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Abstract
Spiking neural networks(SNNs) have emerged as a promising so-
lution for deployment on resource-constrained edge devices and
neuromorphic hardware due to their low power consumption. Spik-
ing transformers, which integrate attention mechanisms similar to
those found in artificial neural networks (ANNs), have recently ex-
hibited impressive performance. However, these models are large in
size and involve high-volume computation in both time and space,
posing significant challenges for efficient hardware acceleration.
We present Bishop, the first dedicated hardware accelerator archi-
tecture and HW/SW co-design framework for spiking transform-
ers that optimally represents, manages, and processes spike-based
workloads while exploring spatiotemporal sparsity and data reuse.
Specifically, we introduce the concept of Token-Time Bundle (TTB),
a container that bundles spiking data of a set of tokens over multiple
time points. Our heterogeneous accelerator architecture Bishop
concurrently processes workload packed in TTBs and explores
intra- and inter-bundle multiple-bit weight reuse to significantly re-
duce memory access. Bishop utilizes a stratifier, a dense core array,
and a sparse core array to process MLP blocks and projection lay-
ers. The stratifier routes high-density spiking activation workload
to the dense core and low-density counterpart to the sparse core,
ensuring optimized processing tailored to the given spatiotemporal
sparsity level. To further reduce data access and computation, we
introduce a novel Bundle Sparsity-Aware (BSA) training pipeline
that enhances not only the overall but also structured TTB-level
firing sparsity. Moreover, the processing efficiency of self-attention
layers is boosted by the proposed Error-Constrained TTB Pruning
(ECP), which trims activities in spiking queries, keys, and values
both before and after the computation of spiking attention maps
with a well-defined error bound. Finally, we design a reconfigurable
TTB spiking attention core to efficiently compute spiking attention
maps by executing highly simplified “AND” and “Accumulate” op-
erations. On average, Bishop achieves a 5.91× speedup and 6.11×
improvement in energy efficiency over previous SNN accelerators,
while delivering higher accuracy across multiple datasets.
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1 Introduction
As the third generation of neural networks [34], spiking neural
networks (SNNs) exhibit a closer resemblance to biological neu-
ral circuits than their non-spiking artificial neural network (ANN)
counterparts. SNNs hold promise owing to their biological plausibil-
ity, event-driven characteristics, and low power consumption [43].
The recent spiking-based transformer models have demonstrated
superior performance compared to conventional spiking network
architectures [2, 54, 60, 64, 65], mirroring the trend observed in
ANNs where vision transformers outperform VGGs or ResNets. A
number of hardware accelerators for ANN-based transformers have
been proposed. For example, [7, 39] focus on more efficient process-
ing of attention-based computations; [17, 59] propose techniques
dealing with transformers exhibiting a targeted level of sparsity; [8]
utilizes Taylor approximation to eliminate the complex non-local
softmax functions in attention computation.

However, hardware acceleration of spiking transformers remains
largely unexplored, giving rise to significant challenges related to
computational overhead, latency, and energy consumption, espe-
cially when dealing with large spiking transformers. Continuing
the use of hardware architectures designed for spiking fully con-
nected (FC) or convolutional neural networks (CNNs) or adapting
existing ANN-based transformer accelerators [33, 48, 62] falls short
in harnessing the unique characteristics of spiking transformers.

This work presents the first dedicated hardware accelerator ar-
chitecture and HW/SW co-design framework tailored for spiking
transformers. We contend that the most promising approach to
accelerate spiking transformer models is to optimally represent,
manage, and process spike-based workloads while exploring spa-
tiotemporal sparsity and data reuse. As illustrated in Fig. 1, this
work makes the following contributions.

In the context of spiking vision transformers, we introduce the
concept of spiking Token-Time Bundles (TTBs). A TTB is a con-
tainer that bundles spiking data for a set of spatial tokens over a
number of time points, capturing the temporal variations of these
tokens. The TTB serves as the fundamental unit of work to be
processed on our proposed Bishop architecture. The utilization of
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Figure 1: Bishop: the first accelerator architecture and SW/HW co-design framework dedicated to spiking transformers.

TTBs empowers us to harness structured data reuse and firing spar-
sity inherent in key computations within the transformer across
both time and space.

Our Bishop architecture ❶ is heterogeneously comprised of a
TTB stratifier, a TTB dense core, a TTB sparse core, and a TTB
attention core. The TTB stratifier efficiently routes high-density
spiking-TTB workloads to the TTB dense core and directs low-
density workloads to the TTB sparse core, ensuring optimized
processing tailored to the present spatiotemporal sparsity level of
the workload. Taking advantage of the binary nature of spiking
TT-bundled queries and keys, we design a reconfigurable multiplier-
less And-ACcumulate (AAC) array. This array efficiently processes
spiking attention layers by executing highly simplified “AND" and
“Accumulate" operations and optimized dataflow, achieving a 2.66×
improvement in energy efficiency and a 4.27× speedup over the
Parallel Time Batching (PTB) architecture of [27].

From the algorithmic perspective, we explore firing sparsity tai-
lored for hardware as a key opportunity for efficient acceleration.
To this end, we introduce ❷, a TTB sparsity-aware training pipeline
that not only enhances the overall sparsity of spiking activations
but does so in a structured manner by organizing them into TTBs
for efficient processing on Bishop. Furthermore, we propose ❸,
an Error-Constrained TT-Bundle Pruning (ECP) algorithm to elimi-
nate redundant operations across tokens of spiking queries, keys,
scores, and values with a well-defined pruning threshold, facilitat-
ing efficient attention computation in conjunction with ❶ while
maintaining high attainable performance.

2 Background
2.1 Spiking Neural Networks
Leaky Integrate-and-Fire (LIF)Model.We adopt the widely used
leaky integrate-and-fire neuronal model in SNNs [20], which has
the following discretized dynamics over time:

𝑉𝑚 [𝑡𝑘 ] = 𝑉𝑚 [𝑡𝑘−1] + 𝐼 [𝑡𝑘 ] −𝑉𝑙𝑒𝑎𝑘 (1)

𝑆 [𝑡𝑘 ] =
{
1 if 𝑉𝑚 [𝑡𝑘 ] > 𝑉𝑡ℎ → 𝑉𝑚 [𝑡𝑘 ] = 0
0 else → 𝑉𝑚 [𝑡𝑘 ] = 𝑉𝑚 [𝑡𝑘 ]

(2)

where 𝑉𝑚 [𝑡𝑘 ] is the membrane potential of a spiking neuron at
time point 𝑡𝑘 ; 𝐼 [𝑡𝑘 ] is the total synaptic input current at 𝑡𝑘 ; 𝑉𝑙𝑒𝑎𝑘

is the leakage; 𝑉𝑡ℎ is the firing threshold, and 𝑆 [𝑡𝑘 ] is the spiking
output. A spiking output is generated if the membrane potential
𝑉𝑚 [𝑡𝑘 ] exceeds 𝑉𝑡ℎ , setting 𝑆 [𝑡𝑘 ] to 1 and resetting 𝑉𝑚 [𝑡𝑘 ] to 0.

Figure 2: Spiking transformer model architecture with multi-
head spiking self-attention [53, 64].

Spiking Transformers. The recent emergence of spiking trans-
formers presents a major development in spiking neural networks
[49, 54, 60, 64, 65], showing large performance improvements over
other SNNs [44, 45] such as spiking CNNs [19, 24, 29, 42]. Specifi-
cally, the state-of-the-art spiking transformers incorporate a multi-
head Spiking Self-Attention (SSA) mechanism [53, 54], capturing
global correlations among input tokens in a spike form. This ap-
proach demonstrates impressive performance with promising en-
ergy efficiency in vision applications compared with ANNs under
the same model size. Tab. 1 compares the accuracy of spiking trans-
formers with other state-of-the-art ANNs and SNNs across vari-
ous image[12], gesture[1] and speech command[50] recognition
datasets.

