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Abstract—Ensuring fair predictions across many distinct sub-
populations in the training data can be prohibitive for large
models. Recently, simple linear last layer retraining strategies, in
combination with data augmentation methods such as upweight-
ing, downsampling and mixup, have been shown to achieve state-
of-the-art performance for worst-group accuracy, which quanti-
fies accuracy for the least prevalent subpopulation. For linear
last layer retraining and the abovementioned augmentations, we
present the optimal worst-group accuracy when modeling the
distribution of the latent representations (input to the last layer)
as Gaussian for each subpopulation. We evaluate and verify our
results for both synthetic and large publicly available datasets.

I. INTRODUCTION

Last layer retraining (LLR) has emerged as a popular
method for leveraging representations from large pretrained
neural networks and fine-tuning them to locally available data.
These methods are significantly inexpensive computationally
relative to training the full model, and thus, allow transferring
a model to new domains, predicting on retraining data with
distributional shifts relative to the original, and optimizing for
a different metric than that used by the original model.

In general, training data includes samples from different
subpopulations [1]. Assuring fair inferences across all sub-
populations remains an important problem in modern ma-
chine learning. A metric which has been recently evaluated
with good success for assuring fair decisions is worst-group
accuracy (WGA), a worst-case metric for any prior across
subpopulations. Existing methods which optimize for WGA
utilize strongly regularized models along with data augmenta-
tion methods such as downsampling 2], [3], upweighting [4],
[5], and mixing [6], [7] (Section II presents precise definitions
of these methods). These augmentation techniques help to ac-
count for varying proportions of individual subpopulations and
enable the final model to predict well on every subpopulation.

It is difficult to obtain theoretical performance guaran-
tees for large models. However, for a fixed representation-
extracting model, one can focus on evaluating LLR techniques
that tune a linear last layer using (possibly augmented) repre-
sentations from the pretrained model. We study this setting
and model the representations of the subpopulations using
tractable distributions; this allows us to directly compare
different data augmentation techniques in terms of worst group
error (WGE = 1 — WGA) and finite sample performance.
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To this end, analogous to [6], we model individual sub-
populations as distinct Gaussian distributions. Our primary
contribution is a straightforward comparison of the three most
common data augmentation techniques for WGE: downsam-
pling, upweighting, and mixing. We evaluate the performance
of the abovementioned augmentation methods in three ways
using: (i) the learned linear models, (ii) the resulting WGE,
and (iii) the sample complexity in the setting of a finite number
of training examples. Our key contributions are in providing:

o A distribution-free equivalence of the risk minimization
problem, and thus the optimal models and performance, for
upweighting and downsampling (Theorem 1). To the best of
our knowledge, this is a new result.

« Statistical analysis of the WGE for each data augmentation
method under Gaussian subpopulations (Theorem 2).

o Sample complexity of each method (Theorem 3).

o Empirical results that match theory for Gaussian mixtures
and the CMNIST, CelebA and Waterbirds datasets.

Our work is distinct from that in [6] as follows: (i) explicit
incorporation of the minority group priors; (ii) providing
precise WGE guarantees (in contrast to bounds in [6]); and
(iii) including downsampling and upweighting as data aug-
mentation methods (the focus in [6] is primarily on mixing
and its variants) for which we also provide comparative model
and error guarantees beyond the Gaussian setting.

II. PROBLEM SETUP

We consider the supervised classification setting and assume
that the LLR methods have access to a representation of the
input/ambient (original high-dimensional data such as images
etc.) data, the ground-truth label, as well as the domain
annotation. Taken together, the label and domain combine
to define the group annotation for any sample. For ease of
analysis, we assume binary labels (belonging to {0,1}) and
binary domains (belonging to {S,7'}). More formally, the
training dataset is a collection of i.i.d. tuples of the random
variables (X,,Y,D) ~ Px,yp, where X, € X, is the
ambient high-dimensional sample, Y € Y = {0,1} is the
class label, and D € D = {S,T} is the domain label. Since
the focus here is on learning the linear last layer, we denote
the latent representation that acts as an input to this last layer
by X = ¢(X,) for an embedding function ¢ : X, — X C R?
such that the training dataset for LLR is (X,Y, D) ~ Px y,p.
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The tuples (Y, D) of class and domain labels partition the
examples into four different groups. Let (¥4 = P(Y =
y, D = d) for (y,d) € Y x D. We denote the linear correction
applied in the latent space of a pretrained model as fy : X —
R, which is parameterized by a linear decision boundary 6 =
(w,b) € RPT! given by

fo(z) =wTz +b. (1)

