive nodes connected by a blue edge to Set A and

the subsequent two nodes to Set B. We continue this pattern,

alternating between Set A and Set B. In this way, input 2i
and input 2i + 1 are in different sets, and each pair of inputs

from Rn is contained within the same set, which proves the

Lemma.

Taking Fig. 12 as an example, we start at

0 and traverse the constraint graph by the order of

(0,C,D,4,5,A,B,6,7,F,E,3,2,9,8,1) and put (0-C,5-A,7-F,2-

9) to the set A and others to the set B. □

Next, we show the QMSN network is non-blocking and

design a switching network based on Lemma 1 and Lemma 2.

Theorem 2: For each request pattern R with N paired

inputs, the designed N -input QMSN is nonblocking.

Proof: Based on Lemma 1, we can partition [N] into two

sets, Set 1 and Set 2, such that for each pair (i, j) ∈ R, i and

j are situated in different sets. Furthermore, input 2i and input

2i + 1 reside in different sets for each i ∈ [N/2]. For each

i ∈ [N], we define i′ ≜ 2⌊i/2⌋. For stage 0, each input i in the

first set is switched to output i′, and each input i in the second

set is switched to output i′ + 1. No contention occurs at this

stage since any potential contention could only occur between

inputs 2i and 2i+1, and these inputs are allocated to different

sets (switch to different outputs). In addition, because inputs in

each pair are in different sets, for each pair in R, one QPU of

the pair is switched to an even output connecting to one of the

inputs in [N/2] of stage 1 and the other one is switched to an

odd output connecting to one of the inputs in [N] \ [N/2] of

stage 1. For instance, consider the request pattern depicted

in Figure11. The two sets would be {0, 2, 5, 6, 8, B,C, E}
directed to even outputs and {1, 3, 4, 7, 9, A,D, F} directed

to odd outputs, as the switch configurations of stage 0 in

Fig. 13.a.

Next, we can ignore stage 0 and focus on the prob-

lem of routing the paired inputs of stage 1 to the

BSAs, where one input of each pair is in [N/2] and the

other one is in [N] \ [N/2]. For example, the original

request pairs in Fig. 13.a connect to input pairs R1 =
{(0, C), (1, 8), (2, 9), (3, E), (4, D), (5, A), (6, B), (7, F)} in

stage 1, and R1 is the request pattern represented by input

index in stage 1. Based on Lemma 2, we can partition

the inputs of stage 1 into two sets such that 2i and 2i +
1 are in separate sets and paired inputs (i, j) ∈ R1 are

in the same sets. Taking Fig. 13.a as an example, using

the constraint graph shown in Fig. 12, we partition the

inputs of stage 1 into Set A={(0, C), (2, 9), (5, A), (7, F)}
and Set B={(1, 8), (3, E), (4, D), (6, B)} labeled by red color

and blue color, respectively. Then, the inputs in set A and

set B are switched to outputs {2i, i ∈ [2/N]} and outputs

{2i + 1|i ∈ [N/2]} in stage 1, respectively. The last digit of

these output indices in binary form for set A and set B is

0 and 1, respectively. That is, inputs in Set A are connected

exclusively to switches whose i-th least significant bit (LSB)

is 0 at stage i (depicted as red switches), e.g., red switches in

stage 2 have their 2nd LSB set to 0. The topology of the red

switches after stage 1 corresponding with set A is shown in

Fig. 13.b, which is the same as the last log(N/2) − 1 stages

of N/2-input QMSN, e.g., Fig. 10 without Stage 0. Similarly,

inputs in set B are only connected to switches with the i-
th LSB is 1 at stage i, and the topology of the switches

and BSAs corresponding with set B is shown in Fig. 13.b,

which is the same as the last log(N/1) − 1 stages of N/2-

input QMSN. That is, the problem is divided into two smaller

problems with N/2 inputs, where one input of each request

pair is in the first N/4 inputs, and the other one is in the last

N/4 inputs. For each of the two N/2-input networks with

(log(N) − 2) stages, we can construct a Type II constraint

graph to get the configuration of its switches in its first stage

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

1510 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

and get two N/4-input networks each of (log(N)−3) stages.

