
Abstract

Predicting the spatial-temporal evolution of the pressure field and the migration of the CO2 plume during

and after its injection is complicated by several factors, including the complexity of the underlying flow

and transport processes in porous rocks, the heterogeneity and uncertainty of the rock properties, and

the computational demand of running high-fidelity simulation models. Traditional workflows, such as

model calibration, optimization, uncertainty quantification, and risk assessment, require many numerical

simulation runs, which can become computationally too demanding for field application. Although

standard deep learning models provide powerful prediction tools for near real-time implementation, they

suffer from several important limitations, including the lack of interpretability, extensive data needs, and

physical inconsistency.

To overcome these limitations, we introduce a novel physics-encoded deep learning model, named Fluid

Flow Deep Learning (FFDL) architecture, aimed at predicting the spatial-temporal evolution of pres-

sure and saturation during geologic CO2 storage. The proposed model leverages physical causality in

the design of the architecture to approximately represent the subsurface fluid dynamics. The proposed

model features a physics-informed encoder for generating physically interpretable latent variables, a

customized recurrent neural network processor for evolving the latent state variables over time, and a

decoder for mapping these variables to the desired outputs, such as pressure and saturation. The FFDL

architecture uses physical operators that serve as non-linear activation functions and impose hard con-

straints to respect the structure of the fluid flow equations. A comprehensive investigation of FFDL based

on several examples of CO2 storage in saline aquifers is used to demonstrate the prediction performance

of the approach. The performance of the model is validated by showing its superior prediction of the

CO2 plume migration compared to the results obtained by a modified recurrent U-Net architecture. The

results show that FFDL possesses significantly improved generalizability and provides a more reliable

and physically consistent prediction of the CO2 plume migration.
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Figure 1 Overview of the proposed Fluid Flow-based Deep Learning (FFDL) model for predicting

spatial-temporal pressure and saturation in geologic CO2 storage.

Introduction

Carbon capture and storage (CCS) is an important component in reducing CO2 emissions. The CCS

technology works by capturing CO2 from large point sources, such as power plants, and injecting it

into deep geologic formations. Although geologic CO2 storage (GCS) has significant potential as a

climate change mitigation strategy, its commercial deployment requires sound economics and regulatory

frameworks to ensure the safety of operation. Concerns about CO2 migration or leakage into shallower

aquifers and the atmosphere call for robust monitoring and risk management technologies (Zheng et al.,

2022, 2021; Celia et al., 2015). While current monitoring methods can track the movement of the

injected CO2 plume, accurately quantifying its volume and predicting its migration path for monitoring

and verification purposes remain challenging (Bui et al., 2018). Moreover, predicting the dynamics of

pressure buildup and CO2 migration is essential for guiding decision-making (Zheng et al., 2021) and

assessing short-term and long-term risks (Ajayi et al., 2019).

Reliable prediction of the CO2 plume migration often requires spatial and temporal analysis, potentially

involving detailed simulation models. The injection of CO2 into subsurface formations triggers a set of

complex multi-component, multiphase flow and transport processes. Complex rock-fluids-fracture in-

teractions involving miscibility, capillary pressure, relative permeability, and coupling between different

physical processes lead to non-linear coupled systems of partial differential equations (PDEs) that are

not trivial to solve (Bandilla et al., 2015). Furthermore, field-scale GCS projects span extensive spatial

and temporal scales, including both injection and post-injection periods (Ajayi et al., 2019; Jiang, 2011).

Therefore, numerical simulation of GCS at the field scale can become computationally prohibitive, par-

ticularly for complex optimization and uncertainty quantification tasks. Another significant challenge

is estimating the time-varying storage capacity of the geologic formations, which is influenced by geo-

logic conditions, injectivity and field development plans (Gorecki et al., 2015). Accurate quantification

of uncertainty and potential risks typically involves multiple simulation runs, which can impede the

implementation of real-time analysis and risk assessments in GCS projects. Consequently, there is a

growing need for innovative approaches that can provide accurate and efficient real-time monitoring and

forecasting of CO2 plume migration and pressure buildup during GCS operations.