The statistically optimal linear model is obtained by minimiz-
ing the risk defined as

R(fG) = EPX,Y,D[Z(fe(X)7Y)]7 2

where / : R x Y — Ry is a loss function. We consider
four different methods to learn a classifier: (a) standard risk
minimization (SRM), (b) downsampling (DS), (c) upweighting
(UW), and (d) intra-class domain mixup (MU). In particular,
SRM involves minimizing (2) as is whereas downsampling
involves reducing the size of each group to that of the smallest
one while upweighting involves scaling the loss for each group
in proportion to the inverse of the prior. Finally, intra-class
domain mixup takes an arbitrary convex combination of two
randomly sampled representations from the same class but
from different domains.
A general formulation for obtaining the optimal fg« is:

0" = argminEPX,Y,D[g(fb(X)vY)C(K D)]v 3
6

where ¢(y,d) = 1, (y,d) € Y x D, for SRM, DS, and MU,
but c(y,d) = 1/(47@D) for UW. Moreover, the priors on the
groups remain the same as the true statistics, and therefore
SRM, for all methods except DS where ad) =1 /4. Finally,
for MU, the representation X is now X = AX; + (1 — A) X5
where X1 ~ PX\Y:y,D:Sa X2 ~ PX\Y:y,D:Ta Yy € y, and
the mixup parameter A ~ Beta(c, «v).

We desire a model that makes fair decisions across groups,
and therefore, we evaluate worst-group error, i.e., the maxi-
mum error among all groups, defined for a model fy as

E@D(fy), (4)

max

WGE =
(fg) (y,d)eYxD

where E(¥:4) (fo) denotes the per-group misclassification error
for (y,d) € Y x D. Specifically, for (y,d) € Y x D:

E@D(f) = P(1{fo(X) > 1/2} Y|V = y. D = d) (5)
where the threshold 1/2 is chosen to match Y € {0, 1}.

IIT. MAIN RESULTS

Our first result observes that, for any chosen loss, UW and
DS yield the same statistically expected predictor. We collate
the proofs in the Appendix of an extended version [8] and
outline a proof sketch here.

Theorem 1. For any given Px y,p and loss {, the objectives
in (3) when modified appropriately for DS and UW are the
same. Therefore, if a minimizer exists for one of them, then
the minimizer of the other is the same, i.e., 0} = 05y
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Fig. 1. A¢ and Ap are shown as line segments between group means

overlaid on data sampled from Gaussian mixtures satisfying Assumptions A1l
to A4.

Proof sketch. The key intuition here is that the upweighting
factor is proportional to the inverse of the priors on each
group. Thus, when the expected loss is decomposed into an
expectation over groups, the priors from the expected loss
cancel and we recover the downsampled problem. A detailed
proof can be found in [8, Appendix A].

Remark 1. Although we are focused on the binary class
and domain label setting, Theorem 1 holds for any number
of classes and domains by replacing 7@ = 1/ng and
c(y,d) = 1/(ngn@D) for (y,d) € ¥ x D, where n, is the
number of groups. To the best of our knowledge, such an
analysis, albeit simple, has not been presented before.

While Theorem 1 holds for any general data distribution, to
obtain more refined guarantees on WGE and model parameters
for different augmentation methods considered here, we make
the following tractable assumptions on the dataset. Such
assumptions have recently been introduced for tractability in
the analysis of out-of-distribution robustness (e.g., [6]).

Assumption Al. X € X is distributed according to the
following mixture of Gaussians:

X|(Y =y, D =d) ~ N(p®?,%), (6)

for (y,d) € Y x D, where u¥? :=E[X|Y =y, D =d] € R?
and 3 € RP*P is symmetric positive definite. Additionally, we
place priors 7(¥:®, (y,d) € Y x D, on each group and priors
7W == P(Y =y), y €Y, on each class.

