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Symbolic encoding has been used in multioperator learning (MOL) as a way to embed additional

information for distinct time-series data. For spatiotemporal systems described by time-dependent

partial differential equations (PDEs), the equation itself provides an additional modality to identify

the system. The utilization of symbolic expressions alongside time-series samples allows for the de-

velopment of multimodal predictive neural networks. A key challenge with current approaches is

that the symbolic information, i.e., the equations, must be manually preprocessed (simplified, rear-

ranged, etc.) to match and relate to the existing token library, which increases costs and reduces

flexibility, especially when dealing with new differential equations. We propose a new token library

based on SymPy to encode differential equations as an additional modality for time-series models.

The proposed approach incurs minimal cost, is automated, and maintains high prediction accuracy

for forecasting tasks. Additionally, we include a Bayesian filtering module that connects the different

modalities to refine the learned equation. This improves the accuracy of the learned symbolic repre-

sentation and the predicted time-series.

KEY WORDS: multimodality, PDE foundation modeling, operator learning, symbolic
regression, Bayesian filtering

1. INTRODUCTION

Operator learning, initially developed as an application of a universal approximation property in

Chen and Chen (1993, 1995), aims to approximate maps between functions. Many mathemat-

ical and scientific problems can be formulated as the approximation of operators; for instance,

forecasting time-series or solving time-dependent partial differential equations (PDEs). This has
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made operator learning a crucial tool in computational science and scientific machine learning

(Karniadakis et al., 2021; Li et al., 2020a,b; Lu et al., 2021; Raissi et al., 2019; Schaeffer, 2017;

Schaeffer et al., 2013, 2018; Schaeffer and McCalla, 2017; Schaeffer and Osher, 2013; Zhang

and Schaeffer, 2019). Many deep neural operators (DNOs) (Li et al., 2020a, 2022; Lin et al.,

2023b; Lu et al., 2021, 2022; Wen et al., 2022; Zhang et al., 2023, 2024) have been developed

and show effectiveness in solving different types of problems relating to time-dependent pre-

diction. For example, Lu et al. (2021) introduced the deep operator network (DeepONet) for

approximating the solution map for ordinary differential equations (ODEs) and PDEs. Efendiev

et al. (2022) and Lin et al. (2023a) utilize DNOs to predict time-series recursively followed by

numerical stabilization.

Though successful in many applications, a key challenge for DNOs is their limited ability

to generalize, as they can only handle one operator at a time. To address generalization and

extrapolation, i.e., the ability to predict new operators and time-series beyond the training in-

terval, multioperator learning (MOL) (Liu et al., 2023, 2024; Sun et al., 2024a,b; Yang et al.,

2023a,b; Yang and Osher, 2024; Zhang, 2024) has been proposed. MOL uses a single network

structure that is capable of processing data from multiple operators simultaneously. A crucial el-

ement of MOL is the way in which the identification of the system is encoded, since this guides

the network toward understanding which operator is of interest for a given task, and provides

a foundation for extrapolation to new operators. As a result, MOL networks trained with a di-

verse dataset and multiple modalities have become an approach for developing PDE foundation

models.

Among the proposed MOL approaches, the first two notable contributions include PROSE

(Liu et al., 2023, 2024; Sun et al., 2024a,b) and ICON (Yang et al., 2022, 2023a; Yang and

Osher, 2024). PROSE is the first multimodal PDE foundation model that learns multiple oper-

ators and simultaneously predicts the equations that govern the physical system. It employs a

symbolic encoding approach to provide additional information on the PDE of interest by em-

bedding the equations into the feature space. Additionally, PROSE learns the governing physical

system (Schaeffer, 2017; Schaeffer et al., 2013, 2018; Schaeffer and McCalla, 2017; Sun et al.,

2020; Zhang and Schaeffer, 2019) from the given data simultaneously as it constructs the evalu-

ation operator used in forecasting. The learned systems are represented as time-dependent PDEs

written by symbols and can be used to predict time-series beyond the training time interval.

Symbolic encoding has proven effective in various scenarios, including challenging extrapo-

lation settings (Sun et al., 2024a,b). Additionally, PROSE’s symbolic encoding can be fine-tuned

for downstream tasks and enables zero-shot prediction for new operators (Sun et al., 2024b).

