Check for
Updates

Optimizing Quantum Fourier Transformation (QFT)
Kernels for Modern NISQ and FT Architectures

Yuwei Jin*
Rutgers University
Piscataway, USA

Xiangyu Gao*
New York University
New York City, USA

Minghao Guo
Rutgers University
Piscataway, USA

Henry Chen
Rutgers University
Piscataway, USA

jyw413482880@gmail.com xg673 @nyu.edu mg1998 @cs.rutgers.edu hc867 @scarletmail.rutgers.edu
Fei Hua Chi Zhang Eddy Z. Zhang
Rutgers University Independent Researcher Rutgers University
Piscataway, USA USA Piscataway, USA

huafei90@ gmail.com

Abstract—Rapid development in quantum computing leads
to the appearance of several quantum applications. Quantum
Fourier Transformation (QFT) sits at the heart of many of these
applications. Existing work leverages SAT solver or heuristics
to generate a hardware-compliant circuit for QFT by inserting
SWAP gates to remap logical qubits to physical qubits. However,
they might face problems such as long compilation time due to
the huge search space for SAT solver or suboptimal outcome
in terms of the number of cycles to finish all gate operations.
In this paper, we propose a domain-specific hardware mapping
approach for QFT. We unify our insight of relaxed ordering
and unit exploration in QFT to search for a qubit mapping
solution with the help of program synthesis tools. Our method
is the first one that guarantees linear-depth QFT circuits for
Google Sycamore, IBM heavy-hex, and the lattice surgery, with
respect to the number of qubits. Compared with state-of-the-art
approaches, our method can save up to 53% in SWAP gate and
92% in depth.

Index Terms—Qubit Mapping; Quantum Fourier Transform
(QFT); Program Synthesis; IBM Heavy-hex; Google Sycamore;
Lattice Surgery.

I. INTRODUCTION

Quantum computing has exhibited its pronounced advan-
tages in several fields, including cryptography [35], financial
modeling [34], and chemical simulations [33].

Quantum Fourier Transform (QFT) is a computation kernel
used in many important quantum applications [9] [7]. The
applications that utilize the QFT kernel include but are not
limited to the following: Shor’s algorithm [35], amplitude
estimation algorithm [34] [41], quantum phase estimation
(QPE) [20], hidden subgroup problem (HSP) [10], HHL
algorithm [14], and quantum walks [8]. These algorithms
are fundamental for many domains, including cryptography,
finance, risk analysis, quantum simulations, and chemistry
and materials sciences. These algorithms include both near-
term and long-term applications. They cover not only long-
term applications such as Shor’s algorithm, which requires
a significant number of qubits and gates, but also near-term

*These two authors contributed equally.

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 1EEE

raymond.chizhang @ gmail.com

eddy.zhengzhang @ gmail.com

applications such as QPE, which requires a moderate number
of qubits and gate resources.

Applications Architectures
Large QML 7 LNN NbyN
Scale QKD H
Shor HSP gg

Simulation %g® ;}@:{; %
e

oy | Sycamore,_Heawyhex. |
Small QPE

Scale

Now Future

Figure 1: QFT serves as a computation kernel of diverse
applications (e.g., Quantum Phase Estimation(QPE), Quantum
Key Distribution(QKD), Quantum Machine Learning(QML),
and Hidden Subgroup Problem(HSP)). There is a need to
optimize QFT over diverse backends on the RHS.

Hence, optimizing the QFT kernel is of utmost importance.
However, it is challenging for the following reasons.

(1) The QFT kernel is complex due to its requirement for
all-to-all qubit interactions and strict dependency constraints,
as the example shown in Fig. 2. Each qubit must interact with
every other qubit using a controlled phase rotation (CPHASE)
gate. Each qubit must act either as the control qubit or target
qubit in the CPHASE gate, and follow a strict of ordering
being control and target qubits. This complexity increases as
the qubit number increases.

(2) The QFT kernel and other well-known quantum al-
gorithms are often designed or optimized without specific
hardware constraints in mind. Hence it is important to effi-
ciently compile the logical QFT kernels into hardware circuits.
For instance, the sparsity in today’s hardware connectivity
significantly hampers the execution of long-distance two-
qubit gates. Two qubits must be physically adjacent to each
other to execute a 2-qubit gate. This issue exists for both
the noisy intermediate-scale quantum (NISQ) backends and
certain fault-tolerant (FT) backends.

http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00074&domain=pdf&date_stamp=2024-11-17

(3) The real-world quantum computing environment has
the issues of noises, scalability, limited connectivity, and
diversity in the backends. A QFT kernel may need to run
in heterogeneous backends. These backends include the NISQ
backends, such as the IBM heavy-hex device and the Google
Sycamore device, and FT backends, such as the surface-
code QEC devices equipped with the lattice surgery mode
for 2-qubit gate implementations. It is challenging to provide
efficient compilation solutions for a variety of backends and
ensure consistent compilation quality. Moreover, the current
compiler must recompile each time, given a different input
size of the QFT kernel, and may fail to provide consistent
quality across different input sizes.

Our Goal. Our paper focuses on optimizing the QFT kernel
in the real quantum computing environment. As mentioned
above, it is important to optimize QFT for heterogeneous back-
ends, and have them ready before plugging them in different
important quantum applications. We tackle this problem by
leveraging the following key insights:

Key Insight 1: Break the Strict Ordering of Gates. The
QFT kernel has abundant CPHASE gates. Each CPHASE
gate commutes with the other. Hence, these gates do not
have to follow the strict dependence order in the conventional
logical circuits for the QFT kernel represented in the quantum
textbooks [31]. Based on our experiment results, exploiting the
commuting property does not affect the correctness of QFT,
but makes a big difference when performing SWAP insertion
during the compilation.

Key Insight 2: QFT Subkernel Partitioning. We develop a
novel and flexible QFT sub-kernel partition methodology. This
methodology allows reducing the compilation problem of the
QFT kernel for a high-dimensional architecture into that for a
low-dimensional architecture.

Key Insight 3: Unifying Different Methods. We unify the
approaches from Insight 1 and Insight 2. Combining these
two approaches can significantly improve the overall QFT
kernel performance on hardware. For instance, while being
able to reduce high-dimensional problem to low-dimensional
problem, our sub-kernel splitting may cause extra delay in the
circuit. However, breaking the ordering of gates may compen-
sate for the delay of the circuits. We present a framework of
methodology, and showcase multiple scenarios these two key
insights can be flexibly combined.

Other Insights. We leverage program synthesis [38] meth-
ods to help enhance the compilation of the QFT kernels.
It helps integrate human intelligence (educated guesses) for
finding structured solutions to exploit the regularity in both
the QFT kernel and the scalable hardware we deal with. Our
experience in using program synthesis for compiling the QFT
kernel is not only useful for QFT but may potentially be
useful for compiling other quantum algorithms with a regular
structure.

Our Contributions. With all the above, we have developed
a unified framework of methodology for compiling the QFT
kernel. Our framework has the following benefits: (1) Our
approach does not require recompilation when the number of

qubits changes; (2) Our approach adapts to different backends,
including both NISQ and FT backends; (3) Our approach
provides consistent performance and fidelity guarantee for
different input sizes and backends.

Most importantly, for the first time, our work discovered
linear-depth hardware QFT kernel for NISQ devices including
IBM heavy-hex and for Google Sycamore, and FT devices
equipped with the surface code QEC and the lattice surgery
model. Our experiments have demonstrated a huge improve-
ment in both depth and gate count over the state-of-the-art
approaches. Our contributions are multifold:

o Guaranteed compilation quality: linear-depth solutions
for the QFT kernel on different architectures: Google
Sycamore, IBM Heavy-hex, and an FT backend with
lattice surgery model.

o Commutativity exploitation for reordering CPHASE gates
in the QFT kernel.

« A novel and flexible QFT sub-kernel partition that allows
hierarchical decomposition of high-dimensional problems
to low-dimensional problems.

o In-depth understanding of the optimization space for the
QFT kernel on real hardware.

e Our hardware QFT kernel mapping solutions have up
to 53% fewer SWAP gate count and 92% less depth
than state-of-the-art approaches for up to 1024 qubits
compared with SABRE [22].

II. BACKGROUND

We introduce the hardware mapping problem first. Then we
introduce a low-dimensional QFT kernel. We also describe
both the NISQ backends and FT backends, in Section II-B
and Section II-C. respectively.