In recent years, deep learning (DL)-based approaches have emerged as more efficient alternatives to

traditional physics-based numerical simulation to predict the spatial-temporal evolution of fluid dynam-

ics in the subsurface. Specifically, convolutional neural networks (CNNs) that have demonstrated a
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strong capability of processing image data have found widespread application in predicting the spatial

and temporal evolution of subsurface flow systems. Zhu and Zabaras (2018) proposed a fully convo-

lutional encoder-decoder architecture to approximately map input permeability fields to pressure and

velocity maps for a 2-dimensional steady-state Darcy flow problem. Mo et al. (2019) extended the work

in Zhu and Zabaras (2018) to predict the responses of a dynamic multiphase flow problem at different

time steps. Wang and Lin (2020) designed a customized architecture for single- and two-phase flow

systems, incorporating sparsely connected layers to account for the inherent sparse input-output inter-

action. Despite the demonstrated effectiveness of DL models, the approaches mentioned above have

limitations and are tailored to specific scenarios. Notably, in GCS projects that can span decades of

injection and potentially much longer post-injection period, the predictive model needs to be versatile

and provide forecasts over arbitrary time frames. However, existing DL models are limited to predict

within fixed periods and face challenges in long-term predictions (which require extrapolation power).

Deep learning models have limited extrapolation power and do not provide reliable predictions beyond

the data distribution defined by the training set (Willard et al., 2022), leading to the out-of-distribution

(OOD) generalization problem. As reflected by Mo et al. (2019), the prediction over the OOD time

steps becomes an extrapolation task that can challenge deep learning models, as the saturation predic-

tions during the extrapolation may become physically inconsistent. This is particularly important for

GCS projects as they require predictions over long-term horizons. Another important feature is the flex-

ibility of the model in terms of providing predictions in different development scenarios. For example,

models should be able to capture the response of storage formations to time-varying controls, which is

important in optimizing field performance by dynamically managing injection strategies based on in situ

reservoir conditions and monitoring data (Pawar et al., 2015).

A domain-aware alternative involves hard-encoding the underlying physics into the architecture of neural

networks, endowing the resulting models with an inductive bias tailored to specific physical problems

(Faroughi et al., 2023). In contrast to physics-informed approaches that serve as soft constraints, physics-

encoded architectures impose hard constraints on the learning process. By capturing the underlying

physical dependencies among variables, these architectures demonstrate their connections to Ordinary

Differential Equations (ODEs) (E et al., 2017; Lu et al., 2018; Qin et al., 2024) and PDEs (Long et al.,

2018; Rao et al., 2021). Long et al. (2018) proposed PDE-Net to learn PDEs from data. In their work,

CNN is combined with Residual Network (ResNet) (He et al., 2016) to approximate the evolution of

PDEs with the forward Euler as the temporal discretization. Rao et al. (2021) introduced the product

block to emulate the governing terms in PDEs. Their study utilizes convolutional layers to learn spatial

dependencies and employs a recurrent form of ResNet to approximate the temporal evolution of the

system, resulting in improved performance in extrapolation tasks. More recently, Dulny et al. (2022)

proposed NeuralPDE to combine Neural Ordinary Differential Equations (NeuralODEs) (Chen et al.,

2018) with the Method of Lines (MOL) using CNNs to approximate the spatial component in PDEs.

They state that CNNs can approximate the MOL, a numerical method of solving time-dependent PDEs

by representing them as systems of ODEs through spatial discretization. However, these studies tend to

simplify the governing equations and approximate the dynamics in an explicit form.

In this study, we propose a novel physics-encoded DL model, named Fluid Flow-based Deep Learning

(FFDL), for predicting the spatial-temporal evolution of the pressure and saturation for geologic CO2

storage. The proposed approach incorporates the general form of the flow equations, emulating the flux,

accumulation, and source/sink terms, without hard-coding the detailed form of the equations. Instead, by

providing learnable parameters, the model is trained to estimate these flow-related terms. The architec-

ture of FFDL primarily comprises a physics-based encoder for constructing physically meaningful latent

variables, a residual-based processor for the recurrent prediction of latent variables, a control encoder for

constructing a latent representation of sink or source term, and a decoder for approximating the mapping

from latent variables to outputs, namely pressure and saturation. The physics-based encoder, along with

the control encoder, can construct different governing terms in the PDEs for multiphase flow, including

accumulation, advection, and sink/source terms. Similar to previous works (Long et al., 2018; Rao et al.,

2021; Dulny et al., 2022), we employ convolutional layers to capture spatial dependencies. However,

our model extends beyond these by 1) introducing physics-based operators as the activation functions,

2) constructing latent representations of the governing terms to better approximate the dynamics, and
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3) updating the latent governing terms in a coupled and implicit form. The FFDL model is designed to

handle time-varying well controls and to provide long-term predictions. We present a modified Recur-

rent R-U-Net to allow for time-varying control and arbitrary time steps, based on the work in Tang et al.