As depicted in Fig. 2, spiking transformers incorporate a spiking
tokenizer, which transforms a static image or a dynamic input, e.g,
a dynamic vision sensor (DVS) stream, represented as an input
sequence 𝐼 ∈ R𝑇×𝐶×𝐻×𝑊 with spatial size 𝐻 ×𝑊 in 𝐶 channels
across 𝑇 time points, into 𝐼 ′ ∈ R𝑇×𝑁×𝐷 , i.e., 𝑁 𝐷-dimensional
tokens across𝑇 time points. The core model architecture comprises
𝐿 sequentially connected residual encoder blocks with each con-
sisting of a multiple-head Spiking Self-Attention (SSA) block and
a spiking MLP block. The output from the final encoder block is
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Table 1: Comparison of ANN and SNN Accuracies.

Workload ANN Accuracy SNN Accuracy

CIFAR10

ResNet-19[15]: 94.97% VGG-11[42]: 92.22%
Transformer[16]: 96.73% CIFARNet[61]: 91.41%

ResNet-19[63]: 92.92%
ResNet-20[41]: 92.54%

Spiking Transformer: 95.19%

CIFAR100

ResNet-19[15]: 75.35% VGG-11[42] 67.87%
Transformer[16]: 81.02% ResNet-19[63]: 70.86%

ResNet-20[41]: 64.07%
Spiking Transformer: 77.86%

DVS-Gesture
12-layer CNN: 94.59%[1] CIFARNet [61]: 91.32%

ResNet-19[63]): 96.9%
Spiking Transformer: 98.3%

ImageNet
ResNet-34[45]: 70.69% Spiking ResNet-34[15]: 64.79%
Transformer[16]: 80.8% SEW-ResNet-50[19]: 67.78%

Spiking Transformer: 73.38%

Google SC ConvNet[21]: 87.0% Spiking ResNet[52]: 92.9%
AttentionRNN[10]: 93.9% Spiking Transformer: 95.11%

processed with a global average pooling across all tokens and time
points, and is subsequently employed to make the final prediction
through a linear layer[16].

Spiking Self-Attention. Unlike conventional spiking CNNs,
spiking transformers feature the use of SSA blocks for extracting
global token dependencies. The SSA blocks in our proposed Bishop
architecture operate as follows:

𝑄 (𝑖 ) = LIF (𝑋 (𝑖 ) ·𝑊 (𝑖 )
𝑄
) (3)

𝐾 (𝑖 ) = LIF (𝑋 (𝑖 ) ·𝑊 (𝑖 )
𝐾
) (4)

𝑉 (𝑖 ) = LIF (𝑋 (𝑖 ) ·𝑊 (𝑖 )
𝑉
) (5)

𝑂 (𝑖 ) = (𝑄 (𝑖 ) · 𝐾 (𝑖 )𝑇 · 𝑠) ·𝑉 (𝑖 ) (6)
𝑂𝑡𝑒𝑚𝑝 = LIF (𝐶𝑜𝑛𝑐𝑎𝑡{𝑂 (1) , ...,𝑂 (𝐻 ) }) (7)
𝑂𝑎𝑡𝑡𝑛 = (𝑂𝑡𝑒𝑚𝑝 ·𝑊𝑂 ), (8)

where 𝑋 represents the binary inputs produced by the preceding
LIF neurons, and𝐻 denotes the number of heads. For each 𝑖-th head,
𝑄 (𝑖 ) , 𝐾 (𝑖 ) , 𝑉 (𝑖 ) , 𝑂 (𝑖 ) represent the query, key, value, and output
respectively;𝑊 (𝑖 )

𝑄
,𝑊 (𝑖 )

𝐾
,𝑊 (𝑖 )

𝑉
are the weights of the correspond-

ing linear projection layers for computing 𝑄 (𝑖 ) , 𝐾 (𝑖 ) , and 𝑉 (𝑖 ) ,
respectively. LIF refers to an LIF neuron layer. 𝑠 is a power-of-
two scaling parameter, allowing for efficient scaling via bit shifting.
𝑊𝑂 represents the weights of the final linear projection layer, and
𝑂𝑎𝑡𝑡𝑛 is the output from the 𝐻 -head SSA block. In contrast to the
method described in [64] which extensively employs multipliers
due to spike residuals, we reposition the final LIF neuron layer to
precede the last linear layer of each SSA block[53] as in (7). This
adjustment allows for efficient multiplication-free computation of
attention output𝑂𝑎𝑡𝑡𝑛 based on the product of the weights𝑊𝑜 with
the binary LIF activations 𝑂𝑡𝑒𝑚𝑝 in (8).

2.2 Complexity/Workload Profiling of Spiking
Transformers

Computational Complexity.We analyze the computational com-
plexity of a spiking transformer. As shown in Fig. 2, the MLP block,
the four (𝑄 , 𝐾 , 𝑉 , 𝑂) linear projection layers, and attention layers
are mostly dominant sources of complexity. In the MLP block and
linear projection layers of a multi-head SSA block, the spike inputs
aremultipliedwith the correspondingweights to produce the synap-
tic inputs to the LIF neuron units, which generate firing outputs.
The space and time complexity of these layers is 𝑂 (𝑇𝑁𝐷2). The
attention layers within an attention block compute the dot-product
of spiking queries and keys with a computational complexity of
𝑂 (𝑇𝑁 2𝐷). With 𝑁 ≫ 𝐷 , the complexity of the attention layers
dominates that of the MLP/projection layers. The opposite is true
with 𝐷 ≫ 𝑁 . The LIF neuron layers have a non-dominant com-
plexity of 𝑂 (𝑇𝑁𝐷). The tokenizer’s computational complexity is
𝑂 (𝑇𝐻𝑊𝐶2𝐾2), where 𝐾 is the size of the employed spiking convo-
lutional (CONV) filters. It is typically not the dominant complexity,
and there has been much work targeting hardware acceleration of
spiking CNNs [27, 37].

Workload Profiling. To shed more light on the inference com-
plexity of spiking transformers, we perform profiling and provide
a FLOP breakdown for a spiking transformer based on the archi-
tecture of [64] and trained on the ImageNet dataset. Fig. 3 reveals
that the primary computational burdens reside within the spiking
attention (Attn) and MLP blocks, especially in deeper spiking trans-
formers. In addition, the dominance of attention blocks over MLP
blocks intensifies as 𝑁 increases. The cumulative FLOPs attributed
to these blocks range from 66.5% to 91.0% of the total workload.
Hence, attention and MLP blocks are the primary target of the
proposed accelerator architecture.

N = 128 N = 256

FLOPs breakdown

50% FLOPs66.5% 73.9%
83.1% 80.1%

91.0%
85.7%

Figure 3: The FLOPs breakdown of a spiking transformer
with different token and feature sizes trained on ImageNet.

2.3 Existing SNN accelerators
There exists a body of SNN accelerators focusing on enhancing
inference energy efficiency or latency through the employment
of novel devices [46], circuits [32], processing architectures [26,
27, 35, 37, 55] and on-chip communication networks [9, 11, 23,
25, 31], or on improving training efficiency [30, 47, 57]. These ef-
forts predominantly target spiking CNNs such as spiking-based
AlexNet/VGG/ResNets [19, 28, 63]. [22] extends traditional ANN
transformer models by enabling them to operate under both integer
and rate-encoded spiking modes. However, these architectures are
not optimized for large spiking transformers.