However, a challenge with symbolic encoding is that PDEs may be written in inconsistent or-

ders and formats. For instance, the expressions x 2 1 + 1 + y and y + x are mathematically

equivalent but would be represented differently in token sequences. To address this issue, we

propose a standardization approach that utilizes SymPy (Meurer et al., 2017) for creating con-

sistent token sequences for the symbolic modality. Our approach demonstrates effectiveness at

automatically standardizing the token sequences and improving the encoding process.

To enhance the prediction accuracy of the physical system, we propose a sequential Monte

Carlo (SMC) particle filter module (Andrieu et al., 2010; Douc and Cappé, 2005; Doucet et al.,

2000; Doucet and Johansen, 2011; Lin et al., 2022) to refine the learned PDEs within the founda-

tion model framework. Notably, only the coefficients of the PDEs require refinement, as PROSE

has demonstrated reliability in correctly identifying the terms in the governing equation, i.e.,

terms such as uxx and ux. This also holds in the presence of noise or when terms are either

missing or mistakenly included. The pipeline of our model is illustrated in Fig. 1.
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FIG. 1: PROSE PDE foundation model with particle filtering

Our main contributions are as follows.

" We propose a new symbolic encoding method that can include a general equation modal-

ity. The new method allows the equations to be inputted without a specific format, thus

leading to a more flexible model. Compared to the manual standardization methods, the

proposed symbol encoding method significantly improves efficiency.

" We examine the ability of PROSE-PDE to generate consistent outputs when given incom-

plete symbolic inputs. In the experiments, we test the inclusion of placeholder coefficients

on the equations and the addition of incorrect terms in the equations.

" A particle filter is introduced to the outputs of the decoders to further refine the learned

coefficients, which leads to improved accuracy of the discovered equations. The refined

model can be used for stable long-term predictions.

2. METHODS

Suppose we are given data from Nop operators Gi : Ui ³ Vi, where Ui and Vi are function

spaces. MOL uses a single neural network G» to approximate Gi, i.e., G»(Gi, u) j Gi(u),
where u * Ui is a given input function for Gi, i = 1, . . . , Nop, and » is the network parameters.

A key component of MOL is the encoding structure used to identify the system of interest as

it informs the network of the particular PDE. Our focus is on PDE solution operators, which

are crucial for many scientific computing problems. Therefore, we encode the governing equa-

tions directly to inform the network of Gi. PROSE introduces a symbolic encoding approach

for this purpose. To encode the equations, PROSE represents each equation as a tree with nodes

corresponding to operations and leaves to variables or coefficients. This tree is then converted

into a sequence (in Polish notation), with each entry consisting of learnable tokens. For exam-

ple, cos(1.5x1) + x2
2 2 2.6 is converted to sequence [+ cos × 1.5 x1 2 pow x2 2 2.6],

where each entry is a trainable token. This is referred to as the PROSE tree. Notably, we use

the sign, mantissa, and exponent to represent numbers (Charton, 2022; d’Ascoli et al., 2022;

Kamienny et al., 2022; Liu et al., 2023). Specifically, each number is represented with three

components: sign, mantissa, and exponent, which are treated as individual tokens with trainable

embeddings. For example, if mantissa length is chosen to be 3, then 2.6 = +1 × 260 × 10−2 is

represented as [+ 260 E22]; see also Liu et al. (2023) for additional examples.

PROSE’s symbolic encoding proves effective even in challenging noisy extrapolation set-

tings. However, the equations must be (1) manually ordered into a particular format and (2) sim-

plified to a standard expression. For example, the equation ut 2 (ux)x = 0 would need to be
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manually formatted as ut 2 uxx = 0 to ensure that all tokens (operations and variables) fit

within the existing library. This could lead to challenges in the testing phase when an equation

is presented with a different order. It may become an issue for generalization, as determining the

appropriate order when faced with new equations or terms can be difficult. Figure 2 is an exam-

ple of the standard order used in PROSE and a possible alternative ordering. Notably, manually

standardizing the tree for new equations with different orders can resolve the problem. However,

the manual standardization process is time-consuming and costly.

