Journal of Machine Learning for Modeling and Computing, 6(2):77-89 (2025)

TIME-SERIES FORECASTING AND
REFINEMENT WITHIN A MULTIMODAL PDE
FOUNDATION MODEL

Derek Jollie,! Jingmin Sun,® Zecheng Zhang,*> &
Hayden Schaeffer**

1Department of Mathematics, Montana State University, Bozeman, Montana
59717, USA

?Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213, USA

3Department of Mathematics, Florida State University, Tallahassee, Florida
32304, USA

*Department of Mathematics, University of California, Los Angeles, California
90095, USA

*Address all correspondence to: Hayden Schaeffer, Department of Mathematics,
University of California, Los Angeles, CA 90095, USA, E-mail: hayden@math.ucla.edu

Symbolic encoding has been used in multioperator learning (MOL) as a way to embed additional
information for distinct time-series data. For spatiotemporal systems described by time-dependent
partial differential equations (PDEs), the equation itself provides an additional modality to identify
the system. The utilization of symbolic expressions alongside time-series samples allows for the de-
velopment of multimodal predictive neural networks. A key challenge with current approaches is
that the symbolic information, i.e., the equations, must be manually preprocessed (simplified, rear-
ranged, etc.) to match and relate to the existing token library, which increases costs and reduces
flexibility, especially when dealing with new differential equations. We propose a new token library
based on SymPy to encode differential equations as an additional modality for time-series models.
The proposed approach incurs minimal cost, is automated, and maintains high prediction accuracy
for forecasting tasks. Additionally, we include a Bayesian filtering module that connects the different
modalities to refine the learned equation. This improves the accuracy of the learned symbolic repre-
sentation and the predicted time-series.

KEY WORDS: multimodality, PDE foundation modeling, operator learning, symbolic
regression, Bayesian filtering

1. INTRODUCTION

Operator learning, initially developed as an application of a universal approximation property in
Chen and Chen (1993, 1995), aims to approximate maps between functions. Many mathemat-
ical and scientific problems can be formulated as the approximation of operators; for instance,
forecasting time-series or solving time-dependent partial differential equations (PDEs). This has

The code is available at: https://github.com/JingminSun/prose_v1.

Submitted: 12/8/24; Accepted: 2/10/25; Online: 2/26/25 77
https://doi/10.1615/JMachLearnModelComput.2025057618
2689-3967/25/$35.00 © 2025 by Begell House, Inc. www.begellhouse.com

78 Jollie et al.

made operator learning a crucial tool in computational science and scientific machine learning
(Karniadakis et al., 2021; Li et al., 2020a,b; Lu et al., 2021; Raissi et al., 2019; Schaeffer, 2017;
Schaeffer et al., 2013, 2018; Schaeffer and McCalla, 2017; Schaeffer and Osher, 2013; Zhang
and Schaeffer, 2019). Many deep neural operators (DNOs) (Li et al., 2020a, 2022; Lin et al.,
2023b; Lu et al., 2021, 2022; Wen et al., 2022; Zhang et al., 2023, 2024) have been developed
and show effectiveness in solving different types of problems relating to time-dependent pre-
diction. For example, Lu et al. (2021) introduced the deep operator network (DeepONet) for
approximating the solution map for ordinary differential equations (ODEs) and PDEs. Efendiev
et al. (2022) and Lin et al. (2023a) utilize DNOs to predict time-series recursively followed by
numerical stabilization.

Though successful in many applications, a key challenge for DNOs is their limited ability
to generalize, as they can only handle one operator at a time. To address generalization and
extrapolation, i.e., the ability to predict new operators and time-series beyond the training in-
terval, multioperator learning (MOL) (Liu et al., 2023, 2024; Sun et al., 2024a,b; Yang et al.,
2023a,b; Yang and Osher, 2024; Zhang, 2024) has been proposed. MOL uses a single network
structure that is capable of processing data from multiple operators simultaneously. A crucial el-
ement of MOL is the way in which the identification of the system is encoded, since this guides
the network toward understanding which operator is of interest for a given task, and provides
a foundation for extrapolation to new operators. As a result, MOL networks trained with a di-
verse dataset and multiple modalities have become an approach for developing PDE foundation
models.

Among the proposed MOL approaches, the first two notable contributions include PROSE
(Liu et al., 2023, 2024; Sun et al., 2024a,b) and ICON (Yang et al., 2022, 2023a; Yang and
Osher, 2024). PROSE is the first multimodal PDE foundation model that learns multiple oper-
ators and simultaneously predicts the equations that govern the physical system. It employs a
symbolic encoding approach to provide additional information on the PDE of interest by em-
bedding the equations into the feature space. Additionally, PROSE learns the governing physical
system (Schaeffer, 2017; Schaeffer et al., 2013, 2018; Schaeffer and McCalla, 2017; Sun et al.,
2020; Zhang and Schaeffer, 2019) from the given data simultaneously as it constructs the evalu-
ation operator used in forecasting. The learned systems are represented as time-dependent PDEs
written by symbols and can be used to predict time-series beyond the training time interval.