We identify four major challenges and opportunities with re-
spect to hardware acceleration of spiking transformers. Firstly,

3



ISCA ’25, June 21–25, 2025, Tokyo, Japan Boxun Xu, Yuxuan Yin, Vikram Iyer, and Peng Li

D

D

reuse	weight across/
within	different	bundles	

on	timepoints

reuse	weight
across/within	
different	bundles	

on	tokens Spiking
TokenTime(TT)

- Bundle

Spiking	Activations	in	
MLP/Projection	layers

T

N

D

Multi-Bit	Weight	Matrix	
in	MLP/Projection	layers

BSn

BSt

Spiking	TT-Bundle

PE

PE

PE

PE

Weight	reuse	through	
PEs	(TT-bundles)

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Token

Time

TTBs	are	mapped	to	different	PEs:	
Weight	reuse	through	timepoints	𝑡! ,
𝑡!"# …	across	tokens	𝑛$ ,	𝑛$"# …

(b) (c)

Token

Time
…

…

…

…
… …… …

Spikes	are	Mapped	to	different	PEs:	Irregularly	Repeated	
Weight	access	(at	each	timepoint	for	each	token)

…

(a)

…

…

…

…
… …… …

…

…

…

…
… …… …

…

…

…

…
… …… …

Neuron
… … ……

…

…

…

…

TT-Bundle	reuse	
through	PEs(features)

𝑡!"% 𝑡!"& 𝑡!"'𝑡!

𝑛$"#

𝑛$

𝑛$"%

𝑛$"(

We
igh
t

…

𝑛$"#

𝑛$

𝑛$"%

𝑛$"(

𝑡!"% 𝑡!"& 𝑡!"'𝑡!

Neuron

Output	Features

Input	Features

Figure 4: (a) The conventional approach lacks parallel processing in time and space, processing each token at each timepoint
in a time-serial manner, causing irregularly repeated weight accesses. (b) The spiking Token-Time (TT)-Bundle allows for
multi-bit weight data reuse across multiple tokens and time points. (c) Weight reuse in both an intra- and inter-bundle manner.
Multiple TT bundles of neurons corresponding to different output features are mapped onto different PE columns. Multiple TT
bundles across different input features marked as different color depths are mapped onto different PE rows.

given the excessive use of multi-bit weight data in spiking trans-
formers and the fact that spiking activations are single-bit, it is
crucial to maximize weight reuse both temporally and spatially.
While spiking CNN accelerators [26, 27] attempt to reduce weight
data access, they are limited to exploiting weight reuse only in
the temporal dimension within a systolic array. Instead, a proper
packing of the spatiotemporal spiking workloads optimized for the
computational structure within spiking transformers can lead to
structured sparsity and improve weight reuse across both time and
space. Secondly, existing SNN accelerators [27, 37, 46, 47] do not ex-
plore a heterogeneous architecture, leading to large efficiency loss
when encountering workloads with a varying degree of structured
or unstructured sparsity. Thirdly, the high performance of recent
spiking transformers can be largely attributed to the new spiking
attention mechanisms adopted [2, 54, 60, 64, 65]. Nonetheless, ded-
icated architectural support for these mechanisms remains largely
absent. Finally, while algorithm/hardware co-optimization such as
weight pruning [4, 40], temporal pruning [5], and quantization [56]
have demonstrated effectiveness for spiking CNNs, a systematic ap-
proach to accelerator architecture design and algorithm/hardware
co-optimization is currently lacking for spiking transformers. Fo-
cusing on 3D physical design, [51] proposes a simple spiking trans-
former architecture that does not pack spatiotemporal tokens into
bundles, thereby missing opportunities for effective weight data
reuse and for supporting temporal and token-level parallel process-
ing within each processing unit, nor does it exploit any form of
spiking sparsity or adequately consider HW/SW co-design.

To this end, we propose Bishop, which to the best of our knowl-
edge is the first accelerator architecture and HW/SW co-design
framework dedicated to spiking transformers. It’s designed to fully
exploit irregular sparse firing patterns and maximize data reuse on
a heterogeneous array architecture. Additionally, it incorporates
a sparsity-aware training pipeline and error-constrained pruning

tailored for spiking transformers. These approaches significantly re-
duce processing latency and enhance energy efficiency, effectively
addressing critical computational and data access bottlenecks in
state-of-the-art spiking transformers.

3 Spiking Token-Time (TT) Bundle
3.1 Challenges in Managing Spatiotemporal

Workloads
Spatiotemporal workloads should be appropriately packed to facili-
tate efficient processing. In [26] a spiking systolic array is proposed
to spatially process different postsynaptic neurons in parallel and
temporally process the input integration of each neuron over several
sequential time steps. However, the lack of time-parallel processing
exacerbates the overhead of accessing expensive multiple-bit, e.g.,
8 bits, weight data. The systolic-array-based Parallel Time Batching
(PTB) architecture in [27] addresses this issue by packing spiking
activities across multiple time points within a time window and
processing several such windows concurrently on the systolic array,
thereby improving weight data reuse.

However, both works only support the computations of convo-
lution neural networks (CNNs) and fully-connected layers (FCs)
without addressing the unique computation structures of spiking
transformers. For instance, FC layers perform matrix-vector multi-
plications on spiking activtations with a vector length equal to the
number of neurons. On the other hand, the main computations in
spiking transformers have a very different spatiotemporal compu-
tation structure. MLP layers in transformers perform matrix-matrix
multiplications on spiking activations in the dimension of N (to-
kens) × D (features) across T time points based on weights whose
dimension is 𝐷 × 𝐷 . Furthermore, SNNs may operate over a wide
range of timesteps. Packing workloads solely in time as in the PTB
architecture [27] is only effective when the number of timesteps is
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large, e.g., 100-300. The number of operational timesteps of spiking
transformers may vary from 300 [49] down to 4 [60, 64]. Operating
with a reduced number of time steps significantly reduces both
inference latency and training costs, marking a trend driven by
advances in SNN training algorithms. To maintain flexibility in
hardware architectures, there is a need for supporting spatiotempo-
ral computation within spiking transformers across a wide range of
time horizons, with a specific emphasis on facilitating computation
over shorter time spans.

3.2 Proposed Spiking Token-Time (TT) Bundle
The most promising approach to accelerate spiking transformer
models is to optimally represent, manage, and process spike-based
workloads while exploring spatiotemporal sparsity and opportuni-
ties for data reuse. We introduce the concept of spiking Token-Time
Bundle (TTB), a container that bundles spiking data for a set of
tokens over a set of time points, specifically for spiking transform-
ers. As shown in Fig. 4, we split the spiking activities of 𝑁 tokens,
𝐷 features, across 𝑇 time points into multiple token-time bundles.
Each TTB packs 𝐵𝑆𝑛 tokens across 𝐵𝑆𝑡 timepoints for a given out-
put feature. Accordingly, we have ⌈𝑇 /𝐵𝑆𝑡 ⌉ × ⌈𝑁 /𝐵𝑆𝑛⌉ token-time
bundles. The utilization of TTBs provides two major benefits in
data reuse and processing.

3.2.1 Multi-bit Weight Data Reuse. Without data packing in TTBs,
an accelerator irregularly and repeatedly loads weight data to pro-
cess individual input spikes of a token at a time point, discarding
much of the opportunities in data reuse, as shown in Fig. 4(a),
where processing of each spike is mapped onto a PE. In contrast,
the proposed Bishop architecture maps the processing of a TTB
onto a PE, and exploits weight data reuse at multiple levels as
shown in Fig. 4(b). Because the same multi-bit weights are used
for different time points and different tokens for each feature, the
1 × 𝐷 weight data in one row, for example, the highlighted red
row, is shared within each TTB for processing 𝐵𝑆𝑛 tokens across
𝐵𝑆𝑡 time points. In addition, the same weight data is reused across
⌈𝑇 /𝐵𝑆𝑡 ⌉× ⌈𝑁 /𝐵𝑆𝑛⌉ TTBs. As such, Bishop simultaneously exploits
both intra-TTB and inter-TTB weight data reuse. In addition, the
same input activiations are shared within each PE row.

