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Abstract

The Gap Exponential Time Hypothesis rules out FPT algorithms providing (nearly) tight inapproximability
results for a host of fundamental problems in parameterized complexity. One of the downsides of working under
Gap-ETH is that the assumption is not inherently in the parameterized complexity world, and therefore one
of the main research directions is to replace Gap-ETH with weaker assumptions.

In this paper, we propose a hypothesis called the Maximum Span Hypothesis (MSH), which roughly asserts

that given a collection of n vectors in Fpoly(k)·logn
2 such that there is a k-dimensional subspace containing 2Ω(k)

input vectors, the goal of finding poly(k) input vectors which are contained in some k-dimensional subspace
is W[1]-hard.

Assuming MSH, we obtain near optimal inapproximability ratio for the k-clique problem and polynomial
inapproximability ratio for the 2-CSP problem (on k variables and alphabet size n). Assuming a strengthening
of MSH with additional completeness guarantees, we are able to obtain near optimal inapproximability ratio
for the k-biclique problem and some constant inapproximability ratio for the Densest k-subgraph problem.
Finally, we prove that Gap-ETH implies a mild version of MSH.

We remark that even a weaker version of MSH (for example, that the task of finding k2 input vectors
which are contained in some k-dimensional subspace, even when we are promised that there is a k-dimensional
subspace containing k5 input vectors, is W[1]-hard) implies improved inapproximability results for the above
problems.

∗Rutgers University
†New York University

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited3696

D
ow

nl
oa

de
d 

08
/3

1/
25

 to
 2

4.
90

.1
07

.2
16

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



1 Introduction

Approximation and Fixed Parameter Tractability are arguably the two most popular ways to cope with NP-
hardness of problems. Thus, Hardness of Approximation and Parameterized Complexity complement the study
of approximation algorithms and FPT algorithms respectively. These areas have received significant attention
by the Theoretical Computer Science community. This paper deals with problems arising at the intersection of
hardness of approximation and parameterized complexity.

Given any computational problem φ (typically NP-hard) and a parameter k of the problem, we say that φ is
Fixed Parameter Tractable (FPT) if there exists an algorithm that solves φ and runs in time F (k) · nc, where n
is the input size, F is some computable function, and c is an absolute constant. For example, the Vertex Cover
problem parameterized by the size of the vertex cover is in1 FPT [DF13, CFK+15]. Another popular example of
a problem in FPT is detecting if a graph has a simple path of length k (where k is the parameter of the problem)
[AYZ95].

On the other hand, there are many important optimization problems such as the k-Clique problem (for a
fixed parameter k, given as input a graph, find a clique of size k in the input) which is believed to not be in FPT.
This is formalized by the concept of the W-hierarchy [DF13, CFK+15] and the problems which are W[i]-hard, for
any i ∈ N, are believed to be not in FPT, and k-Clique is the canonical W[1]-complete problem. Thus, a natural
way to cope with this hardness is to investigate if there is some computable function T for which approximating
k-Clique to T (k) factor, is in FPT.

Beginning with the breakthrough work of Lin [Lin21], and subsequently improved in [KK22, CFLL23], we
now know that the k-Clique problem does not admit FPT approximation algorithms for any ko(1)-factor of
approximation, i.e., assuming W[1] ̸= FPT, there is no FPT-time algorithm that given an instance of k-Clique
can find a clique of size k1−o(1) (for example, of size k/polylog(k)), even when the input has a clique of size k.
However, in terms of FPT algorithms, there is no known non-trivial algorithm which clearly beats (i.e., by more
than a constant multiplicative factor) the naive solution of simply outputting a single vertex, which would be a
k factor approximation.

Is approximating k-Clique problem to any o(k) factor W[1]-hard?

Gap Exponential Time Hypothesis. Over the last decade, the area of Fine-Grained Complexity has
provided deep and refined structural insights on the precise runtime of computational problems by shedding light
on distinguishing, say, between problems where exhaustive search is essentially the best possible algorithm, and
those that have improved algorithms [Wil15, Wil16, Wil18]. Some of the popular assumptions of Fine-Grained
Complexity are the Strong Exponential Time Hypothesis (SETH) [IP01, IPZ01], the Exponential Time Hypothesis
(ETH) [IP01, IPZ01], and the Gap Exponential Time Hypothesis (Gap-ETH) [Din16, MR16]. Informally speaking,
Gap-ETH asserts that 3-SAT on n variables and O(n) clauses cannot be approximated to (1 − δ) factor in 2o(n)

time for some tiny constant δ > 0 (see Section 2.1 for a formal definition).
In fact, the answers to many of the open questions that will be raised in this paper are already completely

known if one assumes Gap-ETH instead of W[1] ̸= FPT [CCK+20] (including the question above about the
approximability of the k-Clique problem). Then again, while Gap-ETH may be plausible, it is a much stronger
conjecture than W[1] ̸= FPT, and in the works that use them, the hypothesis does much of the work in the
proof, as Gap-ETH itself already gives the gap in the hardness of approximation; once they have such a gap, it
suffices to design gap preserving reductions to prove other inapproximability results. This is analogous to the
NP-world, where once one inapproximability result can be shown, many others follow via relatively simple gap-
preserving reductions (see, e.g., [PY91]). However, creating a gap in the first place requires the PCP Theorem
[FGL+96, AS98, ALM+98, Din07], which involves several new technical ideas such as local checkability and
decodability of codes and proof composition. Hence, it is desirable to bypass Gap-ETH and prove inapproximability
results under a standard assumption such as W[1] ̸= FPT, that doesn’t inherently have a gap.

Another important aspect of ruling out FPT approximation algorithms based on Gap-ETH, that is particularly
close to the motivation of this paper is that of gap amplification. Typically, for many important problems, assuming
Gap-ETH, we can not only rule out non-trivial approximation factor FPT algorithms, but go further, and rule out
constant factor approximation algorithms running in time much better than exhaustive search. Case in point, for
the k-Clique problem on n vertices, by a simple reduction from Gap 3-SAT, we can rule out algorithms running

1We also denote by FPT the class of problems that are fixed parameter tractable.
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in time no(k) which can find a clique of size (1− δ) · k, whenever the graph is promised to have a clique of size k
(for some small constant δ > 0). Starting from this strong running time lower bound for the k-Clique problem, we
can trade-off the required runtime (as long as we continue to rule out FPT algorithms) to amplify the gap. This
is precisely how the authors in [CCK+20] rule out o(k) approximation FPT algorithms for the k-Clique problem
(by using standard disperser based arguments).

However, such a gap amplification technique is inherently impossible in the parameterized complexity world,
as only a fixed polynomial blowup is allowed in the input size to amplify the gap. Therefore, some of the key
techniques that lead to the resolution of the inapproximability of important problems based on Gap-ETH inherently
seem useless to prove the same inapproximability results under W[1] ̸= FPT. This leads us to the main question
addressed in this paper:

Is there a gap assumption that is both rooted in the parameterized complexity world
and at the same time yields all the inapproximability results

that we know to be true based on Gap-ETH?

Parameterized Inapproximability Hypothesis. The celebrated PCP theorem for NP [FGL+96, AS98,
ALM+98, Din07] lies at the heart of all NP-hardness of approximation results, and thus provides a framework
(along with other ingredients such as the parallel repetition theorem [Raz98] and dictatorship tests [BGS98,
H̊as01]) through which we can obtain essentially all the known inapproximability results for NP-hard problems.

Inspired by this framework, Lokshtanov et al. put forth a conjecture on constraint satisfaction problems in
the parameterized setting, called the Parameterized Inapproximability Hypothesis (PIH) [LRSZ20] which would
then provide the equivalent PCP theorem based framework for proving non-existence of FPT time approximation
algorithms for k-Clique, k-Set Cover, and many other important problems [FKLM20]. Informally speaking, PIH
asserts that approximating 2-CSPs on k variables and alphabet size n to (1 − δ) factor is W[1]-hard when
parameterized by k, for some tiny constant δ > 0 (see Section 2.1 for a formal definition). Very recently, in
a remarkable work, it has been shown that ETH implies PIH, i.e., approximating 2-CSPs on k variables and
alphabet size n to (1− δ) factor is M[1]-hard [GLR+24], adding further credibility to the hypothesis.

At first glance, PIH seems to be exactly the gap assumption that we were looking for, but alas, PIH in the
pameterized complexity world is not (known to be) as powerful as the PCP theorem in the NP-world. For instance,
PIH immediately implies that approximating k-Clique to any constant factor is W[1]-hard, but it is still open to
prove super constant factor W[1]-hardness for k-Clique directly based on PIH. In fact, Lin [Lin21], introduced
ideas precisely to prove super constant inapproximability of the k-Clique problem while circumventing proving
PIH (and these were heavily used in the works thereafter [KK22, CFLL23]).

Another downside of PIH, is that while Gap-ETH implies optimal inapproximability for k-Biclique and near
polynomial inapproximability results for Densest k-Subgraph, PIH cannot even prove constant inapproximability
for both these fundamental graph problems. To exacerbate this situation, even if one considers a strengthening
of PIH, namely that approximating 2-CSPs on k variables and alphabet size n to δ factor is W[1]-hard even when
δ = k1−o(1), then we would obtain (near)-optimal inapproximability results for 2-CSP (by definition) and Clique
(via FGLSS reduction [FGL+96]), but to the best of our knowledge, would imply nothing for k-Biclique and
Densest k-Subgraph problems.

It is worth remarking here that even in the NP-world, the Biclique and Densest k-Subgraph problems are
notoriously difficult problems to prove hardness of approximation results: the question of even ruling out PTAS
for these two problems under NP ̸=P is still wide open! That said, under strong assumptions, hardness of
approximation results for the Biclique problem [Fei02, Kho06, BGH+17, Man17b] and for the Densest k-Subgraph
problem [Fei02, Kho06, AAM+11, Man17a] are known.

Thus, while PIH is an important hypothesis whose truth would assert inapproximability results for
some important problems in parameterized complexity, it alone does not seem sufficient to prove strong
inapproximability W[1]-hardness results for many of the fundamental problems studied in the field.

1.1 Maximum Span Hypothesis (MSH) To remedy the situation, we introduce a problem, called the
Maximum Span Problem (MSP) in parameterized complexity, which is closely related to the well-studied k-
Vector Sum problem and the parameterized Minimum Distance of a Code Problem (a.k.a. Even set problem).

Elaborating, we define MSP as a gap problem, where for any two computable functions Y and N , we define

an instance of the (Y,N)-MSP through a set of n vectors X ⊆ FO(c logn)
2 and a parameter k (the constant c in
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the dimension of the space can depend on k), and the goal is to determine if either there exist some Y (k) vectors
in X that can be contained in a k-dimensional space or if every N(k) + 1 vectors in X contain k + 1 linearly
independent vectors (see Definition 3.1 for a formal definition).

MSP may be seen as the compliment of the gap version of the parameterized Minimum Distance of a Code
Problem, (or more appropriately, as the compliment of the parameterized Linear Dependent Set Problem; see
[BBE+21] for the formal definition), where given as input a set of vectors over F2 and a parameter k, the goal is
to determine if either there exist some k input vectors that are linearly dependent or if every γ · k input vectors
are linearly independent (for any γ ⩾ 1).

On the other hand, we can view (Y,N)-MSP as a generalization of the k-Vector Sum problem, where given

as input a set of n vectors X ⊆ FO(c logn)
2 and a parameter k (the constant c in the dimension of the space

can depend on k), the goal is to determine if either there exist some k vectors in X that can be contained in a
(k− 1)-dimensional space or if every k vectors in X are linearly independent vectors (see Section 2.1 for a formal
definition). Thus if we have for all i ∈ N, Y (i) := N(i)− 1 := i, then for such Y and N , (Y,N)-MSP is equivalent
to the k-Vector Sum problem. In fact, since k-Vector Sum problem is W[1]-hard [ALW13], this implies that for
aforementioned Y and N , we also have (Y,N)-MSP is W[1]-hard (See Proposition 3.1).

The main conceptual contribution of this paper is identifying that the hardness of (Y,N)-MSP would imply
strong inapproximability results for fundamental problems in parameterized complexity. To this effect, we
introduce the Maximum Span Hypothesis (MSH), which asserts that (Y,N)-MSP remains W[1]-hard even when
Y (k) = 2Ω(k) and N(k) := poly(k) (see Hypothesis 3.1 for a formal version).

We provide some evidence that MSH is plausibly true by showing that a weaker version is implied from
Gap-ETH.

Theorem 1.1. Assuming Gap-ETH, there exist some polynomial functions Y,N : N → N and a constant δ > 0
such that ∀i ∈ N, Y (i) ⩾ (1 + δ) · N(i), and no algorithm running in F (k) · poly(n) time (for any computable
function F : N → N) can decide all instances of (Y,N)-MSP on n input vectors2.

As we will see in the next subsection, MSH is sufficient to prove strong inapproximability results for k-Clique
and 2-CSP (in particular, MSH implies that PIH is true), however, in order to prove inapproximability results
for k-Biclique and Densest k-Subgraph, we need a slight strengthening of MSH. Thus, we put forth the Strong
Maximum Span Hypothesis (Strong MSH), which concerns a generalization of MSP to larger fields.

Elaborating, we first define the Maximum Totally Span Problem (MTSP), where for any two computable

functions Y and N , we define an instance of the (Y,N)-MTSP through a set of n vectors X ⊆ FO(c logn)
q (for some

prime q), a threshold value ω, and a parameter k (the constant c in the dimension of the space can depend on

k), and the goal is to determine if either there exist some Y (k) vectors X̃ ⊆ X such that X̃ is a k-dimensional

subspace and moreover every subset of X̃ of size at least ω ·Y (k) spans a k-dimensional space, or if every N(k)+1
vectors in X contain k + 1 linearly independent vectors (see Definition 7.1 for a formal definition). Then, the
Strong MSH asserts that (Y,N)-MTSP remains W[1]-hard even when Y (k) = qΩ(k) and N(k) := poly(k) (and
ω = 1/qΩ(1)).

1.2 Consequences of MSH In this subsection, we show that assuming MSH and Strong MSH, we obtain
strong inapproximability results for four fundamental problems in parameterized complexity: k-Clique, 2-CSP (on
k variables), k-Biclique, and Densest k-Subgraph. The inapproximability results for these four problems imply
numerous other hardness of approximation results for various other important problems (for example see the
survey [FKLM20]).