Symbolic encoding has proven effective in various scenarios, including challenging extrapo-
lation settings (Sun et al., 2024a,b). Additionally, PROSE’s symbolic encoding can be fine-tuned
for downstream tasks and enables zero-shot prediction for new operators (Sun et al., 2024b).
However, a challenge with symbolic encoding is that PDEs may be written in inconsistent or-
ders and formats. For instance, the expressions £ — 1+ 1 + y and y + = are mathematically
equivalent but would be represented differently in token sequences. To address this issue, we
propose a standardization approach that utilizes SymPy (Meurer et al., 2017) for creating con-
sistent token sequences for the symbolic modality. Our approach demonstrates effectiveness at
automatically standardizing the token sequences and improving the encoding process.

To enhance the prediction accuracy of the physical system, we propose a sequential Monte
Carlo (SMC) particle filter module (Andrieu et al., 2010; Douc and Cappé, 2005; Doucet et al.,
2000; Doucet and Johansen, 2011; Lin et al., 2022) to refine the learned PDEs within the founda-
tion model framework. Notably, only the coefficients of the PDEs require refinement, as PROSE
has demonstrated reliability in correctly identifying the terms in the governing equation, i.e.,
terms such as wu;, and w,. This also holds in the presence of noise or when terms are either
missing or mistakenly included. The pipeline of our model is illustrated in Fig. 1.

Journal of Machine Learning for Modeling and Computing

Time-Series Forecasting and Refinement within a Multimodal PDE Foundation Model 79

Data Inputs Data Outputs

u?ﬂ,zg Data Encod W uEtw,zg

‘ D d
ata D
ultr,e J ‘ / ultwiz e Refined

w(tansz) Symbol

| Partial Filter
Fusion Ut = [Otrefined|Uze
A d Symbol
('mbo
Symbol Inputs Symbol Symbol ry
e = [Encoder Decoder -
¢ = [Nuge { J u = [pROSE) Uz

FIG. 1: PROSE PDE foundation model with particle filtering

v

u(ty,)

Our main contributions are as follows.

e We propose a new symbolic encoding method that can include a general equation modal-
ity. The new method allows the equations to be inputted without a specific format, thus
leading to a more flexible model. Compared to the manual standardization methods, the
proposed symbol encoding method significantly improves efficiency.

o We examine the ability of PROSE-PDE to generate consistent outputs when given incom-
plete symbolic inputs. In the experiments, we test the inclusion of placeholder coefficients
on the equations and the addition of incorrect terms in the equations.

e A particle filter is introduced to the outputs of the decoders to further refine the learned
coefficients, which leads to improved accuracy of the discovered equations. The refined
model can be used for stable long-term predictions.

2. METHODS

Suppose we are given data from NV, operators G; : U; — V;, where U; and V; are function
spaces. MOL uses a single neural network Gg to approximate G, i.e., Go(G;,u) ~ G;(u),
where u € Uj is a given input function for G, ¢ = 1, ..., N,,, and 0 is the network parameters.
A key component of MOL is the encoding structure used to identify the system of interest as
it informs the network of the particular PDE. Our focus is on PDE solution operators, which
are crucial for many scientific computing problems. Therefore, we encode the governing equa-
tions directly to inform the network of ;. PROSE introduces a symbolic encoding approach
for this purpose. To encode the equations, PROSE represents each equation as a tree with nodes
corresponding to operations and leaves to variables or coefficients. This tree is then converted
into a sequence (in Polish notation), with each entry consisting of learnable tokens. For exam-
ple, cos(1.5:c1)+x§ — 2.6 is converted to sequence [+ cos X 1.5 x; — pow 23 2 2.6]1,
where each entry is a trainable token. This is referred to as the PROSE tree. Notably, we use
the sign, mantissa, and exponent to represent numbers (Charton, 2022; d’Ascoli et al., 2022;
Kamienny et al., 2022; Liu et al., 2023). Specifically, each number is represented with three
components: sign, mantissa, and exponent, which are treated as individual tokens with trainable
embeddings. For example, if mantissa length is chosen to be 3, then 2.6 = +1 x 260 x 1072 is
represented as [+ 260 E—2]; see also Liu et al. (2023) for additional examples.

PROSE’s symbolic encoding proves effective even in challenging noisy extrapolation set-
tings. However, the equations must be (1) manually ordered into a particular format and (2) sim-
plified to a standard expression. For example, the equation u; — (u,), = 0 would need to be

Volume 6, Issue 2, 2025

80 Jollie et al.

manually formatted as u; — u,, = O to ensure that all tokens (operations and variables) fit
within the existing library. This could lead to challenges in the testing phase when an equation
is presented with a different order. It may become an issue for generalization, as determining the
appropriate order when faced with new equations or terms can be difficult. Figure 2 is an exam-
ple of the standard order used in PROSE and a possible alternative ordering. Notably, manually
standardizing the tree for new equations with different orders can resolve the problem. However,
the manual standardization process is time-consuming and costly.