A. Hardware Mapping

In superconducting quantum hardware, a two-qubit gate can
only be executed when its two qubits are located in 2 adjacent
physical qubits. In reality, due to the sparse connectivity of the
current quantum machine, SWAP gates are required to change
the hardware mapping and enable two-qubit gate interaction.
For instance, for a line topology qo <= q1 <> g2 < @3, tO
execute a two-qubit gate between gy and g3, one can insert
2 SWAP gates: SWAP(qo, q1) and SWAP(q2, g3) to move q0
and q3 closer.

B. A Low-dimensional QFT Kernel

Prior studies [29] [44] have discovered a hardware mapping
solution for the QFT kernel on the linear nearest neighbor
(LNN) architecture, which is a line of connected qubits. In our
sub-kernel partition approach, we will recursively decompose
the problem into the low-dimensional case, this LNN case
serves as our base case for low-dimensional problem. This
base case also serves as an inspiration for our use of the
program synthesis tool when discovering QFT kernel solution
on non-trival architectures. The logical circuit of the QFT
kernel is shown in Fig. 2 (a).

q0 -'Exl_u_ruu

m e :
@ O »
- s

(a) (b)

Figure 2: QFT Logical Circuit and a Line Topology

We show the LNN solution via an example in Fig. 3. The
circuit clearly exhibits a pattern. We will analyze this pattern.
Before the analysis, we assume N is the number of qubits, g;
represents a logical qubit, and @; represents a physical qubit.

20-@ @ @
DD ‘o @ o @
. %%@g

@—a2
a3 —@d @) Me0) ‘% @—a3
a4 —g9) ’@ aD—as

q0, q0)j—Q5

a0 —— Physial Logical Heate (a0—(ad) cPHASE

Qubit
Figure 3: Hardware mapped QFT in LNN. g; is a logical qubit.
Q; is a physical qubit. The single-qubit gate runs in parallel
with two-qubit gates. Each qubit moves to the top first and then
moves down, except q0, which directly moves down. When a
qubit is at the top, it stops for one time step.

Initial mapping: Each logical qubit ¢; is mapped to the
physical qubit @; initially, ¢; — Q;.

Repeating Steps: We denote a CPHASE gate between
physical qubits Q; and Q;11 as G(Q;,Q;), where Q; is the
control in the CPHASE gate, and @); is the target in the
CPHASE gate. Each parallel layer is a sequence of consecutive
pairs of SWAP or CPHASE starting from the physical qubit
Qo or Q1. The upper bound of the qubit index increases by one
at one time for the physical qubits. Note that, interestingly, for
the i-th parallel layer of CPHASE or SWAP gates, the logical
qubits in each pair, have their indices sum to a constant number
for each layer. At the very end, the qubits are as if reversed
on the line, such that the mapping is ¢; — Qn_1—;-

Implications: One may hope to find a Hamiltonian path
that connects all the qubits and then apply the LNN solution
for the QFT kernel. However, it is difficult to find such a
path in modern architectures, whether NISQ or FT backends.
Fig. 4 (a) and (b) show, respectively, Google’s and IBM’s
superconducting architecture. It is possible to find a path,
but such a path may not be able to connect all nodes. It
can be proven that the Hamiltonian path does not exist.
Furthermore, checking the existence of a Hamiltonian path in
one graph is an NP-complete problem [1], meaning the cost
spent in finding one Hamiltonian path might exceed the gain
to leverage previously proposed efficient qubit mapping over
LNN architecture.

Nonetheless, this LNN solution is still useful. Our proposed
solutions, as described later, are either non-trivial extensions
of the LNN solution or will use the LNN case as the base case
when we perform recursive sub-kernel partitioning.

Figure 4: (a) Google Sycamore (b) Heavy-hex

C. The Fault-tolerant Backend and the Lattice Surgery Model

The surface code is a promising method for implementing
fault-tolerant quantum computing (FTQC) as it has a high
tolerance error threshold [16], [27]. The lattice surgery [15]
is one of the modes of the surface code FTQC. In the lattice
surgery mode, a 2D grid of logical qubits is formed by tiling
the plane with rectangular tiles, as shown in Fig. 5, where
the grey tiles are logical computation qubits, and the white
tiles are logical ancilla qubits. The ancilla qubits are necessary
for implementing CNOT gates. Hence the ancilla qubits are
interleaved with the data qubits. There are different ways to
arrange ancilla qubits on the grid. The layout in Fig. 5 is a
compact way for better resource usage.

For long-range CNOT gates, SWAP gates are necessary [5].
However, unlike the NISQ devices, where the SWAP has the
same latency across all links, the SWAP has different latencies
on different links. SWAPs between diagonal (grey) tiles are
faster, they have depth of two by using two ancilla qubits
at once. SWAPs on horizontal or vertical tiles have to be
implemented using three CNOT gates, which have a depth of
six, as each CNOT has a depth of two [5]. Note that a CNOT
can happen also between two diagonal tiles, with the same
latency as happening between horizontal or vertical tiles. Such
links are illustrated in Fig. 5 (a). In Fig. 5 (b), we describe
the links between qubits using a graph, where each node is a
data qubit. Fig. 5 (c) is a stretched representation of Fig. 5,
facilitating our further technical description.

Discussion: It is worth noting that no existing SWAP
insertion approaches take the heterogeneous nature of the
lattice surgery links for CNOT gates. The existing greedy
SWAP insertion approaches such as Qiskit Sabre [22] assume
each link has the same latency, but it is not true for lattice
surgery. The existing analytical approach, the LNN approach
we introduced, does not take the heterogeneous links into
consideration either. While it is possible to find a Hamiltonian
path, in the graph in Fig. 5, as the links have different latency,
our approach significantly outperforms the LNN approach, as
will be demonstrated in Section VIL

D. Program Synthesis

A program synthesis engine takes as an input a specification
and an implementation. The specification describes what needs
to be achieved, for instance, we require all CPHASE and H
gates in QFT to be executed with respect to its dependencies
in the transformed circuit. The implementation specifies the
shape of the code that can potentially achieve the goal in the
specification. However, such a code shape is roughly specified,

OO0
SIS
TR
‘v‘v‘v“
5-5-5-0
(a) (b)

N~

Figure 5: Lattice surgery mode: (a) Each tile represents a
logical qubit. A grey tile is a data qubit. A white tile is an
ancilla qubit. (b) The graph representing of qubits and their
links. Green links are for faster SWAP. Black links are for
slower SWAP. (c) A stretched grid of (b).

and certain parameters remain to be solved by the synthesizer.
We leverage the regularity of the hardware, and represent the
QFK kernel solutions as affine loops. Then we synthesize the
loops using SKETCH [38] for certain scenarios in our sub-
kernel partitioning method.

III. OUR KEY INSIGHTS

We describe how we break the dependences in Section
II-A, perform sub-kernel partition in Section III-B, and one
general scenario to combine the two in Section III-C.

A. Breaking the Dependence

The original QFT kernel (described in Fig. 2) has two types
of dependence.

o Type I dependence (has room to relax): If two gates
share the same control (or target), the one with a larger
target (or control) index must run after the one with a
smaller index. Assuming G1 = G(g¢;,¢;) and G2 =
G(qi,qr), if j < k and i # j, G2 must run after GI.
Same for the other way around for G1 = G(g;,¢;) and
G2 = G(qx, i)

o Type II dependence (cannot relax any more): If one
gate’s control is another gate’s target, the latter must run
after the former. For instance, if G1 = G(¢;,q;), G2 =
G(q;,qr) where i # j or j # k, G1 must run before G2.

There is a special case where a single-qubit Hadamard
gate (H gate) also appears in the circuit. It still fits into the
dependence constraint. We let H gate be presented as G(q;, g;),
allowing the control and the target to be identical in gate.
Following the constraints defined above, it still works and
defines the whole circuit’s dependence.

However, we show that Type I dependence constraint is
unnecessary. Two CPHASE gates sharing the same qubit
can commute [4], [21]. This result holds since the CPHASE
gate is a diagonal unitary. One may wonder why Type II
dependence does not hold. The reason is that, we have H
gate in between the CPHASE gates. The H gate does not
commute with the CPHASE gate. Hence, from G1 = G(g;, ¢;)
to G2 = G(q;, qx) where i # j, there is always one G(qg;, ¢;)
between them. But for gates that share the control or target
qubit, they can always appear in a row, in the original QFT.

Examples for Breaking the Dependence We show two
scenarios for breaking such a dependence. Fig. 9 provides a
simple example showing that breaking such dependency could

help save running cycles, or provide a different ordering (that
will be useful in the heavy-hex case later).

B. Sub-kernel Partitioning

We start with the 2-partition case, and then we extend it to
the k-parition case for the QFT kernel.