Following this method, we can get N/4 4-input networks at

the end. In each of the 4-input networks, which comprise two

switches, one input from every request pair connects the first

switch, while the other input connects to the last switch, which

is non-blocking. Therefore, each pair of QPUs can be routed

to a unique BSA, which proves the theorem. The approach

for deciding the switching configuration of the stages after

the first stage is formally stated in Algorithm 2. □

The routing algorithm is similar to the process of the proof

of Theorem 2 and is formally stated in Algorithm 3. It takes

O(N) time steps for each stage, and the time complexity of

the routing algorithm is O(N log(N)).
Next, we analyze the success probability of each entangle-

ment generation attempt in QMSN. Parameters pd, pf , and pp

are defined the same as that for (1). We use pi to denote

the probability that a photon successfully traverses a 2 × 2
MZI switch, which is determined by the switch’s insertion

loss. For each pair of QPUs, their emitted photons must pass

through a total of 2 log2(N) switches. The probability that the

photons successfully pass through all the switches is given by

p
2 log

2
(N)

i . Then, the success probability of each entanglement

generation attempt, denoted by p′a, is

p′a = 0.5p2
pp

2
fp

2 log
2
(N)

i pd. (9)

If we keep attempting for n times, the success probability of

generating at least one entangled pair, denoted by p′r(n), is

p′r(n) = 1− (1− p′a)n. (10)

Since the entanglement generation in the switching network

does not involve entanglement swapping on the intermediate

QPUs. Let’s assume that in the generated shared qubit pairs,

the probabilities of bit flip and phase flip errors are indepen-

dent, denoted by pb and pϕ, respectively. We have that the

fidelity of the generated shared qubit pairs in the proposed

switching network, denoted by FQMSN , is

FQMSN = 1− (1− pb)(1− pϕ). (11)

The simplicity of QMSN, which doesn’t require entanglement

swapping on the intermediate QPUs, makes the protocol for

generating entanglement simpler compared to other static

quantum networks. A straightforward protocol for generating

entanglement in QMSN could be repeated attempts until

successful entanglement is achieved.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

switching network using parameters derived from real-world

experimental results. Simulation code is publicly available on

GitHub at https://github.com/yuliu3/QMSN.

A. Simulation Settings

We compare the switching network with the Beneš net-

work and line, ring, and grid topologies from the literature.

In switching networks, each QPU has a single communication

qubit, whereas in line, ring, and grid networks, QPUs can

have up to two, two, and four communication qubits with

corresponding photon collection modules. The implementation

of static networks is inherently more complex, necessitating

additional optical and electronic controls, along with photon

collection and coupling modules. Unlike quantum networks,

where throughput is a crucial performance index [23], [24],

distributed computing requires generating shared Bell states

according to the order of the corresponding remote gates in the

quantum circuit. Consequently, we adopt the average time for

Successful Entangled qubit pair Generation (SEG) as a perfor-

mance metric to evaluate the networks. There may be some

remote gates that can be performed simultaneously, and the

proposed switching network can generate the desired shared

Bell states simultaneously without introducing new problems.

Different request pairs in the static networks are competing

for the resources such as communication qubits and links, e.g.,

it is impossible to generate shared Bell states between QPU

1 and QPU 3 and between QPU 2 and QPU 4 simultaneously

in Figure 7.a. We investigate the scenario where request pairs

arrive sequentially. This particular condition favors the static

topologies over the switching networks because the switching

network can accommodate N/2 simultaneous requests without

compromising the average time required for SEG. In contrast,

attempts to simultaneously generate multiple entangled pairs in

static topologies can lead to resource contention, consequently

increasing the average time required for SEG.