Assumption A2. The minority groups have equal priors, i.e.,
for my < i,

70T) — (1,S) _ 7o and LT — 2(0,8) 1/2 — 7.
Also, the class priors are equal, i.e., 70 = 7z(1) = 1/2.

Assumption A3. The difference in means between classes
within a domain Ap = pt49 — ;,(0:4) jg constant for d € D.
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Remark 2. Assumption A3 also implies that the difference
in means between domains within the same class Ao =
pS) — 1) s also constant for each y € ). We see
this by noting that each group mean makes up the vertex of
a parallelogram, as shown in Figure 1, where Ap and Ag
are shown on samples drawn from a distribution satisfying
Assumptions Al to A3.

Proposition 1. Let (({,y) = ||y — 9|3 for j e R and y € Y
be the mean-squared error (MSE) loss. Under Assumptions Al
to A3, the minimizers in (3) for DS and UW are the same, i.e.,

QBS = gz}Wa
1 1 1 -t
Whs = Wiy = 1 (E + ZACAE + 4ADA;S) Ap (1)

1

* * 1 *
bps = byw = 5" §(wDS)T (M(O’T) + M(l’s)> )]

and thus, WGE(fox ) = WGE(fo: ).

Proof sketch. The proof of parameter equality follows directly
from Theorem 1. To obtain the specific forms of the param-
eters, we derive the optimal parameters in (3) for the given /
and appropriate values of c(y, d), (y,d) € {0,1} x {S, T}, for
DS and UW. We then use Assumption Al to obtain the WGE
in terms of Gaussian CDFs (as detailed in [8, Appendix B]).

Note that if £(g,y) = |ly — 9]|3 + M|w||; for § € R, y € Y,
and a regularizer A > 0, then (3) simplifies to the deep feature
reweighting (DFR) optimization, an ¢;-regularized DS method
that achieves state of the art WGA for many datasets [2].

Corollary 1. Let {(§,y) = |ly — 913 + Mwl|1 for §j € R,
y € Y, and \ > 0. Under Assumptions Al to A3,the minimizer
in (3) for DFR is the same as that for UW, i.e.,

* _n*
GDFR - HUW'

Thus,
WGE(fox ) = WGE(fo= ).

DFR uw

The proof of Corollary 1 follows from Theorem 1 and
Proposition 1.

As derived in the proof of Proposition 1, the WGEs result
from computing Gaussian CDFs at the optimal model for each
method. However, while Proposition 1 clarifies the statistical
behavior of DS and UW, comparing the resulting analytical
expressions for WGEs for each of the four methods requires
finer assumptions. To this end, we make the following orthog-
onality assumption.

Assumption Ad4. Ap and Ac are orthogonal w.r.t. the ¥~
inner product, i.e., AgE’lAD =0.

Theorem 2. Let ((3,y) = |ly —4ll3, 9 € R, y € V. For
Assumptions Al to A3, the optimal SRM and MU models are:

1 1o\ ' s
Wi = 7 (2 + 2mo(1 — 2m0) Ac AL + 4AAT> A, (9)

where A == p(M) — 40 = Ap — (1 — 4m)Ac, and

bsrm = 5 E(WSRM)T(M(O’T) + pB9y, (10)
1 1 -t
Wi = 7 <2E[A2]z +Var(M)ACAL + 1 ApAE ) Ap,
11
. L 1 . 7, 01, (1S o
byu = 5 Q(WMU) (5 4 ). (12)

Additionally, under Assumption A4 and for mg < 1/4,
WGE(foy,,) > WGE(fo;.) = WGE(fo;,,) = WGE(fo;,)-

Proof sketch. The proof follows similarly to that of Proposi-
tion 1 using the appropriate values of c(y, d), (y,d) € {0,1} x
{S, T}, for SRM and MU. We employ a derivative analysis to
show WGE(fpz, ) > WGE(fps ) and then show the remaining
equalities. See Figure 2 for a plot showing the optimal planes
for each method for data satisfying Assumptions Al to A4.
See [8, Appendix C] for a detailed proof.