To address these challenges, we first leverage SymPy to unify the expressions. This approach
is both fast and cost-effective. Note that SymPy processes a mathematical equation using the
same symbolic encoding procedure as PROSE but with an added tree-based transformation to
simplify equations; i.e., the process is equation-to-tree, simplified tree, sequence, and SymPy
tokens. We refer to this as the SymPy tree. Notably, the family of SymPy tokens is larger than
the useful tokens needed for encoding PDEs. To address this, we process the SymPy trees by
simplifying unnecessary tokens, allowing the updated tokens to be used directly without manual
adjustment. For instance, u(x, t) is tokenized as “u”, “(”, “x”, “,”, “t”, and “)” in SymPy. We
simplify this to “u(z,t)”, significantly improving both efficiency and accuracy. Figure 3 is an
illustration of the Korteweg—De Vries equation SymPy tree.

Bayesian Particle Filter. We propose a refinement module that utilizes the SMC particle
filter applied to the symbolic outputs to improve the accuracy of the learned equation. For a
coefficient estimated by the symbolic decoder, we first set &y := &prosg and the initial distri-
bution go(ct) for the particle filter to be a uniform distribution centered at o, i.e., go(og) =
Unif.(0.9x, 1.10). The parameter refinement update rule for oy, is defined as

Xglk—1 = X—1 TV,

where v ~ N(0, ezz,) is zero-mean Gaussian noise. Using the Chapman—Kolmogorov equation,
we compute the prior belief distribution:

oo

gk\k—l(%\k—l):/ Potgir—1lotk—1)gr—1(0tg—1)dotg 1. (D

— 00

By the update rule that oy, = ax—1 + v, we can infer that

plogir—tlo—1) = fv(ogr—1 — 1) = fv(v),

where f, is the pdf of the distribution of v. Hence, we can write Eq. (1) as

add

T T add
/\
Ut sub mul add
/\

/\ /\
mul mul -1 mul ut mul
PN e/\ A~ P
Lk mul = Uz Uze = Uz mul

AN N\
U Ug k u

FIG. 2: PROSE tree examples: the left tree is an example of a manually standardized PROSE tree for the
viscous Burgers’ equation us + kuuz = (€/7)uzz. In the experiments, to generate the randomized trees
(or a tree encountered in testing), we randomly switch the order of any branch of the tree with probability
0.5, leading to different orders of the same symbolic expressions. The right tree is an example of an altered
tree for the same equation.

Journal of Machine Learning for Modeling and Computing

Time-Series Forecasting and Refinement within a Multimodal PDE Foundation Model 81

Jr
1 u(z,t) 0 1 0 52 0

A\ SUEAN N

C uzt) » =) € u(xt) - t) C ulz,t) - (x> 3))

FIG. 3: SymPy Tree Example: KdV equation s + u¢ + 8*uzze = 0. Here, d(u(zx,), (,3)) is used in
the tree structure to embed the term w4, and similarly. Other derivatives are written using this notation.

Ghlk—1 (Xgk—1) = / v (V) gr—1 (a1)doc—y.)
Bayes’ theorem then gives the posterior belief with normal coefficient 1 = 1/p(u(t, -)):

gr(ox) = plo|u(ty,) =np(u(ty,) o) gr k-1 (o) 3

This process is known as the Bayesian filtering (Chen, 2003), and in practice, we implement it
using a SMC particle filter simulation (Andrieu et al., 2010; Doucet et al., 2000; Doucet and
Johansen, 2011; Gustafsson, 2010; Lin et al., 2022). The details appear in Section 2.1 and Fig. 4.

2.1 Particle Filter

In this section, we discuss a particle filter algorithm to approximate the distribution for «. We
can construct p(u(-, tx)|) from the evolution of u:

u('vtk) :H((xkvu('vtk—l))+o-7 4

where H is a (deterministic) numerical scheme for solving the PDE and o is the observation
noise. In our case ¢ follows a probability density function f,(0) and is sampled from a zero-
mean Gaussian distribution with variance €2, i.e., o ~ N(0, €2). Hence the likelihood of ob-
serving u(-, tx) given oy is

p(u(te,)ox) = fo(ul- tr) — H(ou, u(, te—1))) = fo(0), %)
and inserting it into Eq. (3) yields

gr(0%) =N fo(0)grir—1 (k) (6)
Data Input
Symbol u(t;, @) /~ Solution With
uy = [0PROSE]Uza R Observation noise
- [Symbol With w(tiy1, @ a1,v1) + 01)
| Sample k points from [Process Noise Solver u(tis1, T; g, v2) + 02 Get distribution of
| Prior Belief of distribution | iz = [0 + 1|uaq : 9(ula)
/“ Gii (@) = gr(a) + f,(c”) “3 Ut = ["‘Z.J“ Voluzs u(tiv1, T g, Vi) + Ok
| of parameter: (@i + i)y | : N)
| where v ~ f(v)is the noise}i ur = o + yk]uzz‘) '
_ I A e : =
D Compute the Posterior Belief
Initial Guess of distribution: of distribution:
9t,(@) ~ aproseUnif(0.9,1.1) \ge1(e) = ng(ula)gy,..jn(a)
7]