2-partition QFT First, we divide qubits into 2 subsets, and
then divide the QFT process into three steps, without violating
the dependence constraints (both type I and II).

Let’s assume we have qubits U = {qo,...,qn-1}. U
is divided into two sub-groups U1 (consecutive qubits
90,41, ---, qx) and U2 (consecutive qubits qx+1,...,qn—1). We
can prove that the following steps are correct.

o Step 1: Execute QFT on U1.

o Step 2: Execute the gates between Ul and U2, by

preversing their original order among themselves.

o Step 3: Execute QFT on U2.

Figure 6: An example of dividing 4 QFT qubits into two
subsets U1 and U2, and computation into thee steps. The
dotted part shows the gates moved.

Due to the space limit, we sketch the proof for correctness.
As long as a reordering satisfies these two types of depen-
dence, it is valid. In the three steps above, we partition all gates
involving qubits in U1 into two components: the interaction
within U1 (Step 1), and the interaction between U1 and the
rest of the qubits U2 (Step 2). Each component preserves its
relative ordering before partition. We then first schedule all
gates in Step 1 (within U1), all gates in Step 2 (between U1
and U2), and lastly Step 3 (gates within U2). An example is
shown in Fig. 7.

Since it only has to satisfy Type II dependence as described
in Section III-A, we only need to prove Type II dependence
is preserved.

For type II dependence, assuming G1 = G(¢;,q;), G2 =
G(gj, qx), there are four cases for the location of 7, j, and k. If
all 7, j, and k are in U1, since we preserve the original relative
order among these gates themselves, type II dependence is
preserved. If ¢, j are in U1, and k£ in U2, G2 runs after GI,
since G1 is in step 1, and G2 is in step 2. If 7 in U1, and
j, kin U2, G1 still happens before G2, since G1 belongs to
Step 2, and G3 belongs to step 3. If 4, j, and k are in U2,
G1 happens before G2, as their relative ordering is preserved
among these gates themselves in U2. Hence it is proved that
such partition of QFT operations is correct.

In fact, it is trivial to see that Type I dependence is also
preserved. We are simply regrouping gates that can run in
parallel, as shown in the concrete example in Fig. 7.

k-partition QFT In the previous example, we demonstrate
the partition of QFT qubits into two sets, and the partition of

.QFTIE QFTIE
S]aFr 5
& F
. QFT
u,% IA
ng

Figure 7: An example of the k-partition scheme for QFT.

QFT computation into three steps. It can in fact be extended to
a k-partition QFT, where the qubits are divided into £k subsets
Up,U1,Us,,Ui_1. Again each subset needs not to have the
same size. We can first divide the qubits into two subsets of
Uy and Upy = {U1,Us,Uk_1}. Then we partition Upy into
Us and {Us...Uy_1 }. The whole process applies, and the proof
of correctness still holds.

We show the illustration of the k-partition QFT process in
Fig. 7 and the pseudo-code in Fig. 8. The function QFT-IA
denotes QFT for a range of consecutive qubits and a list of
small ranges. The parameter range_list contains the list of
small ranges. If the range_list is empty, QFT-IA degenerates
to the traditional QFT operation, denoted as QFT-traditional,
meaning we do not perform divide and conquer on this range
of qubits. Otherwise, it performs a set of intra-QFT (QFT-IA)
and inter-QFT (QFT-IE) on and between U;, where 0 < i <
range_list.size(). QFT-IE allows two small ranges of qubits
to interact using CPHASE gates, and these two small ranges
can have different sizes.

QFT(0, N) = QFT-IA([0, N], range_list)

) 'QFT-traditional(range): |
{QFT-IA(range, range_list) : foriin range:
i iffrange_list == NULL: | H(i)
QF T-traditional(range) <« forjinrange &j>i:
return P CPHASE(i, j)
for range1 in range_list:)
QFT-IA(range1, NULL)
for range2 in range_list
& range2.idx > range1.idx: |
QFT-IE(range, range2) <=,

. |QFT-IE(range1, range2): |
foriinrange1:
for jin range2:
CPHASE(i, j)

Figure 8: The k-partition QFT process.

Strict (3 cycles) Relaxed (2 cycles) Relaxed

%% -} %% i—
q1 —T-D— 9 -T q1 —
g . T4 . T g .

9i+1 9i+1 Gi+1
(a) (b) (c)

Figure 9: Benefits of relaxed ordering. (a) The original order-

ing of G(qo, ¢:), G(g1, ¢i), G(qo, gi+1), G(g1, Git1)- (b) (c)
two other ways to reorder the gates

C. Unifying the Two Insights

We consider one possible scenario to unify these two
insights. Since QFT-IE does not have any single-qubit gate

(no gate G(qi,q;)), as it contains interaction between two
sets, all gates in QFT-IE can commute. This corresponds to
our discussion in Section III-A where we can break Type I
dependence. Hence, we combine Insight 1 and Insight 2. The
idea is that, after breaking down the computation into QFT-
IA and QFT-IE, we can optimize the QFT-IE component using
commutativity. At the logical circuit level, it does not improve
the circuit depth. But in the hardware circuit level, since we
have to insert SWAPs, this flexibility can offer a 2X speedup.
We discuss that in Section V, IV and VI

We then have two different versions of QFT-IE. We denote
the first version as QFT-IE-relaxed, where gate reordering is
exploited. We refer to the second version as QFT-IE-strict.
Although QFT can directly use QFT-IE-relaxed, we include
the discussion for QFT-IE-strict mainly because there are other
circuits with similar structure to QFT but do not use CPHASE
gates for two-qubit interaction.

The sub-kernel partition method QFT has two benefits.
First, we can reduce a high-dimensional problem into low-
dimensional problems recursively. Second, the unit size is
broadly defined and each unit can have a different number
of qubits.

Since we can solve the LNN mapping problem, if the units
can be connected as if they are on “a line”, one can run the
unit-based linear QFT as shown in Fig. 14. The trick is that it
needs to “SWAP” two adjacent units on the “line”, and perform
QFT-IE between two adjacent units on a “line”, both in a
hardware-compliant manner. For Google Sycamore and the
lattice surgery grid, the units can form a “line”, as described
in Section V and VL

IV. LINEAR-DEPTH QFT ON HEAVY-HEX

From Heavy-hex to Our Simplified Coupling Graph. We
generate a coupling graph for the heavy-hex architecture by
deleting some connection lines from the original heavy-hex
architecture (details in Appendix of [17]). In the coupling
graph (Fig. 10), those qubits with only one qubit as its
neighbor are defined as dangling points (except the first
qubit), and all other qubits are defined to be the main line
points.

q 4

Figure 10: Initial mapping for Heavy-hex with dangling qubits
(in black background): any node i with a node below has an
index ¢ + 1, and the right node has an index i + 2.

Initial Mapping in our Coupling Graph. We put logical
qubits’ initial mapping in Fig. 10. It follows a common rule:
when we compare any two adjacent qubits, the qubit in the
right/down position has a larger index.

Intuition behind our approach. Our method is a non-
trivial extension of the LNN solution. We provide an in-depth
understanding of the LNN solution first.

1) The displacement of all logical qubits follows an LNN
pattern, characterized by a directional movement. Ini-
tially, all logical qubits shift towards the left. Upon
reaching the leftmost position, they alter their trajectory.

2) Each logical qubit only starts moving after being in-
volved in one CPHASE gate operation. We denote that
as the active status of the qubit. A qubit will stop moving
at one point, and we denote that as the in-active status
of the qubit.

For the simplicity of description, we specifically let g;
denote the qubit connecting to the first dangling point, and
g; denote the qubit connecting to the second dangling point,
and respectively ¢;11 and g;41 are first two dangling points.

Leveraging these findings, we describe our high-level idea
below. We run the LNN operations on the first ¢ qubits until
we position the smallest-index active qubit on the main line
adjacent to the dangling point, initially gg. Then we move the
smallest-index active qubit on the main line to the dangling
position by a SWAP. The process iterates along the main line,
moving the smallest-index active qubit once it reaches the
next dangling point by a SWAP , and repeats. This sequence
repositions first L smaller-index qubits to dangling positions
(where L is the number of dangling points), disengaging them
from LNN movement in the main line. The remaining qubits
in the main line can continue to perform LNN QFT. We also
stop every time after a SWAP layer and perform CPHASE
cases, just like in the original QFT. Extra stops are needed for
CPHASE between dangling points and their adjacent nodes.

Fig. 11 provides a concrete example with only one dangling
point. Before qq arrives the position above ¢4, all qubits
follows the linear QFT solution; when gg is above q4, we
implement one SWAP gate between them; then, the main line
is an intermediate step of an LNN QFT for all nodes from ¢; to
Gn—1 ((c) of Fig. 11). The main line can continue performing
gate operations using LNN QFT solution.