3.2.2 Explore structured TTB-Level Sparsity. Furthermore, we tag
all TTBs and categorize them into two groups. A TTB is called active
if there exists at least one active spike in the bundle. Otherwise, we
call it inactive. Inherent spatiotemporal sparsity of spiking activities
can be leveraged to skip processing inactive TTBs, which constitute
of a bulk of all bundles. Since Bishop packs and dispatches work-
loads in terms of TTBs, skipping inactive bundles can be efficiently
accommodated in the dataflow and avoids large overheads resulting
from skipping computations at a much smaller granularity, e.g., at
the spike or token level. The effectiveness of this approach is further
enhanced by the Bundle-Sparsity Aware Training (BSA) algorithm
discussed in Section 4.1.

4 Proposed Spiking Transformer Algorithms
We present two algorithms, namely spiking TT Bundle-Sparsity
Aware Training (BSA) and Error-Constrained TT Bundle Pruning
(ECP) to optimize bundle-level sparsity and prune spiking activities

in queries and keys, respectively. ECP is also integrated into the
training pipeline, leading to ECP-aware training to maintain high ac-
curacy. BSA and ECP provide an end-to-end algorithm and hardware
co-optimization approach for the proposed Bishop architecture.

4.1 Bundle-Sparsity Aware Training (BSA)
We visualize the distribution of active token-time bundles (TTBs)
in spiking transformers in Fig. 5(a). Without applying BSA, spiking
transformers exhibit moderate TTB-level sparsity. For instance, in
Model 1 of Table 2, 29% of the bundles are active across all layers,
offering some restricted opportunities for computation skipping.

Unlike suppressing activities at the individual spike level as in
[13], the proposed Bundle-Sparsity Aware Training (BSA) algorithm
sparsifies spiking activities at the TTB level, i.e., by reducing the
number of active TTBs, thus providing a structured way of exploit-
ing sparsity.
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Figure 5: Active bundle distribution of spiking queries (Q)
across each input feature in the 4𝑡ℎ encoder block of a spiking
ViT (Model 1) trained on CIFAR10: (a) without BSA, and (b)
with BSA.

In BSA, we denote the spiking activations at time step 𝑡 in layer
𝑙 , token 𝑛, and input feature dimension 𝑑 by 𝑋 (𝑙 )

𝑛,𝑡,𝑑
, and a bundle

for layer 𝑙 by 𝑇𝑇𝐵 (𝑙 )
𝑏𝑛,𝑏𝑡,𝑑

, where 𝑏𝑛, 𝑏𝑡 , and 𝑑 are the bundle-token,

bundle-time, and input feature index, respectively.While𝑇𝑇𝐵 (𝑙 )
𝑏𝑛,𝑏𝑡,𝑑

packs multiple tokens and time steps, its activity tag 𝑍𝑏𝑛,𝑏𝑡,𝑑 is
defined by the 𝐿0 norm of the spiking activations that fall within it:

𝑍𝑏𝑛,𝑏𝑡,𝑑 = | |𝑋𝑏𝑛 ·𝐵𝑆𝑛 :(𝑏𝑛+1) ·𝐵𝑆𝑛−1,𝑏𝑡 ·𝐵𝑆𝑡 :(𝑏𝑡+1) ·𝐵𝑆𝑡−1,𝑑 | |0 (9)
𝑍𝑏𝑛,𝑏𝑡,𝑑 is zero if there is no active spike in the bundle. We sum up
all bundle tags across all 𝐷 features and 𝐿 layers of the transformer
to define a bundle-level sparsity loss 𝐿𝑏𝑠𝑝 :

𝐿𝑏𝑠𝑝 =

𝐿−1∑︁
𝑙=0

⌈𝑁 /𝐵𝑆𝑛 ⌉−1∑︁
𝑏𝑛=0

⌈𝑇 /𝐵𝑆𝑡 ⌉−1∑︁
𝑏𝑡=0

𝐷−1∑︁
𝑑=0

𝑍𝑏𝑛,𝑏𝑡,𝑑 (10)

When forming the above 𝐿𝑏𝑠𝑝 loss, we consider activations from all
MLP and linear projection layers as well as the bundles associated
with the queries (Q) and keys(K) in the attention layers. BSA opti-
mizes the model weight parameters 𝜽 by minimizing a total loss:
𝐿𝑡𝑜𝑡 = 𝐿𝐶𝐸 + 𝜆𝐿𝑏𝑠𝑝 , which jointly considers a cross-entropy model
accuracy loss 𝐿𝐶𝐸 and 𝐿𝑏𝑠𝑝 with a hyperparameter 𝜆, controlling
the tradeoff between the accuracy and TTB-level sparsity.
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Figure 6: Spiking activities at the output projection layer in
the 3𝑟𝑑 encoder block of a spiking ViT (Model 1) trained on
CIFAR10: (a) the original workload without BSA training, (b)
stratified TTBs without BSA , (c) the sparsified workload with
BSA, and (d) stratified TTBs with BSA.

Fig. 5 visualizes the original and BSA-altered distributions of
the active bundles of Model 1, defined in Table 2. Specifically, BSA
significantly improves TTB sparsity and reshapes their distribution
across input features, leading to most features having only a small
number of active bundles. In addition, BSA leads to a substantial
increase in the percentage of input features (from 9.3% to 52.2%
in Model 1, as shown in Fig. 5) that have no active TTBs, further
facilitating structured pruning of their associated weights. Fig. 6
further shows the joint effects of stratification and BSA.

5 Proposed Bishop Architecture
5.1 Error-Constrained TT Bundle Pruning (ECP)
The performance of spiking transformers critically relies on the
computation of self-attention maps, whose complexity is quadratic
in the number tokens 𝑁 . As 𝑁 increases, the computational over-
head of using spiking queries, keys and values to compute increas-
ingly larger spiking attention maps and subsequent computation
based on ( 6) becomes a dominant bottleneck. Models trained over
ImageNet, for example, may have 𝑁 = 192 tokens and a fewer num-
ber of features, i.e., 𝐷 = 128, making the complexity of the spiking
self attention (SSA) layers dominate that of the MLP/projection
layers. The number of tokens can be even much greater in many
long-sequence tasks [6]. We have identified that over 30% of com-
putational overhead comes from SSA layers in typical spiking trans-
formers. The proposed Error-Constrained TT Bundle Pruning (ECP)
algorithm prunes away binary activations in the queries (Q) and
keys (K), which further triggers a large amount of structured com-
putational reduction in the resulting attention map (S), the values
(V), and the outputs (Y) as illustrated in Fig. 7.

Notably, ECP explores a key property of the spiking self-attention
mechanism that is not present in its ANN counterpart for effective

pruning while ensuring a well-controlled error bound. In ANNs,
bounding the scores (S) given the queries (Q) and keys (K) is difficult
because Q and K are continuous-valued floating point numbers.
Differently, we explore the binary nature of the spiking Q and K
for a more straightforward bounding of S without computing them.
The total number of active bundles 𝑛𝑎𝑏 in a particular bundle row
across all features of the Q tensor can be easily obtained from the
active bundle tags. If 𝑛𝑎𝑏 is less than a threshold 𝜃𝑝,𝑄 , due to the
binary nature of 𝐾 , it is certain that any activation in a bundle
that is in the corresponding row of the scores (S) tensor would be
less than 𝜃𝑝,𝑄 per 𝑆 = 𝑄𝐾𝑇 . We prune out this row from the Q
tensor entirely while limiting the error to be no greater than 𝜃𝑝,𝑄 .
In practice, the actual pruning error can be lower than 𝜃𝑝,𝑄 because
the K tensor is sparse and its sparsity pattern does not necessarily
coincide with that of Q. Moreover, we adopt the same process to
prune the K tensor with a user-specified error bound 𝜃𝑝,𝐾 .