FIG. 4: Particle filter module: a discretized version of the Bayesian filter process

Volume 6, Issue 2, 2025

82 Jollie et al.

To compute this, we utilize a SMC particle method where we generate M particles {oc,(:zl Z.Ail
from the distribution g5 (x—_;) and approximate Eq. (2) by
M
Irlk—1(k|k—1) MZ O‘k 1+Vz = Z ka\k))
i=1 i=1

where §(-) represents the Dirac delta function, which ensures that the empirical distribution is
represented as a sum of point masses at the predicted particle locations. Each particle evolves
according to the update rule:
(@) (@) _
Xkt = %o + Vi,
where v, is sampled independently from a zero-mean Gaussian distribution with variance efo.
Next, we calculate importance weights (Geweke, 1989), which are given by

(i)
X i

o Jelow) k().) = folo), pi= =, 8)
rik—1(0g”) wo

with normalization factor wy = Zivi L w;. This allows for discrepancy between the distribution
of interest and the distribution from which the samples are drawn. Finally, we compute the
cumulative distribution function for ot :

Gr(og) = /_(Xk gk (0)dC

oo

B /_ak Nfo(0)9xjk—1(0)dC

1 M ;
N Zfﬂ(g)]l(o‘l(q)kq < o))
; folo) =1
M]
=> " pil(og_; < o), (10)

i=1

where 14 is the indicator function on the set A. Once this is constructed, we can resample o

from this new distribution G, (o,); then we repeat this process to construct the next step otgy 1.
In this work, the particle-based refinement process uses M = 500 particles and uses ten

refinement steps. At the last step, we output the mean of the distribution Go(xg) as the re-

fined parameter, i.e., Ctefinea = (1/M) ZM1 ocgo) The process noise is modeled as a normal

distribution with €, = 107, Furthermore, the noise introduced by the numerical scheme is also

modeled as Gaussian noise, with variance proportional to the initial L?-norm of the state v, i.e.,
o = 0.05||u(-, t = 0)||.

3. EXPERIMENT SETUP
3.1 Dataset

The dataset utilizes the conservation laws from Sun et al. (2024a). To summarize, it consists
of six families of conservation laws: Inviscid/viscous Burgers’, inviscid/viscous conservation

Journal of Machine Learning for Modeling and Computing

Time-Series Forecasting and Refinement within a Multimodal PDE Foundation Model 83

law with cubic flux, and inviscid/viscous conservation law with sine flux. The parameters are
randomly sampled from + 10% of the original value and 50 initial conditions leading to 153.6K
separate equations used in training. Then 30.72K equations with different parameters are used
for testing.

The initial data sequence is obtained from the PDE dataset using 16 timestamps from [0, ¢ 7 /2]
(tf specified per equation) with 128 points for the spatial grid on [0, z] for a fixed ;. Note that
a change of variables is used to rescale and normalize the PDEs so that their solutions reside on
a specified interval. We perform data normalization during the training process. Given the data
input sequence {u(¢;, -) bo<i<1,, We compute the mean and standard deviation, which are used to
normalized both the input and ground truth label. The loss function is the standard mean squared
error in this normalized space.

3.2 Evaluation Metrics

Since we use two modalities, we utilize four evaluation metrics from Sun et al. (2024a). For
metrics on the data, we use the relative L? error: |lu — > /||u|>, and the R? score:

5 s — 12
K2 2’

- > llui — mean(u;)|3
7

R?:=1

where wu is the target, is the model’s prediction, and i is the index for the sample.

A valid generated expression is considered as the one with true mathematical meanings (i.e.,
can be decoded into an equation) and with (relative) error less than 100%. The percentages of
valid expressions are reported and the symbolic error is computed by inputting randomized-
coefficient polynomials of the form

P(z,t) = (co + 1t + eat?)(cs + cax + csa® + cox® + cr2?),

into the learned PDE and the true PDE then taking the relative L? error between them. The
degree of the polynomials were chosen to avoid the true PDEs from being identically zero. The
time-series error is the relative L2 error using the prediction generated using the (particle filtered)
refined PDE and initial conditions in the input data.

3.3 Training

The models are trained using the AdamW optimizer with batch size of 512 for 30 epochs, where
each epoch is 2K steps. The learning rate scheduler is set to have 10% warmup and a cosine
scheduler. We use a learning rate of 10~* and a weight decay of 10~*. On a single NVIDIA
GeForce RTX 4090 GPUs with 24 GB memory, the training takes about 3.0 hr with the PROSE
tree and 11.5 hr using the SymPy tree.