The Beneš network operates by treating the BSAs as outputs

and routing inputs that require a shared Bell state to the same

BSA. The Beneš network is adapted to have 2(log2(N)− 1)
stages, as the last stage is substituted with BSAs. We assume

that static networks use the protocol in [24] to generate shared

Bell states. Under the protocol, there are one, two, and up

to four routes between each pair of S-D QPUs in the line

network, ring network, and grid network, respectively. All

routes are simultaneously engaged in entanglement generation.

Based on Figure 3 in [44], we assume the external phase of

the static networks lasts for 10−3s. From [20], the maximum

photon production rate γmax is 2 MHz. The propagation

latency of photons is omitted since the QPUs are placed

in close proximity. The internal phase duration for static

networks, typically in tens of microseconds [45], includes the

time taken for entanglement swapping plus communication

time, where the entanglement process swapping typically takes

tens of microseconds [45]. Assume that the duration of the

internal phase is negligible, as it favors the static networks

due to the absence of entanglement swapping on intermediate

processors (repeaters) in the switching networks.

B. Simulation Results

We first simulate a system comprising of 16 QPUs. Specif-

ically, we set the photon production rate γ as 1 Mhz and

the external phase duration time Te to be 1 ms. Let pi =
0.9 and pp = 0.04 [39], [40]. Additionally, from [20], we set

pf = 0.98, pd = 0.8, and ps = 0.9. To evaluate the

performance of the proposed QMSN, we conduct simulations

using the Quantum Fourier Transform (QFT) circuit [46].

In this setup, 64 qubits are distributed across 8 QPUs,

with each QPU hosting 8 qubits. To minimize the number

of remote gate operations, we map the i-th qubit and the

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NONBLOCKING MULTISTAGE SWITCHING NETWORK FOR DISTRIBUTED QUANTUM COMPUTING 1511

Fig. 14. Average SEG time within the QFT Circuit [46].

Fig. 15. Average SEG time within a real-world circuit [47].

Fig. 16. SEG Time vs. pp.

Fig. 17. SEG Time vs. pf .

(63 − i)-th qubit to the same QPU, reducing the need for

remote swap gates at the circuit’s end. Given the symmetric

nature of the QFT circuit, this mapping strategy does not affect

performance, allowing us to assign the qubit pairs—i-th and

(63 − i)-th qubits—to QPUs arbitrarily. Figure 14 presents a

statistical summary of the time for SEG across various network

topologies. The length of the bar signifies the average time

taken for SEG, while the red error bars indicate the range

from minimum to maximum times observed. The average

Fig. 18. SEG Time vs. pi.

Fig. 19. SEG Time vs. log2(N).

time for SEG of the Beneš, grid, ring, and line networks

are 1.52×, 2.75×, 3.31e+01×, and 3.26e+03× of that in

the proposed QMSN, respectively. Next, we use the remote

gate order of a real-world quantum circuit from [47]. We first

allocate the 16 logical qubits across 16 QPUs, where multiple

physical qubits within each QPU represent a single logical

qubit for quantum error correction. The remote CNOT gates

are then generated according to their order in the quantum

circuit. Figure 15 shows that, in this scenario, the average

time for SEG in the Beneš, grid, ring, and line networks are

1.53×, 3.76×, 2.50e+01×, and 3.33e+03× of that in QMSN,

respectively.

Subsequently, we investigate the performance of the topolo-

gies with 32 QPUs, each hosting 4 qubits, under varying pp.

Other parameters are the same as those used for Figure 14.

Figure 16 demonstrates that the proposed switching network

consistently outperforms the baselines across all considered

pp values. Note that pp are typically less than 0.05 [40]. Due

to the significantly higher average time for SEG in the ring

and line networks compared to other networks, our subsequent

discussions will focus on comparing QMSN with the Beneš

network and the static grid network.