As illustrated in Fig. 7, pruning Q and K tensors in the above
manner has a compounding effect. If 20% and 10% of the Q and K
bundle rows, respectively, remain after the application of ECP, 80%
of rows and 90% of columns in the attention map will be pruned
away, reducing the overhead of computing 𝑆 down to 2%. This
further reduces data access to the𝑉 tensor and ultimately decreases
the writeback overhead of the 𝑌 tensor. Incorporating ECP into
training does not necessarily degrade model accuracy. In many
cases, ECP can slightly improve model accuracy by acting as a
denoising mechanism. Fig. 8 visualizes the attention maps from the
final transformer block of a spiking transformer model trained on
ImageNet-100, illustrating how ECP enhances focus on important
regions of an input image.

Fig. 9 shows the proposed heterogeneous Bishop architecture,
which consists of a hierarchical memory system and three main
processing cores, targeting the three computational bottlenecks
identified in Section 2.2. The TT-Bundle Sparse Core and TT-Bundle
Dense Core are dedicated to computing synaptic input integration
in the MLP and linear projection layers. The outputs from the two
cores are combined by the sparse-dense addition module within
the spike generator to compute the final membrane potential𝑉𝑚𝑒𝑚
for each spiking neuron, which is then used to conditionally gen-
erate output spikes. The TT-Bundle Attention Core is an efficient
engine for accelerating spiking self-attention layers. The output
from the TT-Bundle Attention Core is fed into the Spike Generator
to produce spike-form attention outputs per (8).

5.2 Motivation of the Proposed Architecture
Bishop is designed to address the following key issues.

Stratified workloads for heterogeneous processing. Bishop
stratifies sparse and dense workloads for processing on the hetero-
geneous cores. Fig. 10(a) shows that typical spiking spatiotemporal
workload is a mix of dense and sparse spiking activities with differ-
ent sparsity levels on each feature dimension, prohibiting efficient
processing. Thanks to our bundle sparsification, we can stratify the
workload into dense and sparse parts, as visualized in Fig. 6, to be
dispatched to the dense and sparse core, respectively, as in Fig. 10(b).
This significantly improves hardware utilization and avoids sched-
uling difficulties and inefficiencies that arise from using sparse cores
for dense computations, and vice versa.
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Figure 7: Error-constrained TT bundle pruning (ECP) for queries (Q), keys (K), attention scores (S), values (V), and outputs (Y).

Figure 8: The impact of ECP on the computed attention.

Structured weight reuse based on TTBs. Packing the work-
load into TTBs supports multi-bit weight reuse and avoids repeated
weight accesses when dealing with irregular spiking patterns on
the dense and sparse cores, and allows for key/query data reuse on
the spiking attention core.

Tailored core for spiking attention computation. The multi-
bit self-attention computation in ANN-based transformers is expen-
sive and the hardware accelerators bulit on them do not exploit the
unique properties of spiking self attention. To efficiently compute
spiking self-attention maps and outputs from binary spike inputs
in (6), we propose a reconfigurable systolic array, comprising AND
gates, multiplexers, and accumulators as a customized attention
core that eliminates the need for costly multi-bit multipliers and
significantly reduces area and power overhead. Furthermore, we em-
ploy the feature-first tiling to realize an optimized score-stationary
dataflow to reduce data movements of multi-bit attention scores
while flowing the binary query/key/value data onto the array.

5.3 Stratify Sparse and Dense Workload
Fig. 10 illustrates how the spiking workload is stratified into the
dense and sparse parts, with the feature indices recorded to align
rows in the weight matrix so that the Dense TT-Bundle Core pro-
cesses 𝑋𝐷𝑊𝐷 and the Sparse TT-Bundle core computes 𝑋𝑠𝑊𝑠 . As
detailed in Alg. 1, the stratifier compares the number of active TTBs
for each input feature against a stratification threshold to classify
the feature to be either “dense" or “sparse". A feature index buffer

Algorithm 1: Stratifying spiking bundles across different
input features.
Input: Spiking bundled workload: 𝑋 ∈ R𝐵×𝐷 , Weight:

𝑊 ∈ R𝐷×𝐷 , total number of bundles: 𝐵, total
number of input features: 𝐷 , stratifying
column-sparsity threshold: 𝜃𝑠

Output: Floating low-density spiking bundles 𝑋𝑆 and the
associated weight𝑊𝑆 , sinking high-density
spiking bundles 𝑋𝐷 and associated weight𝑊𝐷

parallel for 𝑖 = 0; 𝑖 < 𝐷 ; 𝑖++ do
if

∑𝐵−1
𝑗=0 | |𝑆 𝑗,𝑖 | |0 > 𝜃𝑠 then
append 𝑖 to 𝑅𝐷 ; //store dense feature indexes to
access permuted weights and spiking bundles

end
else

append 𝑖 to 𝑅𝑆 ; //store sparse feature indexes to
access permuted weights and spiking bundles

end
end
𝑋𝐷 ,𝑊𝐷 ← 𝑋:,∈𝑅𝐷 ,𝑊∈𝑅𝐷 ,:; //routed to dense TTB core;
𝑋𝑆 ,𝑊𝑆 ← 𝑋:,∈𝑅𝑆 ,𝑊∈𝑅𝑆 ,:; //routed to sparse TTB core;
return 𝑋𝐷 , 𝑋𝑆 ,𝑊𝐷 and𝑊𝑆

is employed to track the indices of both sparse and dense features.
Subsequently, the coordinated weights and input bundles are fed
onto the dense/spare core for processing.

5.4 Dedicated Dense and Sparse Cores
TT-Bundle Dense Core. The stratified dense workload in the
MLP and projection layers is directed to the TT-Bundle Dense Core,
which employs an output-stationary architecture, reminiscent of
a TPU-like systolic array, as depicted in Fig. 9. Each Token-Time
bundle is assigned to a distinct processing element (PE). These
PEs process and pass spiking bundles in a top-to-bottom sequence.
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Figure 9: The overall heterogeneous Bishop Architecture.

Figure 10: (a) The original spiking workload 𝑋 . (b) The strat-
ified dense workload 𝑋𝐷 and sparse workload 𝑋𝑆 ; weight
indices are coordinated to dispatch𝑊𝐷 and𝑊𝑆 onto the TT-
Bundle dense/TT-Bundle core, respectively.

Concurrently, the coordinated weights are passed from left to right
across the array, where each PE column computes a specific output
feature. In this process, weight data is repeatedly reused within a
bundle in an intra-bundle reuse manner, and reused by all PEs in the
same row in an inter-bundle reuse manner. Leveraging the binary
nature of spiking inputs, each PE executes “Select ACcumulation"
(SAC) operations to effectively multiply synaptic weights with
spiking inputs. A “SAC” operation is efficiently implemented by
one MUX and one accumulator. The partial sums are stored in PEs’
local registers. Upon completion of the computation assigned to
the PE array, the partial sums of synaptic integration are buffered
into the output buffer, awaiting merging with the results from the
TT-bundle sparse core.

TT-Bundle Sparse Core. Working in parallel with the TT-
Bundle Dense Core, the TT-Bundle Sparse Core processes the sparse
part (𝑋𝑠𝑊𝑠 ) of spiking synaptic integration. We design our TT-
bundle sparse core by adopting a SIGMA-like architecture [38] to
efficiently handle irregular sparsity patterns, thanks to its flexi-
ble and configurable distribution and reduction network. The core
utilization is enhanced considerably by the proposed BSA training
algorithm presented in Section 4.1, which improves the network’s
structured bundle-level sparsity. In addition, this core facilitates
multi-bit weight data reuse when processing different tokens and
time points within a bundle as clustered firing activities may take
place in the bundle. Finally, we merge and accumulate the partial
sums of the synaptic integration streaming out of the sparse and
dense cores by performing sparse-dense addition in the Spike Gen-
erator. The Spike Generator maps neurons to be processed onto
different PEs, where an output spike is conditionally generated if
its 𝑉𝑚𝑒𝑚 exceeds the threshold voltage 𝑉𝑡ℎ at certain time point.