(2022), as a baseline model due to its similar architecture and capability. The predictive performance

of FFDL is investigated using a field-scale model of GCS in a saline aquifer. Our results show that by

incorporating the general form of the flow equations FFDL is able to outperform the Recurrent R-U-Net

on test sets featuring unseen permeability, well controls, and time frames.

Methodology

Problem Statement

This study addresses a spatial-temporal prediction task governed by a set of coupled PDEs within a

3D storage reservoir composed of grid blocks D ⊂ R
3. The prediction task can be formulated as X =

F (xt ,m,U), given the inputs xt as the dynamic states at time step t, m as parameters, and U as future

controls. The output sequence X= {xt+1,xt+2, . . .} represents the dynamic variables over the subsequent

time steps, and the operator F denotes the mapping from inputs to outputs. For each coordinate ωωω ∈
D , the dynamic variable xt(ωωω) at time step t consists of pressure pt(ωωω) ∈ R and saturation of non-

wetting phase St
n(ωωω) ∈ R. The input parameter m(ωωω) ∈ R

dm characterizes the model parameters, such

as permeability and porosity at point ωωω . The control sequence U= {ut+1,ut+2, . . .} denotes well controls

over future time steps. The notation ut(ωωω) ∈ R
du corresponds to the control value (e.g., injection rate)

at a well location ω and is zero if the cell does not contain a well. Superscripts dx, dm, and du indicate

the dimensions of dynamic states, input parameters, and control variables of coordinate ωωω , respectively.

The goal of this work is to approximate the operator F with the proposed deep learning model Fθ ,

where θ represents the trainable parameters.

In this approach, we convert the dynamic variables, pressure and saturation, into physically meaningful

latent variables zt = {zt
acc,z

t
adv,z

t
src} to represent the accumulation, advection, and sink/source terms of

the governing PDEs in the latent space, respectively. As depicted in Figure 1, the proposed deep learning

model mainly consists of the encoder, processor, control encoder, and decoder modules. Initially, the

encoder predicts the first two latent variables over the next time step, zt+1
acc and zt+1

adv , using xt and m as

inputs. Concurrently, the control encoder produces the latent variables zt+1
src given the control variables

ut+1. The processor receives three latent variables as input and generates the updated latent variables

zt+1
acc and zt+1

adv as outputs. These outputs are then sent to: 1) the decoder for the prediction of the dy-

namic variables xt+1; and 2) the processor itself for the estimation of the new latent variables zt+2
acc and

zt+2
adv . The decoder takes the updated latent variables zt+1

acc and zt+1
adv , as well as the static variable m, as

inputs. By including m, the decoder is designed to decouple the effects of parameters from the latent

variables, functioning as the inverse of the encoder. The processor utilizes the previous latent variables

as initial estimates and recurrently updates them for the next step by integrating zt+1
src as external inputs.

To articulate the model’s function, the process X = F (xt ,m,U) can be modularized as follows:

{zt+1
acc ,z

t+1
adv}= FθInputToLatent

(xt ,m),

{zt+n
src }= {FθControlToLatent

(ut+n)},n = 1,2, . . . ,

{zt+n
acc ,z

t+n
adv}= {FθLatentToLatent

(zt+n
acc ,z

t+n
adv ,z

t+n
src )},n = 1,2, . . . ,

{xt+n}= {FθLatentToOutput
(zt+n

acc ,z
t+n
adv ,m)},n = 1,2, . . . ,

(1)

where, the operators FθInputToLatent
, FθControlToLatent

, FθLatentToLatent
, and FθLatentToOutput

represent the encoder, con-

trol encoder, processor, and decoder modules, respectively.