In a breakthrough work, Lin [Lin21] proved the W[1]-hardness result for the k-Clique problem for any constant
gap factor. This has been subsequently improved to obtainW[1]-hardness result for any ko(1) gap [KK22, CFLL23].
On the other hand, a relatively simple proof3 based on Gap-ETH implies that approximating k-Clique to any o(k)
cannot be done in FPT time. Our result based on MSH nearly matches the conclusion from Gap-ETH.

Theorem 1.2. (Inapproximability of k-Clique) Assuming MSH, there is some constant C ∈ N such that
given as input a graph G and a parameter k, it is W[1]-hard (under randomized reductions) to decide between the
following two cases:

2We prove the conditional lower bound for a colored version of MSP. Please see Theorem 8.1 for details.
3The proof in [CCK+20] is involved but has been simplified in the exposition in [FKLM20].
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Completeness: G contains a clique of size k.

Soundness: G does not contain a clique of size (log k)C .

We remark here that k1−o(1) approximation factor FPT algorithms have been recently ruled out under ETH
[LRSW23b] (building on [LRSW22]). While this result proves a very strong inapproximability result based on
a non-gap assumption, it does perform gap amplification by trading runtime, and as described earlier in this
section, such techniques are unlikely to translate to prove W[1]-hardness of approximation for these problems.

Moving our discussion to 2-CSP, Gap-ETH is not only known to imply PIH, but also implies that 2-CSPs
on k variables (the parameter) and alphabet size n cannot be approximated to k

2(log k)0.5+o(1) factor [DM18], i.e.,

assuming Gap-ETH, given a 2-CSP which admits a satisfying assignment, there is no FPT algorithm which can

find an assignment that satisfies 2(log k)0.5+o(1)

k fraction of the constraints. Note that satisfying O(1/k) fraction of
the constraints is trivial and also note that PIH is still open, i.e., we do not even know how to prove constant
W[1]-hardness of approximation for 2-CSPs. While our result based on MSH doesn’t match the conclusion from
Gap-ETH, it nevertheless provides a strong polynomial factor gap.

Theorem 1.3. (Inapproximability of 2-CSP) Assuming MSH, there is some constant C ∈ N such that given
as input a 2-CSP instance Φ on k variables and alphabet set Σ, it is W[1]-hard parameterized by k (under
randomized reductions) to decide between the following two cases:

Completeness: Φ admits a satisfying assignment.

Soundness: Every assignment to Φ satisfies at most (log k)C√
k

fraction of the constraints.

We now shift our attention to results based on Strong MSH. Even proving the W[1]-hardness of exactly
solving the k-Biclique problem was a major open problem and only resolved in the last decade [Lin18]. So it is not
surprising that there is no W[1]-hardness of approximation result known for this problem. On the other hand, we
can completely rule out o(k) approximation FPT algorithms based on Gap-ETH (again owing mainly to the gap
amplification via runtime trade-off technique that we had earlier discussed). Thus, it comes as a mild surprise,
that we are able to prove near optimal W[1]-hardness of approximation result for the k-Biclique problem based
on Strong MSH.

Theorem 1.4. (Inapproximability of k-Biclique ) Assuming Strong MSH, there is some constant C ∈ N such
that given as input a bipartite graph G and a parameter k, it is W[1]-hard (under randomized reductions) to decide
between the following two cases:

Completeness: G contains a balanced biclique of size k.

Soundness: G does not contain a balanced biclique of size (log k)C .

Our final result concerns the Densest k-Subgraph problem, a notorious problem even in the NP-world where
even a constant factor NP-hardness is not yet known. Even under the powerful Gap-ETH, only almost polynomial
factor FPT algorithms can be ruled out. Assuming Strong MSH, we are able to prove that Densest k-Subgraph is
W[1]-hard to some small constant factor.

Theorem 1.5. (Inapproximability of Densest k-Subgraph) Assuming Strong MSH, there is some constant
C > 1 such that given as input a graph G, density parameter ρ ∈ (0, 1], and a parameter k, it is W[1]-hard
(under randomized reductions) to decide between the following two cases:

Completeness: G contains a subgraph on k vertices with ρ ·
(
k
2

)
edges.

Soundness: G does not contain a subgraph on k vertices with ρ
C ·
(
k
2

)
edges.

In Table 1, we have summarized the discussion above.
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State-of-the-art Inapproximability Results for Some Parameterized Complexity Problems

Assumption k-Clique 2-CSP k-Biclique Densest k-Subgraph

W[1] ̸=FPT
ko(1) Exact4 Exact Exact

[KK22, CFLL23] Folklore [Lin18] Folklore

ETH
k

(log k)Ω(log log log k) = k1−o(1) (log k)O(1/
√
log log k) Exact Exact

[LRSW23b] [GLR+24]5 [Lin18] Folklore

Gap-ETH o(k) k1−o(1) o(k) ko(1)

[CCK+20] [DM18] [CCK+20] [CCK+20]

MSH k
(log k)Ω(1) = k1−o(1) k0.5+o(1)

− −
This paper This paper

Strong MSH k
(log k)Ω(1) = k1−o(1) k0.5+o(1) k1−o(1) Ω(1)

This paper This paper This paper This paper

Table 1: Summary of previous results ruling out FPT algorithms (under W[1] ̸= FPT, ETH, Gap-ETH) and our
results (under MSH and Strong MSH). Note that MSH is a stronger assumption than W[1] ̸= FPT, a potentially
weaker assumption than Gap-ETH, and incomparable to ETH. We have excluded listing some other important
problems, such as parameterized set cover from the table; please see Remark 1.1 for an explanation.

Remark 1.1. In Table 1, we have excluded listing the inapproximability results some important problems
such as for parameterized Set Cover [CL19, KLM19, Lin19, KN21, LRSW23a], k-max coverage [KLM19,
Man20, KLM24], parameterized Minimum Distance of a Code [BGKM18, BBE+21, BCGR23, Man20, LLL24],
parameterized Shortest Vector in a Lattice [BGKM18, BBE+21, BCGR23, Man20, LLL24], and parameterized Set
Intersection problem [Lin18, BKN21]. This is because for all the aforementioned problems, the inapproximability
results (to rule out FPT algorithms) achieved under W[1] ̸= FPT, match the hardness factors obtained under
Gap-ETH.

1.3 Merits of Maximum Span Hypothesis Here, we briefly discuss and summarize some of the merits of
MSH (and Strong MSH).

A hypothesis which is inside FPT world. First, the advantage of MSH (or Strong MSH) is that it is
inherently a parameterized complexity hypothesis (unlike Gap-ETH, ETH, or SETH). Thus, it has the additional
advantage that MSH is not only a tool but a target; Attempts to prove MSH has a direct impact on our
understanding of parameterized complexity. It is also potentially strictly weaker than Gap-ETH– we proved
Theorem 1.1 mainly to show some indications that MSH might be true, but we believe it might be possible to
show the full implication that Gap-ETH implies MSH (and leave this for future work).

Advantages over PIH. The four theorems in the previous subsection are ample evidence that MSH is much
more powerful and has broader applicability than PIH, which itself has been very useful in understanding the

4 Technically speaking, it is possible to obtain hardness of approximation factor of 1− 1
F (k)

for any increasing computable function

F by simple padding construction but we do not write down this detail as the factor that can be achieved is subconstant. Also, it
is possible to interpret the results in [Lin21, KK22, LRSW22, LRSW23b, GLR+24] as progress on understanding the W[1]-hardness
of approximating 2-CSP, although there is no succinct way to quantify this over the inapproximability factor of the simple padding

argument. Recently, in [GRS24], the authors proved a (weak) minimization version of PIH.
5In [GLR+24] the authors prove that assuming ETH, 2-CSP cannot be approximated to some constant factor in nΩ(

√
log log k)

time. We can then apply parallel repetition theorem [Raz98] Ω(
√
log log k)-fold to obtain the stated inapproximability factor against

FPT algorithms.
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landscape of FPT (in)-approximability. Additionally, the arithmetic structure in MSP makes it more suitable as
a starting problem (as compared to generic 2-CSPs), and this brings us to our next point.

An approximate version of k-Vector Sum problem. As briefly touched upon, MSP can be seen as a gap
version of k-Vector Sum, in fact one may even think of MSP as an approximate version of the counting version of
k-Vector Sum, i.e., in the completeness case, there are many k + 1 tuples of input vectors that sum to 0⃗ and in
the soundness case there are fewer such tuples, of course, we need to enforce that in both cases we are looking for
solutions in a subspace.

Another important aspect that we would like to bring to light is that all the recent results on inapproximability
of k-Clique, or even PIH, have either started from the hardness of exact k-Vector Sum or have reached it as an
intermediate step (this is true explicitly in [Lin21, LRSW22, KK22] and implicitly through Sidon sets in [CFLL23]
and Vector-Valued CSPs in [LRSW23b, LLL24]). MSH and its consequences thus highlight that proving hardness
of approximation results for k-Vector Sum is potentially a very fertile approach to pursue. These previous papers
also help place MSP and MSH in the bigger picture of the problems studied in the area. For example, it is
conceivable that the threshold graph technique might prove useful in making progress on MSH (as it proved
useful in obtaining the constant inapproximability of the Minimum Distance of a code problem, which we had
discussed earlier).

Partial Progress on Proving MSH implies Improved Inapproximability Results. One of the most
important remarks that we would like to make is that proving any hardness of approximation result for MSP (resp.
MTSP) implies hardness of approximation results for k-Clique and 2-CSP (resp. k-Biclique and Densest k-Subgraph).
In particular, Theorems 5.1, 6.1, 7.1 and 7.2 are written in a way where they translate the gap in MSP and MTSP
to the corresponding target problems. To the best of our knowledge, this is the first concrete approach to tackle
parameterized inapproximability of k-Biclique and Densest k-Subgraph (in a holistic way where we make progress
on understanding the approximability of a host of problems simultaneously).

1.4 Proof Techniques In this subsection, we provide an overview of the proof techniques involved in proving
the theorems mentioned in Section 1.2.

1.4.1 Inapproximability of k-Clique The proof of Theorem 1.2 proceeds by reducing an instance of (Y,N)-

MSP to an instance of k-Clique problem. Given a set of n vectors X ⊆ Fc logn2 and a parameter k, we first

mentally associate with it two matrices. The first matrix AX ∈ Fc logn×k2 , which we refer to as the “short hand
matrix” contains as columns the basis vectors whose span supposedly contains Y (k) vectors in X (if we are in

the completeness case). The second matrix ÃX ∈ Fc logn×2k

2 , which we refer to as the “full matrix” contain as
columns the span of the columns of AX , and in particular allegedly contains Y (k) vectors from X as its columns
(again if we are in the completeness case). Then, we build a 2-CSP Φ whose assignment together corresponds to
the entries of AX and constraints correspond to local checks via row-column consistency checks, that there is an
underlying matrix ÃX that is encoded by the assignment to its variables.

Elaborating, we first encode the vectors in X using some good code, so that every pair of vectors in X have
some constant relative Hamming distance (say 0.1). Then, we construct a 2-CSP Φ where for every i ∈ Y (k), we

have a variable vi in Φ. We identify the alphabet set with the set Flogn
2 × Fk2 × X and thus it contains Ok(n

2)
many labels. We will now explain what this alphabet set is capturing.

Imagine that the matrices AX and ÃX are not filled in. For each variable vi, uniformly and independently
at random sample a set of m rows of AX and denote this set of rows by Si (where m := logn

k ). As part of the
assignment to variable vi we assign to it the entries in the matrix AX corresponding only to the rows in Si. This
is a submatrix in Fm×k

2 which we think of as an element in Flogn
2 .

In addition, to a variable being assigned to m entire rows of AX , each variable is also assigned one column in
ÃX which corresponds to some vector in X and the column is indexed by its linear combination coefficients, i.e.,
a vector in Fk2 . Thus, each variable is assigned an element in Flogn

2 × Fk2 ×X.

Therefore, we can think of the labels to a variable vi to be of the form (α⃗i1, . . . , α⃗
i
k, β⃗

i, x⃗i), where α⃗ij ∈ Fm2
corresponds to the entries of the jth row of the m rows in Si, β⃗

i ∈ Fk2 corresponds to the index of the column of

ÃX and x⃗i corresponds to the column in that location which is also a vector in X.
The constraints of Φ simply check that:

• Every pair of variables are assigned distinct vectors in X and they are given distinct column indices in ÃX
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where they would fill.

• Every pair of variables consistently fill the rows of AX that they have in common.

• The row entries of one variable for the full matrix are consistent with the column entries of every other
variable for the short form matrix. More formally, for every pair of variables vi and vj we have that:∑

r∈[k]

β⃗i(r) · α⃗jr = x⃗i |Sj
,

i.e., the linear combination of the α⃗js as specified by the coefficient vector β⃗i is exactly equal to x⃗i when
restricted to the coordinates of Sj .

The Y (k)-Clique instance is defined as the so called FGLSS graph of Φ, where for every variable and

an assignment to that variable we have a node in the graph. A pair of nodes, say (vi, α⃗
i
1, . . . , α⃗

i
k, β⃗

i, x⃗i)

and (vj , α⃗
j
1, . . . , α⃗

j
k, β⃗

j , x⃗j) are adjacent in the graph if and only if, the assignments (α⃗i1, . . . , α⃗
i
k, β⃗

i, x⃗i) and

(α⃗j1, . . . , α⃗
j
k, β⃗

j , x⃗j) to vi and vj respectively, satisfy the constraint between those two variables.
It is easy to see that if there exist some Y (k) vectors in X that can be contained in a k-dimensional space,

then we can fill up the matrices AX and ÃX using the k-dimensional basis and the Y (k) vectors in X and from
that extract an assignment to Φ that satisfies all the constraints. Thus, we would have a clique of size Y (k) in
the above graph.

On the other hand, if every N(k) + 1 vectors in X contain k + 1 linearly independent vectors then, we will
show that there is no N(k) + 1 sized clique in the graph. The proof approach is by contradiction, suppose there
was a clique of size t > N(k) in the graph then they must correspond to the assignment to t distinct variables
of Φ. Let us denote them by v1, . . . , vt. Look at their corresponding sets of rows in AX , i.e., S1, . . . , St. Since t
is large enough (we will assume that N(k) = ω(ck)), we know that these t columns essentially cover all the rows
of AX . This is referred to as the Disperser property (see Section 2.4). Therefore through these t rows, one can

extract almost the entire entries of ÃX . Let the union of these rows be denoted by the set S̃ and we can conclude
that |S̃| ⩾ 0.95c log n.