5.5 Dedicated TT-Bundle Attention Core
Attention computation in ANN transformers is costly. It involves a
sequence of multi-bit multiplications between queries (Q) and keys
(K), non-local softmax operations, and multi-bit multiplications of
the resulting scores (S) and values (V). As described in Section 2.1,
the spiking attention mechanism employs binary tensors Q, K, and
V. This, coupled with the elimination of computationally expensive
softmax operations, provides a distinct advantage. The proposed
attention core efficiently computes spiking attentions by leveraging
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the binary nature of the Q/K/V data through two-step operations.
The first step computes an accumulated attention map by multiply-
ing 𝑄 with 𝐾𝑇 to produce attention score 𝑆 ; the second step is to
compute the output 𝑌 by multiplying 𝑆 with 𝑉 . Thanks to our ECP
algorithm, there only exist a limited number of𝑄/𝐾/𝑉 bundles that
need to be loaded and processed. This selective processing allows
the attention array to be dynamically allocated, solely executing
the essential computations.

The attention core utilizes a systolic array while employing
optimized dataflows and data-reuse schemes. As shown in Fig. 9,
each PE has two operation modes. Mode 1 utilizes the flowing 𝑄
and 𝐾 data to compute 𝑆 with an S-stationary dataflow. Mode 2
utilizes the stationary 𝑆 and flowing 𝑉 to compute 𝑌 . In each PE,
the workloads at different time points are mapped onto different
groups of logic gates circled by the dotted line. Multiple groups
simultaneously process the same set of tokens for different time
points.

Mode 1. We configure the core into multiple And-ACcumulate
(AAC) units to efficiently compute the accumulated attention on dif-
ferent tokens at each time point, and store the resulting partial sums
in the S registers. S-stationary dataflow: Because the attention score
𝑆 has a higher bit width, ranging from 6 to 10 model-dependent
bits, than the binary spikes in Q and K, we adopt an S-stationary
dataflow to minimize data movement. This approach involves the
directional flow of 𝑄 bundles from left to right, coupled with the
streaming of 𝐾 bundles from top to bottom across the array. This
setup executes “AND” operations between binary queries (𝑄) and
keys (𝐾 ), followed by the accumulation of partial sums in the 𝑆 regis-
ter within each PE. The process continues until the computation of
𝑆 is completed for all features. K-reuse with intra/inter-Q bundles:
K bundles tend to have a higher token sparsity than Q, especially
after our error-constrained bundle pruning. We reuse one set of K-
tokens that correspond to the same spatial location across multiple
time points to operate with 𝐵𝑛 tokens from one Q bundle in each
PE. Specifically, at a given processing time, each PE contains one Q
bundle, and the set of K-tokens is reused for the computation with
all tokens in that Q bundle in an intra-Q-bundle manner. Across
various Q bundles mapped onto the PEs in the same column, the
K-token set is reused again in an inter-Q-bundle manner.

Mode 2. The attention core is configured into Select-ACcumulati
on (SAC) units based on the S-stationary dataflow when comput-
ing 𝑌 . V-reuse with intra/inter-S bundles: As shown in Fig. 9, we
maintain 𝑆 in the local registers and load 𝑉 from top to bottom,
and flow the computed partial sums 𝑌 from left to right. In each
“SAC”operation, the binary 𝑉 input selects the right 𝑆 data to be
accumulated into the partial sum, which is stored in the 𝑌 register.
In a fashion that is similar to the K-reuse described above, V is
reused in both an intra- and inter-S bundle manner. In each PE,𝑉 is
reused for processing different S tokens for multiple time points to
facilitate the intra-S bundle reuse. The same 𝑉 data is reused again
in an inter-S bundle manner across the PEs in the same column.
When 𝑌 is read out, it is aggregated into the partial sum maintained
within the 𝑌 TT-bundle buffers. Upon completion of 𝑌 ’s computa-
tion, with 𝑌 represented in an integer format, a shifter is employed
to adjust the scale of 𝑌 per ( 6) based on a power-of-two scaling

factor 𝑠 . The processed 𝑌 is then fed into the spiking generator, and
the final binary attention output is stored back into the TTB GLBs.

6 Evaluation
6.1 Evaluation Setup
Model Training and Datasets. We develop a training flow based
on Pytorch, integrating the proposed Bundle-Sparsity Aware Train-
ing (BSA) and Error-Constrained TTB Pruning (ECP) algorithms. Sev-
eral spiking transformer models are trained on widely adopted im-
age recognition datasets including CIFAR10, CIFAR100, ImageNet-
100[12], the neuromorphic dynamic vision sensor (DVS) dataset
DVS-Gesture-128 [1], and speech command recognition dataset
Google Speech Command V2 [50].

To evaluate the scalability of our proposed Bishop architecture,
we train multiple spiking transformers with different model archi-
tectures, following the settings in Tab. 2. In the case of CIFAR10
and CIFAR100, each image is sized at 32 × 32, which is segmented
into 64 (𝑁 ) tokens, with each token representing a 4 × 4 pixel area.
The feature size (𝐷) is set to 384. The fact that 𝐷 >> 𝑁 renders the
MLPs and linear projection layers as the dominant contributors to
computational complexity. An ImageNet-100 image has a resolu-
tion of 224 × 224 pixels per channel. We split each image into 196
tokens, each representing a 16 × 16 pixel area. The feature size is
set to 128, making the attention layers the most dominant source of
computational complexity because 𝑁 > 𝐷 . For the neuromorphic
dataset DVS-Gesture-128, the visual input at a time step comprises
128×128 pixels, which is divided into 64 tokens, each sized at 16×16.
We use a batch size of 256 for 300 training epochs on the CIFAR
and ImageNet-100 datasets, and a batch size of 64 for 100 epochs
on the DVS-Gesture-128 dataset. Advances in training algorithms
have resulted in high-accuracy SNNs operating on a reduced num-
ber of time steps. Different from the prior work [27, 37, 47] that
employ 100 to 300 time steps, we limit the number of time steps to
be from 4 to 20. This reduction contributes to a lower training cost
and aligns with the trend in developing high-performance spiking
neural models [61, 64] for low-latency processing.

In implementing BSA, we configure the parameter 𝜆 differently
for various datasets: 1 for CIFAR10, 0.5 for CIFAR100, 0.3 for Im-
ageNet, and 1.0 for DVS-Gesture-128. This choice allows us to
strike a balance between bundle sparsity and accuracy tailored for
each dataset. For error-constrained pruning of queries and keys
in attention layers, we set the bundle pruning thresholds to 10 for
models trained on DVS-Gesture-128 and 6 for other models without
compromising accuracy.

Baselines and Evaluation Metrics. Baselines: To benchmark
the proposed Bishop architecture, we compare it with an edge
GPU (NVIDIA Jetson Nano) and Parallel Time Batching (PTB),
a recent competitive SNN accelerator architecture[27]. For a fair
comparison, PTB and the proposed Bishop are configured to have
the same number of PEs with each PE possessing the same amount
of register and compute resources, resulting in nearly identical
area and operational power when synthesized using a commercial
28nm process design kit (PDK). Evaluation Metrics: We consider
chip area, power, latency, and energy dissipation.
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Table 2: Spiking transformer architectures for three static
datasets and one dynamic dataset

Type Model Dataset Blocks
(𝐵)

Timesteps
(𝑇 )

Tokens
(𝑁 )

Features
(𝐷)

Static
Model 1 CIFAR10 4 10 64 384
Model 2 CIFAR100 4 8 64 384
Model 3 ImageNet100 8 4 196 128

Dynamic Model 4 DVS-Gesture 2 20 64 128

Language Model 5 Google SC 4 8 256 384

Modeling of Architecture, Latency, Energy Dissipation,
and Synthesis.We build an analytic cycle-accurate heterogeneous-
core architecture simulation environment to support all unique
features in spiking transformers. It traces data movement between
the heterogeneous cores and hierarchical memories for assessing
latency and energy dissipation. We follow the standard practice
to employ a three-level memory hierarchy for memory-intensive
transformer computations [18, 58]. Similar to many other analytic
models, each level of memory is double-buffered to hide latency
and equally partitioned to separately store different types of data.