How do we ensure it also performs CPHASE between qy and
qubits from qs to q,—1? In the straight line QFT, as shown in
prior work [28], [44], each qubit ¢; moves towards the left
first, stops at the border for one step, and then to the right.
All nodes after g5 will move to the left end and then toward
the right. When these nodes move to the left, they will be
above gy at one point, where we let gy perform a CPHASE
with these qubits. The interaction between ¢y and the nodes
from g5 to q,—1 are completed.

If there is more than one dangling point, we recursively
handle this. We sketch the idea as follows. Specifically, it is
as if we reduce one dangling point each time. Let’s assume we
have two nodes dangling from the main line (e.g., ¢;4+1 and
gj+1 in Fig. 10). We follow the same solution as the single-
dangling-point case for a few steps first. The first time we
swap qo with g;+1, it is as if we can remove ¢y from the
entire line, and then it reduces to the problem of having only
one dangling point. We continue the solution for a straight line
with one dangling point. Hence, we can extend our approach
to two dangling points and, subsequently, to k£ dangling points.

Initial ing start from ¢, Initial ing start from ¢,

fdy 4@ @ B G G Gt (D D B 4 s 42 Guot

LNN QFT-4 6 steps qs LNN QFT—(:-;:;:; major line :

) (i) ' (;)

‘e @ ¢ 9 s Gr Gt (B G @ G G Gy Gpt |

0000000 +000Q-0--0-0
Continue LNN with QFT-5 F ;

1() 44 for 2 steps i q"o Co::nmu:j:;:‘{?ngn

(b) (d)
Figure 11: An example of running QFT in Heavy-hex with one
dangling point. (a) Running LNN pattern in the main line with
four active qubits. (b) Continue LNN pattern with the dangling
qubit g4, which is identical to the LNN QFT-5 pattern. (c)
Applying the LNN pattern on the main line with the first qubit
q1. (d) With dangling qubits, the qubit mapping would be the
same as the case w/o dangling point. QFT-K means the QFT
with k qubits.

We put the details in Alg. 1, and the final mapping of N qubits
after the process is in Fig. 23 of Jin et al. [17].

Breaking the Dependence. In this method, we leveraged
the insight of breaking the dependence in Section III-A. In
the original QFT, qq interacts with all qubits g to g4 before
q1 interacts with all of them. However, in our method, qubit
qo is placed in the dangling point g¢;4;. And qubit ¢; will
be placed in the second dangling position of g;11. Hence, ¢;
interacts with the qubits of indices larger than j + 2 before
qo interacts with them. This is okay, our Type II dependence
only requires G(g;, g;) to happen before G(q;, qx). Since G(qo,
q1) already has happened, for any qubit g, where k& > j + 2,
G(q1, q) can happen before G(qp, qx). An example is shown
in Fig. 9(c).

Algorithm 1 Heavy-hex qubit mapping procedure

for i = 0; ¢ < Ny; i++ do
if Q[0][1] < Q[0][i + 1] A C(QO][i], Q[0][i + 1]) == O then
C(Q[0][i], Q[O][¢ + 1]) <+ 1; i++; > CPHASE to the right qubit
end if
if Q[0][¢] < Q[O][i + 1] A C(Q[0][#], Q[O][¢ + 1]) == 1 then
SWAP(Q[0][i], Q[0][i + 1]); i++; > SWAP with the right qubit
end if
if Q[O][1) < Q1][i] A C(Q[0][i], QL][i]) == O then
C(Q[0][#], Q[1][7]) + 1 > CPHASE to the qubit below
end if
it Q[0][i] > Q[1][s] A C(Q[1][4], Q[0][¢]) == O then
C(Q[1][z], Q[O][4d]) + 1 > CPHASE to the qubit below
end if
if Q[O][i) < Q[1][i] A C(QIO[i], Q[O][i + 1]) == 1 then
SWAP(Q[0][z], Q[0][i 4+ 1]) + 1 > SWAP with the qubit below
nd if
endefor

Time Complexity for Special Case. We calculate the time
complexity for a special case with a dangling point for every
four qubits on the main line. This is analogue to the heavy-
hex case. In this case, each group consists of 5 qubits. 80% of
qubits are in the main line while the remaining 20% are in the
dangling position. The distance between 2 adjacent dangling
points is 4. Our proof shows that an extra 25 steps are required
for one added 5-qubit group. Therefore, the final complexity
time is 5N + O(1), where N is the number of qubits in the

heavy-hex architecture.

Time Complexity Bound for General Case. Additionally,
we also provide an upper bound for a general case where there
are N1 qubits in the main line and N2 dangling qubits. The
distance between 2 nearby dangling nodes might be different.
The worst case is that every time there is a SWAP operation
in the main line, another cycle is needed for the CPHASE
operation with dangling points. The final time complexity
upper bound is 6N + O(1). The detailed proof is in the
appendix of Jin et al. [17].

V. LINEAR-DEPTH QFT ON GOOGLE SYCAMORE

Unit definition We combine every two rows together as a
unit shown in Fig. 12. There are m/2 units in one m * m
Google Sycamore, each containing 2 % m qubits.

Figure 12: Unit definition in Sycamore architecture.

Unit SWAP. This design makes it possible to complete the
unit swap between 2 adjacent units in 3 steps. We describe it
for the particular simple example in Fig. 12.

parallelSWAP ({gl, g3, g5} {g6, g8, ql0})
parallelSWAP ({gl, g3, g5} {97, 99, qgll})

({q0, g2, g4} {g6, g8, gl0})
parallelSWAP ({qg0, g2, g4} {q7, g9, gll})

We decompose the qubit mapping problem of QFT over
the Sycamore architecture into two categories: intra-unit and
inter-unit mapping.

Intra-unit QFT. Given all qubits within one unit are in a
line, we leverage the mapping algorithm used for QFT over
LNN architecture for intra-unit qubit mapping.

Inter-unit QFT (Relaxed Ordering). We apply the relaxed
ordering in IE interactions between two adjacent units. We
briefly show the qubit travel path in a LNN-inspired pattern
(found by program synthesis) shown in Fig. 13 (a) for both the
top and bottom units in one adjacent pair for bipartite all-to-
all interactions. Each unit follows the LNN-inspired pattern,
so every node is a neighbor to the other nodes in the same
unit. Since both units are synced, and there are diagonal links
between two units, this also ensures each node in one unit is a
neighbor to all nodes in another unit once, except to the node
in the same the same column.

Our approach. We discovered this inter-unit solution by
parameterizing the relative LNN-inspired moving pattern in
the top and bottom rows with the help of program synthesis
(details in Appendix of [17]). Specifically, we find that if
we sync the top and bottom to follow the same travel path
in Fig. 13(a), an inter-unit interaction pattern emerges. In
Fig. 13(b), there is a diagonal link between one qubit on the
top row and the qubit on the bottom row if the two qubits’
column index differ by 1. Note that the moving pattern in Fig.
13 (a) is similar to that in LNN, but not the same. For LNN,

only on average half of the links are utilized, but in our pattern
here, all links in a perfect matching are used.

Following the same travel path can guarantee that all top-
row and bottom-row qubit pairs will be connected through
the inter-unit link at least once, except for the pairs in the
same column. Fortunately, figuring out a solution for these
missing CPHASE gates is easy. We can SWAP one of them
horizontally with its neighbor at the top (bottom) row, keep the
other one on the bottom (top) row unchanged, run a CPHASE
gate, and then revert the qubit to its original location with the
same SWAP.

(a)

...................................

g m .o
oo ROW.M{:OXZ _

Figure 13: Travel paths for inter-unit QFT in Sycamore
architecture. (a) Two consecutive SWAP layers for one unit
over time. Each qubit has a different neighbor after one SWAP
step. Both units (top and bottom) sync this way, although only
one unit is drawn here. (b) The top and bottom rows sync with
the same travel path. Qubits in a unit have different neighbors
at each step from the other unit, using the top-down links
highlighted in blue.

The QFT-1E-relaxed version is two times faster than the
QFT-IE-strict version. A detailed solution is below:

for (i = 0; 1 <=m; 1 += 1)

CPHASE on all inter-unit connections
// Intra-unit swap

beg = 1 mod 2

intra_swap (beg_pos=beg, end_pos=m,
intra_swap (beg_pos=beg, end_pos=m,

UnitID=0)
UnitID=1)

Another benefit of our solution is that both QFT-IE-strict
and QFT-IE-relax will mirror the position of all qubits within
a unit. It helps further processing that for QFT-IA.