Next, we evaluate the time for SEG in a system

with 16 QPUs across varying photon loss probabilities in the

fiber, i.e., pf . Other parameters remain the same as those

used for Figure 14. A typical fiber loss value for 422 nm

photons emitted by Ba+ ions is 30 dB/km [16]. For fiber

lengths within the range of 5 m to 10 m, pf varies between

0.933 and 0.966. As depicted in Figure 17, the proposed

switching network demonstrates a lower average time for SEG

compared to the Beneš and grid networks. Then, we investigate

the performance under different switch insertion losses, while

keeping all other parameters consistent with those utilized for

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

1512 IEEE TRANSACTIONS ON NETWORKING, VOL. 33, NO. 4, AUGUST 2025

Figure 14. As shown in Figure 18, the time required for SEG

in the switching network is consistently less than that in the

static networks for all examined pi settings. Since there is

no switch in the static networks, the average time for SEG

of the grid network remains constant. According to [48], the

insertion loss for each MZI binary switch can be reduced to

less than 1 dB. The insertion loss can be further reduced

by refining the fabrication, optimizing the PIC design, and

utilizing resonant structures [31]. When the insertion loss is

1 dB, pi is around 0.8, resulting in the average time for

SEG of the grid network being 4.6 times that of QMSN.

Next, we evaluate the scalability of the proposed QMSN using

different N , where N represents the number of QPUs. All

other parameters are the same with those utilized for Figure 14.

As shown in Figure 19, as N increases, the average time of

the static grid network increases exponentially faster than that

of the switching networks.

The time required for SEG in the switching network is con-

sistently less than that in the static network topologies for all

the examined settings. Under certain settings, the grid network

may exhibit competitive performance, e.g., in Figure 16, when

pp = 0.075, the time for SEG in the switching network is

only 14% less than that of the grid network. This can be

attributed to two reasons. Firstly, the parameter settings are

atypical. For instance, parameter pp is typically smaller 0.05.

Secondly, the comparison is not fair as QPUs in the grid

network have up to four communication qubits, while those

in the switching network are limited to just one. Should the

QPUs within the switching network be enhanced to support

multiple communication qubits, a consequent reduction in the

time for SEG could be anticipated.

VII. CONCLUSION

Distributed quantum computing is a promising paradigm

to increase the scale of quantum computing systems. In this

paper, we focus on designing networks to interconnect trapped

ion-based QPUs for the implementation of efficient DQC.

We show that static networks suffer from high system com-

plexity and deliver poor performance due to the low photon

collection and coupling efficiency experienced in real-world

systems. Therefore, we design a novel multistage switching

network dedicated to DQC. We prove that the proposed net-

work is nonblocking and design an efficient routing algorithm

for the proposed network. In addition, we conducted exten-

sive real-world data-driven simulations. Results show that the

proposed switching network significantly outperforms popular

baselines.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[2] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, “Quan-
tum approximate optimization algorithm: Performance, mechanism, and
implementation on near-term devices,” Phys. Rev. X, vol. 10, no. 2,
Jun. 2020, Art. no. 021067.

[3] H.-S. Zhong et al., “Phase-programmable Gaussian boson sampling
using stimulated squeezed light,” Phys. Rev. Lett., vol. 127, no. 18,
Oct. 2021, Art. no. 180502.

[4] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum
computing for drug discovery,” IBM J. Res. Develop., vol. 62, no. 6,
pp. 1–6, Nov. 2018.

[5] A. Morvan et al., “Phase transition in random circuit sampling,” 2023,
arXiv:2304.11119.

[6] IBM Newsroom, “IBM unveils 400 qubit-plus quantum
processor and next-generation IBM quantum system two,”
Nov. 2022. Accessed: Feb. 23, 2025. [Online]. Available:
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-
Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two

[7] M. Mosca, “Cybersecurity in an era with quantum computers: Will we
be ready?” IEEE Secur. Privacy, vol. 16, no. 5, pp. 38–41, Sep. 2018.

[8] Z. Yang, M. Zolanvari, and R. Jain, “A survey of important issues
in quantum computing and communications,” IEEE Commun. Surveys

Tuts., vol. 25, no. 2, pp. 1059–1094, 2nd Quart., 2023.

[9] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-
ion quantum computing: Progress and challenges,” Appl. Phys. Rev.,
vol. 6, no. 2, Jun. 2019, Art. no. 021314.