4. NUMERICAL EXPERIMENTS

We present numerical experiments to demonstrate that our proposed standardized symbol modal-
ity enhances prediction performance. We investigate five different symbolic encoding settings for
PDEs and evaluate the trained model’s performance on equations that are not preprocessed, i.e.,
not simplified or formatted in a specific order. The five settings used for testing (after pretraining)

Volume 6, Issue 2, 2025

84 Jollie et al.

are (1) PROSE tree: defined in Section 2 and Sun et al. (2024a); (2) swapping PROSE tree:
PROSE tree with randomized ordering for addition and subtraction (with —1 multiplied) with
probability 0.5; (3) noisy swapping PROSE tree: PROSE tree with random erroneous terms
added with probability 0.5, and the noisy trees are swapped with probability 0.5; (4) SymPy
tree: defined in Section 2; and (5) noisy SymPy tree: SymPy tree with random erroneous terms
added with probability 0.5. We present an example of swapping terms and randomized ordering
in Fig. 2.

From Table 1, we observe that if the order of the terms in the testing equations does not
match the training order, the errors increase to 3.26% and 1.43%, respectively, for the prediction
and learned equations. In contrast, the SymPy tree achieves the best prediction errors at 1.42%
and 1.40%, primarily due to the standardization of the format and the token library. This auto-
mated process is also faster compared to the manual standardization of the PROSE tree, which
resulted in an error of 2.18%. Note that when comparing between the noisy cases, one advantage
of the SymPy tree is that the added consistency leads to a higher valid fraction, likely indicat-
ing more robust knowledge extraction. Moreover, the valid fraction, representing the ratio of
mathematically valid predicted PDEs, correlates with the symbolic error: lower prediction errors
correspond to higher valid fractions. Notably, the proposed SymPy Tree substantially enhances
the validity of the generated symbols.

The examples for which the symbolic expressions are invalid tend to be a consequence of
issues with resolving numerical values. For example, a generated PROSE tree with noisy inputs
may contain the term “cos(N915z),” where N915 stands for the mantissa part of a number, but
with the sign and exponent part missing. Consequently, we cannot recover a floating number
and this results in an invalid prediction. For generated Sympy trees with noisy inputs, invalid
expressions tend to have terms such as “EO0F — w cos(z),” in which the invalid term “E0E” will
not affect other terms. This also explains the reason SymPy tree yields a higher valid fraction.

To further enhance the prediction accuracy of the physical system and utilize the learned
equations to evaluate the time series, we test the particle filter. Using the model obtained from
the previous experiment with the SymPy tree, we randomly select 100 equations from each
type for refinement. The results are presented in Table 2, with some corresponding predictions
illustrated in Figs. 5 and 6.

TABLE 1: PROSE-PDE with two modalities. Noisy: erroneous terms in the input.
Swapping: rearranged order for terms. L? and R? errors are for the data predictions while
symbolic error and valid fraction are metrics for the learned equations; see Section 3.2
for details. PROSE tree* uses manual formatting and thus is not a direct comparison

Noise Testing Tree Relative L2 Score Symbolic Valid

Structure L? Error Error Fraction

PROSE Tree* 2.18% 0.995 1.24% 99.90%

Noise-Free Swapping

PROSE Tree 3.26% 0.983 1.43% 85.94%

SymPy Tree 1.42% 0.996 1.40% 99.95%

Noisy Swapping

Noisy Tree PROSE Tree 4.53% 0.968 2.06% 76.01%
Noisy SymPy 3.81% 0.973 3.21% 83.23%

Tree

Journal of Machine Learning for Modeling and Computing

Time-Series Forecasting and Refinement within a Multimodal PDE Foundation Model 85

TABLE 2: Comparison of symbolic modality errors with and without particle filter. We evaluate
PDEs using the learned systems and calculate the time-series errors (see Section 3.2). (I)CL:

(Inviscid) conservation law

. . Symbolic Error Time-Series Error
Type of equation Expression
Without With Without With
Filtering Filtering Filtering Filtering
Burgers’ ur + 1 (u?) e = QUgy 1.02% 0.88% 1.50% 1.38%
Inviscid Burgers’ ug + q(u?)z =0 1.11% 0.65% 3.47% 2.12%
CL w. cubic flux u; +q; (u3 = QlUzy 3.07% 2.79% 3.94% 3.62%
ICL w. cubic flux ug +q(u?)y =0 2.31% 1.73% 3.61% 2.97%

ICL w. sine flux u, +g(sin(u)), =0 050% 029% 3.94% 2.22%

Noisy
Sympy Tree

‘Swapping Noisy
PROSE Tree PROSE Tree Sympy Tree

Input Symbol [?ue + [?] cos(u)u, [?) cos(w)uz + 2wy [?Jetzr + [?)ug + [?] cos(u)u 2] cos(u)u, + [?Jur [?)u + [?] cos(u)u, + [?Ju;

- RALN N
W AR

[1]ue + [0.931] cos(u)uz
Generated Symbol [1]u, + (0.959) cos(u)u, [Ljur + [0.966] cos(u)us T 0.954] cos(w)u + [Lue 0931 cos(u)uz + [Lur
— |0 |Uzz

PROSE Tree

Target Data

Refined Symbol 0.95451] cos(w)uz + [y [0.95182] cos(u)us -+ [1ur

FIG. 5: Various examples of the symbolic modality for inviscid conservation law with sine flux. Target
equation: u; +0.955 cos(u)u, = 0. For PROSE tree, the model is trained for the order [?]u¢ +[?] cos(u)ua,
and for SymPy tree, the input expression is automatically uniformed into [?] cos(u)us + [?]us. The gener-
ated symbols use three significant digits while the refinement is a standard float. Notably the SymPy tree
removes the erroneous term in prediction. See Table 2 for error details.