However, each of these t variables have also committed to a column of ÃX . Thus, we have committed to t
distinct columns of ÃX (which are vectors in X), and in these t columns are k + 1 linearly independent vectors

but their restriction to the coordinates of S̃ makes us think of them as contained in a k-dimensional space. This
is impossible, because we had encoded the vectors in X using a code of relative distance 0.1, and thus any linear
combination of these k + 1 linearly independent vectors must have 1 entries on at least 10% of their coordinates,
but at the same time if they sum to 0⃗ on 95% of their coordinates, we have a contradiction.

1.4.2 Inapproximability of 2-CSP The completeness case analysis of Φ was already done above. So we will
focus on the soundness analysis, i.e., if every N(k) + 1 vectors in X contain k + 1 linearly independent vectors

then, we will show that no assignment to Φ can satisfy δ := 3N(k)√
Y (k)

fraction of clauses. Suppose otherwise, and

we have an assignment satisfying δ fraction of the constraints.
We would have ideally liked to prove some kind of direct product theorem here (a standard proof strategy

for these kinds of analysis) to say that each constraint reveals m entries of the matrix ÃX (i.e., the rows-column
intersection), and if δ fraction of the constraints are revealed then, we have obtained commitment from the
assignment to m · δ · (Y (k))2 entries of the matrix, which is sufficient to recover N(k) + 1 vectors in X which lie
in a k-dimensional space. Unfortunately, we ran into several issues to make these arguments go through, as there
is not strong commitment to the same information from sufficiently many variables.

To remedy this, we took a more “local” approach and proved the following technical lemma.
Informal Version of Deceitful Subspaces Lemma (See Lemma 4.3). Let X ⊆ Fc logn2 be a set of

vectors whose pairwise relative distance is at least 0.1. Let S1, . . . , SY (k) be a random collection of m rows of
AX . For every R ⊆ X, we say a set of m rows S is bad w.r.t. R if rank(R) > k but rank(R|S) ⩽ k. Let
SR ⊆ {S1, . . . , SY (k)} be the collection of set of coordinates each of which is bad w.r.t. R. Then with high
probability, we have that for all R ⊆ X of size γ, we have |SR| ⩽ 8γk.
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Given the Deceitful Subspaces Lemma, the soundness analysis proceeds as follows. By an averaging argument,
we pick a set Ṽ of δ

3 fraction of the variables all of whom have the guarantee that at least 2δ
3 fraction of the

constraints incident on them are satisfied. Let R ⊆ X be the vectors assigned as columns to the variables in Ṽ .
We now apply the Deceitful Subspaces Lemma on this set R and obtain the collection of bad sets of rows SR.

Each of the set of rows in SR itself corresponds to a variable in Φ. Let VR be the set of variables corresponding
to SR. The crucial observation is that for every variable not in VR there are at most N(k) variables in Ṽ with
whom the variable can share a satisfied constraint (follows from the soundness assumption). On the other hand,

by our choice, we had that every variable in Ṽ has (relatively speaking) a lot of constriants incident on it being
satisfied. This leads to a contradiction.

1.4.3 Inapproximability of k-Biclique and Densest k-Subgraph The analysis for the hardness of approxima-
tion of k-Biclique and Densest k-Subgraph are quite involved and we only provide here the rough construction of
the hard instance from (Y,N)-MTSP (with some details skipped).

For both the problems, we build the same bipartite graph on vertex set R ∪̇ C where the size of R is Y (k) · |Γ|
and the size of C is Y (k) · n (Γ is the collection of all k-dimensional spaces over the vectors in Fm2 ). Both R and
C are equipartitioned into Y (k) parts, say R1, . . . , RY (k) and C1, . . . , CY (k) respectively (we can think of these
set of nodes as assignments to a variable, i.e., we may visualize this as a 2-CSP on 2 · Y (k) variables). For all
i ∈ [Y (k)], we think of the vertices in Ri as a copy of Γ and the vertices in Ci as a copy of X. The edges simply
check the rows-column consistency as before.

The first distinction here is that for every i ∈ [Y (k)] we only allow variable vi (on the R side) to fill the rows
Si of AX with k linearly independent vectors. The second distinction here is that each variable no longer holds
both a set of rows and a column, and thus doing consistency checks is even more cumbersome, but luckily the
Deceitful Subspaces Lemma (along with the Disperser property) is powerful enough for our purposes.

1.4.4 Gap-ETH Guarantee: Reduction from 3-SAT to MSP Given a 3-SAT formula φ on n variables, we
equipartition it’s variable set to k parts. We look at the set of all partial assignments to each of the k parts as
vectors in Fn2 where for every partial assignment to the ith part is viewed as a vector in Fn2 , and the entry for a
variable/coordinate not in the ith part is 0 by default. Thus, we have k collections of vectors in Fn2 where each
collection is of size 2n/k. For some small constant t ∈ N (for example, think of t as 10), the idea is to look at
all t parts out of the k parts and take the bit-wise XORs of all possible t-tuples of vectors, one from each part.
Thus, we now have

(
k
t

)
collections of vectors in Fn2 where each collection is of size 2nt/k. Finally for each t-tuple

of collections, we remove all the points that do not satisfy all the clauses all of whose variables appear in the
t-tuple of parts of variables. The final point-set is our instance of MSP. The intuition is that by construction,
in the completeness case, we have initially k vectors corresponding to the k parts of the satisfying assignment,
and then they are made to span to obtain

(
k
t

)
input points of MSP instance (and these points would never been

thrown away because they satisfy all clauses). The soundness analysis is more intricate but follows from looking
at (t− 1)-tuples to decode an almost satisfying assignment.

1.5 Organization of Paper In Section 2 we introduce the problems, hypotheses, and other tools relevant to
this paper. In Section 3, we formally define MSH. In Section 4, we develop some tools that will be helpful for
our proofs. In Section 5, we prove the near optimal inapproximability of the k-Clique problem under MSH. In
Section 6 we prove the polynomial factor inapproximability for the 2-CSP problem under MSH. In Section 7 we
prove the near optimal inapproximability of the k-Biclique problem under Strong MSH and also prove the constant
inapproximability of Densest k-Subgraph under the same. In Section 8, we show that Gap-ETH implies a weak
version of MSH.

2 Preliminaries

Notations. Let N be the set of natural numbers and P be the set of prime numbers. For every non-negative
integers n and k, we denote by

(
[n]
k

)
, the collection of all subsets of [n] of size exactly k.

2.1 Problems In this subsection, we recall the definitions of the relevant computational problems to this paper.
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3-SAT. In the 3-SAT problem, we are given a CNF formula φ over n variables x1, . . . xn, such that each clause
contains at most 3 literals. Our goal is to decide if there exist an assignment to x1, . . . xn which satisfies φ.

k-Clique problem. In the k-Clique problem we receive a graph H = (V,E) with |V | = n, and our goal is to
decide if H contains a clique of size k, i.e. there exists v1, . . . vk ∈ V such that for every i ̸= j ∈ [k], (vi, vj) ∈ E.

Densest k-Subgraph problem. In the Densest k-Subgraph problem we receive a graphH = (V,E) with |V | = n
and α := α(k) ∈ (0, 1], and our goal is to decide if H contains a subgraph on k vertices with at least α ·

(
k
2

)
edges.

k-Biclique problem. In the k-Biclique problem we receive a bipartite graph H = (V,E) with |V | = n, and
our goal is to decide if H contains a balanced complete bipartite graph of size 2k, i.e. there exists a copy of Kk,k

as an induced subgraph in H.
2-CSP problem. An instance Γ of 2-CSP consists of

• an undirected graph G = (V,E), which is referred to as the constraint graph,

• an alphabet set Σ,

• for each edge e = (u, v) ∈ E, a constraint Cuv ⊆ Σ× Σ.

An assignment of Γ is simply a function from V to Σ. An edge e = (u, v) ∈ E is said to be satisfied by an
assignment ψ : V → Σ if (ψ(u), ψ(v)) ∈ Cuv. A value of an assignment ψ, denoted by val(ψ), is the fraction of
edges satisfied by ψ, i.e., val(ψ) = 1

|E| · {(u, v) ∈ E | (ψ(u), ψ(v)) ∈ Cuv}. The value of the instance Γ, denoted by

val(Γ), is the maximum value among all possible assignments, i.e., val(Γ) = maxψ:V→Σ val(ψ).
k-Vector Sum Given k sets U1, . . . , Uk of vectors in Fm2 , the goal of k-Vector Sum problem is to decide whether

there exist u⃗1 ∈ U1, . . . , u⃗k ∈ Uk such that ∑
i∈[k]

u⃗i = 0⃗.

It is known that the above problem is W[1]-hard over finite fields [ALW13]. We direct the reader to [Lin21]
for a short proof6.

Theorem 2.1. [ALW13, Lin21] The k-Vector Sum over F2 and m = Θ(k2 log n) is W[1]-hard parameterized by
k.

By a simple gadget reduction, we can show that for some constant c, given a set U of vectors in Fck
2 logn

2 ,
deciding whether there exist u⃗1, . . . , u⃗k ∈ U such that∑

i∈[k]

u⃗i = 0⃗,

is still W[1]-complete. This is referred to as the monochromatic k-Vector Sum problem.

2.2 Hypotheses In this subsection, we recall the relevant computational hypotheses that will be used in this
paper.

Hypothesis 2.1. (W[1] ̸= FPT) For any computable function F : N → N, there is no F (k)poly(n)-time
algorithm which solves the k-Clique problem over n vertices.

Hypothesis 2.2. (Exponential Time Hypothesis (ETH) [IP01, IPZ01, Tov84]) There exists ε > 0 such
that no algorithm can solve 3-SAT on n variables in time O(2εn).

Hypothesis 2.3. (Gap Exponential Time Hypothesis (Gap-ETH) [Din16, MR16]) There exist constants
ε, δ > 0 such that any randomized algorithm that, on input a 3-SAT formula φ on n variables and O(n) clauses,
can distinguish between val(φ) = 1 and val(φ) < 1− δ, must run in time at least 2εn.

Moreover, using standard expander replacement arguments (for example, see [PY91, Fei98]), we may assume that
Gap-ETH holds even when each variable appears in at most 5 clauses.

6[Lin21] proves the hardness result for a version of k-Vector Sum where a target vector is given as input, but that version reduces
to the version given in this paper by simply including an extra collection containing only the negative of the target vector.
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Hypothesis 2.4. (Parameterized Inapproximability Hypothesis (PIH) [LRSZ20]) There exists a con-
stant ε > 0 such that any algorithm that, on input a 2-CSP instance Γ on k variables and alphabet size n,
can distinguish between val(Γ) = 1 and val(Γ) < 1− ε, cannot run in FPT time when parameterized by k.

2.3 Error Correcting Codes In this subsection, we recall the definition of error correcting codes and some
standard code constructions known in the literature. We define below a notion of distance used in coding theory
(called Hamming distance) and then define error correcting codes with its various parameters.

Definition 2.1. (Distance) Let q ∈ P. Let ℓ ∈ N. The distance7 between x⃗, y⃗ ∈ Fℓq, denoted by ∆(x⃗, y⃗), is
defined to be:

∆(x⃗, y⃗) =
1

ℓ
· |{i ∈ [ℓ] | x⃗(i) ̸= y⃗(i)}| .

Definition 2.2. (Error Correcting Code) Let q ∈ P. For every ℓ ∈ N, a subset C ⊆ Fℓq is said to be an

error correcting code with block length ℓ, message length k, and relative distance δ if |C| = qk and for every
x⃗, y⃗ ∈ C, ∆(x⃗, y⃗) ≥ δ. We refer to C as a [k, ℓ, δ] code and to the elements of a code C as codewords. Sometimes,
we think of a code C as some canonical bijective function EC : Fkq → C. Moreover, given an injective function

from Fkq to Fℓq, the code associated with it is simply the image set of the function.

Definition 2.3. (Linear Codes) We say that a [k, ℓ, δ] code C is a linear code if for all x⃗, y⃗ ∈ C, we have that
x⃗+ y⃗ also is in C (where the addition is done coordinate-wise over Fq).

Fact 2.1. (See Appendix E.1.2.5 in [Gol08]) For every q ∈ P and every constant δ < 0.5, there is an integer
ℓ such that for all k ∈ N, there is a linear code C with message length k, block length ℓ · k, and relative distance δ,
and an encoding algorithm which on input a point in Fkq , outputs in time polynomial in k the image of the input
under EC .

2.4 Disperser In this subsection, we recall the definition of a disperser and some acheivable parameters for
the same.

Definition 2.4. (Disperser [CW89, Zuc96a, Zuc96b]) For positive integers m, k, ℓ, r ∈ N and constant
ε ∈ (0, 1), an (m, k, ℓ, r, ε)-disperser is a collection S of k subsets S1, . . . , Sk ⊆ [m], each of size ℓ, such that
the union of any r different subsets from the collection has size at least (1− ε)m.

Dispersers could be constructed efficiently by probabilistic methods, as in the following Lemma.

Lemma 2.1. (For example, see [LRSW22]) For positive integers m, ℓ, r ∈ N and constant ε ∈ (0, 1), let
ℓ = ⌈ 3m

εr ⌉ and let S1, . . . , Sk be random ℓ-subsets of [m]. If ln k ⩽ m
r then S = {S1, . . . , Sk} is an (m, k, ℓ, r, ε)-

disperser with probability at least 1− e−m.

3 k-Maximum Span Problem and Maximum Span Hypothesis

In this section, we formally define the k-Maximum Span Problem and Maximum Span Hypothesis.
Let d ∈ N. For any sets of vectors S, T ⊆ Fd2 we say that T spans S if and only if S ⊆ span(T ).

Definition 3.1. ((Y,N)-Maximum Span Problem ((Y,N)-MSP)) Given two computable functions Y,N :
N → N, an instance of (Y,N)-MSP is specified by the tuple (X, d, k) where X ⊆ Fd2, k is the parameter, and
the goal is to distinguish between the two cases:

Completeness: There exists a set T ⊆ Fd2 of k vectors such that

|X ∩ span(T )| ⩾ Y (k).

7We use the normalized notion of distance for the sake of exposition. In coding theory literature, our notion of distance is referred
to as relative distance.
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Soundness: For every set T ⊆ Fd2 of k vectors we have

|X ∩ span(T )| ⩽ N(k).