Time Complexity Assuming N = m % m Sycamore grid,
where m is the original row size. In our formulation, each
unit consists of 2m qubits, and there are % units. Each unit
is connected as if they are on a line, as described earlier.
We will do the QFT-IA and QFT-IE using the divide-and-
conquer method. The hardware-compliant unit QFT on LNN
is presented in Fig. 14.

QFT-IE-relaxed For the QFT-IE-relaxed case, each QFT-
IE takes 3 x (2m + 1) time steps, and each QFT-IA takes
4 % (2m) — 6 time steps. Each unit SWAP takes three-time
steps. There are in total (m/2) + O(1) QFT-IE parallel steps,
and in total (m/2) + O(1) (QFT-IE, QFT-IA) mixed steps.
There are a total of 2 * (m/2) — 3 unit SWAP steps. Hence,
the total time complexity is 7m? +O(m) = TN +O(\/(N)),
where N is the total number of qubits.

BERER

Physical
Qubits Unit: Y0

us Mo} o
oul-l;tgsiclf:]m QFT-IA: QFT-IE:

Figure 14: Unit-wise QFT using the recursive QFT scheme.
This is analogous to the original LNN QFT solution.

VI. LINEAR-DEPTH QFT ON FT BACKEND

Physical Qubits aFTE: | or |

o Logi('ijar:i?:ubits QFT—IA:
(a) (b)

Figure 15: (a) Initial Mapping in Lattice Surgery. The layout of
FT architecture is rotated to make all SWAP edges horizontal.
Certain edges are unused and have been eliminated. (b)
Optimized Unit Movement.

Unit Definition and Movement We consider each row in
the (rotated) FT grid as a unit and place qubits in natural
number ordering from left to right in a zigzag way for every
two units (Fig.15(a)). Similarly, we still divide the problem
into three sub-problems: intra-unit interaction QFT-IA, inter-
unit interaction QFT-IE, and unit swapping.

We optimize the unit movement for the FT grid architecture
as shown in the example in Fig. 15(b). We run every two
parallel unit-SWAP layers in a row, before performing the
inter-unit CPHASE operations, instead of having one unit-
swap layer and one CPHASE layer interleaved. The unit
swap is trivial by applying transversal SWAPs using the
vertical links between two units in one step. Those vertical
links are CNOT-only links, so one vertical SWAP costs three
CNOT gates. This choice could save SWAP costs for inter-unit
interactions, which will be discussed later.

Intra and inter-unit QFT: IA+IE. In our updated unit
movement, every disjoint pair of units, (U;, U;4+1), where
i is an even index, would appear at the top two rows just
once. Then, we can apply the 2xN QFT pattern, introduced
in [44] to complete mixed intra- and inter- unit operations.
For instance, the unit pairs (Uy, U;), (U, Us), and (Uy, Us)
depicted in Fig. 15 (b), which are enclosed in black boxes,
execute the 2xN QFT pattern.

The intuition for 2xN QFT is to make the SWAP gates
for intra-unit interactions benefit inter-unit interactions. Due to
the gate dependency, it is as if we apply the LNN pattern on
both the top and bottom units, but the bottom unit starts one
step late. If the bottom unit does not start one step late, each
qubit on the top unit always has the same (column) neighbor

Figure 16: The first six steps of the 2xN QFT pattern.

from the bottom unit, preventing full inter-unit operations.
The initial mapping is designed to obey gate dependency.
The 2xN QFT pattern contains three repeated steps: inter-
unit interaction, intra-unit SWAP, and intra-unit interactions.
We show a part of the 2xN pattern in Fig. 16.

The inter-unit interactions (pure IE - red links in
figures) follow the QFT-IE-Relaxed strategy. We let each qubit
in the top unit interact with every qubit in the bottom unit.
The qubit movement within each unit is described in Fig.
13 (a). Again, the bottom unit starts one step late to prevent
a qubit from always having the same neighbor qubit in the
same column. We can achieve bipartite all-to-all inter-unit
interactions with N steps of qubit movement and N steps of
qubit interactions (this is developed via our program synthesis
approach, details in Appendix of [17]).

Saving SWAP costs for inter-unit interactions. Since there
is no gate dependency in the pure IE interactions like Col3
in Fig. 15(b). The compilation for this part is the same as
compiling a QAOA circuit with bipartite all-to-all interactions
in two units. We can adapt the SWAP saving strategy from
[18].

Before our optimization, there is no inter-unit interactions
between two consecutive pairs of units (the last unit of the
first pair and the first unit of the second pair). For example,
there is no red link between two units U, and Uy in the fifth
column of Fig. 14. But now, we have a link between unit U,
and Uy in the third column of Fig. 15(b). If we apply the same
pattern to two pairs of units (U, Us) and (U, Us) in the third
column of Fig. 15(b), then, the trajectory of qubits within Uy
is the same as the trajectory of qubits within Uj. Such that, if
we can apply CPHASE gate between qubits in (U1, Us), we
could also apply CPHASE gate between qubits in (Us, Up).

One special case of inter-unit interactions is highlighted in
green in the fourth column of Fig. 15(b). Those inter-unit
interactions involve one unit that is doing mixed intra- and
inter-unit interactions. We pause the 2xN pattern on the top
two units after or before each SWAP step in Fig. 16, letting the
qubit on the physical U1 interact with qubits on the physical
U2. The all-to-all interactions are still guaranteed since the
qubit movement in the relaxed ordering is similar to the qubit
movement in the 2xN QFT pattern with different start times.

Time Complexity. As for the time complexity, we use unit
QFT on a line, as shown in Fig. 15(a). Assuming we have
N = m * m qubits. Each unit has m qubits.

QFT-IE-Relaxed In this case, we do not consider strict

ordering in QFT-IE. The time complexity of QFT-IE without
QFT-IA is 3m + O(1). It happens m/2 — 1 times. The time
complexity of QFT-IE is 1.5m? 4+ O(m). Each mixed QFT-
IE QFT-IA has complexity 6m + O(1). The detail of this
time complexity refer to [44]. Due to the relax reordering, we
pause mixed (QFT-IA, QFT-IE) for m steps for the inter-unit
interactions between the mixed part and the unit below the
mixed part. Mixed (QFT-IA, QFT-IE) steps has 7m + O(1)
depth, and it happens m/2 times. For this part, the time
complexity is 3.5m? + O(1). In total, the time complexity
is 5m? + O(1) = 5N + O(1).

VII. EVALUATION

We evaluate our QFT mapping approach against other
compilation approaches over several hardware architectures,
including NISQ architecture and FT architecture, in several
aspects. Specifically, we want to ask 2 major questions. Q1:
How long does it take to find the solution? Q2: What is the
quality of these generated solutions?

We write a simulator [2] to verify the correctness of our
outcome. We measure the quality of the compilation outcome,
mainly based on circuit depth and gate count. Due to the noisy
feature of quantum gate operations, smaller depth and fewer
gate operations mean a lower possibility of being affected by
external noise. We present the compilation time in seconds. If
it cannot complete in 2 hours, we refer to it as “time-out” in
Table L.

Finally, we explore the potential for applying our approach
to larger-scale QFT circuits utilizing a fault-tolerant backend.
It would be useful for us to exploit regularity in both a small-
scale NISQ architecture and a large-scale FT architecture.

Baseline and benchmark selection. As for the baseline, we
compare our approach against three approaches: LNN [28],
SATMAP [30] and SABRE [22]. SATMAP searches over
the whole space and output optimal solutions (with respect
to gate count) at the cost of long-running time. SABRE
does qubit mapping using a series of heuristics, making it
possible to quickly output the potentially suboptimal results.
LNN [44] is only tested on Lattice Surgery because we
cannot find a hamiltonian path on Sycamore and Heavy-hex
architectures. The benchmarks encompass various scales of
QFT, each configured differently across a range of NISQ and
FT architectures.

Diverse architecture backends. We use three types of ar-
chitectures: Google Sycamore, heavy-hex, and lattice surgery,
among which only lattice surgery is a FT architecture particu-
larly suited for implementing larger QFT kernels, while others
are NISQ architectures.