5. ABLATION STUDY

In this section, we explore the behavior of particle filtering under varying numbers of steps and
analyze its sensitivity to the observation and process noise.

5.1 Filtering Steps

As presented in Fig. 7, when the number of filtering steps increases, the model’s performance
improves, as expected. Notably, with only a single filtering step, the error may even increase
due to insufficient filtering. As the number of steps increases further, the model stabilizes, and

Volume 6, Issue 2, 2025

86

PROSE Tree Pml’sl’!;‘rge
Input Data
Input Symbol [Pus + [JuPuz — [Puas [2NuPuz — [Putee + [
Prediction
Target Data
Generated Symbol [10]_"i’0'&][g0?7‘ri3]::2“2 [10]_“[20 'Eo[gsi(])i]lzuz

Refined Symbol

Jollie et al.
o Noi:
PROgE‘ ¥ree Sympy Tree Sympoy!¥ree

[?|urtiaazs + [Pue
o uz — [Nuze

uu, + [7Juy

?]u? g — [7]
sl == +7 utzgthrzee — [iee

)

[1.0]u¢ + [0.903]uu, [0.978]uu; + [1.0u, [0.912]uu; + [1.0]u,
= [0.00301] iz, ~10.003]uz, —[0.00334]u,
[0.96164]u’u, + [1.0]u; [0.91641]uu, + [1.0]u,
(000299, —[0.0033195)i,

FIG. 6: Various examples of the symbolic modality for viscous conservation law with cubic flux. Target
equation: u¢ + 0.936uuy — 0.0289u,, = 0. For PROSE tree, the model is trained for the order [?]u; +
[2)u*us — [?)tuse, and for SymPy tree, the input expression is automatically uniformed into [?] cos(u)us +
[Nut — [Nuee. The generated symbols use three significant digits while the refinement is a standard float.
Notably the SymPy tree removes the erroneous term in prediction. See Table 2 for error details.

—@— conservation_sinflux —@— burgers
~@- inviscid_conservation_cubicflux ~ —@- conservation_cubicflux ~ <fi= Mean

—@- inviscid_burgers

—@- inviscid_conservation_sinflux

2.5%

2.0%

ic Error

1.5%

Symbol

1.0%

0.5%

Time Series Error

4.0%

3.5%

3.0%

2.5%

2.0%

1.5%

FIG.

0 1 5 10 15
Filtering steps

(@)

0 1 5 10 15
Filtering steps

(b)

7: Trends in symbolic and time-series errors with varying filtering steps. (a) Symbolic error as a
function of filtering steps. (b) Time-series error as a function of filtering steps.

the error reduction becomes more consistent. To balance performance gains with computational
cost, we set the number of filtering steps to 10 in our main results.

5.2 Observation and Process Noises

The standard deviation of the observation noise €, and the process noise €, as defined in Sec-
tion 2 play an important role in the filtering process. As shown in Fig. 8, the errors are influenced

Journal of Machine Learning for Modeling and Computing

Time-Series Forecasting and Refinement within a Multimodal PDE Foundation Model 87

—@— conservation_sinflux -~ burgers —@— inviscid_conservation_sinflux
inviscid_conservation_cubicflux ~—@- conservation_cubicflux - Mean
—@— inviscid_burgers

3.5%
4.0%

w
o
B

3.0%

2.0%

Time Series Error
Time Series Error
~
0
2

N
)
®

1.0%

0.0005 0.005 0.05 0.5 1e-06 1e-05 0.0001
Observation Noise Coefficent ¢ Process Noise &,

(@ (b)

FIG. 8: Trends in time-series errors with varying noises after 10-step filtering. (a) Time-series error as a
function of standard deviation of observation noise coefficients, €, = c||u(-,¢ = 0)]|2. (b) Time-series
error as a function of standard deviation of process noise €.

more by changes to the observation noise, but not the process noise. In our main results, we set
the coefficients of observation noise to ¢ = 0.05, and set the standard deviation of process noise
to 1075,

6. CONCLUSIONS

In this work, we propose an automatic equation encoding modality for enhancing the time-series
prediction of PDEs within the PROSE foundation model. This approach eliminates the need
for costly manual ordering and simplification of PDEs, leading to significant improvements in
prediction accuracy. To further refine the governing system learned by PROSE, we include a
filter-based module that refines the learned expression. This refinement is possible due to the
additional modality in the PDE foundation model. In future work, we will explore advanced
refinement techniques to address limitations of the current particle filter framework, such as
degeneracy issues that reduce the effective particle size. Exploring applications to larger, higher-
dimensional datasets is important for evaluating scalability.