We remark that while we define MSP over F2, in Section 7.1, we define the problem over Fq with a stronger
completeness guarantee. Next, we note that the exact version of the problem is W[1]-hard.

Proposition 3.1. Let Y,N : N → N be two computable functions such that for all i ∈ N we have N(i) := Y (i)−1
and Y (i) ⩾ i. Then (Y,N)-MSP is W[1]-hard even for instances (X, d, k) where d = O(k2 log |X|).

Proof. Fix Y,N : N → N such that for all i ∈ N we have N(i) := Y (i)−1 and Y (i) ⩾ i. The proof is by a reduction

from the monochromatic k-Vector Sum problem. Given a set U of vectors in Fck
2 logn

2 of the monochromatic k-
Vector Sum problem, we can equivalently think of it as an (|U |, ck2 log |U |, k− 1) instance of (Y ′, N ′)-MSP where
for all i ∈ N, Y ′(i) := i and N ′(i) = i − 1. We can extend this hardness result for every other Y : N → N by a
simple padding argument.

Finally, we define the Maximum Span Hypothesis which informally asserts that the above W[1]-hardness
extends to a gap version.

Hypothesis 3.1. (Maximum Span Hypothesis (MSH)) There exist constants δ, ρ > 0, η, ζ ∈ N, computable
functions Y,N : N → N, and a polynomial function D : N → N such that the following holds.

• For all i ∈ N we have Y (i) ⩾ ρ · 2δ·i and N(i) ⩽ η · iζ .

• (Y,N)-MSP is W[1]-hard even for instances (X, d, k) where d = D(k) · log |X|.

4 Mise-en-place for Reductions based on MSH

In this section, we construct a few technical tools that will be used throughout the paper. In Section 4.1 we
prove that we can assume that the hard instances of (Y,N)-MSP have the additional property that every pair of
input vectors are at relative distance 0.1 or more from each other. In Section 4.2, we prove that we can assume
that the hard instances of (Y,N)-MSP have the additional property that the input set can be partitioned into
Y (k) color classes and that we demand only for solutions in which we pick one vector from each color class. In
Section 4.3, we describe a mapping of (Y,N)-MSP to instances of the 2-CSP problem. This will be later recalled
in Sections 5 and 6. Finally, in Section 4.4, we prove a lemma about “deceitful” subspaces which will be heavily
used throughout the paper.

4.1 Preprocessing Step I: Encoding Using Error Correcting Codes Recall the definitions of Codes
from Section 2.3. We have the below transformation for (Y,N)-MSP instances.

Lemma 4.1. There exists a polynomial time algorithm and a constant ℓ ∈ N which takes as input an instance
(X0, d, k) of (Y,N)-MSP and outputs an instance (X, ℓ · d, k) of (Y,N)-MSP with the following guarantees:

Size: |X0| = |X|.

Distance: For every λ⃗ ∈ F|X|
2 , let x⃗λ⃗ :=

∑
x⃗∈X λ⃗(x⃗) · x⃗. If x⃗λ⃗ ̸= 0⃗ then ∆(x⃗λ⃗, 0⃗) ⩾ 0.1.

Gap Preservation: For every t ⩾ k the following holds. There are t vectors in X0 contained in a k-dimensional
subspace of Fd2 if and only if there are t vectors in X contained in a k-dimensional subspace of Fℓ·d2 .

Proof. Let C be a linear error correcting code of block length ℓ · d, message length d and relative distance 0.1
guaranteed by Fact 2.1. The ℓ in the theorem statement is precisely as specified by Fact 2.1.

Given as input an instance (X0, d, k) of (Y,N)-MSP, the output instance (X, ℓ · d, k) of (Y,N)-MSP is given
by

X := {EC(x⃗0) | x⃗0 ∈ X0}.

The distance property in the theorem statement immediately follows from the distance property of C.
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Suppose there exists a set T := {z⃗1, . . . , z⃗k} ⊆ Fd2 of k vectors such that there exists X̃0 ⊆ X0 ∩ span(T ),

where |X̃0| = t. Let T ′ := {EC(z⃗i) | i ∈ [k]} ⊆ Fℓ·d2 and X̃ := {EC(x⃗0) | x⃗0 ∈ X̃0} ⊆ X. Then we claim that

X̃ ⊆ span(T ′). To see this note that for every x⃗0 ∈ X̃0, if x⃗0 =
∑
i∈[k] λi · z⃗k for some scalars λ1, . . . , λk ∈ F2,

then we have the following for y := EC(x⃗0) ∈ X̃:

x⃗ = EC(x⃗0) = EC

∑
i∈[k]

λi · z⃗k

 =
∑
i∈[k]

λi · EC(z⃗k),

where we used that C is a linear code for the last equality. Also note that |X̃| = t, because EC is bijective.

On the other hand, suppose there exists a set T ⊆ Fℓ·d2 of k vectors such that there exists X̃ ⊆ X ∩ span(T ),

where |X̃| = t. Let AX ⊆ Fd×t2 be the matrix whose columns are the vectors in X̃. Let r := rank(AX) ⩽ k. Let

x⃗1, . . . , x⃗r be the r linearly independent column vectors of AX . Let X̃0 := {E−1
C (x⃗) | x⃗ ∈ X̃} ⊆ X0. For every

x⃗ ∈ X̃ we have that there are scalars λx⃗1 , . . . , λ
x⃗
r ∈ F2, such that:

x⃗ =
∑
i∈[r]

λx⃗i · x⃗i.

Thus, we have that for every x⃗0 ∈ X̃0,

x⃗0 = E−1
C (x⃗) = E−1

C

∑
i∈[r]

λx⃗i · x⃗i

 =
∑
i∈[r]

λx⃗i · E−1
C (x⃗i) .

This implies that X̃0 is spanned by the vectors E−1
C (x⃗1), . . . , E

−1
C (x⃗r).

Finally note that the procedure runs in polynomial time as EC requires poly(d) time for constructing each
point in X.

4.2 Preprocessing Step II: Product Structure from Color Coding First, we define below a colored
version of (Y,N)-MSP.

Definition 4.1. ((Y,N)-Colored Maximum Span Problem ((Y,N)-Colored-MSP)) Given two computable
functions Y,N : N → N, an instance of (Y,N)-Colored-MSP is specified by the tuple (X :=
X1∪̇X2∪̇ · · · ∪̇XY (k), d, k) where for all i ∈ [Y (k)], we have Xi ⊆ Fd2 (for all i, i′ ∈ [Y (k)], we have |Xi| = |Xi′ |),
k is the parameter, and the goal is to distinguish between the two cases:

Completeness: There exists a set T ⊆ Fd2 of k vectors such that for all i ∈ [Y (k)],

|Xi ∩ span(T )| ⩾ 1.

Soundness: For every set T ⊆ Fd2 of k vectors we have∑
i∈[Y (k)]

|Xi ∩ span(T )| ⩽ N(k).

We obtain the following product structure for the hard instances of (Y,N)-MSP for free as a simple application
of the color coding technique [AYZ95] (which can be derandomized using perfect hash families [NSS95]).

Lemma 4.2. There exists a randomized polynomial time algorithm and a constant ℓ ∈ N which takes as input an
instance (X, d, k) of (Y,N)-MSP and outputs an instance (X := X1∪̇X2∪̇ · · · ∪̇XY (k), d, k) of (Y,N)-Colored-MSP
with the following guarantees:

Completeness: If there exists a set T ⊆ Fd2 of k vectors such that

|X ∩ span(T )| ⩾ Y (k).

Then with probability at least 2−Ω̃(Y (k)), for all i ∈ [Y (k)],

|Xi ∩ span(T )| ⩾ 1.
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Soundness: Suppose for every set T ⊆ Fd2 of k vectors we have

|X ∩ span(T )| ⩽ N(k).

Then for every set T ⊆ Fd2 of k vectors we have∑
i∈[Y (k)]

|Xi ∩ span(T )| ⩽ N(k).

Proof. The proof follows by simply taking a uniformly random equipartition of X to Y (k) parts.

4.3 Construction of the Hard 2-CSP Instance Φ In this subsection, we describe the construction of a
2-CSP instance that we will construct for each instance of (Y,N)-MSP.

For some c0 ∈ Z, starting from an instance of (X0, c0 log n, k) of (Y,N)-MSP (where n := |X0|), we apply the
algorithm in Lemma 4.1 to obtain an instance (X, c log n, k) of (Y,N)-MSP, where c := c0 · ℓ, for some constant ℓ.
Moreover, we have that every pair of vectors in X are at relative Hamming distance greater than or equal to 0.1.

From such an instance (X, c log n, k) of MSP, we construct a 2-CSP Φ on variable set V and alphabet set
Σ as follows. For every i ∈ [Y (k)], we have a variable vi in V . We identify the alphabet set Σ with the set

Flogn
2 × Fk2 ×X and thus it contains Ok(n

2) many labels.
Let m := logn

k . Let S1, . . . , SY (k) be random subsets of [c log n] of size m. Let πi : Si → [m] be some canonical
1-to-1 mapping.

We are now ready to define the constraints. Fix i, j ∈ [Y (k)] where i ̸= j. We define the constraint Ci,j ⊆ Σ×Σ

between variables vi and vj as follows. Given label (α⃗i1, . . . , α⃗
i
k, β⃗

i, x⃗i) for vi and label (α⃗j1, . . . , α⃗
j
k, β⃗

j , x⃗j) for vj ,

where α⃗i1, . . . , α⃗
i
k ∈ Fm2 , α⃗j1, . . . , α⃗

j
k ∈ Fm2 , β⃗i, β⃗j ∈ Fk2 , and x⃗i, x⃗j ∈ X, we have that the pair of labels is in Ci,j if

and only if all of the following hold:

Distinctness Check: β⃗i ̸= β⃗j and x⃗i ̸= x⃗j .

Row-Column Intra-Consistency Check:

k∑
r=1

β⃗i(r) · α⃗ir =
(
x⃗i
(
π−1
i (1)

)
, x⃗i
(
π−1
i (2)

)
, . . . , x⃗i

(
π−1
i (m)

))
and

k∑
r=1

β⃗j(r) · α⃗jr =
(
x⃗j(π−1

j (1)), x⃗j(π−1
j (2)), . . . , x⃗j

(
π−1
j (m)

))
.

Row-Column Inter-Consistency Check:

k∑
r=1

β⃗i(r) · α⃗jr =
(
x⃗i
(
π−1
j (1)

)
, x⃗i
(
π−1
j (2)

)
, . . . , x⃗i

(
π−1
j (m)

))
and

k∑
r=1

β⃗j(r) · α⃗ir =
(
x⃗j(π−1

i (1)), x⃗j(π−1
i (2)), . . . , x⃗j

(
π−1
i (m)

))
.

Column-Column Consistency Check: ∀s ∈ Si ∩ Sj and ∀r ∈ [k] we have,

α⃗ir(πi(s)) = α⃗jr(πj(s)).
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4.4 Techincal Tool: Deceitful Subspaces Lemma In this subsection, we prove a lemma about the
probability that a random axis-parallel projection of a set of linearly independent vectors are not independent
under the projection.

Lemma 4.3. (Deceitful Subspaces Lemma) Let q ∈ P, k ∈ N, c := c(k) ∈ N, n ∈ N, Y : N → N, and
m := logn

k log q . Let κ, γ ∈ N be such that κ ⩾ 8γk log q. Let X := {x⃗1, . . . , x⃗n} ⊆ C ⊆ Fc lognq be a set of vectors

where C is a [t, c log n, 0.1] linear code, for any t ⩾ logq n. Let S1, . . . , SY (k) be a random collection of m-sized

subsets of [c log n], where Y (k) > κ. For every R := {x⃗i1 , . . . , x⃗iγ} ⊆ X, we say S ∈
(
[c logn]
m

)
is bad w.r.t. R if

there exists λ⃗ ∈ Fγq such that the following holds:∑
r∈[γ]

λ⃗(r) · x⃗ir ̸= 0⃗ but
∑
r∈[γ]

λ⃗(r) ·
(
x⃗ir
∣∣
S

)
= 0⃗.

Let SR ⊆ {S1, . . . , SY (k)} be the collection of set of coordinates each of which is bad w.r.t. R. Then with probability

at least 1− 2Y (k)+κ2 log q

nγ/7 , we have that for all R ⊆ X of size γ, we have |SR| ⩽ κ.

Proof. Pick S1, . . . , SY (k) to be a random collection of m-sized subsets of [c log n], where Y (k) > κ. Fix

R := {x⃗i1 , . . . , x⃗iγ} ⊆ X such that |R| = γ. Note that for every λ⃗ ∈ Fnq , we have from the linearity of C:

n∑
i=1

λ⃗(i) · x⃗i ̸= 0⃗ =⇒ ∆

(
n∑
i=1

λ⃗(i) · x⃗i, 0⃗

)
⩾ 0.1.

Now fix any λ⃗ ∈ Fγq \ {⃗0}. Let z⃗ :=
∑
h∈[γ]

λ⃗(h) · x⃗ih . If z⃗ ̸= 0⃗ then we have ∆
(
z⃗, 0⃗
)
⩾ 0.1. Let Z ⊆ [c log n] be

defined as follows: ∀t ∈ [c log n], we have t ∈ Z if and only if z⃗(t) = 0. Note that |Z| ⩽ 0.9c log n. The probability
that for a random subset S of [c log n] of size m, we have S ⊆ Z is at most:

(
0.9c logn

m

)(
c logn
m

) =

∏
a∈[m]

(0.9c log n− a+ 1)∏
a∈[m]

(c log n− a+ 1)
=
∏
a∈[m]

(
0.9c log n− a+ 1

c log n− a+ 1

)
⩽ 0.9m.

Thus, the probability that a random set S ∈
(
[c logn]
m

)
is bad w.r.t. R is at most:

(qγ − 1) · 0.9m.

The probability of having κ or more subsets in S1, . . . , SY (k) which are all bad w.r.t. R is:

Y (k)∑
ℓ=κ

(
Y (k)

ℓ

)
· ((qγ − 1) · 0.9m)

ℓ ⩽ 2Y (k) · (qγ · 0.9m)
κ
.