We use CACTI 7.0 [3] to estimate energy dissipation of theweight
global buffer (GLB) and spiking TT-bundle GLBs. The weight GLB
is a 144KB SRAM with 512-bit read/write ports. The ping-pong
spiking TT-bundle GLB0/GLB1with each being 12KB can be equally
partitioned for storage of binary spiking Q/K/V/Y. The employed
DRAM has a DDR4-2400 memory bandwidth of 76.8GB/s and power
consumption of 323.9mW at a core frequency of 500MHz. In Bishop,
the TT-bundle sparse core consists of up to 128 parallel TT-bundle
processing units. Both the TTB dense core and TTB attention core
consist of 512 PE units, processing up to 32 output features and 16
TT-bundles in parallel. Each TTB unit can reconfigurablely process
up to 10 spikes in one cycle. The spike generator may process up to
512 neurons in parallel. We use the open-source SIGMA simulator
STONNE [36] for cycle-accurate simulation of the TTB sparse core.

The RTL implementation of the Bishop accelerator is synthe-
sized using a commercial 28nm CMOS technology, resulting to a
die area of 2.96𝑚𝑚2, a peak power dissipation of 627𝑚𝑊 , and a
clock rate of 500 MHz. In comparison, the synthesized baseline PTB
accelerator has a chip area of 2.80𝑚𝑚2 and a peak power dissipation
of 606.9𝑚𝑊 .

6.2 Overall Latency and Energy Evaluation
Fig. 12 and Fig. 13 show the end-to-end performance of our Bishop
accelerator and the two baselines. Fig. 11 shows more detailed
layer-wise speedup and energy saving of Bishop in comparison
with PTB [27]. Across four pre-trained models, Bishop on average
achieves 299× and 5.91× speedups compared with the edge GPU
and PTB [27], respectively, while reducing energy by 6.11× over
PTB. Notably, these significant latency and energy reductions are
achieved without comprising model accuracy.

On CIFAR10, Bishop speeds up the edge GPU and PTB by 173.9×
and 4.68×; Bishop+BSA has a 238.6× and 6.37× speedup over the
edge GPU and PTB; Bishop+BSA+ECP has a speedup of 249.4× and
6.71× over the edge GPU and PTB, respectively. On CIFAR100,
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Figure 11: Normalized latency and energy comparison of
Bishop with PTB [27] when accelerating the same spiking
transformers trained on CIFAR10, CIFAR100, ImageNet-100
and DVS-Gesture-128. The latency and energy consump-
tion are normalized by those of the first projection layer of
the first block in Bishop, respectively. P1, ATN, and P2 indi-
cate the𝑄/𝐾/𝑉 linear projection layer, spiking self-attention
layer, and 𝑂 linear projection layer within the spiking self-
attention block, respectively; MLP indicates the spiking MLP
layer.
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Figure 12: Evaluation on end-to-end normalized latency re-
duction.

Model1@CIFAR10 Model2@CIFAR100 Model3@ImageNet100 Model4@DVS-Gesture Model5@GoogleSC

10 1

100

N
or

m
al

iz
ed

…
En

er
gy

PTB Bishop(Ours) Bishop+BSA(Ours) Bishop+BSA+ECP(Ours)

Figure 13: Evaluation on end-to-end normalized energy con-
sumption reduction.

Bishop offers a 156× and 3.95× speed up over the edge GPU and
PTB; Bishop+BSA provides a 193.9× and 4.90× speedup over the
edge GPU and PTB; The speedups are 203.3× and 5.14×, respec-
tively, over the edge GPU and PTB by using Bishop+BSA+ECP. On
ImageNet-100, Bishop has a 317.6× and 5.17× speed up over the
edge GPU and PTB; Bishop+BSA has a 389× and 6.34× speedup
over the edge GPU and PTB; Bishop+BSA+ECP speeds up the edge
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0.28% Acc ↑
1.57× Energy Efficiency

1.86× Speedup 

Appropriate 𝜽𝒑 Range 

0.13% Acc ↓
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0.70% Acc ↑
5𝟒. 𝟐𝟏 × Energy Efficiency
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Appropriate 𝜽𝒑 Range 

Figure 14: Accuracy v.s. normalized energy efficiency and
speedup of the spiking self-attention layers of four spik-
ing transformers under different ECP pruning thresholds.

GPU and PTB by 474.8× and 7.73×, respectively. On DVS-Gesture-
128, Bishop has a 221× and 3.30× speed up over the edge GPU
and PTB; Bishop+BSA increases the speedups to 254.9× and 3.81×;
Bishop+BSA+ECP has 271.76× and 4.06× speedup over the edge
GPU and PTB, respectively.

For model 5 evaluated on the language task Google Speech Com-
mand [50], Bishop achieves a speedup of 72.2× over the edge GPU
and 1.43× over PTB. With BSA, the speedups increase to 97.33× and
1.92×, respectively. Further incorporating ECP boosts the speedups
to 202.42× over the edge GPU and 4.0× over PTB.

6.3 Evaluation of Bishop Algorithms
Fig. 14 quantifies the impact of the pruning threshold of ECP on
the energy efficiency and speedup of spiking self-attention layers.
Across a range of pruning thresholds, a significant proportion of
bundles are removed from the Q/K/V tensors without causing any
substantial drop in model accuracy. In some cases, pruning even
improves accuracy by introducing a denoising effect.

Nevertheless, using a large pruning threshold could degrade
model performance, hence it should be properly set within an ap-
propriate range to trade off between hardware performance and
accuracy. For example, with the TTB pruning threshold 𝜃𝑝 set to 8
on CIFAR10, the model accuracy is improved by 1.24% while 28.2%
of the Q tokens and 48.0% of the K tokens are pruned away, reduc-
ing the attention map computation by 62.7% and memory access by
38.1%. The total energy and latency are reduced to 0.52× and 0.44×,
respectively. For CIFAR100, the model’s accuracy is improved by
0.53% while keeping 93.2% and 55.1% of the tokens in the queries
and keys, reducing energy dissipation to 0.65× and latency to 0.42×,
respectively. On ImageNet-100, ECP leads to a slight accuracy drop
of 0.13% while retaining only 10.7% of the query tokens and 9.7%
of the key tokens. This drastic pruning reduces attention map com-
putation overhead down to 1.04%, reducing energy to 0.03× and
latency to 0.02× for the self-attention layers. On DVS-Gesture-128,

Figure 15: Impact of stratifacation strategies on the energy, la-
tency and EDP ofModel 3 trained on ImageNet-100. Different
stratification strategies yield varying stratification thresh-
olds (𝜃𝑠 ) to achieve a targeted dense-to-sparse core token split
ratio.

the model’s performance is enhanced by 0.7% while pruning the
vast majority of tokens. Only 8.0% of the Q tokens and 5.49% of the
K tokens remain. On average, the spiking Q tokens can be pruned
away by 51.71%, reaching up to 92% in some cases. Similarly, the
average pruning of the spiking K tokens can reach 67.77% with a
peak reduction of 97.51%. Consequently, on average, only 15.5%
of the computation is performed, leading to an average 83.76% de-
crease in energy consumption and 43.92% decrease in latency for
the computations of the self-attention layers.

6.4 Evaluation of Bishop Hardware Accelerator
We compare Bishop and PTB [27] purely from a hardware architec-
tural perspective by removing the proposed BSA and ECP algorithms
and using the ImageNet-100 dataset.