ACKNOWLEDGMENTS

This work was supported in part by NSF 2427558, NSF 2331033, and DE-SC0025440. The
authors thank Yuxuan Liu from UCLA for his helpful comments and suggestions.

REFERENCES

Andrieu, C., Doucet, A., and Holenstein, R., Particle Markov Chain Monte Carlo Methods, J. R. Stat. Soc.
Ser. B: Stat. Methodol., vol. 72, no. 3, pp. 269-342, 2010.

Charton, F., Linear Algebra with Transformers, arXiv preprint arXiv:2112.01898, 2022.

Chen, T. and Chen, H., Approximations of Continuous Functionals by Neural Networks with Application
to Dynamic Systems, IEEE Trans. Neural Networks, vol. 4, no. 6, pp. 910-918, 1993.

Chen, T. and Chen, H., Universal Approximation to Nonlinear Operators by Neural Networks with Arbi-
trary Activation Functions and Its Application to Dynamical Systems, IEEE Trans. Neural Networks,
vol. 6, no. 4, pp. 911-917, 1995.

Volume 6, Issue 2, 2025

88 Jollie et al.

Chen, Z., Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, Statistics, vol. 182, no.
1, pp. 1-69, 2003.

d’Ascoli, S., Kamienny, P.A., Lample, G., and Charton, F., Deep Symbolic Regression for Recurrent Se-
quences, arXiv preprint arXiv:2201.04600, 2022.

Douc, R. and Cappé, O., Comparison of Resampling Schemes for Particle Filtering, in ISPA 2005, Proc. of
the 4th Int. Symp. on Image and Signal Processing and Analysis, Zagreb, Croatia, pp. 64—69, 2005.

Doucet, A., Godsill, S., and Andrieu, C., On Sequential Monte Carlo Sampling Methods for Bayesian
Filtering, Stat. Comput., vol. 10, pp. 197-208, 2000.

Doucet, A. and Johansen, A.M., A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later, in The
Oxford Handbook of Nonlinear Filtering, D. Crisan and B. Rozovskii, Eds., Oxford: Oxford University
Press, 2011.

Efendiev, Y., Leung, W.T., Lin, G., and Zhang, Z., Efficient Hybrid Explicit-Implicit Learning for Multi-
scale Problems, J. Comput. Phys., p. 111326,2022.

Geweke, J., Bayesian Inference in Econometric Models Using Monte Carlo Integration, Econometrica: J.
Econometric. Soc., vol. 57, no. 6, pp. 1317-1339, 1989.

Gustafsson, F., Particle Filter Theory and Practice with Positioning Applications, IEEE Aerospace Electron.
Syst. Mag., vol. 25, no. 7, pp. 53-82, 2010.

Kamienny, P.A., d’Ascoli, S., Lample, G., and Charton, F., End-to-End Symbolic Regression with Trans-
formers, in Advances in Neural Information Processing Systems, A.H. Oh, A. Agarwal, D. Belgrave,
and K. Cho, Eds., Cambridge, MA: MIT Press, 2022.

Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., and Yang, L., Physics-Informed Ma-
chine Learning, Nat. Rev. Phys., vol. 3, no. 6, pp. 422440, 2021.

Li, Z., Huang, D.Z., Liu, B., and Anandkumar, A., Fourier Neural Operator with Learned Deformations for
PDEs on General Geometries, arXiv preprint arXiv:2207.05209, 2022.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A.,
Fourier Neural Operator for Parametric Partial Differential Equations, arXiv preprint arXiv:2010.08895,
2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anandkumar, A., Neu-
ral Operator: Graph Kernel Network for Partial Differential Equations, arXiv preprint arXiv:2003.03485,
2020b.

Lin, G., Moya, C., and Zhang, Z., B-DeepONet: An Enhanced Bayesian DeepONet for Solving Noisy
Parametric PDEs Using Accelerated Replica Exchange SGLD, J. Comput. Phys., vol. 473, p. 111713,
2023a.

Lin, G., Moya, C., and Zhang, Z., Learning the Dynamical Response of Nonlinear Non-Autonomous Dy-
namical Systems with Deep Operator Neural Networks, Eng. Appl. Artif. Intell., vol. 125, p. 106689,
2023b.

Lin, G., Zhang, Z., and Zhang, Z., Theoretical and Numerical Studies of Inverse Source Problem for
the Linear Parabolic Equation with Sparse Boundary Measurements, /nverse Probl., vol. 38, no. 12,
p- 125007, 2022.

Liu, Y., Sun, J., He, X., Pinney, G., Zhang, Z., and Schaeffer, H., PROSE-FD: A Multimodal PDE
Foundation Model for Learning Multiple Operators for Forecasting Fluid Dynamics, arXiv preprint
arXiv:2409.09811, 2024.

Liu, Y., Zhang, Z., and Schaeffer, H., Prose: Predicting Operators and Symbolic Expressions Using Multi-
modal Transformers, arXiv preprint arXiv:2309.16816, 2023.