Google Sycamore has m by m configuration, where the total
number of qubits is N = m*m. We test configurations where
m is an even number. For heavy-hex, we unroll it to a line with
dangling points [42]. Based on the description in Sec IV, there
are N/5 groups and each group has 5 qubits. Among all these
5 qubits, 4 are in the main line and 1 sits as a dangling point.
Therefore, we only test the heavy-hex architecture whose qubit
number is a multiple of 5. For lattice surgery, the total number

Architecture # qubits | Our approach | SATMAP | SABRE |
chitecture AU "Depth | #SWAP | CT(s) | Depth | # SWAP | CT() | Depth | # SWAP |
m*m Sycamore | 2%2 10 6 1.75 10 3 0.28 11 3
m*m Sycamore | 4%4 81 116 TLE N/A TLE 0.29 102 62
m*m Sycamore | 6%6 208 540 TLE N/A N/A 0.46 363 484
Heavy-hex 2%5 39 40 439.79 | 44 37 0.30 43 36
Heavy-hex 4*5 89 160 TLE N/A N/A 0.31 134 196
Heavy-hex 6*5 139 360 TLE N/A N/A 0.56 229 523
Lattice surgery 10¥10 476 2700 TLE N/A N/A 0.38 981 2365
Lattice surgery 20%20 1961 41880 TLE N/A N/A 8.67 11818 | 55474
Lattice surgery 3030 4446 208800 TLE N/A N/A 5526 | 47161 | 305807

Table I: Our approach vs. SATMAP and SABRE arcoss
different architecture (CT: compilation time, TLE: timeout
after 2h).

of qubits is N = m x m. Based on our approach in Sec VI,
we only consider the case where m is larger than 10.

A. Quality of Compilation QOutcome for Small-scale QFT
kernel on NISQ Backends

Due to the error rates, only small-scale QFT circuits are
deemed suitable for execution on NISQ backends includ-
ing Sycamore, and Heavy-hex. Thus, in our experiments
conducted on these architectures, we assess the quality of
compilation outcome across varying numbers of qubits, up to
a maximum of 100, by adjusting the value of m.

In this evaluation, we focus on two principal aspects.
Firstly, we examine the time each approach takes to output
the compilation result, with a preference for faster speed.
Secondly, we assess the quality of the outcomes, which
includes considerations of circuit depth and the count of gates
required to complete the QFT. Achieving the QFT with a
smaller depth and a fewer number of SWAP gates is considered
advantageous. What needs to be mentioned is that our method
does not have compilation time as it is an analytical approach.

1) Compilation time: A portion of the experimental out-
comes is presented in Table I. SATMAP, as an optimal solver,
delivers favorable results in terms of circuit depth and gate
count. However, its search space grows exponentially, leading
to prolonged solution times. For example, when setting a time-
out limit of 2 hours, SATMAP fails to produce results in most
cases when there are more than 10 qubits.

In comparison, SABRE achieves outcomes significantly
faster than SATMAP. However, as the number of qubits
increases in one configuration, the running time of SABRE
increases as well (e.g., 55s for 30*30 lattice surgery).

2) Gate count and Depth: Regarding the number of SWAP
gates, the general trend indicates that SABRE requires more
SWAP gates or larger depth than ours, except for configu-
rations with a very small number of qubits. Compared with
SABRE, our approach have up to 53% fewer SWAP gate count
and 92% fewer depth. In the Sycamore backend with up to 100
qubits, our methodology yields a depth cost approximately
50% lower than that of SABRE, alongside a 20% reduction in
the number of SWAP gates. For the Heavy-hex backend, our
approach significantly reduces the depth cost to just 24% of
SABRE’s and cuts the number of SWAP gates needed to 48%
of those required by SABRE. It’s noteworthy that SABRE’s
performance is not consistently stable; in certain instances, it

—s— Our approach
Sabre

/

"10 20 30 40 50 60 70 80 90 100
qubits

(b) # SWAPs for Heavy-hex.

N
@

—e— Our approach
Sabre

o
)

SWAPs(1e3)
wop
o i

Depth(le3)

°
I
=
n

.o . ,/"‘M

0.0/ ==
0 10 20 30 40 50 60 70 80 90 100
qubits

o
°

(a) Depth for Heavy-hex.
Figure 17: Our approach vs. SABRE for Heavy-hex.

4.5

1.5
4.0
—=— Our approach e —s=— Our approach
Sabre) . Sabre
m1.0 Y30
o ~—
g g25
£ g 2.0
00.5 Z1s
° # 1.0
0.5 -
001 s o.o;
0 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
qubits # qubits

(a) Depth for Sycamore. (b) # SWAPs for Sycamore.

Figure 18: Our approach vs. SABRE for Sycamore.

may result in a smaller gate count and depth for larger QFT
sizes, particularly in the heavy-hex architectures.

Generally, we discover that our approach produces signif-
icantly better outcomes for QFT qubit mapping in terms of
circuit depth and gate count for small-scale Sycamore and
heavy-hex backends.

B. Generalizing Our Framework to Larger-scale QFT Kernel
on FT Backends

FT backends are specifically designed for circuits with a
large number of qubits, as only fault-tolerant systems have the
capability to effectively manage the high error rates inherent
in large-scale circuits. Conversely, NISQ systems are limited
to managing error rates in smaller circuits. Therefore, whether
our framework can be expanded to large-scale QFT relies on
its performance on FT backends. In this part of the evaluation,
we evaluate the performance of our approach, SABRE, and
SATMAP on lattice surgery architecture. The size of m is
from 10 to 32, which leads to the number of qubits from 100
to 1024. We maintain the same aspects considered.

Due to the requirement of error correction, on the lattice
surgery architecture, SWAP gate have different latencies on
different links. We need to take into consideration these
constraints. As SATMAP and SABRE lack the interface to
configure such specific connections, we can’t impose these
constraints on them. Then we compare our approach against
the version where all links are used for both baselines. Hence,
if our approach can beat those baselines, we can conclude that
our approach must be better than theirs.

Due to the large qubit scale, SATMAP’s evaluation always
encountered a timeout across all QFT sizes, as shown in
Table I. SABRE generates the qubit mapping results faster than
SATMAP at the cost of suboptimal results. The main reason
is that SABRE incorporates several heuristics, some of which
are greedy. The generated outcome may achieve even better
performance (e.g., # SWAP gate operations) than ours over

—e=— Our approach
Sabre
—— LNN

6 —— oOur approach

Sabre
—— LNN

IS
Iy

SWAPs(1e5)
N W

Depth(le4)
N
-

o ._M

ol st
100 400 700 1000 100 400 700
qubits # qubits

1000

(a) Depth for Lattice Surgery. (b) # SWAPs for Lattice Surgery.
Figure 19: Our approach vs. SABRE for Lattice Surgery.

small-scale architectures but as the size increases, its outcome
becomes far worse than ours. Besides, the compilation time
of SABRE increases proportional to the number of qubits in
a particular architecture.

To be precise, as for the depth (Fig. 19), our approach is
better than both SABRE and LNN among all sizes of qubits.
The advantage becomes more significant as the size increases.
Regarding the number of SWAP gates, our approach works
better than SABRE when the number of qubits is larger than
144 and the advantage is also growing as the increasing of
scale of QFT. Upon a detailed examination, for the scale of
QFT comprising up to 1024 qubits, our approach demonstrates
a significant advantage, achieving a depth cost that is roughly
92% lower than SABRE’s outcome.

These results affirm that, despite the constraints favoring
SABRE in the lattice surgery architecture (all links are used),
our approach still delivers superior performance.

In conclusion, our framework exhibits enhanced perfor-
mance in circuit depth and gate count for large-scale QFT
circuits on FT backends.

C. Scalability of the outcome

Our approach relies on the systematic approach to complete
the qubit mapping for QFT over diverse backends. In contrast,
this simplicity and scalability are not observed with methods
like SABRE and SATMAP.

SABRE, employs a look-ahead strategy to insert SWAPs,
aiming to optimize not just for the immediate layer but future
layers as well. It is difficult for us to find any common patterns
that can be reused for a larger grid size. The randomness of
SABRE’s output is in Fig. 27 in Jin et al. [17]. Getting output
from SATMAP has already been challenging due to its long
compilation time. Hence it is not a viable solution for scalable
architectures.

VIII. RELATED WORK

Many studies focus on qubit mapping for a general class of
applications [22], [25], [26], [30], [32], [36], [39], [40], [43],
[44]. A general-purpose compiler takes an arbitrary program
and an arbitrary architecture as input, and produces a compiled
circuit for this architecture. The issue with this approach is
that every time the program size changes, for instance, the
qubit number changes, the program needs to be recompiled.
We focus on domain-specific qubit mapping and do not require
the compiler to recompile the program when the input size
changes. Our approach produces a linear-depth QFT circuit
for both NISQ and FT backends.