To address these challenges, we first leverage SymPy to unify the expressions. This approach

is both fast and cost-effective. Note that SymPy processes a mathematical equation using the

same symbolic encoding procedure as PROSE but with an added tree-based transformation to

simplify equations; i.e., the process is equation-to-tree, simplified tree, sequence, and SymPy

tokens. We refer to this as the SymPy tree. Notably, the family of SymPy tokens is larger than

the useful tokens needed for encoding PDEs. To address this, we process the SymPy trees by

simplifying unnecessary tokens, allowing the updated tokens to be used directly without manual

adjustment. For instance, u(x, t) is tokenized as “u”, “(”, “x”, “,”, “t”, and “)” in SymPy. We

simplify this to “u(x, t)”, significantly improving both efficiency and accuracy. Figure 3 is an

illustration of the Korteweg–De Vries equation SymPy tree.

Bayesian Particle Filter. We propose a refinement module that utilizes the SMC particle

filter applied to the symbolic outputs to improve the accuracy of the learned equation. For a

coefficient estimated by the symbolic decoder, we first set ³0 := ³PROSE and the initial distri-

bution g0(³0) for the particle filter to be a uniform distribution centered at ³0, i.e., g0(³0) =
Unif.(0.9³0, 1.1³0). The parameter refinement update rule for ³k is defined as

³k|k−1 = ³k−1 + ¿,

where ¿ > N (0, ë2
p) is zero-mean Gaussian noise. Using the Chapman–Kolmogorov equation,

we compute the prior belief distribution:

gk|k−1(³k|k−1) =

∫ ∞

−∞

p(³k|k−1|³k−1)gk−1(³k−1)d³k−1. (1)

By the update rule that ³k|k−1 = ³k−1 + ¿, we can infer that

p(³k|k−1|³k−1) = f¿(³k|k−1 2 ³k−1) = f¿(¿),

where f¿ is the pdf of the distribution of ¿. Hence, we can write Eq. (1) as

add
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FIG. 2: PROSE tree examples: the left tree is an example of a manually standardized PROSE tree for the

viscous Burgers’ equation ut + kuux = (ë/π)uxx. In the experiments, to generate the randomized trees

(or a tree encountered in testing), we randomly switch the order of any branch of the tree with probability

0.5, leading to different orders of the same symbolic expressions. The right tree is an example of an altered

tree for the same equation.
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FIG. 3: SymPy Tree Example: KdV equation uux + ut + ·2uxxx = 0. Here, ∂(u(x, t), (x, 3)) is used in

the tree structure to embed the term uxxx and similarly. Other derivatives are written using this notation.

gk|k−1(³k|k−1) =

∫ ∞

−∞

f¿(¿)gk−1(³k−1)d³k−1. (2)

Bayes’ theorem then gives the posterior belief with normal coefficient · = 1/p(u(tk, ·)):

gk(³k) = p(³k|u(tk, ·)) = · p(u(tk, ·)|³k)gk|k−1(³k). (3)

This process is known as the Bayesian filtering (Chen, 2003), and in practice, we implement it

using a SMC particle filter simulation (Andrieu et al., 2010; Doucet et al., 2000; Doucet and

Johansen, 2011; Gustafsson, 2010; Lin et al., 2022). The details appear in Section 2.1 and Fig. 4.

2.1 Particle Filter

In this section, we discuss a particle filter algorithm to approximate the distribution for ³. We

can construct p(u(·, tk)|³k) from the evolution of u:

u(·, tk) = H(³k, u(·, tk−1)) + Ã, (4)

where H is a (deterministic) numerical scheme for solving the PDE and Ã is the observation

noise. In our case Ã follows a probability density function fÃ(Ã) and is sampled from a zero-

mean Gaussian distribution with variance ë2
o, i.e., Ã > N (0, ë2

o). Hence the likelihood of ob-

serving u(·, tk) given ³k is

p
(

u(tk, ·)|³k

)

= fÃ
(

u(·, tk)2H(³k, u(·, tk−1))
)

= fÃ(Ã), (5)

and inserting it into Eq. (3) yields

gk(³k) = ·fÃ(Ã)gk|k−1(³k). (6)