Physical Operators

The encoder is designed to capture the relationship between the latent representations of the governing

terms (i.e., accumulation and advection) and various input variables (e.g., pressure, saturation, perme-

ability, etc.) using physical operators. Inspired by the Operator-Based Linearization (OBL) approach

(Voskov, 2017), we adopt the concept of physical operators to map the input variables to physically
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Figure 2 Overview of the physics-based encoder (left) and the residual-based processor (right). Each

circle represents a variable corresponding to a single voxel in the 3D representation of the reservoir.

meaningful latent variables that represent accumulation and advection terms. In this work, we simplify

the CO2-brine system to an immiscible two-fluid-phase system with no internal component gradient. As

a result, the mass balance equation can be written in terms of phase-based balance equations:

∂

∂ t

(

φSξ ρξ

)

+∇ ·
(

ρξ vξ

)

= ρξ q̃ξ , ξ ∈ {w,n}, (2)

where φ is the porosity; Sξ and ρξ are the saturation and density of phase ξ , respectively; vξ is the

volumetric flux vector for phase ξ ; q̃ξ is external sources or sinks of volumetric rate per unit volume of

phase ξ . The phase ξ is n for the non-wetting phase (supercritical CO2) and w for the wetting phase

(brine). We rewrite Eq. 2 as a combination of operators in an algebraic form for the whole reservoir in

three-dimensional space D :

rξ (x,m,u) =
(

zacc,ξ (x)− zacc,ξ (x
t−1)

)

− zadv,ξ (x,m)+ zsrc,ξ (x,u) = 0, (3)

where rξ is the residual of the governing equation for phase ξ over the entire reservoir; zacc,ξ , zadv,ξ , and

zsrc,ξ are the accumulation, advection, and sink/source terms for phase ξ , respectively. The governing

terms are calculated through the physical operators, which are defined as follows:

zacc,ξ (x) = cφ ◦Sξ ◦ρρρξ =
(

1+ cr ◦ (p−pre f )
)

◦Sξ ◦ρρρξ , (4)

zadv,ξ (x,m) = a(m)◦∑
l

βββ ξ ,l(x)◦bl(x,m), (5)

zsrc,ξ (x,u) = a(m)◦ρρρξ ◦qξ = a(m)◦ρρρξ ◦V ◦ q̃ξ , (6)

a(m) = ∆t IPV , (7)

βββ ξ ,l(x) = λλλ ξ ◦ρρρξ , (8)

bl(x,m) = Tl
m ◦∆ψψψ l

ξ = Tl
m ◦

(

ψψψv
ξ −ψψψu

ξ

)

, (9)

where the symbol ◦ represents the Hadamard (or element-wise) product; cφ is defined as an update

multiplier for the initial porosity; cr, pre f , and V are rock compressibility, reference pressure, and grid

volume, respectively; qξ is the volumetric flow rate for phase ξ ; ∆t is a scalar and represents the time

interval; IPV is the inverse of the initial pore volume of a grid cell φ0V ; λλλ ξ is the mobility of phase ξ ; Tl
m

is the geometric part of the transmissibility of interface l between two grids u and v; ∆ψψψ l
ξ is the phase

potential difference between the two grid cells u and v, of which the phase potentials are ψψψu
ξ and ψψψv

ξ ,

respectively. For the design of the encoder, the phase potential is simplified by neglecting the capillary

pressure and represented as ψψψξ = p+ρρρξ ◦D. The variable D = gd refers to the gravity term defined

as the product of the gravitational acceleration (g) and the elevation (or depth) of grid cells (d). The

parameter m is defined as a set of three components {Tm,IPV ,D}.
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Physics-based Encoder

The encoder consists of three stages in a sequence (See Figure 2 (a)). The first stage of the encoder takes

the dynamic variables x and parameter m as inputs. The output from the first stage is a set of physical

features f used in the operators and defined as follows:

f = {cφ ,ρρρξ ,λλλ ,∆p,∆(ρρρξ ◦D)}. (10)

The dependencies of cφ and ρρρξ on pressure and the dependency of λλλ ξ on pressure and saturation are

parameterized using two-layer fully-connected (FC) NNs with the hidden unit do, named state-related

operator. Features ∆p and ∆(ρρρξ ◦D) are the differential pressure and gravity terms used in the potential

difference ∆ψψψ , calculated through a non-parametric spatial-related operator. In a structured grid system,

p and D are first padded with reflection padding around the edges of tensors, which serves as a closed

boundary. Given the padded terms, ∆p and ∆(ρρρξ ◦D) are computed along the x-, y-, and z-directions.