The probability of having some R ⊆ X of size γ which has more than κ subsets in S1, . . . , SY (k) which are all
bad w.r.t. R is at most:

nγ · 2Y (k) · (qγ · 0.9m)
κ ⩽ 2Y (k)+γ logn+γκ log q · 0.9mκ

⩽ 2Y (k)+γ logn+γκ log q−mκ
7

⩽ 2Y (k)+γ logn+κ2 log q− 8
7γ logn

=
2Y (k)+κ2 log q

nγ/7
.
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5 Near Optimal Inapproximability of k-Clique Problem

In this subsection, we prove the near optimal inapproximability of the k-Clique problem.

Theorem 5.1. There is a randomized algorithm running in FPT time which takes as input an instance (X, d :=
c log |X|, k) of (Y,N)-MSP and outputs an instance G (of order Ok(|X|2)) of Y (k)-Clique problem such that the
following holds:

Completeness: If there exists a set T ⊆ Fd2 of k vectors such that

|X ∩ span(T )| ⩾ Y (k),

then, with probability 1, G has a clique of size Y (k).

Soundness: If for every set T ⊆ Fd2 of k vectors we have

|X ∩ span(T )| ⩽ N(k),

then, if N(k) ⩾ 60ck, with probability 1− 1
|X|Ω(1) , we have that G does not have a clique of size N(k).

Assuming the above theorem, we have the proof of Theorem 1.2.

Proof. [Proof of Theorem 1.2]
As promised by MSH, let there be computable functions Y,N : N → N, polynomial function D : N → N, and

constants δ, ρ > 0 and η, ζ ∈ N such that for all i ∈ N we have Y (i) ⩾ ρ · 2δ·i, N(i) ⩽ η · iζ , and (Y,N)-MSP
being W[1]-hard even for instances (X, d, k) where d = D(k) · log |X|. We may assume that N(k) ⩾ 60D(k) · k,
otherwise we revise the constants η and ζ accordingly.

We then apply the FPT reduction to instances of Y (k)-Clique problem as given in Theorem 5.1 and obtain
that it is W[1]-hard to distinguish instances of Y (k)-Clique problem where there is a ρ · 2δk sized clique versus
instances of Y (k)-Clique problem where there is no 1 + η · kζ sized clique. Thus, if the parameter is set to
k′ := Y (k) ⩾ ρ · 2δk, then distinguishing the case where there is a k′ sized clique versus the case there is no clique
of size 1 + η · kζ ⩽ 1 + η

δζ
(log k′/ρ)ζ = (log k′)O(1), is W[1]-hard.

The rest of this section is dedicated to proving Theorem 5.1.
Construction of k-Clique instance. Let V := {v1, . . . , vY (k)} be the variable set of the 2-CSP Φ from

Section 4.3. We build the so-called FGLSS graph8 G of Φ [FGL+96] whose vertex set is V × Σ and we think
of the vertex set as |V | copies of the set Σ where the ith copy of Σ corresponding to the labels of variable vi is
denoted by Ui.

Each Ui is an independent set. Given (α⃗i1, . . . , α⃗
i
k, β⃗

i, x⃗i) ∈ Ui and (α⃗j1, . . . , α⃗
j
k, β⃗

j , x⃗j) ∈ Uj where

α⃗i1, . . . , α⃗
i
k ∈ Fm2 , α⃗j1, . . . , α⃗

j
k ∈ Fm2 , β⃗i, β⃗j ∈ Fk2 , and x⃗i, x⃗j ∈ X, we have an edge between them if and only

if the pair of labels belongs to Ci,j .

5.1 Completeness Suppose there exists a set T := {z⃗1, . . . , z⃗k} ⊆ Fc logn2 of k vectors such that there exists

X̃ ⊆ X ∩ span(T ), such that |X̃| = Y (k). Then we define 2k vectors in Fc logn2 as follows:

∀β⃗ ∈ Fk2 , ψ⃗β⃗ :=
∑
ℓ∈[k]

β⃗(ℓ) · z⃗ℓ.

Let π : X̃ → Fk2 be the mapping defined as follows: ∀x⃗ ∈ X̃, we set π(x⃗) := β⃗ where we have ψ⃗β⃗ = x⃗.

Moreover, let X̃ := {x⃗1, . . . , x⃗Y (k)}.
For every i ∈ [Y (k)], we pick the vertex u∗i := (α⃗i1, . . . , α⃗

i
k, β⃗

i, x⃗i) ∈ Ui defined as follows:

∀r ∈ [k], α⃗ir := z⃗r|Si and β⃗i := π(x⃗i).

To finish the analysis in the completeness case, we need to show that {u∗1, . . . , u∗Y (k)} is a clique in G. Fix

some arbitrary i, j ∈ [Y (k)], such that i ̸= j. We will show that {u∗i , u∗j} ∈ E(G).

8It is more accurate to think of it as an extended label version of Φ.
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Passing Distinctness Check: By the distinctness of the elements in X̃, we have that x⃗i ̸= x⃗j . Moreover, note
that β⃗i = π(x⃗i) and β⃗j = π(x⃗j). Thus, we have that ψ⃗β⃗i = x⃗i and ψ⃗β⃗j = x⃗j . Since x⃗i ̸= x⃗j we have that

ψ⃗β⃗i ̸= ψ⃗β⃗j . This implies that β⃗i ̸= β⃗j . Thus, {u∗i , u∗j} passes the distinctness check.

Passing Row-Column Intra-Consistency Check: Fix some t ∈ [m]. We want to show that:

k∑
r=1

β⃗i(r) · α⃗ir(t) = x⃗i
(
π−1
i (t)

)
and

k∑
r=1

β⃗j(r) · α⃗jr(t) = x⃗j(π−1
j (t)).

We focus first on showing the former of the above two as the latter follows in a similar way.

k∑
r=1

β⃗i(r) · α⃗ir(t) =
k∑
r=1

β⃗i(r) · z⃗r(π−1
i (t)) =

k∑
r=1

π(x⃗i)r · z⃗r(π−1
i (t)) = x⃗i(π−1

i (t))

Since the choice of t was arbitrary, it holds for all t ∈ [m]. Thus, {u∗i , u∗j} passes the row-column intra-
consistency check.

Passing Row-Column Inter-Consistency Check: Fix some t ∈ [m]. We want to show that:

k∑
r=1

β⃗i(r) · α⃗jr(t) = x⃗i
(
π−1
j (t)

)
and

k∑
r=1

β⃗j(r) · α⃗ir(t) = x⃗j(π−1
i (t)).

We focus first on showing the former of the above two as the latter follows in a similar way.

k∑
r=1

β⃗i(r) · α⃗jr(t) =
k∑
r=1

β⃗i(r) · z⃗r(π−1
j (t)) =

k∑
r=1

π(x⃗i)r · z⃗r(π−1
j (t)) = x⃗i(π−1

j (t)).

Since the choice of t was arbitrary, it holds for all t ∈ [m]. Thus, {u∗i , u∗j} passes the row-column inter-
consistency check.

Passing Column-Column Consistency Check: Fix some s ∈ Si ∩ Sj and fix some r ∈ [k].

α⃗ir(πi(s)) = z⃗r|s= α⃗jr(πj(s)).

Since the choice of s and r were arbitrary, it holds for all s ∈ Si ∩ Sj and for all r ∈ [k]. Thus, {u∗i , u∗j}
passes the column-column consistency check.

Since all the checks have passed we have that {u∗i , u∗j} ∈ E(G). Since the choice of i and j was arbitrary, we
have that {u∗1, . . . , u∗Y (k)} is a clique in G.

5.2 Soundness Let t be any integer greater than N(k) ⩾ 60ck. To do the soundness analysis, suppose
{ua1 , . . . , uat} ∈ Ua1×· · ·×Uat is a clique in G. We will relabel the Vis and assume that {u1, . . . , ut} ∈ U1×· · ·×Ut
is a clique in G, where for all i ∈ [t], we have ui := (α⃗i1, . . . , α⃗

i
k, β⃗

i, x⃗i) ∈ Ui.
From the distinctness and membership checks, we know there exists a set X ′ = {x⃗1, . . . , x⃗t} of t vectors in X

and t many distinct coefficient vectors B := {β⃗1, . . . , β⃗t}.
Let AX′ ⊆ Fc logn×t2 be the matrix whose columns are the vectors in X ′. Let γ := rank(AX′) ⩾ k + 1 (from

the soundness assumption). Let x⃗i1 , . . . , x⃗iγ be the γ linearly independent column vectors of AX′ . Thus, for every

λ⃗ ∈ Fγ2 \ 0⃗, we have: ∑
w∈[γ]

λ⃗(w) · x⃗iw ̸= 0⃗.
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Since x⃗i1 , . . . , x⃗iγ are codewords of a linear code with relative distance greater than 0.1, we have that for
every λ⃗ ∈ Fγ2 \ 0⃗, we have:

∆

∑
w∈[γ]

λ⃗(w) · x⃗iw , 0⃗

 ⩾ 0.1.

This further implies that for any set T ⊆ [c log n] of coordinates, if |T | > 0.9c log n then,∑
w∈[γ]

λ⃗(w) · x⃗iw
∣∣∣

T
̸= 0⃗.(5.1)

We will use the above result later in this proof. On a different note, since for every non-decreasing positive
computable function Λ : N → N, we have that for every large enough n, that lnY (k) ⩽ logn

Λ(k) , from Lemma 2.1,

we have with high probability (i.e., with probability 1− 1
nΩ(c) ) that:

S1, . . . , SY (k) is a (c log n, Y (k),m, ⌈60ck⌉, 0.05)-disperser.

Thus, we have that: ∣∣∣S̃∣∣∣ ⩾ 0.95c log n where S̃ :=
⋃
i∈[t]

Si.

Consider the map ρ : S̃ → [t], where ρ(s) = i where i is the smallest integer such that s ∈ Si.
From the column-column consistency check, we have that for all i ∈ [t], for all s ∈ Si, and for all r ∈ [k], we

have α⃗ir(πi(s)) = α⃗
ρ(s)
r (πρ(s)(s)).

We now construct k points, namely z⃗1, . . . , z⃗k in Fc logn2 as follows.

∀r ∈ [k], ∀s ∈ [c log n], z⃗r(s) :=

{
α⃗
ρ(s)
r (πρ(s)(s)) if s ∈ S̃

0 otherwise
,

From the row-column inter-consistency checks and the row-column intra-consistency checks, we further have
that for all i ∈ [t]: ∑

r∈[k]

β⃗i(r) · z⃗r

∣∣∣
S̃
= x⃗i|S̃ .

Now, we note that β⃗i1 , . . . , β⃗iγ are γ vectors in Fk2 , and since γ > k, we have that these γ vectors are linearly

dependent. Thus, there exists some λ⃗∗ ∈ Fγ2 \ {⃗0} such that:∑
w∈[γ]

λ⃗∗(w) · β⃗iw = 0⃗.(5.2)

Now consider the vectors x⃗i1 , . . . , x⃗iγ restricted to the coordinates of S̃. We have:∑
w∈[γ]

λ⃗∗(w) · x⃗iw
∣∣∣

S̃
=
∑
w∈[γ]

λ⃗∗(w) ·
(
x⃗iw |S̃

)

=
∑
w∈[γ]

λ⃗∗(w) ·

∑
r∈[k]

β⃗iw(r) · z⃗r

∣∣∣
S̃

=
∑
r∈[k]

z⃗r∣∣∣
S̃
·
∑
w∈[γ]

(
λ⃗∗(w) · β⃗iw(r)

) = 0⃗,

where the last equality follows from (5.2).

However,
(∑

w∈[γ] λ⃗
∗(w) · x⃗iw

) ∣∣∣
S̃
= 0⃗ contradicts (5.1). Thus, there is no clique of size greater than N(k) in

G.
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6 Inapproximability of Parameterized 2-CSP Problem

In this subsection, we prove the strong inapproximability of 2-CSP problem.

Theorem 6.1. There is a randomized algorithm running in FPT time which takes as input an instance
(X, c log |X|, k) of (Y,N)-MSP and outputs an instance Φ of 2-CSP problem on Y (k) variables and Ok(|X|2)
sized alphabet set such that the following holds:

Completeness: If there exists a set T ⊆ Fd2 of k vectors such that

|X ∩ span(T )| ⩾ Y (k),

then, with probability 1, Φ has a satisfying assignment.

Soundness: If for every set T ⊆ Fd2 of k vectors we have

|X ∩ span(T )| ⩽ N(k),

then, if Y (k) > (8k+ 3 ·N(k))2 and N(k) > 8k, with probability 1− 1
|X|Ω(1) , we have that every assignment

to Φ satisfies at most 3·N(k)√
Y (k)

fraction of the constraints.

Assuming the above theorem, we have the proof of Theorem 1.3.

Proof. [Proof of Theorem 1.3]
As promised by MSH, let there be computable functions Y,N : N → N, polynomial function D : N → N, and

constants δ, ρ > 0 and η, ζ ∈ N such that for all i ∈ N we have Y (i) ⩾ ρ · 2δ·i, N(i) ⩽ η · iζ , and (Y,N)-MSP being
W[1]-hard even for instances (X, d, k) where d = D(k) · log |X|. We may assume that Y (k) > (8k+3 ·N(k))2 and
N(k) > 8k (which is true for every large enough k).

We then apply the FPT reduction to instances of 2-CSP problem as given in Theorem 6.1 and obtain that it
is W[1]-hard to distinguish instances of 2-CSP problem on Y (k) variables where there is a satisfying assignment
versus instances of 2-CSP problem where any assignment satisfies at most 3/k fraction of the constraints. Thus,
if the parameter is set to k′ := Y (k) ⩾ ρ · 2δk, then distinguishing the case where there is a satisfying assignment

versus the case where any assignment satisfies at most 3·N(k)√
Y (k)

⩽
3·η·(log k′

ρ )ζ

δ
ζ√

k′
= (log k′)O(1)

√
k′

fraction of the constraints,

is W[1]-hard.

The rest of this section is dedicated to proving Theorem 6.1 where the reduction from (Y,N)-MSP to 2-CSP
is the one described in Section 4.3.

6.1 Completeness Analysis Suppose there exists a set T := {z⃗1, . . . , z⃗k} ⊆ Fc logn2 of k vectors such that

there exists X̃ ⊆ X ∩ span(T ), such that |X̃| = Y (k). Then we define 2k vectors in Fc logn2 as follows:

∀β⃗ ∈ Fk2 , ψ⃗β⃗ :=
∑
ℓ∈[k]

β⃗(ℓ) · z⃗ℓ.