[10] M. Caleffi et al., “Distributed quantum computing: A survey,” 2022,
arXiv:2212.10609.

[11] Y. Mao, Y. Liu, and Y. Yang, “Qubit allocation for distributed quantum
computing,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
May 2023, pp. 1–10.

[12] P. C. Humphreys et al., “Deterministic delivery of remote entanglement
on a quantum network,” Nature, vol. 558, no. 7709, pp. 268–273, 2018.

[13] J. P. Covey, H. Weinfurter, and H. Bernien, “Quantum networks with
neutral atom processing nodes,” 2023, arXiv:2304.02088.

[14] N. Moll et al., “Quantum optimization using variational algorithms
on near-term quantum devices,” Quantum Sci. Technol., vol. 3, no. 3,
Jul. 2018, Art. no. 030503.

[15] T. P. Harty et al., “High-fidelity preparation, gates, memory, and readout
of a trapped-ion quantum bit,” Phys. Rev. Lett., vol. 113, no. 22,
Nov. 2014, Art. no. 220501.

[16] L. J. Stephenson et al., “High-rate, high-fidelity entanglement of qubits
across an elementary quantum network,” Phys. Rev. Lett., vol. 124,
no. 11, Mar. 2020, Art. no. 110501.

[17] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini,
and G. Bianchi, “Quantum internet: Networking challenges in dis-
tributed quantum computing,” IEEE Netw., vol. 34, no. 1, pp. 137–143,
Jan. 2020.

[18] D. Cuomo et al., “Optimized compiler for distributed quantum comput-
ing,” ACM Trans. Quantum Comput., vol. 4, no. 2, pp. 1–29, Jun. 2023.

[19] S. Krastanov et al., “Optically heralded entanglement of superconducting
systems in quantum networks,” Phys. Rev. Lett., vol. 127, no. 4,
Jul. 2021, Art. no. 040503.

[20] J. Hannegan, J. D. Siverns, J. Cassell, and Q. Quraishi, “Improving
entanglement generation rates in trapped-ion quantum networks using
nondestructive photon measurement and storage,” Phys. Rev. A, Gen.

Phys., vol. 103, no. 5, May 2021, Art. no. 052433.

[21] Y. Zhao, G. Zhao, and C. Qiao, “E2E fidelity aware routing and purifica-
tion for throughput maximization in quantum networks,” in Proc. IEEE

Int. Conf. Comput. Commun. (INFOCOM), Oct. 2022, pp. 480–489.

[22] A. Farahbakhsh and C. Feng, “Opportunistic routing in quantum net-
works,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2022,
pp. 490–499.

[23] S. Shi and C. Qian, “Concurrent entanglement routing for quantum
networks: Model and designs,” in Proc. Annu. Conf. ACM Special Inter-

est Group Data Commun. Appl., Technol., Archit., Protocols Comput.

Commun., 2020, pp. 62–75.

[24] M. Pant et al., “Routing entanglement in the quantum internet,” NPJ

Quantum Inf., vol. 5, no. 1, p. 25, Mar. 2019.

[25] S. Pouryousef, N. K. Panigrahy, and D. Towsley, “A quan-
tum overlay network for efficient entanglement distribution,” 2022,
arXiv:2212.01694.

[26] Y. Mao, Y. Liu, and Y. Yang, “Probability-aware qubit-to-processor
mapping in distributed quantum computing,” in Proc. 1st Workshop

Quantum Netw. Distrib. Quantum Comput. New York, NY, USA:
Association for Computing Machinery, Sep. 2023, pp. 51–56, doi:
10.1145/3610251.3610554.

[27] V. E. Beneš, “Heuristic remarks and mathematical problems regarding
the theory of connecting systems,” Bell Syst. Tech. J., vol. 41, no. 4,
pp. 1201–1247, Jul. 1962.

[28] D. H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, no. 12, pp. 1145–1155, Dec. 1975.