FIG. 4: Particle filter module: a discretized version of the Bayesian filter process
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To compute this, we utilize a SMC particle method where we generate M particles
{

³
(i)
k−1

}M

i=1
from the distribution gk−1(³k−1) and approximate Eq. (2) by

gk|k−1(³k|k−1) j
1

M

M
∑

i=1

·
(

³
(i)
k−1 + ¿i

)

=
1

M

M
∑

i=1

·
(

³
(i)
k|k−1

)

, (7)

where ·(·) represents the Dirac delta function, which ensures that the empirical distribution is

represented as a sum of point masses at the predicted particle locations. Each particle evolves

according to the update rule:

³
(i)
k|k−1

= ³
(i)
k−1 + ¿i,

where ¿i is sampled independently from a zero-mean Gaussian distribution with variance ë2
p.

Next, we calculate importance weights (Geweke, 1989), which are given by

wi ?
gk
(

³
(i)
k

)

gk|k−1

(

³
(i)
k

)

= fÃ(Ã), pi =
wi

w0

, (8)

with normalization factor w0 =
∑M

i=1 wi. This allows for discrepancy between the distribution

of interest and the distribution from which the samples are drawn. Finally, we compute the

cumulative distribution function for ³k:

Gk(³k) =

∫ ³k

−∞

gk(·)d·

=

∫

³k

−∞

·fÃ(Ã)gk|k−1(·)d·

j
1

M
∑

i=1

fÃ(Ã)

M
∑

i=1

fÃ(Ã)I
(

³
(i)
k|k−1

f ³k

)

(9)

=
M
∑

i=1

pi I
(

³
(i)
k|k−1

f ³k

)

, (10)

where IA is the indicator function on the set A. Once this is constructed, we can resample ³k

from this new distribution Gk(³k); then we repeat this process to construct the next step ³k+1.

In this work, the particle-based refinement process uses M = 500 particles and uses ten

refinement steps. At the last step, we output the mean of the distribution G10(³10) as the re-

fined parameter, i.e., ³refined = (1/M)
∑M

i=1 ³
(i)
10 . The process noise is modeled as a normal

distribution with ëp = 10−5. Furthermore, the noise introduced by the numerical scheme is also

modeled as Gaussian noise, with variance proportional to the initial L2-norm of the state u, i.e.,

ëo = 0.05‖u(·, t = 0)‖2.

3. EXPERIMENT SETUP

3.1 Dataset

The dataset utilizes the conservation laws from Sun et al. (2024a). To summarize, it consists

of six families of conservation laws: Inviscid/viscous Burgers’, inviscid/viscous conservation
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law with cubic flux, and inviscid/viscous conservation law with sine flux. The parameters are

randomly sampled from ± 10% of the original value and 50 initial conditions leading to 153.6K

separate equations used in training. Then 30.72K equations with different parameters are used

for testing.

The initial data sequence is obtained from the PDE dataset using 16 timestamps from [0, tf/2]
(tf specified per equation) with 128 points for the spatial grid on [0, xf ] for a fixed xf . Note that

a change of variables is used to rescale and normalize the PDEs so that their solutions reside on

a specified interval. We perform data normalization during the training process. Given the data

input sequence {u(ti, ·)}0≤i<T0
, we compute the mean and standard deviation, which are used to

normalized both the input and ground truth label. The loss function is the standard mean squared

error in this normalized space.

3.2 Evaluation Metrics

Since we use two modalities, we utilize four evaluation metrics from Sun et al. (2024a). For

metrics on the data, we use the relative L2 error: ‖u2 ũ‖2

/

‖u‖2, and the R2 score:

R2 := 1 2

∑

i

‖ui 2 ũi‖
2
2

∑

i

‖ui 2 mean(ui)‖2
2

,

where u is the target, ũ is the model’s prediction, and i is the index for the sample.