We first demonstrate the effect of the heterogeneity of Bishop.
The spiking transformer trained on the ImageNet-100 dataset has
an average of 20% sparsity level across all layers. The stratifier in
Bishop directs 50% of the workload to the TT-bundle dense core,
and dispatches the remaining sparser workload to the TT-bundle
sparse core. For the inference of a single image, on average the
dense core takes 1.16ms and consumes 0.29mJ of energy. The sparse
core takes 0.53ms while burning 0.038mJ of energy. In contrast, if
all workload is processed by the dense core as in the case of PTB,
the latency and energy increases to 1.83ms and 0.45mJ, respectively.
Thus, the heterogeneity of Bishop offers a 1.39× speed-up and a
1.57× energy saving.

As for spiking attention computation, the dedicated attention
core of Bishop reduces latency by 10.7-23.3× while achieving 1.39-
1.96× energy saving over PTB.

6.5 Design Space Explorations
There are two important architectural hyperparameters, namely,
the stratification threshold and TTB bundle volume, which have a
large impact on Bishop’s performance.

6.5.1 Impact of Stratification Threshold. Choosing a higher value
for the stratification threshold 𝜃𝑠 shifts more workload from the
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Figure 16: Sensitivity analysis of TTB bundle volume (𝐵𝑆𝑡 , 𝐵𝑆𝑛) for Model 3 trained on ImageNet-100.

TTB dense core to the TTB sparse core. Nevertheless, a large im-
balance in workload between the two cores can degrade Bishop’s
performance. Using the dense core to process an excessive amount
of workloads, which can constitute a large portion of the sparse
workloads that cannot be efficiently processed by the dense core,
may reduce the utilization of the sparse core and degrade the overall
latency of Bishop. Conversely, overloading the sparse core reduces
its efficiency in processing assigned dense workloads, lowers the
utilization of the dense core, and degrades the overall latency. In
contrast, the stratification threshold 𝜃𝑠 has a relatively minor effect
on the energy dissipation of Bishop, since data movement contin-
ues to dominate overall energy costs. Nonetheless, shifting more
workload to the dense core can result in a slight increase in energy
consumption. As a result, the Energy-Delay Product (EDP) initially
decreases and then increases as 𝜃𝑠 increases.

Fig. 15 details the impact of different workload distribution strate-
gies on energy, latency, and EDP. In practice, a near-optimal EDP
can be achieved when the stratification threshold 𝜃𝑠 of each layer
is chosen to approximately balance the workload between the two
cores. This results in an EDP improvement of 2.49× compared to
the PTB architecture, when realized with an equal chip area in the
28nm technology. In contrast, imbalance between the two cores
can degrade the Bishop’s EDP by up to 1.65×.

Power Breakdown Area Breakdown

Figure 17: Power/area breakdown of the proposed Bishop
accelerator.

6.5.2 Impact of TTB Bundle Volume. As shown in Fig. 4, the TT bun-
dle volume specifies the number of spatiotemporal tokens packed
in a bundle and is defined by 𝐵𝑆𝑡 ×𝐵𝑆𝑛 , where 𝐵𝑆𝑡 and 𝐵𝑆𝑛 are the
temporal and spatial bundle sizes, respectively. As shown in Fig. 2,
the computation workload can be divided into self-attention layers,
projection layers and MLP layers. Fig. 16 evaluates the impact of
the TTB volume on the Bishop accelerator’s energy and latency.

For the attention layers, increasing the bundle volume reduces
the effectiveness of the proposed ECP pruning, leading to more
bundles with only a small number of active spikes. However, these
bundles still need to be transferred from the DRAM to the GLBs and
eventually to the attention cores, which can degrade both energy
efficiency and latency. On the other hand, when the bundle volume
(𝐵𝑆𝑡 , 𝐵𝑆𝑛) is very small, such as (1, 2) or (2, 1), the intra-bundle
and inter-bundle key/value data reuse drops, leading to increased
data movement and higher latency.

For the projection and MLP layers, initially increasing the bun-
dle volume boosts multi-bit weight data reuse. However, when the
bundle volume goes beyond a certain value, such as 14 in Fig. 16,
many idle tokens get bundled into a TTB. This leads to increased
memory traffic and unnecessary processing of idle tokens, resulting
in higher energy dissipation, as spiking activation memory access
becomes more dominant than multi-bit weight data access. For
example, when the bundle volume increases from (2,4) to (4,14),
spiking activation memory access rises from 13% to 21.4% while
weight memory access drops from 36.9% to 16.9%. In practice, select-
ing a bundle volume between 4 and 8, as indicated by the light blue
region in Fig. 16, achieves near-optimal total energy and latency.

6.6 Area and Power breakdown
Fig. 17 shows the area and energy breakdown of the Bishop accel-
erator synthesized using a commercial 28nm technology. Nearly
90% of the total power and 80% of the chip area are consumed by
the three major cores. The TTB sparse core, TTB dense core, and
TTB attention core consume 72.2𝑚𝑊 (11.5%), 246.1𝑚𝑊 (39.2%) and
242.51𝑚𝑊 (38.7%), and occupy 0.38𝑚𝑚2(12.8%), 0.92𝑚𝑚2 (31.3%),
1.06𝑚𝑚2 (36.0%) chip area, respectively. In contrast, the spiking
generator array consumes 0.09𝑚𝑚2 (3.2%) area and 18.1𝑚𝑊 (2.9%),
and the GLBs consume 0.495𝑚𝑚2 (16.7%) area and 48.3𝑚𝑊 (7.7%),
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respectively. The total die area and peak power of the Bishop ac-
celerator are 2.96𝑚𝑚2 and 627𝑚𝑊 , respectively, similar to the PTB
accelerator (2.80𝑚𝑚2, 606.9𝑚𝑊 ).

7 Related Work
Among the prior SNN accelerators discussed in Section 2.3, PTB [27]
batches processing of multiple time steps for a given neuron within
a time window, allowing multi-bit weight sharing within the win-
dow. Several other works have also explored temporally parallel
processing of spiking CNN workloads. While not designed specifi-
cally for spiking transformers, LoAS [55] explores both the input
activation and weight data sparsity for further efficiency improve-
ments, particularly for SNNs with a small number of time steps.
Stellar [35] accelerates SNNs based on few-spike (FS) neurons in-
stead of LIF neurons. Importantly, all these works focus on spiking
CNNs with homogeneous accelerator architectures while Bishop
introduces agile spatiotemporal processing and a heterogeneous
architecture tailored for complex spiking transformer workloads.

Like Bishop, sparsity has been a key focus in prior work. [14] pro-
poses a training method to enhance spike-level sparsity, whereas
Bishop maximizes structural TT-bundle-level sparsity, which is
more critical for hardware acceleration. While sparse attention
mechanisms have been explored in ANN-based transformer accel-
erators [33, 48], these methods rely on post-attention computation
pruning unlike the proposed Error-Constrained TTB Pruning (ECP).
In addition, they do not target binary spiking attention mechanisms.

8 Conclusions
We present Bishop, the first dedicated hardware accelerator ar-
chitecture and HW/SW co-design framework for spiking trans-
formers. Bishop operates on spiking time-token bundles (TTBs) to
minimize weight data access and explore structured bundle-level
sparsity. Bishop utilizes a bundle sparsity-aware training pipeline
to improve structured TTB sparsity, and error-constrained prun-
ing to aggressively trim spiking queries and keys, thereby signifi-
cantly reducing the overhead of computing large spiking attentions.
Bishop incorporates a dedicated TT-bundle dense/sparse core, a
dense/sparse workload stratifier, and a dedicated spiking attention
core to reduce data movement and boost acceleration efficiency.
Extensive experimental studies have demonstrated significant ad-
vantages of Bishop over the prior SNN accelerators.
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