There are also other domain-specific compilers for vari-
ous applications including quantum approximate optimization
algorithms (QAOA) [3], [4], [18], [21], variational quantum
eigensolvers (VQE) [19], [23], [24], and etc. For QFT, Maslov
et al. [28] for the first time shows a linear time solution on
the linear nearest neighbor (LNN) architecture. However, it
is difficult to find a Hamiltonian path that connects all nodes
in modern quantum architectures, limiting the applicability of
this approach. Zhang et al. [44] improved upon Maslov’s et al.
[28] by discovering a linear-depth solution for a 2D grid with
only two rows. However, 2xN grid architecture does not exist
in modern architectures. Gao et al. [11] proposed a similar
approach to do qubit mapping for QFT over the IBM Heavy-
hex NISQ devices.

Leveraging program synthesis tools [38] to do the compiler
design for domain-specific applications [6] [37] [13] [12]
has already existed. However, to the best of our knowledge,
our work is the first that demonstrates the usefulness of
program synthesis for the compiler design domain of quantum
computing, for the QFT kernel circuits.

IX. CONCLUSION

We propose a new QFT compilation framework for quan-
tum application kernel over diverse quantum backends. Our
approach outperforms the state-of-the-art approaches with less
circuit depth and fewer gate count usage.

X. ACKNOWLEDGEMENTS

We extend our gratitude to the anonymous reviewers for
their constructive and insightful feedback. This work was
supported by grants from the Rutgers Research Council and
NSF-FET-2129872. The opinions, findings, conclusions, and
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of our spon-
sors.

REFERENCES

[1] Hamiltonian path problem. https://en.wikipedia.org/wiki/Hamiltonian_
path_problem.

[2] Simulator to verify the QFT qubit mapping output. https://github.com/
XiangyuG/qft_on_regular_architectures.

[3] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. Circuit
compilation methodologies for quantum approximate optimization algo-
rithm. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 215-228, 2020.

[4] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. An efficient
circuit compilation flow for quantum approximate optimization algo-
rithm. Proceedings of the 57th ACM/EDAC/IEEE Design Automation
Conference, 2020.

[5] Michael Beverland, Vadym Kliuchnikov, and Eddie Schoute. Surface
code compilation via edge-disjoint paths. PRX Quantum, 3:020342,
May 2022.

[6] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
Metamorphosis: Fast Programmable Match-Action Processing in Hard-
ware for SDN. In ACM SIGCOMM, 2013.

[7]1 Francesco Bova, Avi Goldfarb, and Roger G Melko. Commercial
applications of quantum computing. EPJ quantum technology, 8(1):2,
2021.

[8] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam
Gutmann, and Daniel A. Spielman. Exponential algorithmic speedup
by a quantum walk. In Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing. ACM, June 2003.

[9]
[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Coppersmith. An approximate fourier transform useful in quantum
factoring, 2002.

Mark Ettinger and Peter Hoyer. A quantum observable for the graph
isomorphism problem, 1999.

Xiangyu Gao, Yuwei Jin, Minghao Guo, Henry Chen, and Eddy Z.
Zhang. Linear depth gft over ibm heavy-hex architecture, 2024.
Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan,
Aatish Kishan Varma, Pravein Govindan Kannan, Anirudh Sivaraman,
Srinivas Narayana, and Aarti Gupta. Switch code generation using
program synthesis. SIGCOMM 20, page 44-61, New York, NY, USA,
2020.

Xiangyu Gao, Divya Raghunathan, Ruijie Fang, Tao Wang, Xiaotong
Zhu, Anirudh Sivaraman, Srinivas Narayana, and Aarti Gupta. Cat: A
solver-aided compiler for packet-processing pipelines. In ACM ASPLOS,
page 72-88, New York, NY, USA, 2023.

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum
algorithm for linear systems of equations. Physical Review Letters,
103(15), October 2009.

Clare Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter.
Surface code quantum computing by lattice surgery. New Journal of
Physics, 14:123011, 12 2012.

Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang,
and Eddy Z Zhang. Autobraid: A framework for enabling efficient
surface code communication in quantum computing. MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 925-936, 2021.

Yuwei Jin, Xiangyu Gao, Minghao Guo, Henry Chen, Fei Hua, Chi
Zhang, and Eddy Z. Zhang. Optimizing quantum fourier transformation
(qft) kernels for modern nisq and ft architectures, 2024.

Yuwei Jin, Fei Hua, Yanhao Chen, Ari Hayes, Chi Zhang, and Eddy Z.
Zhang. Exploiting the regular structure of modern quantum architectures
for compiling and optimizing programs with permutable operators. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 4,
ASPLOS °23, page 108-124, New York, NY, USA, 2024. Association
for Computing Machinery.

Yuwei Jin, Zirui Li, Fei Hua, Yanhao Chen, Henry Chen, Yipeng
Huang, and Eddy Z. Zhang. Tetris: A compilation framework for vqe
applications, 2023.

A. Yu. Kitaev. Quantum measurements and the abelian stabilizer
problem, 1995.

Lingling Lao and Dan E. Browne. 2qgan: a quantum compiler for 2-local
qubit hamiltonian simulation algorithms. In Proceedings of the 49th
Annual International Symposium on Computer Architecture, ISCA 22,
page 351-365, New York, NY, USA, 2022. Association for Computing
Machinery.

Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping
problem for nisq-era quantum devices. Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1001-1014, 2019.

Gushu Li, Yunong Shi, and Ali Javadi-Abhari. Software-hardware co-
optimization for computational chemistry on superconducting quantum
processors. In Proceedings of the 48th Annual International Symposium
on Computer Architecture, ISCA 21, page 832-845. IEEE Press, 2021.
Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and
Yuan Xie. Paulihedral: A generalized block-wise compiler optimization
framework for quantum simulation kernels. Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, page 554-569, 2022.

Ji Liu, Peiyi Li, and Huiyang Zhou. Not all swaps have the same cost:
A case for optimization-aware qubit routing, 2022.

Ji Liu, Ed Younis, Mathias Weiden, Paul Hovland, John Kubiatowicz,
and Costin Iancu. Tackling the qubit mapping problem with permutation-
aware synthesis, 2023.

Austin G Fowler Matteo Mariantoni, John M Martinis, and Andrew N
Cleland. Surface codes: Towards practical large-scale quantum compu-
tation. PHYSICAL REVIEW A covering atomic, molecular, and optical
physics and quantum information, 2012.

Dmitri Maslov. Linear depth stabilizer and quantum fourier trans-
formation circuits with no auxiliary qubits in finite-neighbor quantum
architectures. Physical Review A, 76(5), Nov 2007.

Dmitri Maslov. Advantages of using relative-phase toffoli gates with
an application to multiple control toffoli optimization. Phys. Rev. A,
93:022311, Feb 2016.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Molavi, A. Xu, M. Diges, L. Pick, S. Tannu, and A. Albarghouthi.
Qubit mapping and routing via maxsat. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 1078—
1091, Los Alamitos, CA, USA, oct 2022. IEEE Computer Society.
Michael A Nielsen and Isaac Chuang. Quantum computation and
quantum information, 2002.

Siyuan Niu, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial.
A hardware-aware heuristic for the qubit mapping problem in the nisq
era. IEEE Transactions on Quantum Engineering, 1:1-14, 2020.
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man Hong Yung,
Xiao Qi Zhou, Peter J. Love, Alan Aspuru-Guzik, and Jeremy L.
O’Brien. A variational eigenvalue solver on a photonic quantum
processor. Nature Communications, 5, 2014.

Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley. Quantum
computational finance: Monte carlo pricing of financial derivatives.
Phys. Rev. A, 98:022321, Aug 2018.

Peter W. Shor. Algorithms for quantum computation: Discrete log-
arithms and factoring. Proceedings - Annual IEEE Symposium on
Foundations of Computer Science, FOCS, 1994.

Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Sylvain Col-
lange, and Fernando Magno Quintdo Pereira. Qubit allocation. Pro-
ceedings of the 2018 International Symposium on Code Generation and
Optimization, pages 113-125, 2018.

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McK-
eown, and Steve Licking. Packet transactions: High-level programming
for line-rate switches. In ACM SIGCOMM, page 15-28, New York, NY,
USA, 2016.

Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis,
EECS Department, University of California, Berkeley, 2008.

Bochen Tan, Dolev Bluvstein, Mikhail D. Lukin, and Jason Cong.
Qubit mapping for reconfigurable atom arrays. In Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 22, New York, NY, USA, 2022. Association for Computing
Machinery.

Bochen Tan and Jason Cong. Optimal layout synthesis for quantum
computing. Proceedings of the 39th International Conference on
Computer-Aided Design, 2020.

J.-C. Walter and G.T. Barkema. An introduction to monte carlo meth-
ods. Physica A: Statistical Mechanics and its Applications, 418:78-87,
January 2015.