The differential operator is implemented by applying the discretization stencil 0.5× [−1,0,1] along each

of the three directions.

In the second stage, convolutional layers are used to project dynamic variables x, input parameters m, and

physical features f into high-dimensional hidden features h. Each hidden feature has a dimensionality

of dh at the point ωωω . The hidden features are then passed to the operator blocks defined in Eqs. (4 - 9),

which serves as hard constraints and returns the high-dimensional representations of the accumulation

and advection terms. In the third stage, we further map the accumulation and advection terms into a

high-dimensional latent space with dimension dl (dl > dh) to output the latent variables zt
acc and zt

adv.

The latent variables are simultaneously downsampled through the convolutional layers, reducing the

spatial dimension by a factor of 2. The downsampling is employed to increase the receptive field of the

convolutional layers while reducing the GPU memory demand.

The latent variables will be further updated by the processor, taking into account the external effect of

the control variable. The encoder FθInputToLatent
can then be decomposed into three stages as follows:

f = FθInputToFeature
(x,m),

h = FθFeatureToHidden
(f ,x,m),

{zacc,zadv}= FθHiddenToLatent
(h),

(11)

where FθInputToFeature
, FθFeatureToHidden

, and FθHiddenToLatent
refer to the three stages of the encoder, respectively.

Residual-based Processor

The processor is implemented as a variant of recurrent neural network (RNN) with a customized re-

current unit, as illustrated in Figure 2 (b). The processor unit in this study is called a residual-based

processor, as it is composed of residual layers and draws inspiration from the concept of residuals in

the governing equations. The inputs to the processor are the governing terms in the latent space zt to

represent the accumulation zt
acc, advection zt

adv, and sink/source zt
src for wetting and non-wetting phases.

The latent representation of the sink/source term comes from the control encoder FθControlToLatent
. Each

customized recurrent unit, named processor block, consists of Nrl residual layers to update the latent

variables. To make the model more memory-efficient, we further reduce the spatial dimension of the

latent variables zt
acc, zt

adv, and zt
src ∈ R

D×dl by a factor of 2 and simultaneously project them onto the

feature space with a higher dimension dr (dr > dl). The resulting latent features are used to calculate

the residual term δ zt , which is then projected back to the original dimension D × dl and added to the

latent variable zt . The residual layer updates the latent variables based on the concept of the residual of

governing equations used in numerical solvers. For a numerical solver, the Newton-Raphson method is

commonly applied, which is written as:

J(xk) ·δxk = J(xk) · (xk+1 −xk) =−r(xk), (12)

where J is the Jacobian matrix of the non-linear solver; r(xk) denotes the residual of the governing

equations for iteration k. We update the latent variables and parameterize the update procedure using
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neural networks. The dependency of input difference δxk on terms xk and rk is parameterized by the

operator FθResidualToDiff
. We then introduce another operator FθDiffToDiff

to convert the difference δxk to the

latent space δ zk = zk+1 − zk , where FθDiffToDiff
approximates the mapping between the input difference

δxk and the latent difference δ zk. Then, we can rewrite Eq. (12) as:

δxk =−
(

Jk
)−1

rk ≈ FθResidualToDiff
(rk,zk),

δ zk ≈ FθDiffToDiff
(δxk) = FθDiffToDiff

(FθResidualToDiff
(rk,zk)).