[29] L. R. Goke and G. J. Lipovski, “Banyan networks for partitioning
multiprocessor systems,” in Proc. 1st Annu. Symp. Comput. Archit.,
1973, pp. 21–28.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: NONBLOCKING MULTISTAGE SWITCHING NETWORK FOR DISTRIBUTED QUANTUM COMPUTING 1513

[30] L.-M. Duan and C. Monroe, “Colloquium: Quantum networks with
trapped ions,” Rev. Modern Phys., vol. 82, no. 2, pp. 1209–1224,
Apr. 2010.

[31] M. Dong et al., “Programmable photonic integrated meshes for modular
generation of optical entanglement links,” Npj Quantum Inf., vol. 9,
no. 1, p. 42, Apr. 2023.

[32] S. Bartolucci et al., “Switch networks for photonic fusion-based quantum
computing,” 2021, arXiv:2109.13760.

[33] S. Niu and A. Todri-Sanial, “Multi-programming cross platform bench-
marking for quantum computing hardware,” 2022, arXiv:2206.03144.

[34] A. H. Burrell, D. J. Szwer, S. C. Webster, and D. M. Lucas, “Scalable
simultaneous multiqubit readout with 99.99% single-shot fidelity,” Phys.

Rev. A, Gen. Phys., vol. 81, no. 4, Apr. 2010, Art. no. 040302.
[35] J. P. Gaebler et al., “High-fidelity universal gate set for 9Be+ ion qubits,”

Phys. Rev. Lett., vol. 117, no. 6, 2016, Art. no. 060505.
[36] A. Barenco et al., “Elementary gates for quantum computation,” Phys.

Rev. A, Gen. Phys., vol. 52, no. 5, p. 3457, 1995.
[37] S. Blinov, B. Wu, and C. Monroe, “Comparison of cloud-based ion trap

and superconducting quantum computer architectures,” AVS Quantum

Sci., vol. 3, no. 3, Sep. 2021, Art. no. 033801.
[38] S. Sheldon, “Quantum computing with noisy qubits,” in Proc. Frontiers

Eng., Rep. Leading-Edge Eng. Symp. Lexington, MA, USA, National
Academies Press, 2019, pp. 13–17.

[39] G. Shu, N. Kurz, M. R. Dietrich, and B. B. Blinov, “Efficient fluores-
cence collection from trapped ions with an integrated spherical mirror,”
Phys. Rev. A, Gen. Phys., vol. 81, no. 4, Apr. 2010, Art. no. 042321.

[40] C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, and T. D. Ladd,
“Design and analysis of communication protocols for quantum repeater
networks,” New J. Phys., vol. 18, no. 8, Aug. 2016, Art. no. 083015.

[41] A. VanDevender, Y. Colombe, J. Amini, D. Leibfried, and D. Wineland,
“Efficient fiber optic detection of trapped ion fluorescence,” Phys. Rev.

Lett., vol. 105, no. 2, Jul. 2010, Art. no. 023001.
[42] W. Dai, A. Rinaldi, and D. Towsley, “Entanglement swapping in

quantum switches: Protocol design and stability analysis,” 2021,
arXiv:2110.04116.

[43] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. Cambridge, U.K.: Cambridge Univ. Press, 2010.
[44] P. Drmota et al., “Robust quantum memory in a trapped-ion quantum net-

work node,” Phys. Rev. Lett., vol. 130, no. 9, Mar. 2023, Art. no. 090803.
[45] P. Gerbert and F. Rueß, “The next decade in quantum computing and

how to play,” Boston Consulting Group, Oct. 2018. Accessed: Feb. 23,
2025. [Online]. Available: https://bcg.com/publications/2018/next-
decade-quantum-computing-how-play

[46] Various Authors. (2023). Qiskit Textbook, Quantum Fourier Transform.
Github. [Online]. Available: https://github.com/Qiskit/textbook

[47] L. Burgholzer. (Jun. 2023). MQT QMAP—A Tool for Quantum

Circuit Compilation. Accessed: Jul. 30, 2023. [Online]. Available:
https://github.com/cda-tum/mqt-qmap

[48] K. F. Lee and G. S. Kanter, “Low-loss high-speed C-band fiber-optic
switch suitable for quantum signals,” IEEE Photon. Technol. Lett.,
vol. 31, no. 9, pp. 705–708, May 1, 2019.