Lu, L., Jin, P,, Pang, G., Zhang, Z., and Karniadakis, G.E., Learning Nonlinear Operators via DeepONet
Based on the Universal Approximation Theorem of Operators, Nat. Mach. Intell., vol. 3, no. 3, pp.
218-229,2021.

Journal of Machine Learning for Modeling and Computing

Time-Series Forecasting and Refinement within a Multimodal PDE Foundation Model 89

Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., and Karniadakis, G.E., A Comprehensive
and Fair Comparison of Two Neural Operators (with Practical Extensions) Based on Fair Data, Comput.
Methods Appl. Mech. Eng., vol. 393, p. 114778, 2022.

Meurer, A., Smith, C.P., Paprocki, M., éertﬂ&, 0., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov, S.,
Moore, J.K., and Singh, S., SymPy: Symbolic Computing in Python, PeerJ Comput. Sci., vol. 3, p. €103,
2017.

Raissi, M., Perdikaris, P., and Karniadakis, G.E., Physics-Informed Neural Networks: A Deep Learning
Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equa-
tions, J. Comput. Phys., vol. 378, pp. 686-707,2019.

Schaeffer, H., Learning Partial Differential Equations via Data Discovery and Sparse Optimization, Proc.
R. Soc. A: Math. Phys. Eng. Sci., vol. 473, no. 2197, p. 20160446, 2017.

Schaeffer, H., Caflisch, R., Hauck, C.D., and Osher, S., Sparse Dynamics for Partial Differential Equations,
Proc. Natl. Acad. Sci., vol. 110, no. 17, pp. 6634-6639,2013.

Schaeffer, H. and McCalla, S.G., Sparse Model Selection via Integral Terms, Phys. Rev. E, vol. 96, no. 2,
p- 023302, 2017.

Schaeffer, H. and Osher, S., A Low Patch-Rank Interpretation of Texture, SIAM J. Imag. Sci., vol. 6, no. 1,
pp- 226-262,2013.

Schaefter, H., Tran, G., and Ward, R., Extracting Sparse High-Dimensional Dynamics from Limited Data,
SIAM J. Appl. Math., vol. 78, no. 6, pp. 3279-3295, 2018.

Sun, J., Liu, Y., Zhang, Z., and Schaeffer, H., Towards a Foundation Model for Partial Differential Equa-
tions: Multi-Operator Learning and Extrapolation, arXiv preprint arXiv:2404.12355, 2024a.

Sun, J., Zhang, Z., and Schaeffer, H., LeMON: Learning to Learn Multi-Operator Networks, arXiv preprint
arXiv:2408.16168, 2024b.

Sun, Y., Zhang, L., and Schaeffer, H., NeuPDE: Neural Network Based Ordinary and Partial Differential
Equations for Modeling Time-Dependent Data, Math. Sci. Mach. Learn., vol. 107, pp. 352-372,2020.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., and Benson, S.M., U-FNO—An Enhanced Fourier
Neural Operator-Based Deep-Learning Model for Multiphase Flow, Adv. Water Resour., vol. 163, p.
104180, 2022.

Yang, L., Liu, S., Meng, T., and Osher, S.J., In-Context Operator Learning with Data Prompts for Differ-
ential Equation Problems, Proc. Natl. Acad. Sci., vol. 120, no. 39, p. 2310142120, 2023a.

Yang, L., Meng, T., Liu, S., and Osher, S.J., Prompting In-Context Operator Learning with Sensor Data,
Equations, and Natural Language, arXiv preprint arXiv:2308.05061, 2023b.

Yang, L. and Osher, S.J., PDE Generalization of In-Context Operator Networks: A Study on 1D Scalar
Nonlinear Conservation Laws, arXiv preprint arXiv:2401.07364,2024.

Yang, Y., Kissas, G., and Perdikaris, P., Scalable Uncertainty Quantification for Deep Operator Networks
Using Randomized Priors, Comput. Methods Appl. Mech. Eng., vol. 399, p. 115399, 2022.

Zhang, L. and Schaeffer, H., On the Convergence of the SINDy Algorithm, Multiscale Model. Simul., vol.
17, no. 3, pp. 948-972,2019.

Zhang, Z., MODNO: Multi-Operator Learning with Distributed Neural Operators, Comput. Methods Appl.
Mech. Eng., vol. 431, p. 117229, 2024.

Zhang, Z., Moya, C., Lu, L., Lin, G., and Schaeffer, H., D2NO: Efficient Handling of Heterogeneous Input
Function Spaces with Distributed Deep Neural Operators, Comput. Methods Appl. Mech. Eng., vol. 428,
p- 117084, 2024.

Zhang, Z., Wing Tat, L., and Schaeffer, H., BelNet: Basis Enhanced Learning, a Mesh-Free Neural Opera-
tor, Proc. R. Soc. A, vol. 479, no. 2276, p. 20230043, 2023.

Volume 6, Issue 2, 2025