Let π : X̃ → Fk2 be the mapping defined as follows: ∀x⃗ ∈ X̃, we set π(x⃗) := β⃗ where we have ψ⃗β⃗ = x⃗.

Moreover, let X̃ := {x⃗1, . . . , x⃗Y (k)}.
For every i ∈ [Y (k)], we pick the label (α⃗i1, . . . , α⃗

i
k, β⃗

i, x⃗i) for the variable vi defined as follows:

∀r ∈ [k], α⃗ir := z⃗r|Si and β⃗i := π(x⃗i).

To finish the analysis in the completeness case, we need to show that every constraint is satisfied. To do so,
fix some arbitrary i, j ∈ [Y (k)], such that i ̸= j. We can show as in Section 5.1 that the assigned pair of labels
for variables vi and vj satisfy Ci,j . Details are omitted.
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6.2 Soundness Analysis Let γ :=
√
Y (k). Let Y (i) > (8 · i + 3 · N(i))2 and N(i) > 8i for all i ∈ N. Let

δ := 3·N(k)√
Y (k)

. To do the soundness analysis, suppose there exists an assignment σ : V → Σ that satisfies at least δ

fraction of the constraints. Let σ(vi) := (α⃗i1, . . . , α⃗
i
k, β⃗

i, x⃗i) for all i ∈ [Y (k)].
Let V ∗ ⊆ V contain all v ∈ V ∗, such that at least 2δ

3 fraction of constraints incident of v are satisfied under

σ. By an averaging argument, we have that |V ∗| ⩾ δ
3 · Y (k) = N(k) ·

√
Y (k). Pick some arbitrary Ṽ ⊆ V ∗ of

size γ over F2. We apply the Deceitful Subspaces Lemma (Lemma 4.3) with κ = 8γk and q = 2 for the following
R ⊆ X:

R := {x⃗i | vi ∈ Ṽ }.
For every variable vi ∈ V , let Zi ⊆ V be the set of variables each of whose constraint with vi is satisfied

under σ. Fix some vi ∈ Ṽ . From the definition of V ∗, and since Ṽ ⊆ V ∗, we have that |Zi| ⩾ Y (k) · 2δ/3. Let

SR ⊆
(
[c logn]
m

)
be the collection of sets of coordinates each of which is bad w.r.t. R. From the Deceitful Subspaces

Lemma, with probability at least 1 − 2(64k
2+1)·Y (k)

n

√
Y (k)
7

, we have that |SR| ⩽ κ as |R| ⩽ |Ṽ | = γ. Note that we don’t

have to be worried if |R| is smaller than γ, as we would then apply the Deceitful Subspaces Lemma with the
same value of κ but a smaller value of γ. Alternatively, we could apply the transformation in Lemma 4.2 before
constructing Φ in Section 4.3 to avoid duplicates in R.

We remove vj ∈ Zi if Sj ∈ SR. Let the resulting subset of Zi be denoted Z̃i.

Claim 6.1. For every vj ∈ V , if Sj /∈ SR then |Z̃j ∩ Ṽ | ⩽ N(k).

We now upper and lower bound the sum of number of satisfied constraints over each variable in Ṽ . For the
upper bound we have: ∑

vi∈Ṽ

|Zi| ⩽ |Ṽ | · |Zi \ Z̃i|+
∑
vi∈Ṽ

|Z̃i|

⩽ γκ+
∑
vi∈Ṽ

|Z̃i|

= 8k · Y (k) +
∑
vj∈V
Sj /∈SR

|Zj ∩ Ṽ |

⩽ 8k · Y (k) + Y (k) ·N(k)

Next, we have the lower bound:∑
vi∈Ṽ

|Zi| ⩾
2δ · Y (k)

3
· |Ṽ | = 2 · Y (k) ·N(k)

This leads to a contradiction as N(k) > 8k.

Proof. [Proof of Claim 6.1] Suppose the contrary, and assume there is some vj ∈ V such that Sj /∈ SR and

|Z̃j ∩ Ṽ | > N(k). Then for every vi ∈ Z̃j ∩ Ṽ we have that:

k∑
r=1

β⃗i(r) · α⃗jr =
(
x⃗i(π−1

j (1)), x⃗i(π−1
j (2)), . . . , x⃗i

(
π−1
j (m)

))
.

Let Z̃j ∩ Ṽ = {vi1 , . . . , viw} where w > N(k). Let A be the matrix whose columns are the vectors x⃗i1 , . . . , x⃗iw

(all of which are in X). From the soundness case assumption, we know that rank(A) ⩾ k + 1. Thus, there are

k + 1 linearly independent columns in A, say, x⃗i
′
1 , . . . , x⃗i

′
k+1 . However, we know that β⃗i

′
1 , . . . , β⃗i

′
k+1 are linearly

dependent (as these are k + 1 vectors in Fk2). Thus, there exists λ⃗ ∈ Fk+1
2 such that:

k+1∑
h=1

λ⃗(h) · β⃗i
′
h = 0⃗.
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∀r ∈ [k],

k+1∑
t=h

λ⃗(h) · β⃗i
′
h(r) = 0.

For all t ∈ Sj we have:

k+1∑
h=1

λ⃗(h) · x⃗i
′
h(t) =

k+1∑
h=1

(
λ⃗(h) ·

(
k∑
r=1

β⃗i
′
h(r) · α⃗jr

))

=

k∑
r=1

((
k+1∑
h=1

λ⃗(h) · β⃗i
′
h(r)

)
· α⃗jr

)
= 0.

Since the above is true for all t ∈ [m], we have that:

k+1∑
h=1

λ⃗(h) ·
(
x⃗i

′
h

)
|Sj

= 0⃗.

However, this contradicts Sj /∈ SR as x⃗i
′
1 , . . . , x⃗i

′
k+1 are linearly independent.

7 Inapproximability of k-Biclique and Densest k-Subgraph

In this subsection, we prove the strong inapproximability of k-Biclique problem and the Densest k-Subgraph
problem. However, to do so we need to introduce a strengthening of MSH which we do below.

7.1 Strong Maximum Span Hypothesis In this subsection, we formally define (the colored version of ) the
k-Maximum Totally Span Problem and the Strong Maximum Span Hypothesis.

Definition 7.1. ((Y,N)-Maximum Totally Span Problem ((Y,N)-MTSP)) Given two computable func-
tions Y,N : N → N, an instance of (Y,N)-MTSP is specified by the tuple (q,X := X1∪̇X2∪̇ · · · ∪̇XY (k), d, k, ω)

where q ∈ P, for all i ∈ [Y (k)], we have Xi ⊆ Fdq (for all i, i′ ∈ [Y (k)], we have |Xi| = |Xi′ |), ω := ω(k) ∈ (0, 1] is
a constant, k is the parameter, and the goal is to distinguish between the two cases:

Completeness: There exists a subset X̃ ⊆ X such that for all i ∈ [Y (k)] we have |X̃ ∩ Xi| = 1 and for every

subset X̃0 ⊆ X̃, if |X̃0| ⩾ ω · Y (k) then the rank of the space spanned by X̃0 is exactly k.

Soundness: For every set T ⊆ Fdq of k vectors we have∑
i∈[Y (k)]

|Xi ∩ span(T )| ⩽ N(k).

Remark 7.1. Every instance (X, d, k) of (Y,N)-MSP is also an instance (2, X, d, k, 1) of (Y,N)-MTSP (after
applying Lemma 4.2) with the additional soundness guarantee that in the completeness case, the Y (k) input
points span a k-dimensional space (instead of the weaker property in (Y,N)-MSP where they are only contained
in a k-dimensional space).

Hypothesis 7.1. (Strong Maximum Span Hypothesis (Strong MSH)) There exist computable functions
Y,N : N → N, polynomial function D : N → N, and constants δ, ρ > 0, η, ζ ∈ N, and ξ ⩾ 16, such that
for all i ∈ N we have Y (i) ⩾ ρ · qδ·i and N(i) ⩽ η · iζ . Then (Y,N)-MTSP is W[1]-hard even for instances
(q,X, d, k, ω) where d = D(k) · log |X| and ω = 1

ξk log q .

7.2 Construction of Hard Graph Instances In this subsection, we describe how for each instance of (Y,N)-
MTSP we construct a bipartite graph that will serve as both the hard instance of the k-Biclique problem and the
Densest k-Subgraph problem.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited3716

D
ow

nl
oa

de
d 

08
/3

1/
25

 to
 2

4.
90

.1
07

.2
16

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



For some constant c0 ∈ Z, starting from an instance of (q,X0, c0 log n, k, ω) of (Y,N)-MTSP (where n := |X0|),
we apply the algorithm9 in Lemma 4.1 to obtain an instance (q,X, c log n, k, ω) of (Y,N)-MTSP, where c := c0 · ℓ,
for some constant ℓ. Moreover, we have that every pair of vectors in X are at relative Hamming distance greater
than or equal to 0.1. Recall that X := X1∪̇X2∪̇ · · · ∪̇XY (k), where |Xi| = n/Y (k).

Let m := logn
k log q . Let Γ ⊆ F

log n
log q
q be a subset that is constructed as follows. We identify F

log n
log q
q with the set of

all Fm×k
q matrices. We go over each Fm×k

q matrix A and include it in Γ if both of the following conditions hold:

• A is full rank (i.e., rank(A) = k).

• There is no matrix A′ already in Γ such that the span of the columns of A and A′ are the same, i.e.,
span(A) = span(A′).

We can check the above two conditions for each matrix A in Õ(qkn + k ·m2) = Õk(n) time. Thus we can

construct the set Γ in Õk(n
2) time.

From such an instance (q,X, c log n, k, ω) of (Y,N)-MTSP, we construct at most
(
qk−1
Y (k)

)
many bipartite graphs.

In particular, for every collection of vectors B = {β⃗1, . . . , β⃗Y (k)} ⊆ Fkq \ {⃗0} of size Y (k), if B is full rank, we
construct bipartite graph GB on partite sets R and C (i.e., V (GB) := R ∪̇ C and E(GB) ⊆ R× C). The size of
R is Y (k) ·n and the size of C is Y (k) · |Γ|. Both R and C are equipartitioned into Y (k) parts, say R1, . . . , RY (k)

and C1, . . . , CY (k) respectively. For all i ∈ [Y (k)], we think of the vertices in Ri as a copy of Xi and the vertices
in Ci as a copy of Γ (we view each matrix in Γ through it’s k linearly independent column vectors).

Let S1, . . . , SY (k) be random subsets of [c log n] of sizem. Let πi : Si → [m] be some canonical 1-to-1 mapping.

We are now ready to define the edges. Fix i, j ∈ [Y (k)], α⃗j1, . . . , α⃗
j
k ∈ Fmq and x⃗i ∈ Xi. We define an edge

between x⃗i in Ri and (α⃗j1, . . . , α⃗
j
k) in Cj if and only if the following holds:

k∑
r=1

β⃗i(r) · α⃗jr =
(
x⃗i(π−1

j (1)), x⃗i(π−1
j (2)), . . . , x⃗i

(
π−1
j (m)

))
.

7.3 W[1]-Hardness of Approximating k-Biclique and Densest-k-Subgraph In this subsection, we first
prove the strong inapproximability of the k-Biclique problem.

Theorem 7.1. There is a randomized algorithm running in FPT time which takes as input an instance

(q,X, c log |X|, k, ω) of (Y,N)-MTSP and outputs at most
(
qk−1
Y (k)

)
many instances {GB} B⊆Fk

q\{0⃗}
|B|=Y (k)−1
rank(B)=k

(of order

Ok(|X|)) of Y ∗-Biclique problem, where Y ∗ = Y (k)
16k log q , such that the following holds:

Completeness: If there exists a subset X̃ ⊆ X such that for all i ∈ [Y (k)] we have |X̃ ∩ Xi| = 1 and for

every subset X̃0 ⊆ X̃, if |X̃0| ⩾ ω · Y (k) then the rank of the space spanned by X̃0 is exactly k, then, if
Y (k) ⩾ 16k2 log q, there is some B ⊆ Fkq \ {⃗0} of size Y (k) such that with probability 1− 1

|X|Ω(1) , GB has a

biclique KY ∗,Y ∗ as a subgraph.

Soundness: If for every set T ⊆ Fdq of k vectors we have∑
i∈[Y (k)]

|Xi ∩ span(T )| ⩽ N(k).

then, if N(k) ⩾ 60ck, we have that for all B ⊆ Fkq \ {⃗0} of size Y (k), with probability 1− 1
|X|Ω(1) , GB does

not have a biclique of size N(k).

Assuming the above theorem, we have the proof of Theorem 1.4.

9Lemma 4.1 was only proved for vectors over F2 but it can be easily seen that it extends to all prime order finite fields as Fact 2.1
holds for all prime order fields.
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Proof. [Proof of Theorem 1.4] As promised by Strong MSH, let there be computable functions Y,N : N → N,
polynomial function D : N → N, and constants δ, ρ > 0, η, ζ ∈ N, and ξ ⩾ 16, such that for all i ∈ N we
have Y (i) ⩾ ρ · qδ·i, N(i) ⩽ η · iζ , and (Y,N)-MTSP being W[1]-hard even for instances (q,X, d, k, ω) where
d = D(k) · log |X| and ω = 1

ξk log q . We may assume that N(k) ⩾ 60D(k) · k, otherwise we revise the constants η
and ζ accordingly.

We then apply the FPT reduction to instances of Y (k)-Biclique problem as given in Theorem 7.1 and obtain

that it is W[1]-hard to distinguish instances of Y (k)-Biclique problem where there is a ρ·qδk
16k log q sized biclique versus

instances of Y (k)-Biclique problem where there is no 1 + η · kζ sized biclique. Thus, if the parameter is set to

k′ := ρ·qδk
16k log q , then distinguishing the case where there is a k′ sized biclique versus the case there is no biclique of

size 1 + η · kζ = (log k′)O(1), is W[1]-hard.

Next, we first prove the near optimal inapproximability of Densest k-Subgraph problem.