In practice, we only have access to a finite number of
samples. In this setting, we can approximate the risk in (2)
by the empirical risk, defined for a given dataset of n samples
(zi,9i,d;)) € X xY xD, i =1,...,n, drawn ii.d. from
Pxy p and a loss ¢ as

N 1 <

R(fg) = —> 0 fol:) 11)- (13)
i=1

We consider the same four methods as before where SRM

is now just the empirical risk minimization (ERM). The

empirically optimal f; = @’z + b is obtained from

¢ = arg min L Zg(fe(f/z‘)a yi)e(yi, di), (14)
L
where again c(y,d) = 1, (y,d) € Y x D for ERM, DS, and
MU, but ¢(y,d) = n/(4n¥D) for UW with n(¥9) being the
number of samples in the group (y,d). In the case of DS,
rather than using n samples, we use 4ny, = ming, q nvd)
samples. Finally, for MU, we use x; = Az, + (1 — Aj)a,
where 7; and i, are uniformly chosen from the indices of
samples in the groups (y;, G) and (y;, R), respectively, and
the mixup parameter A\; ~ Beta(c, «). The following result
compares the sample complexity of each of the four methods.
We use the notation O, (-) for the stochastic boundedness of
a sequence of random variables [9]. More formally, for a
sequence of random variables X, and a sequence of positive
scalars an, || X, |l2 = Op(ay) if for any € > 0 there exist finite
M >0 and N > 0 such that

P(|Xn/anlls < M)>1—¢, foralln> N. (15)

Theorem 3. Let (i), y) = ||y — 9|3 9 € R, y € ). Consider
n iLid. samples generated according to (6), with N, being
the number of samples in the minority groups. Then

105k — Orrull3 = 1103w — Ouwll3 = Op(p/n),

1655 = bpslIz = Op(p/mmin),
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Fig. 2. The optimal prediction planes for DS, UW, MU, and SRM are shown
overlaid on data sampled from Gaussian mixtures satisfying Assumptions A1l
to A4. The SRM model largely ignores the minority group for each class.

and .
100 — GMUHS = Op(plog(n)/n + p/Mumin).-

Proof sketch. The sample complexity bound for ERM follows
from a standard application of the weak law of large numbers
[10]. Furthermore, the bound for DS is obtained by setting n =
4Anmin While that for UW is a straightforward generalization of
that for ERM to the weighted least squares setting. The bound
for MU is from [6].

IV. EXPERIMENTAL RESULTS

We present numerical results for both synthetic and real-
world data for all the augmentation techniques and ERM.

A. Orthogonal Latent Gaussians

We first examine a numerical analog to the mixture Gaussian
model given in Assumptions Al to A4 to empirically study
the convergence of DS, UW, and MU methods in terms of
MSE from the corresponding statistical solutions. We generate
n data points and calculate the empirical weights for each
method by performing the corresponding data augmentation
and then computing the sample variance (of X') and covariance
(of X,Y) matrices used in the closed-form solution to (14)
with £(9,y) = |ly — 9|13, € R, y € V. This training step
is repeated 10 times to account for randomness introduced
by DS and MU. Furthermore, we average over 10 runs (data
generation and training) for different random seeds to account
for randomness in the training data. We average over these
runs when reporting statistics.

We generate group-conditional Gaussian data with the fol-
lowing parameters satisfying Assumptions Al to A4:

T T

Ac=(0 g) Ap=(-1 —%)
5 _ (002 002 1
=1.002 .003 0= 61

In Figure 3, we compare the WGE of each training method
as a function of the number of samples. We see that each of
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Fig. 3. WGE for UW, DS, MU and ERM for the data in Figure 2. As the
number of samples n increases, UW, DS, and MU perform better than ERM.
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Fig. 4. Zoomed in version of Figure 3 where we see the differences between
data augmentation methods, especially for small n.

the data augmentation methods outperforms (non-augmented
vanilla) ERM, and they all converge to the same WGE.
The equivalence of these methods for large n is implied by
Theorem 2. However, we see interesting behavior at small n
in Figure 4: DS achieves worse WGE than UW or MU at
very small n. This may be explained by the fact that DS often
throws away data while MU and UW keep all available data.
Therefore, DS may not be well-suited to limited data regimes.