Yu Liu received the B.Eng. degree in telecommu-
nication engineering from Xidian University, Xi’an,
China, and the Ph.D. degree in computer engineering
from Stony Brook University, Stony Brook, NY,
USA. He is currently an Assistant Professor with
the Department of Computing, The Hong Kong
Polytechnic University, Hong Kong. His research
interests encompass edge computing and networks,
low-earth orbit satellite networks, online algorithm
design, network function virtualization, and dis-
tributed quantum computing.

Yingling Mao received the B.S. degree in mathemat-
ics and applied mathematics from Zhiyuan College,
Shanghai Jiao Tong University, Shanghai, China,
in 2018. She is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, Stony Brook University. Her research
interests include network function virtualization,
software-defined networks, cloud computing, and
distributed quantum computing.

Xu Xu received the B.S. degree in physics from
Nanjing University, Nanjing, China, in 2023. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Electrical and Computer Engineering, Stony
Brook University. His research interests include
quantum networks, distributed quantum computing,
and quantum communication.

Xiaojun Shang (Member, IEEE) received the
B.Eng. degree in information science and electronic
engineering from Zhejiang University, the M.S.
degree in electronic engineering from Columbia
University, and the Ph.D. degree in computer engi-
neering from Stony Brook University. He is currently
an Assistant Professor with the Department of Com-
puter Science and Engineering, The University of
Texas, Arlington. His research interests include the
areas of mobile edge computing, software defined
networking, and quantum computing.

Fan Ye (Fellow, IEEE) received the B.E. and M.S.
degrees from Tsinghua University, Beijing, China,
and the Ph.D. degree from the Computer Science
Department, University of California at Los Angeles,
Los Angeles, CA, USA. He is a Professor with
the ECE Department, Stony Brook University, Stony
Brook, NY, USA. He has published more than
60 peer-reviewed papers, that have received more
than 8000 citations according to Google Scholar.
He has 21 granted/pending U.S. and international
patents/applications. His current research interests

include mobile sensing platforms, systems and applications, the Internet of
Things, indoor location sensing, wireless, and sensor networks. He received
the IBM Research Division Award, five Invention Achievement Plateau
Awards, and the Best Paper Award for International Conference on Parallel
Computing in 2008. He was the Co-Chair of the Mobile Computing Profes-
sional Interests Community, IBM Watson, for two years.

Yuanyuan Yang (Life Fellow, IEEE) received
the B.Eng. and M.S. degrees in computer sci-
ence and engineering from Tsinghua University,
Beijing, China, and the M.S.E. and Ph.D. degrees
in computer science from Johns Hopkins University,
Baltimore, MD, USA. She is a SUNY Distinguished
Professor of computer engineering and computer
science with Stony Brook University, NY, USA.
She is on leave from the National Science Founda-
tion, as the Program Director. Her research interests
include edge computing, data center networks, cloud

computing, and wireless networks. She has published more than 460 papers
in major journals and refereed conference proceedings and holds seven U.S.
patents in these areas. She has served as the general chair, the program
chair, and the vice chair for several major conferences and a program
committee member for several conferences. She is the Editor-in-Chief of
IEEE TRANSACTIONS ON CLOUD COMPUTING and an Associate Editor
of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS and
ACM Computing Surveys. She has served as the Associate Editor-in-Chief
for IEEE TRANSACTIONS ON CLOUD COMPUTING, the Associate Editor-in-
Chief and an Associated Editor for IEEE TRANSACTIONS ON COMPUTERS,
and an Associate Editor for IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on August 22,2025 at 15:58:13 UTC from IEEE Xplore. Restrictions apply.