A valid generated expression is considered as the one with true mathematical meanings (i.e.,

can be decoded into an equation) and with (relative) error less than 100%. The percentages of

valid expressions are reported and the symbolic error is computed by inputting randomized-

coefficient polynomials of the form

P (x, t) = (c0 + c1t+ c2t
2)(c3 + c4x+ c5x

2 + c6x
3 + c7x

4),

into the learned PDE and the true PDE then taking the relative L2 error between them. The

degree of the polynomials were chosen to avoid the true PDEs from being identically zero. The

time-series error is the relative L2 error using the prediction generated using the (particle filtered)

refined PDE and initial conditions in the input data.

3.3 Training

The models are trained using the AdamW optimizer with batch size of 512 for 30 epochs, where

each epoch is 2K steps. The learning rate scheduler is set to have 10% warmup and a cosine

scheduler. We use a learning rate of 10−4 and a weight decay of 10−4. On a single NVIDIA

GeForce RTX 4090 GPUs with 24 GB memory, the training takes about 3.0 hr with the PROSE

tree and 11.5 hr using the SymPy tree.

4. NUMERICAL EXPERIMENTS

We present numerical experiments to demonstrate that our proposed standardized symbol modal-

ity enhances prediction performance. We investigate five different symbolic encoding settings for

PDEs and evaluate the trained model’s performance on equations that are not preprocessed, i.e.,

not simplified or formatted in a specific order. The five settings used for testing (after pretraining)
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are (1) PROSE tree: defined in Section 2 and Sun et al. (2024a); (2) swapping PROSE tree:

PROSE tree with randomized ordering for addition and subtraction (with –1 multiplied) with

probability 0.5; (3) noisy swapping PROSE tree: PROSE tree with random erroneous terms

added with probability 0.5, and the noisy trees are swapped with probability 0.5; (4) SymPy

tree: defined in Section 2; and (5) noisy SymPy tree: SymPy tree with random erroneous terms

added with probability 0.5. We present an example of swapping terms and randomized ordering

in Fig. 2.

From Table 1, we observe that if the order of the terms in the testing equations does not

match the training order, the errors increase to 3.26% and 1.43%, respectively, for the prediction

and learned equations. In contrast, the SymPy tree achieves the best prediction errors at 1.42%

and 1.40%, primarily due to the standardization of the format and the token library. This auto-

mated process is also faster compared to the manual standardization of the PROSE tree, which

resulted in an error of 2.18%. Note that when comparing between the noisy cases, one advantage

of the SymPy tree is that the added consistency leads to a higher valid fraction, likely indicat-

ing more robust knowledge extraction. Moreover, the valid fraction, representing the ratio of

mathematically valid predicted PDEs, correlates with the symbolic error: lower prediction errors

correspond to higher valid fractions. Notably, the proposed SymPy Tree substantially enhances

the validity of the generated symbols.

The examples for which the symbolic expressions are invalid tend to be a consequence of

issues with resolving numerical values. For example, a generated PROSE tree with noisy inputs

may contain the term “cos(N915x),” where N915 stands for the mantissa part of a number, but

with the sign and exponent part missing. Consequently, we cannot recover a floating number

and this results in an invalid prediction. For generated Sympy trees with noisy inputs, invalid

expressions tend to have terms such as “E0E2u cos(x),” in which the invalid term “E0E” will

not affect other terms. This also explains the reason SymPy tree yields a higher valid fraction.

To further enhance the prediction accuracy of the physical system and utilize the learned

equations to evaluate the time series, we test the particle filter. Using the model obtained from

the previous experiment with the SymPy tree, we randomly select 100 equations from each

type for refinement. The results are presented in Table 2, with some corresponding predictions

illustrated in Figs. 5 and 6.

TABLE 1: PROSE-PDE with two modalities. Noisy: erroneous terms in the input.