(13)

For brevity, we neglect the superscript k in the following derivation of the processor unit. For each

residual layer within the processor unit, we first calculate the residual term of current time step rt . After

calculating the latent residual rt , each of the latent variables (i.e., zt
acc, zt

adv. and zt
src) is multiplied by rt ,

and their products are sent to the operator FθResidualToDiff
. The derivations are expressed as follows:

rt = zt
acc − zt−1

acc + zt
adv + zt

src, (14)

rt
z = FθResidualToDiff

(

⎡

£

zt
acc

zt
adv

zt
src

¤

⎦◦

⎡

£

rt

rt

rt

¤

⎦). (15)

The Eq. (14) is similar to Eq. (3), with the distinction that each term in Eq. (3) corresponds to a specific

phase. The output rt
z refers to the term −

(

Jk
)−1

rk in the latent space. Then, the latent residual term δ zt

and the updated latent variable zt can be derived as follows:

dt
z = FθLatentToDiff

(zt),

δ zt = FθDiffToDiff
(dt

z ◦ rt
z),

zt = zt +δ zt .

(16)

The operator FθLatentToDiff
is to transform the latent variable into a new term to introduce non-linearity.

The operator FθDiffToDiff
takes the product dt

z ◦ rt
z as input and returns the latent residual term δ zt .

Experimental Setup

In this study, we first investigate the model’s performance in the presence of unseen pairs of control vari-

ables and permeability inputs. This assessment requires the model to generalize and handle complex and

diverse scenarios. Then, we explore the model’s extrapolation capability by applying it to the prediction

over the post-injection period while the training set only covers the injection period. This extrapolation

task poses a significant challenge due to the distinctive dynamics involved. We applied our model to a set

of simulated datasets generated by a synthetic 3D simulation model of a deep saline aquifer, as shown in

Figure (3). The simulation model consists of CO2 injection over 15 years, followed by a post-injection

period of 15 years. The simulated dataset consists of 30 steps, where each step represents one year.

During the injection, the well controls are randomly perturbed for each year while being constrained to

have a total injection amount over 15 years.

We proposed a modified version of Recurrent R-U-Net by modifying the original model proposed by

Tang et al. (2021). These modifications were aimed at improving the model’s performance and aligning

it with the setup of our model to ensure fair and meaningful comparisons. Specifically, we introduced

control input to the Recurrent R-U-Net and redefined the input variable m by 1) adding IPV and D as

part of the input, and 2) replacing permeability K with the term Tm.

The training in this study employs the Adam optimizer. In our proposed model and the modified Recur-

rent R-U-Net, we apply the relative �2-loss as the loss function, which is defined as follows:

L({S,p}t1:t2 ,{Ŝ, p̂}t1:t2) =
‖St1:t2 − Ŝt1:t2‖2

‖St1:t2‖2

+
‖pt1:t2

− p̂t1:t2
‖2

‖pt1:t2
‖2

, (17)

where {Ŝ, p̂}t1:t2 represents the predicted saturation and pressure over time steps from t1 to t2.
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Figure 3 Numerical simulation model of 3D deep saline aquifer reservoir.

Figure 4 Prediction errors of saturation and normalized pressure over the test set for two models:

our proposed model (Ours) and modified Recurrent R-U-Net (RUNET). The error band and solid line

represent a 95% confidence interval and the median of RMSE, respectively.

Results and Discussion

Testing on Unseen Control and Permeability

In this experiment, we evaluate our model for the simulation of subsurface CO2 storage. Specifically,

the performances of two models (our model and the modified Recurrent R-U-Net) are evaluated on the

test set where both control and permeability are unseen during training. The two models are trained

using 700 simulated samples to predict pressure and CO2 saturation over a 15-year injection. The 700

simulated samples are then divided into 5600 training data samples, each of which spans eight years.

The validation and test sets consist of 100 and 200 simulated samples, respectively. For brevity, we will

refer to the modified Recurrent R-U-Net as RUNET in the following experiments.

Figure 4 shows that our proposed model exhibits consistently lower mean and variance of RMSE com-

pared to RUNET. The saturation error shows increasing trends over time due to the spreading of the

saturation front. In contrast, the pressure error is more stationary, which is attributed to the presence of

an aquifer region surrounding the storage reservoir, facilitating pressure dissipation and maintaining the

pressure within a certain range. Figures 5 and 6 provide visualizations of saturation and pore pressure

predictions for both models. The errors in both saturation and pressure tend to occur in areas where
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Figure 5 Visualization of saturation prediction over unseen control and permeability.