Johannes Weidenfeller, Lucia C Valor, Julien Gacon, Caroline Tornow,
Luciano Bello, Stefan Woerner, and Daniel J Egger. Scaling of the
quantum approximate optimization algorithm on superconducting qubit
based hardware, 2022.

Chi Zhang, Yanhao Chen, Yuwei Jin, Wonsun Ahn, Youtao Zhang, and
Eddy Z Zhang. A depth-aware swap insertion scheme for the qubit
mapping problem. arXiv preprint arXiv:2002.07289, 2020.

Chi Zhang, Ari B Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen,
and Eddy Z Zhang. Time-optimal qubit mapping. Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 360-374, 2021.

Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions

This paper has the following 2 main contributions.

C1 A novel and flexible QFT sub-kernel partition that al-
lows hierarchical decompostion of high-dimensional
problems to low-dimensional problems.

C> Guaranteed compilation quality: linear-depth solu-
tions for the QFT kernel on different architectures:
Google Sycamore, IBM Heavy-hex, and a fault-
tolerant (FT) backend with lattice surgery model. Our
hardware QFT kernel mapping solutions have up to
53% fewer SWAP gate count and 92% less depth
than state-of-the-art approaches for up to 1024 qubits
compared with SABRE.

B. Computational Artifacts

All computation artifacts are archived under one single
open-source github repository (https://github.com/XiangyuG/
qft_on_regular_architectures). We list the detailed mapping
between artifcat ID and contributions in Table I-B.

Artifact ID Contributions Related
Supported Paper Elements
A O Verify the gate execution
(No figure or table)
Ay Cy Table 1, Figure 17-19

II. ARTIFACT IDENTIFICATION
A. Computational Artifact Ay
Relation To Contributions

This computational artifact is used to check the correctness
of the contribution C7.

The contribution C; is a qualitative study and analysis of
the QFT circuit. It breaks a QFT into sub-kernels. The circuit
compilation is divided into two stages: compilation between
two kernels and within a kernel. Instead of compiling the
circuit by following the original order, this breakdown changes
the gate dependency without breaking the circuit semantics. To
guarantee the correctness of this breakdown, we use artifact
Aj.

Expected Results

The compiled QFT with kernel breakdown should pass the
correctness check.
Expected Reproduction Time (in Minutes)

The expected computational time of this artifact is constant.
There is no specific platform requirement.
Artifact Setup (incl. Inputs)

Hardware: There is no specific platform requirement.

Software: Python 3 and some standard libraries, such as
networkX.

Datasets / Inputs: Compiled QFT circuit from our compil-
ers.

Installation and Deployment: There is no Installation and
Deployment.

Artifact Execution

Correctness check is integrated in the compilation process.
The compiler does the checking automatically. Specifically, we
use the function check_gft_gates in util.py to check whether
all gates in QFT have been executed or not, and the function
OK_to_do_control to check the correctness of gate depen-
dency after circuit partition.

Artifact Analysis (incl. Outputs)

Our verifier passes all dependency and gate execution
checks, meaning that our proposed approach is correct under
all 3 state-of-the-art quantum architecture backends.

B. Computational Artifact As
Relation To Contributions

In this computational artifact, we provided a compiler for
3 different backends: Google Sycamore, IBM Heavy-hex,
and a FT back-end with lattice surgery model. By default,
the number of qubit of the logical QFT circuit is the same
as the number of physical qubits in the given architecture.
Once the number of physical qubits is specified, the compiler
would automatically compiles the circuit with respect to the
corresponding backend. Since the structure of backend and
QFT circuit are known, their information are encoded in the
compilation process.

Expected Results

The compiled QFT circuit has a linear-bounded circuit depth
in terms of the number of qubits and gate count in terms of the
number of CPHASE gates for all 3 state-of-the-art backends.

Expected Reproduction Time (in Minutes)

In our approach, the expected computational time is nearly
constant (less than 1 second). Because the circuit is not
compiled gate by gate. The whole circuit compilation follows
a pre-defined pattern. However, the compilation time of 2
baselines (SATMAP and SABRE) increases as the number of
qubit increases.

Artifact Setup (incl. Inputs)

Hardware: There is no specific platform requirement.
We perform the experiment on a regular personal computer
with the setting to be Intel(R) Core(TM) i9-10900 CPU @
2.80GHz, with 20 CPU(s) reaching up to 5200 MHz, and 30
GiB of memory. The operating system is Ubuntu 22.04.3 LTS.

Software: We use Qiskit (https://www.ibm.com/quantum/
qiskit). Only basic Python 3 is sufficient (necessary python
packages are list in README file to install beforehand)
SKETCH program synthesis solver (https://people.csail.mit.
edu/asolar/sketch-1.7.6.tar.gz).

Datasets / Inputs:

o Heavy-hex backend compiler takes the number of phys-
ical qubits as the input, automatically generating the
hardware coupling graph and the compiled QFT circuit.

o Google sycamore backend compiler takes the number
of rows and columns as the input, then automatically
generates the hardware coupling graph and the compiled
QFT circuit.

o FT backend has a grid structure. It also takes the number
of rows and columns as the input, then automatically
generates the hardware coupling graph and the compiled
QFT circuit.

Installation and Deployment: There is no Installation and
Deployment requirement.

Artifact Execution

We use the following script to verify all 3 backends.

python3 Googlesycamore_qft.py <the value of m for
m*m grid>

python3 heavy_hex_qft.py <# qubits in the main row>

python3 lattice_sugery_qft_mix.py < an even value of
#units >

Artifact Analysis (incl. Outputs)

We run the compiler multiple times, each time with different
backends and different sizes. The output of the compiler
includes the number of gate count and compiled circuit depth.
Then we compare those data with the output of baselines in
Table 1 and Figure 17-19.

Artifact Evaluation (AE)

A. Computational Artifact Ay

We only provide AE for computational artifact A2 men-
tioned in artifact description. Because Al is only used to check
the correctness of compiled results, and it is already included
in our compilers. If the compiler finishes the compilation, the
compiled circuits meet the requirements.

B. Computational Artifact Ay
Artifact Setup (incl. Inputs)

Please download the source code from the Zenodo:

https://doi.org/10.5281/zenodo.12594486

If the experiment is conducted in remote terminal, please
use ’ssh -Y” to receive the figures from the remote terminal.

Firstly, we recommend reviewer create a python virtual
environment with version 3.9. Then install necessary libraries
listed below:

pip install qiskit==0.43.1
pip install pandas
pip install matplotlib

Artifact Execution

The experiment workflow for our compilers is quite simple.
To get the compiled program data in three different backends,
just run following three commands:

python3 our_lattice_surgery.py

python3 our_heavy-hex.py

python3 our_sycamore.py

Results will be saved in folder csv_data.

To get the data from baseline, you need to change the path
to the folder sabre and run code below for three different
backends.

cd sabre

python3 sabre_gft.py "N*N’
python3 sabre_gft.py ’sycamore’
python3 sabre_qft.py ’heavy-hex’

Please do not miss quotation marks and results will be saved
in folder csv_data as well.

Artifact Analysis (incl. Outputs)

To show the figures in paper, you can implement the
following code:

cd ..
python3 draw_figures.py

o The output data will be saved as a csv file under folder
csv_data, including the compilation time, compiled cir-
cuit depth and swap gates count. Those are three metrics
we only used in our paper. Both SWAP gate count and
depth lower are better.

o There is no need to take the QFT circuit as the input
since it is known once the number of qubits is specified
and encoded during the compilation. The size of the QFT
circuit is hard coded in a loop.

o As we stated we provided a linear-depth solution for the
QFT kernel on different architectures. Our compilation
result, depth grows linearly with the number of qubits.

e You will see six figures by implementing
“draw_figures.py”, generated in the order as they
appear in the paper. For example, the first figure you
will see is corresponding to Fig. 17(a) in our paper and
the last figure is corresponding to Fig. 19(b).

o The results of baseline may vary due to the random seed
in the program, draw in orange line. The last two figures
are missing a green line, from a baseline that are not
mainly compared in this paper. But they can be added
simply using equation 8 * (m? — m — 1) for depth and
0.5 % (m* +m3 —m? —m) for the swap count. m is the
size of one column or row in the lattice surgery backend
and m = m is the #qubit shown in the x-axis.

o For the compilation time concern, the last two figures did
not show the result of two largest cases (compared with
the figure in our submitted version), where #qubit = 28
and 32. We can already see the improvement and trend
with #qubit = [4,28).

« We did not include Table 1 in the AE because all the data
in the table are already reflected in the six figures.