Swapping: rearranged order for terms. L2 and R2 errors are for the data predictions while

symbolic error and valid fraction are metrics for the learned equations; see Section 3.2

for details. PROSE tree* uses manual formatting and thus is not a direct comparison

Noise
Testing Tree

Structure

Relative

L
2 Error

L
2 Score

Symbolic

Error

Valid

Fraction

Noise-Free

PROSE Tree* 2.18% 0.995 1.24% 99.90%

Swapping

PROSE Tree
3.26% 0.983 1.43% 85.94%

SymPy Tree 1.42% 0.996 1.40% 99.95%

Noisy Tree
Noisy Swapping

PROSE Tree
4.53% 0.968 2.06% 76.01%

Noisy SymPy

Tree
3.81% 0.973 3.21% 83.23%
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TABLE 2: Comparison of symbolic modality errors with and without particle filter. We evaluate

PDEs using the learned systems and calculate the time-series errors (see Section 3.2). (I)CL:

(Inviscid) conservation law

Type of equation Expression
Symbolic Error Time-Series Error

Without

Filtering

With

Filtering

Without

Filtering

With

Filtering

Burgers’ ut + q1(u
2)x = q2uxx 1.02% 0.88% 1.50% 1.38%

Inviscid Burgers’ ut + q(u2)x = 0 1.11% 0.65% 3.47% 2.12%

CL w. cubic flux ut + q1(u
3)x = q2uxx 3.07% 2.79% 3.94% 3.62%

ICL w. cubic flux ut + q(u3)x = 0 2.31% 1.73% 3.61% 2.97%

ICL w. sine flux ut + q(sin(u))x = 0 0.50% 0.29% 3.94% 2.22%

FIG. 5: Various examples of the symbolic modality for inviscid conservation law with sine flux. Target

equation: ut+0.955 cos(u)ux = 0. For PROSE tree, the model is trained for the order [?]ut+[?] cos(u)ux,

and for SymPy tree, the input expression is automatically uniformed into [?] cos(u)ux + [?]ut. The gener-

ated symbols use three significant digits while the refinement is a standard float. Notably the SymPy tree

removes the erroneous term in prediction. See Table 2 for error details.

5. ABLATION STUDY

In this section, we explore the behavior of particle filtering under varying numbers of steps and

analyze its sensitivity to the observation and process noise.

5.1 Filtering Steps

As presented in Fig. 7, when the number of filtering steps increases, the model’s performance

improves, as expected. Notably, with only a single filtering step, the error may even increase

due to insufficient filtering. As the number of steps increases further, the model stabilizes, and
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FIG. 6: Various examples of the symbolic modality for viscous conservation law with cubic flux. Target

equation: ut + 0.936u2ux 2 0.0289uxx = 0. For PROSE tree, the model is trained for the order [?]ut +
[?]u2ux2 [?]uxx, and for SymPy tree, the input expression is automatically uniformed into [?] cos(u)ux+
[?]ut 2 [?]uxx. The generated symbols use three significant digits while the refinement is a standard float.

Notably the SymPy tree removes the erroneous term in prediction. See Table 2 for error details.

(a) (b)

FIG. 7: Trends in symbolic and time-series errors with varying filtering steps. (a) Symbolic error as a

function of filtering steps. (b) Time-series error as a function of filtering steps.

the error reduction becomes more consistent. To balance performance gains with computational

cost, we set the number of filtering steps to 10 in our main results.

5.2 Observation and Process Noises

The standard deviation of the observation noise ëo and the process noise ëp as defined in Sec-

tion 2 play an important role in the filtering process. As shown in Fig. 8, the errors are influenced
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(a) (b)

FIG. 8: Trends in time-series errors with varying noises after 10-step filtering. (a) Time-series error as a

function of standard deviation of observation noise coefficients, ëo = c‖u(·, t = 0)‖2. (b) Time-series

error as a function of standard deviation of process noise ëp.

more by changes to the observation noise, but not the process noise. In our main results, we set

the coefficients of observation noise to c = 0.05, and set the standard deviation of process noise

to 10−5.

6. CONCLUSIONS

In this work, we propose an automatic equation encoding modality for enhancing the time-series

prediction of PDEs within the PROSE foundation model. This approach eliminates the need

for costly manual ordering and simplification of PDEs, leading to significant improvements in

prediction accuracy. To further refine the governing system learned by PROSE, we include a

filter-based module that refines the learned expression. This refinement is possible due to the

additional modality in the PDE foundation model. In future work, we will explore advanced

refinement techniques to address limitations of the current particle filter framework, such as

degeneracy issues that reduce the effective particle size. Exploring applications to larger, higher-

dimensional datasets is important for evaluating scalability.
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