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Abstract

Predicting the spatial-temporal evolution of the pressure field and the migration of the CO, plume during
and after its injection is complicated by several factors, including the complexity of the underlying flow
and transport processes in porous rocks, the heterogeneity and uncertainty of the rock properties, and
the computational demand of running high-fidelity simulation models. Traditional workflows, such as
model calibration, optimization, uncertainty quantification, and risk assessment, require many numerical
simulation runs, which can become computationally too demanding for field application. Although
standard deep learning models provide powerful prediction tools for near real-time implementation, they
suffer from several important limitations, including the lack of interpretability, extensive data needs, and
physical inconsistency.

To overcome these limitations, we introduce a novel physics-encoded deep learning model, named Fluid
Flow Deep Learning (FFDL) architecture, aimed at predicting the spatial-temporal evolution of pres-
sure and saturation during geologic CO, storage. The proposed model leverages physical causality in
the design of the architecture to approximately represent the subsurface fluid dynamics. The proposed
model features a physics-informed encoder for generating physically interpretable latent variables, a
customized recurrent neural network processor for evolving the latent state variables over time, and a
decoder for mapping these variables to the desired outputs, such as pressure and saturation. The FFDL
architecture uses physical operators that serve as non-linear activation functions and impose hard con-
straints to respect the structure of the fluid flow equations. A comprehensive investigation of FFDL based
on several examples of CO; storage in saline aquifers is used to demonstrate the prediction performance
of the approach. The performance of the model is validated by showing its superior prediction of the
CO; plume migration compared to the results obtained by a modified recurrent U-Net architecture. The
results show that FFDL possesses significantly improved generalizability and provides a more reliable
and physically consistent prediction of the CO, plume migration.
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Figure 1 Overview of the proposed Fluid Flow-based Deep Learning (FFDL) model for predicting
spatial-temporal pressure and saturation in geologic CO, storage.

Introduction

Carbon capture and storage (CCS) is an important component in reducing CO; emissions. The CCS
technology works by capturing CO, from large point sources, such as power plants, and injecting it
into deep geologic formations. Although geologic CO, storage (GCS) has significant potential as a
climate change mitigation strategy, its commercial deployment requires sound economics and regulatory
frameworks to ensure the safety of operation. Concerns about CO, migration or leakage into shallower
aquifers and the atmosphere call for robust monitoring and risk management technologies (Zheng et al.,
2022, 2021; Celia et al., 2015). While current monitoring methods can track the movement of the
injected CO, plume, accurately quantifying its volume and predicting its migration path for monitoring
and verification purposes remain challenging (Bui et al., 2018). Moreover, predicting the dynamics of
pressure buildup and CO, migration is essential for guiding decision-making (Zheng et al., 2021) and
assessing short-term and long-term risks (Ajayi et al., 2019).

Reliable prediction of the CO, plume migration often requires spatial and temporal analysis, potentially
involving detailed simulation models. The injection of CO, into subsurface formations triggers a set of
complex multi-component, multiphase flow and transport processes. Complex rock-fluids-fracture in-
teractions involving miscibility, capillary pressure, relative permeability, and coupling between different
physical processes lead to non-linear coupled systems of partial differential equations (PDEs) that are
not trivial to solve (Bandilla et al., 2015). Furthermore, field-scale GCS projects span extensive spatial
and temporal scales, including both injection and post-injection periods (Ajayi et al., 2019; Jiang, 2011).
Therefore, numerical simulation of GCS at the field scale can become computationally prohibitive, par-
ticularly for complex optimization and uncertainty quantification tasks. Another significant challenge
is estimating the time-varying storage capacity of the geologic formations, which is influenced by geo-
logic conditions, injectivity and field development plans (Gorecki et al., 2015). Accurate quantification
of uncertainty and potential risks typically involves multiple simulation runs, which can impede the
implementation of real-time analysis and risk assessments in GCS projects. Consequently, there is a
growing need for innovative approaches that can provide accurate and efficient real-time monitoring and
forecasting of CO, plume migration and pressure buildup during GCS operations.