Figure 6 Visualization of pressure prediction over unseen control and permeability. The pressure values

are measured in MPa, and the RMSE is also reported in MPa.

there are significant changes (or gradients). Specifically, for saturation, the errors are prominent near

the front of the CO2 plume, where the saturation values experience rapid transitions. On the other hand,

for pressure, the errors are more noticeable in the vicinity of the wells. The 3D pressure map changes

significantly over time due to variations in injection control. In Figure 5, the saturation prediction from

RUNET shows significant errors around the top layer, leading to physically inconsistent results. In con-

trast, our model exhibits only slight discrepancies near the saturation front in the top layer, indicating its

improved accuracy and ability to maintain consistency with the underlying physics.

Extrapolation over Post-Injection

In this experiment, we extend the application of these trained models to predict the storage reservoir

response over 30 years, including 15 years of injection and 15 years of post-injection. Specifically,

models trained in the previous experiment are directly applied to predict the last 15 years, from the 16th

to the 30th year, with the initial state being the predicted saturation and pressure in the 15th year. Figure

7 shows that our model exhibits significantly lower prediction errors for saturation and remains relatively

stable during post-injection, whereas errors from RUNET keep increasing for the saturation prediction.

On the other hand, the pore pressure of the entire reservoir becomes more uniform and approaches the

boundary pressure during post-injection. Therefore, the pressure prediction becomes less challenging for

the two models, as both exhibit decreasing prediction errors after the 15th year when the post-injection

period starts. Despite the comparable performance of pressure prediction for both models during the

injection period (Figure 7 (b)), our model consistently outperforms RUNET in terms of lower mean and

variance of prediction errors during post-injection. This indicates the robustness and accuracy of our

model in handling the extrapolation task of predicting the distinct dynamics of the post-injection period.

European Conference on the Mathematics of Geological Reservoirs 2024

2–5 September 2024, Oslo, Norway



Figure 7 Prediction errors of normalized saturation and normalized pressure over injection and post-

injection for the examples of (left) unseen permeability and (right) unseen control and permeability. The

first 15 years denote the injection, while the last 15 years denote the post-injection where injection rates

are zeros for two wells.

Figure 8 Visualization of saturation prediction in the 15th and 30th years. The permeability map is in

the unit of log10 (mD).

Figure 9 Visualization of pressure prediction over the post-injection period.

Figure 8 visualizes an example of the saturation predictions for two models in the 15th and 30th years.

During the post-injection period, CO2 is dominantly driven by the buoyant force and accumulates on the

top layer, which is overburdened by cap rock. A common failure of RUNET is its physically inconsistent

prediction during extrapolation. Specifically, the predicted CO2 plume from RUNET in the 30th year

shows disconnected patterns and deviates significantly from the reference case. On the other hand,

our model can extrapolate the CO2 plume migration beyond the injection period. Figure 9 visualizes
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the pressure prediction of the 17th layer of the reservoir for two models during post-injection. It can

be observed that the pressure dissipates during post-injection and reaches the aquifer boundary, which

serves as a constant boundary condition due to its extensive volume. In contrast to RUNET, our model

demonstrates an accurate prediction of the pressure dissipation and eventual convergence to the aquifer

pressure. These findings underscore the superior performance of the FFDL model in capturing long-term

behavior and accurately predicting the saturation evolution beyond the injection period.

Conclusion

In this work, we propose a novel deep learning architecture, named FFDL, that incorporates the general

structure of the physics of fluid flow in porous media. We use the model to predict the spatial-temporal

distribution of pore pressure and phase saturation during geologic CO2 storage. Specifically, we intro-

duce a new approach that inherits the general structure of the underlying physics (by encoding it into

the encoder and processor components of the architectures) and learns the specifics of the flow behavior

from simulated data through a training process. We investigate the prediction performance of FFDL over

different tasks and demonstrate its ability to learn the underlying physics-based behavior under varying

permeability distributions and time-varying control trajectories. The model is also used to perform an

extrapolation task by making predictions over both the injection and post-injection periods while being

trained based on data from only the injection period. Although our model primarily focuses on variations

in control and permeability, this work provides a general and flexible approach that can be extended to

various inputs in future studies, including heterogeneous porosity, and different well locations. Another

promising future work is the integration of physics-informed loss functions into our model to enable

data-free training or transfer learning.
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