We next compare the empirical weights and bias obtained by
each method to the corresponding statistically optimal weights
and bias as calculated in (7), (8) for DS and UW, in (9), (10),
for SRM, and in (11), (12) for MU. We report the MSE as a
function of n in Figure 5 and compare our results to the bounds
found in Theorem 3. We see that each method converges at a
similar rate, suggesting that tighter sample complexity analysis
may be possible.

Finally we demonstrate that each of the data augmentation
methods is robust to the prevalence of the minority group. For
a fixed n = 10,000, we train each method with varying .
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Fig. 5. Mean squared error of the estimated weights from data as compared
to the expected weights. We see that each method converges quickly to the
expected weights as a function of n.
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Fig. 6. Worst-group error on latent Gaussian subpopulations for each data
augmentation technique as a function of mp, the prevalence of the minority
groups. We see that as mg approaches 1/4 (a balanced dataset), the WGE of
vanilla ERM decreases to match that of the data augmented methods.

We see in Figure 6 that the data augmentation methods are
robust to even very small minority groups. We additionally
note that the performance of ERM approaches that of the data
augmented methods as my — 1/4, i.e., the prior for a group-
balanced dataset.

B. Publicly Available Large Datasets

We next consider the CMNIST [11], CelebA [12], and
Waterbirds [13] datasets, which are oft-used in LLR [1].
CMINST [11] is a variant of the MNIST handwritten digit
dataset in which digits 0-4 are labeled y = 0 and digits 5-9
are labeled y = 1. The domain is given by color: 90% of digits
labeled y = 0 are colored green and 10% are colored red and
vice-versa for those labeled y = 1.

CelebA [12] is a dataset of celebrity faces. We predict hair
color as either blonde (y = 1) or non-blonde (y = 0), while

TABLE I
WGE (LOWER IS BETTER) MEAN 4+ STDEV
(AVERAGED OVER 10 RUNS)

CMNIST CelebA Waterbirds
DS 70+ 04 193+£31 99+08
UwW 54+00 21.7+£00 10.0+0.0
MU 62+04 229+15 10.0+0.7
ERM 9.1 +£00 567400 145400

the domain label is either male (d = 1) or female (d = 0).
There is a naturally induced correlation between hair color and
gender in the dataset due to the prevalence of blonde females.

Waterbirds [13] is a semi-synthetic image dataset comprised
of land birds (y = 1) or sea birds (y = 0) on land (d = 1)
or sea backgrounds (d = 0). There is a correlation between
background and bird type in the training data (sea birds being
more present with sea backgrounds) but this correlation is
absent in the group- and class-balanced validation data.

Each dataset is broken into training, validation, and test data.
The training data is used to train a large model (ResNet-50
architecture) from which we extract the embedding function
@(-) used to obtain the latent representations. We view the
validation data as a retraining dataset whose representations
are used to retrain the last layer of the pretrained model.

In practice, state-of-the-art methods do not employ the MSE
loss. Instead, common methods such as DFR [2] use highly
regularized losses such as log loss with ¢; penalty. We proceed
following this example, and train logistic models with strong
¢ regularization.

For each of these datasets, we see in Table I that all of the
data augmentation methods perform similarly and outperform
ERM alone. This suggests that the analysis provided here may
hold more generally than just on latent Gaussian subpopula-
tions. We see that UW and ERM have no variance over runs
which is due to the fact that both are deterministic methods,
whereas DS and MU introduce randomness. Additionally,
these results suggest that DS — the most common data aug-
mentation method for WGA — may not have strong advantages
over UW or MU, which have advantages in variance, though
not in computational complexity.

V. CONCLUSION

We have presented a new result that the well-known data
augmentation techniques of DS and UW have statistically
identical performance. For LLR, when the latent representa-
tions that are input to the last layer are modeled as Gaussian
mixtures, MU also achieves the same statistical worst-group
accuracy as DS and UW, all of which are better than SRM.
Our results are validated for a synthetic Gaussian mixture
dataset and appear to hold for several large publicly available
datasets. A natural extension is to obtain more refined sample
complexity, or equivalently excess risk bounds, when explicitly
accounting for the size of each group/subpopulation. An
equally compelling question to address is characterizing the
finite sample differences between UW and DS for a larger
class of distributions building upon the work in [14].
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