Theorem 7.2. There is a randomized algorithm running in FPT time which takes as input an instance

(q,X, c log |X|, k, ω) of (Y,N)-MTSP and outputs at most
(
qk−1
Y (k)

)
many instances {GB} B⊆Fk

q\{0⃗}
|B|=Y (k)−1
rank(B)=k

(of order

Ok(|X|)) of Densest Y (k)-Subgraph problem such that the following holds:

Completeness: If there exists a subset X̃ ⊆ X such that for all i ∈ [Y (k)] we have |X̃ ∩ Xi| = 1 and for

every subset X̃0 ⊆ X̃, if |X̃0| ⩾ ω · Y (k) then the rank of the space spanned by X̃0 is exactly k, then, if
Y (k) ⩾ 16k2 log q, there is some B ⊆ Fkq \ {⃗0} of size Y (k) such that with probability 1− 1

|X|Ω(1) , GB has a

biclique KY ∗,Y ∗ as a subgraph, where Y ∗ = Y (k)
16k log q .

Soundness: If for every set T ⊆ Fdq of k vectors we have∑
i∈[Y (k)]

|Xi ∩ span(T )| ⩽ N(k).

then, if Y (k) > (10k + 3 · N(k))2 and N(k) ⩾ 60ck, we have that for all B ⊆ Fkq \ {⃗0} of size Y (k), with

probability 1− 1
|X|Ω(1) , GB does not have a subgraph on 2Y (k) vertices with more than (2Y (k))2−

1
k edges.

Assuming the above theorem, we have the proof of Theorem 1.5.

Proof. [Proof of Theorem 1.5] As promised by Strong MSH, let there be computable functions Y,N : N → N,
polynomial function D : N → N, and constants δ, ρ > 0, η, ζ ∈ N, and ξ ⩾ 16, such that for all i ∈ N we
have Y (i) ⩾ ρ · qδ·i, N(i) ⩽ η · iζ , and (Y,N)-MTSP being W[1]-hard even for instances (q,X, d, k, ω) where
d = D(k) · log |X| and ω = 1

ξk log q . We may assume that N(k) ⩾ 60D(k) · k, otherwise we revise the constants η

and ζ accordingly. We may further assume that Y (k) > (10k + 3 ·N(k))2 (which is true for every large enough
k).

We then apply the FPT reduction to instances of Densest Y (k)-Subgraph problem as given in Theorem 7.2
and obtain that it is W[1]-hard to distinguish instances of Densest Y (k)-Subgraph problem where there is a
ρ·qδk

16k log q sized biclique versus instances of Densest Y (k)-Subgraph problem where there is no subgraph on 2Y (k)

vertices with more than
(

ρ·qδk
16k log q

)2− 1
k

edges. Thus, if the parameter is set to k′ := ρ·qδk
16k log q , then distinguishing

the case where there is a k′ sized biclique versus the case there is no subgraph on 2k′ vertices with at most

(k′)2−
1
k = (k′)

2− 1
µ·log k′ = (k′)2

21/µ
edges (for some µ > 0), is W[1]-hard.

The rest of this section is dedicated to proving Theorems 7.1 and 7.2.

7.4 Completeness Analysis of k-Biclique and Densest-k-Subgraph Problems Let Y (i) ⩾ 16i2 log q,
for all i ∈ N. Suppose there exists a set T := {z⃗1, . . . , z⃗k} ⊆ Fc lognq of k linearly independent vectors such that
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there exists X̃ ⊆ X ∩ span(T ), such that |X̃| = Y (k). We can even assume that T ⊆ X̃ by a change of basis (as

the rank of the space spanned by vectors in X̃ is equal to k). Then we define qk vectors in Fc lognq as follows:

∀β⃗ ∈ Fkq , ψ⃗β⃗ :=
∑
ℓ∈[k]

β⃗(ℓ) · z⃗ℓ.

Let π : X̃ → Fkq be the mapping defined as follows: ∀x⃗ ∈ X̃, we set π(x⃗) := β⃗ where we have ψ⃗β⃗ = x⃗.

Moreover, let X̃ := {x⃗1, . . . , x⃗Y (k)}. Fix X̃ ′ to be some subset of X̃ of size Y ∗ := Y (k)
16k log q containing T .

We apply the Deceitful Subspaces Lemma (Lemma 4.3) to X̃ ′ of size γ := Y ∗ (i.e., |X̃ ′| = γ) over Fq with
κ := Y (k)/2. Then, we know that SX̃′ ⊆ {S1, . . . , SY (k)} in the lemma statement is at most of size Y (k)/2 with

probability at least 1− 1
nΩk(1) . Let TX̃′ be an arbitrary subset of {S1, . . . , SY (k)} \ SX̃′ of size |X̃ ′| = Y ∗.

We know that for every S ∈ TX̃′ we have that for all λ⃗ ∈ Fγq the following holds:

∑
r∈[γ]

λ⃗(r) · x⃗ir ̸= 0⃗ =⇒
∑
r∈[γ]

λ⃗(r) ·
(
x⃗ir
∣∣
S

)
̸= 0⃗.(7.3)

For every Sj ∈ TX̃′ , we pick the vertex c∗j ∈ Cj (the choice of the graph will be soon specified) defined as

follows. First we define k vectors in Fc lognq restricted to the coordinates in Sj .

∀r ∈ [k], a⃗jr := z⃗r|Sj

We know that (⃗aj1, . . . , a⃗
j
k) is a k-tuple of vectors that are linearly independent because T ⊆ X̃ ′ is a collection of

k linearly independent vectors and then applying (7.3), since we have Sj ∈ TX̃′ .

Thus there exists some unique (α⃗j1, . . . , α⃗
j
k) in Γ such that span({α⃗j1, . . . , α⃗

j
k}) = span({a⃗j1, . . . , a⃗

j
k}). We define

c∗j := (α⃗j1, . . . , α⃗
j
k).

Let AT be the full rank Fk×kq matrix such that:

AT ·

α⃗
j
1
...

α⃗jk

 =

a⃗
j
1
...

a⃗jk

 .
For every x⃗i ∈ X̃ ′ let:

β⃗i := π(x⃗i) ·AT

Let B := {β⃗1, . . . , β⃗Y (k)}. We are now interested in the graph GB . We pick the vertex r∗i := x⃗i in Ri of GB .

To finish the analysis in the completeness case, we need to show that for all x⃗i ∈ X̃ ′ and Sj ∈ TX̃′ , we have

an edge between r∗i and c∗j in GB . Fix some arbitrary x⃗i ∈ X̃ ′ and Sj ∈ TX̃′ and some t ∈ [m]. We want to show
that:

k∑
r=1

β⃗i(r) · α⃗jr(t) = x⃗i(π−1
j (t)).

This follows from the below computation.

k∑
r=1

β⃗i(r) · α⃗jr(t) =
k∑
r=1

β⃗i(r) ·A−1
T · z⃗r(π−1

j (t)) =

k∑
r=1

π(x⃗i)r ·AT ·A−1
T · z⃗r(π−1

j (t)) = x⃗i(π−1
j (t)).

Since the choice of t was arbitrary, it holds for all t ∈ [m]. Thus, GB has the complete bipartite graph KY ∗,Y ∗

as an induced subgraph which also means that there are 2 · Y ∗ vertices in GB with (Y ∗)2 edges contained inside
those vertices.
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7.5 Soundness Analysis of k-Biclique Problem Fix some B := {β⃗1, . . . , β⃗Y (k)} ⊆ Fkq . Let t be any integer
greater than N(k) ⩾ 60ck. To do the soundness analysis, suppose there is a Kt,t as an induced subgraph in GB .
Without loss of generality, let the vertices in this subgraph be {r1, . . . , rt} ⊆ R and {c1, . . . , ct} ⊆ C, where for
all i ∈ [t], we have ri := x⃗i and ci := (α⃗i1, . . . , α⃗

i
k).

Suppose there existed some j, j′ ∈ [t] and j∗ ∈ [Y (k)] such that cj ∈ Cj∗ and cj′ ∈ Cj∗ , then we have that for
all i ∈ [t] we have:

k∑
r=1

β⃗i(r) · α⃗jr =
(
x⃗i(π−1

j∗ (1)), x⃗i(π−1
j∗ (2)), . . . , x⃗i

(
π−1
j∗ (m)

))
=

k∑
r=1

β⃗i(r) · α⃗j
′

r

This leads to a contradiction, as (α⃗j1, . . . , α⃗
j
k) ̸= (α⃗j

′

1 , . . . , α⃗
j′

k ), and at the same time both these sets of k
vectors span a k-dimensional space (as they are members of Γ), and thus cannot be mapped to a null space from

all β⃗is (as that would contradict that rank(B) = k).
On a different note, since for every non-decreasing positive computable function Λ : N → N, we have that for

every large enough n, that lnY (k) ⩽ logn
Λ(k) , from Lemma 2.1, we have with high probability (i.e., with probability

1− 1
nΩ(c) ) that:

S1, . . . , SY (k) is a (c log n, Y (k),m, ⌈60ck⌉, 0.05)-disperser.
Thus, we have that: ∣∣∣S̃∣∣∣ ⩾ 0.95c log n where S̃ :=

⋃
i∈[t]

Si.(7.4)

We now remark that if suppose there existed some i, i′ ∈ [t] and i∗ ∈ [Y (k)] such that x⃗i ∈ Xi∗ and x⃗i
′ ∈ Xi∗ ,

then we have that for all j ∈ [t] we have:

(
x⃗i(π−1

j (1)), x⃗i(π−1
j (2)), . . . , x⃗i

(
π−1
j (m)

))
=

k∑
r=1

β⃗i
∗
(r) · α⃗jr =

(
x⃗i

′
(π−1
j (1)), x⃗i

′
(π−1
j (2)), . . . , x⃗i

′ (
π−1
j (m)

))
.

Thus, we have that (x⃗i) |S̃ = (x⃗i
′
) |S̃ which is not possible as |S̃| ⩾ 0.95c log n and ∆(x⃗i, x⃗i

′
) ⩾ 0.1.

Thus, from now on, without loss of generality, we may even assume that x⃗i ∈ Xi and ci ∈ Ci.
Let AX′ ⊆ Fc logn×tq be the matrix whose columns are the vectors in X ′ := {x⃗1, . . . , x⃗t}. Let γ := rank(AX′) ⩾

k + 1 (from the soundness assumption). Let x⃗i1 , . . . , x⃗iγ be the γ linearly independent column vectors of AX′ .

Thus, for every λ⃗ ∈ Fγq \ 0⃗, we have: ∑
w∈[γ]

λ⃗(w) · x⃗iw ̸= 0⃗.

Since x⃗i1 , . . . , x⃗iγ are codewords of a linear code with relative distance greater than 0.1, we have that for
every λ⃗ ∈ Fwq \ 0⃗, we have:

∆

∑
w∈[γ]

λ⃗(w) · x⃗iw , 0⃗

 ⩾ 0.1.

This further implies that for any set T ⊆ [c log n] of coordinates, if |T | > 0.9c log n then,∑
w∈[γ]

λ⃗(w) · x⃗iw
∣∣∣

T
̸= 0⃗.(7.5)

Consider the map ρ : S̃ → [t], where ρ(s) = i where i is the smallest integer such that s ∈ Si. We now
construct k points, namely z⃗1, . . . , z⃗k in Fc lognq as follows.

∀r ∈ [k], ∀s ∈ [c log n], z⃗r(s) :=

{
α⃗
ρ(s)
r (πρ(s)(s)) if s ∈ S̃

0 otherwise
,
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From the row-column inter-consistency checks and the row-column intra-consistency checks, we further have
that for all i ∈ [t]: ∑

r∈[k]

β⃗i(r) · z⃗r

∣∣∣
S̃
= x⃗i|S̃ .

Now, we note that β⃗i1 , . . . , β⃗iγ are γ vectors in Fkq , and since γ > k, we have that these γ vectors are linearly

dependent. Thus, there exists some λ⃗∗ ∈ Fγq \ {⃗0} such that:∑
w∈[γ]

λ⃗∗(w) · β⃗iw = 0⃗.(7.6)

Now consider the vectors x⃗i1 , . . . , x⃗iγ restricted to the coordinates of S̃. We have:∑
w∈[γ]

λ⃗∗(w) · x⃗iw
∣∣∣

S̃
=
∑
w∈[γ]

λ⃗∗(w) ·
(
x⃗iw |S̃

)

=
∑
w∈[γ]

λ⃗∗(w) ·

∑
r∈[k]

β⃗iw(r) · z⃗r

∣∣∣
S̃

=
∑
r∈[k]

z⃗r∣∣∣
S̃
·
∑
w∈[γ]

(
λ⃗∗(w) · β⃗iw(r)

) = 0⃗,

where the last equality follows from (7.6).

However,
(∑

w∈[γ] λ⃗
∗(w) · x⃗iw

) ∣∣∣
S̃
= 0⃗ contradicts (7.5). Thus, there is no Kt,t in GB if t > N(k).

7.6 Soundness Analysis of Densest k-Subgraph Problem Fix some B := {β⃗1, . . . , β⃗Y (k)} ⊆ Fkq . To do

the soundness analysis, consider an induced subgraph H in GB , let the vertices of H be R̃ := {r1, . . . , rtR} ⊆ R

and C̃ := {c1, . . . , ctC} ⊆ C, where for all i ∈ [t], we have ri := x⃗i and ci := (α⃗i1, . . . , α⃗
i
k), and tR + tC = 2 · Y (k).

We can assume that both min{tR, tC} > N(k), as otherwise the number of edges in H is less than 2 ·Y (k) ·N(k).

For any i∗, j∗ ∈ [Y (k)], we first observe that there cannot be K60ck,k in H between the vertices in (Ri∗ ∩ R̃)
and (Cj∗ ∩ C̃)). This is because of (7.4) and that rank(B) = k (much like the arguments we made in the previous
subsection).

We now recall here a classic result connecting the sparsity of a graph with the presence of biclique.

Theorem 7.3. (Kovári-Sós-Turán [KTST54]) For every positive integer N and s, t ⩽ N , every Ks,t-free

graph on N vertices has at most O(N2− 1
min(s,t) ) edges.

Thus, we have

|E(H) ∩ ((Ri∗ ∩ R̃)× (Cj∗ ∩ C̃))| ⩽ (|Ri∗ ∩ R̃|+ |Cj∗ ∩ C̃|)2− 1
k(7.7)

On the other hand, if we pick one representative for each Ri∗ from R̃ (if Ri∗ ∩ R̃ ̸= ∅) and one representative

for each Cj∗ from C̃ (if Cj∗ ∩ C̃ ̸= ∅), then we obtain the scenario of the soundness analysis in Section 6.2 where
the number of edges in this subgraph of H is at most 3 ·N(k) · (Y (k))1.5. These edges are negligible in number

when compared to (7.7). Thus an upper bound on the total number of edges is given by (7.7) which (Y (k))2−
1
k .

8 Gap-ETH Based Validation for MSH

In this subsection, we prove that assuming Gap-ETH, we can obtain a weak version of MSH.

Theorem 8.1. There is some polynomial Y : N → N, constants C1, C2 > 0, and a randomized algorithm
which takes as input an instance of 3-SAT φ on n variables and an integer k and outputs an instance
(X := X1∪̇ · · · ∪̇XY (k), n+ k, k) of MSP such that the following holds:
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Runtime: The algorithm runs in time 2C1n/k.

Completeness: If there exists a satisfying assignment to φ then there is a set T ⊆ Fn+k2 of k vectors such that
for all i ∈ [Y (k)],

|Xi ∩ span(T )| ⩾ 1.

Soundness: If every assignment to φ violates δ fraction of the clauses then with high probability, for every set
T ⊆ Fn+k2 of k vectors we have

|{i ∈ [Y (k)] : |Xi ∩ span(T )| ⩾ 1}| ⩽ (1− C2 · δ) · Y (k).

Assuming the above theorem, we have the proof of Theorem 1.1.

Proof. [Proof of Theorem 1.1] From Gap-ETH, there exist constants ε, δ > 0 such that any randomized algorithm
that, on input a 3-SAT formula φ on n variables and O(n) clauses, can distinguish between val(φ) = 1 and
val(φ) < 1− δ, must run in time at least 2εn. Let N : N → N be defined as N(i) = (1−C2 · δ) · Y (i) for all i ∈ N.

Suppose there was an algorithm to solve (the colored variant of) (Y,N)-MSP in F (k) · |X|α time (for some
computable function F and constant α > 1) then we use the algorithm in Theorem 8.1 for a setting of k ≫ C1α/ε.

Thus, we can convert φ to an instance of (Y,N)-MSP in less than 2εn time and then solve it in time
F (k) · |X|α = F (k) · 2C1αn/k < 2εn.

The rest of this section is dedicated to proving Theorems 8.1.

8.1 Construction of MSP Instances Let φ be a 3-SAT formula on n variables and m := cn clauses (without
loss of generality, we assume c ⩾ 1). Moreover, we have that each variable in φ appears in at most 5 clauses. Let
ε and δ be the constants from Gap-ETH. We denote the variable set of φ by V := {v1, . . . , vn} and the clause set
by C.

Let var : C → P([n]) be the function that maps every clause to the set of indices of the variables that it
contains. More formally, if variables vi1 , vi2 , vi3 appear in a clause C ∈ C then var(C) = {i1, i2, i3}. Moreover, for
every C ∈ C let sgnC : var(C) → F3

2, be the function specifying the sign of the variable appearing in the clause C.
For every large enough k ∈ N, we have the following construction of an instance (X,n, k) of MSP.
Let t be an even integer we will set later. Equipartition the variable set V into k parts, say, V1, . . . , Vk

uniformly at random. For every β⃗ ∈ Fk2 , such that ∆(β⃗, 0⃗) = t (and then we say β⃗ is t-balanced), we associate a
collection of points in Fn+k2 , denoted Xβ⃗ as follows.

Next, for every t-balanced β⃗ ∈ Fk2 , we have Cβ⃗ ⊆ C where a clause C ∈ C is included in Cβ⃗ if and only if for

every i ∈ var(C) we have some j ∈ [k] such that vi ∈ Vj and β⃗(j) = 1.

We have that (x⃗, β⃗) ∈ Fn2 × Fk2 is in Xβ⃗ if and only if the following conditions hold:

• For all C ∈ Cβ⃗ we have that there exists i ∈ var(C) such that sgnC(i) = x⃗(i).

• For all i ∈ [n] if vi ∈ Vj and β⃗(j) = 0 then x⃗(i) = 0.

Note that |Xβ⃗ | ⩽ 2tn/k. We define X ⊆ Fn+k2 as the union of Xβ⃗ for all t-balanced β⃗ ∈ Fk2 .
The polynomial function Y , is simply defined as Y (i) :=

(
i
t

)
for all i ∈ N.

8.2 Completeness Analysis Let σ : [n] → {0, 1} be a satisfying assignment to φ. Fix a t-balanced vector

β⃗ ∈ Fk2 . We then construct a vector x⃗β⃗ ∈ Fn2 in the following way:

∀i ∈ [n], x⃗β⃗(i) :=

{
σ(i) if for some j ∈ [k], vi ∈ Vj and β⃗(j) = 1

0 otherwise
.

We first claim that (x⃗β⃗ , β⃗) ∈ Xβ⃗ . This is because:
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• For all C ∈ Cβ⃗ we have that there exists i ∈ var(C) such that sgnC(i) = σ(i) because σ is a satisfying

assignment. For such an i, note that vi is some Vj such that β⃗(j) = 1 because of the definition of Cβ⃗ . Thus,
we have x⃗β⃗(i) = σ(i) = sgnC(i).

• For all i ∈ [n] if vi ∈ Vj and β⃗(j) = 0 then x⃗β⃗(i) = 0.

Let S := {(x⃗β⃗ , β⃗) | β⃗ ∈ Fk2 is t-balanced}. We claim that S is contained in a k-dimensional subspace. To do
so, we provide the basis vectors z⃗1, . . . , z⃗k that span S.

For every j ∈ [k], we define (z⃗j , e⃗j) ∈ Fn2 × Fk2 as follows:

∀i ∈ [n], z⃗j(i) :=

{
σ(i) if vi ∈ Vj

0 otherwise
,

and e⃗j is the standard basis vector with 1 on the jth coordinate and 0 everywhere else.

Fix some (x⃗β⃗ , β⃗) ∈ S. We note below that it can be spanned by z⃗1, . . . , z⃗k, or more precisely,

x⃗β⃗ =
∑
j∈[k]

β⃗(j) · z⃗j , and β⃗ =
∑
j∈[k]

β⃗(j) · e⃗j .

Thus, |span({z⃗1, . . . , z⃗k}) ∩ S| = Y (k).

8.3 Soundness Analysis Let δ′ = δ
35 where δ is the Gap-ETH constant.

Suppose there exists some set T ⊆ Fn+k2 of size k such that:

|{i ∈ [Y (k)] : |Xi ∩ span(T )| ⩾ 1}| ⩾ (1− δ′) ·
(
k

t

)
:= κ.

Let B ⊆ Fk2 be such that for every β⃗ ∈ B we have there is some (x⃗, β⃗) ∈ Xβ⃗ ∩ span(T ). Moreover, let us denote

for every β⃗ ∈ B, a vector in Xβ⃗ ∩ span(T ) by
(
x⃗β⃗ , β⃗

)
(if there is more than one choice, then pick one arbitrarily).

Without loss of generality, let us suppose that |B| = κ.

Let X̃ =
{(
x⃗β⃗ , β⃗

)
: β⃗ ∈ B

}
and we may assume that X̃ has dimension exactly equal to k, i.e., dim(span(X̃)) =

k.
For every (t− 1)-balanced β⃗0 ∈ Fk2 , let hit(β⃗0) be defined as follows:

hit(β⃗0) :=
{
β⃗ ∈ Fk2 | β⃗ is t-balanced, ∆(β⃗, β⃗0) = 1, and

(
x⃗β⃗ , β⃗

)
∈ X̃

}
.

Since we know that, ∑
β⃗0∈Fk

2

∆(β⃗0 ,⃗0)=t−1

∣∣∣hit(β⃗0)∣∣∣ = |X̃| · t = t · (1− δ′) ·
(
k

t

)
,

there exists a (t− 1)-balanced β⃗∗
0 ∈ Fk2 such that∣∣∣hit(β⃗∗

0)
∣∣∣ ⩾ t · (1− δ′) ·

(
k
t

)(
k
t−1

) = (1− δ′) · (k − t+ 1).

Let B∗ := hit(β⃗∗
0). We now define a subset S∗ ⊆ [k] of size |B∗| where j ∈ [k] is in S∗ if and only if there is

some β⃗ ∈ B∗ such that β⃗ − β⃗∗
0 = e⃗j . Let |S∗| := γ.

We now construct an assignment σ∗ : V → {0, 1} as follows:

∀i ∈ [n], σ∗(vi) :=

{
x⃗β⃗

∗
0+e⃗j (i) if there exists some j ∈ S∗ such that vi ∈ Vj

0 otherwise
.
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The rest of the soundness analysis is simply lower bounding the number of clauses in C that are satisfied by
σ∗.

We note that A := {(x⃗β⃗∗
0+e⃗j , β⃗∗

0 + e⃗j) | j ∈ S∗} is a set of linearly independent vectors, simply because,

{e⃗j | j ∈ S∗} is a set of linearly independent vectors. Since X̃ spans a k-dimensional space, we can pick a set Ã of

k− γ many vectors in X̃ such that A∪ Ã spans X̃. Let Ŝ∗ ⊆ [k] be defined as follows: For every j ∈ [k], we have

that j ∈ Ŝ∗ if and only if there is some (x⃗β⃗
′
, β⃗′) ∈ Ã (for some t-balanced vector β⃗′) such that β⃗′(j) = 1. It is

clear that |Ŝ∗| ⩽ t · (k− γ) ⩽ t · (t− 1+ δ′(k− t+1)). Also since B is k-dimensional, we have that S∗ ∪ Ŝ∗ = [k].
We say that a clause C ∈ C is hit by A if for all i ∈ var(C) we have that if vi ∈ Vj (for some j ∈ [k]) then

j /∈ Ŝ∗. Also, we say that a clause C ∈ C is hit by X̃ if there is some (x⃗β⃗ , β⃗) ∈ X̃ such that for all i ∈ var(C) we

have that if vi ∈ Vj (for some j ∈ [k]) then β⃗(j) = 1.

Claim 8.1. Suppose a clause C ∈ C is hit by both X̃ and A, then σ∗ satisfies C.

Proof. Let (x⃗β⃗ , β⃗) ∈ X̃ such that for all i ∈ var(C) we have that if vi ∈ Vj (for some j ∈ [k]) then β⃗(j) = 1 and

j /∈ Ŝ∗. In other words, we have that if β⃗(j) = 1 then j ∈ S∗. Let λ⃗ ∈ Fγ2 \ 0⃗ where λ⃗(j) = 1 if and only if
β(j) = 1 (where for ease of presentation we assumed S∗ to be the first γ positive integers). Notice that:

β⃗ =
∑
w∈[γ]

λ⃗(w) · (β⃗∗
0 + e⃗w),

where used the fact that t is even. Thus, we have:

x⃗β⃗ =
∑
w∈[γ]

λ⃗(w) · x⃗β⃗
∗
0+e⃗w .

Since for all C ∈ Cβ⃗ we have that there exists i∗ ∈ var(C) such that sgnC(i
∗) = x⃗β⃗(i∗). Next, note that for

all j ∈ S∗ \ Ŝ∗, we have that for all vi ∈ Vj , we have x⃗β⃗
∗
0+e⃗j (i) = x⃗β⃗(i). Let vi∗ ∈ Vj∗ . Thus, we have

sgnC(i
∗) = x⃗β⃗(i∗) = x⃗β⃗

∗
0+e⃗j∗ (i∗) = σ∗(vi∗).

Given Claim 8.1, all we need to now do is bound how many clauses are hit by both X̃ and A. First the
number of clauses not hit by A is at most:

5 ·
∑
j∈Ŝ∗

|Vj | ⩽
5n

k
· t · (t− 1 + δ′(k − t+ 1)) ⩽ 5nδ′ +

5nt2

k
,

where we used that each variable appears in at most 5 clauses.
Next, we estimate the number of clauses not hit by X̃. We say that a clause C ∈ C is hit by a subset R of [k]

if for all i ∈ var(C) we have that if vi ∈ Vj (for some j ∈ [k]) then j ∈ R. With high probability, for every fixing
of a non-empty set R of size exactly 3 over the universe [k], the number of clauses hit by R is at most 12m

(k3)
.

Consider the bipartite graph H on partite vertex sets
(
[k]
3

)
and

(
[k]
t

)
, where we put an edge between L ∈

(
[k]
3

)
and β⃗ ∈

(
[k]
t

)
(we abuse notation and identify the sets in

(
[k]
t

)
through its characteristic vectors, and thus

(
[k]
t

)
is

identified as the set of all t-balanced vectors in Fk2), if and only if for all j ∈ L we have β⃗(j) = 0. We would like

to estimate the largest subset R of
(
[k]
3

)
such that there is no edge between R and B in H. In fact, we simply

estimate the largest subset R of
(
[k]
3

)
such that the size of it’s total neighborhood in

(
[k]
t

)
is at most δ′ ·

(
k
t

)
. By

simply counting edges incident on R, we have:

|R| ·
(
k − 3

t− 3

)
⩽ δ′ ·

(
k

t

)
·
(
t

3

)
.

Thus we have:

|R| ⩽
δ′ ·
(
k
t

)
·
(
t
3

)(
k−3
t−3

) = δ′ · k(k − 1)(k − 2)

t(t− 1)(t− 2)
·
(
t

3

)
= δ′ ·

(
k

3

)
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Putting the above bounds together, we have that the total number of clauses hit by all R ∈ R is at most
12δ′ ·m.

Therefore, from Claim 8.1, the total number of clauses not satisfied by σ∗ is at most:

δ′ · (12m+ 5n) +
5nt2

k
⩽
δ ·m
2

.

Clearly, setting t to be some large even integer (like 100) suffices for the above soundness analysis to go
through.

Acknowledgements Karthik C. S. was supported by the National Science Foundation under Grant CCF-
2313372, a grant from the Simons Foundation, Grant Number 825876, Awardee Thu D. Nguyen, and was also
partially funded by the Ministry of Education and Science of Bulgaria’s support for INSAIT, Sofia University “St.
Kliment Ohridski” as part of the Bulgarian National Roadmap for Research Infrastructure. Subhash Khot was
supported by the NSF Award CCF-1422159, 2130816, the Simons Collaboration on Algorithms and Geometry,
and the Simons Investigator Award.

References

[AAM+11] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Weinstein. Inapproximability
of densest κ-subgraph from average case hardness. Unpublished manuscript, 1:6, 2011.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the
hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[ALW13] Amir Abboud, Kevin Lewi, and Ryan Williams. On the parameterized complexity of k-sum. CoRR,
abs/1311.3054, 2013.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP. J. ACM,
45(1):70–122, 1998.

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
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