In recent years, deep learning (DL)-based approaches have emerged as more efficient alternatives to
traditional physics-based numerical simulation to predict the spatial-temporal evolution of fluid dynam-
ics in the subsurface. Specifically, convolutional neural networks (CNNs) that have demonstrated a
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strong capability of processing image data have found widespread application in predicting the spatial
and temporal evolution of subsurface flow systems. Zhu and Zabaras (2018) proposed a fully convo-
lutional encoder-decoder architecture to approximately map input permeability fields to pressure and
velocity maps for a 2-dimensional steady-state Darcy flow problem. Mo et al. (2019) extended the work
in Zhu and Zabaras (2018) to predict the responses of a dynamic multiphase flow problem at different
time steps. Wang and Lin (2020) designed a customized architecture for single- and two-phase flow
systems, incorporating sparsely connected layers to account for the inherent sparse input-output inter-
action. Despite the demonstrated effectiveness of DL models, the approaches mentioned above have
limitations and are tailored to specific scenarios. Notably, in GCS projects that can span decades of
injection and potentially much longer post-injection period, the predictive model needs to be versatile
and provide forecasts over arbitrary time frames. However, existing DL models are limited to predict
within fixed periods and face challenges in long-term predictions (which require extrapolation power).
Deep learning models have limited extrapolation power and do not provide reliable predictions beyond
the data distribution defined by the training set (Willard et al., 2022), leading to the out-of-distribution
(OOD) generalization problem. As reflected by Mo et al. (2019), the prediction over the OOD time
steps becomes an extrapolation task that can challenge deep learning models, as the saturation predic-
tions during the extrapolation may become physically inconsistent. This is particularly important for
GCS projects as they require predictions over long-term horizons. Another important feature is the flex-
ibility of the model in terms of providing predictions in different development scenarios. For example,
models should be able to capture the response of storage formations to time-varying controls, which is
important in optimizing field performance by dynamically managing injection strategies based on in situ
reservoir conditions and monitoring data (Pawar et al., 2015).

A domain-aware alternative involves hard-encoding the underlying physics into the architecture of neural
networks, endowing the resulting models with an inductive bias tailored to specific physical problems
(Faroughi et al., 2023). In contrast to physics-informed approaches that serve as soft constraints, physics-
encoded architectures impose hard constraints on the learning process. By capturing the underlying
physical dependencies among variables, these architectures demonstrate their connections to Ordinary
Differential Equations (ODEs) (E et al., 2017; Lu et al., 2018; Qin et al., 2024) and PDEs (Long et al.,
2018; Rao et al., 2021). Long et al. (2018) proposed PDE-Net to learn PDEs from data. In their work,
CNN is combined with Residual Network (ResNet) (He et al., 2016) to approximate the evolution of
PDESs with the forward Euler as the temporal discretization. Rao et al. (2021) introduced the product
block to emulate the governing terms in PDEs. Their study utilizes convolutional layers to learn spatial
dependencies and employs a recurrent form of ResNet to approximate the temporal evolution of the
system, resulting in improved performance in extrapolation tasks. More recently, Dulny et al. (2022)
proposed NeuralPDE to combine Neural Ordinary Differential Equations (NeuralODEs) (Chen et al.,
2018) with the Method of Lines (MOL) using CNNs to approximate the spatial component in PDE:s.
They state that CNNs can approximate the MOL, a numerical method of solving time-dependent PDEs
by representing them as systems of ODEs through spatial discretization. However, these studies tend to
simplify the governing equations and approximate the dynamics in an explicit form.

In this study, we propose a novel physics-encoded DL model, named Fluid Flow-based Deep Learning
(FFDL), for predicting the spatial-temporal evolution of the pressure and saturation for geologic CO,
storage. The proposed approach incorporates the general form of the flow equations, emulating the flux,
accumulation, and source/sink terms, without hard-coding the detailed form of the equations. Instead, by
providing learnable parameters, the model is trained to estimate these flow-related terms. The architec-
ture of FFDL primarily comprises a physics-based encoder for constructing physically meaningful latent
variables, a residual-based processor for the recurrent prediction of latent variables, a control encoder for
constructing a latent representation of sink or source term, and a decoder for approximating the mapping
from latent variables to outputs, namely pressure and saturation. The physics-based encoder, along with
the control encoder, can construct different governing terms in the PDEs for multiphase flow, including
accumulation, advection, and sink/source terms. Similar to previous works (Long et al., 2018; Rao et al.,
2021; Dulny et al., 2022), we employ convolutional layers to capture spatial dependencies. However,
our model extends beyond these by 1) introducing physics-based operators as the activation functions,
2) constructing latent representations of the governing terms to better approximate the dynamics, and
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3) updating the latent governing terms in a coupled and implicit form. The FFDL model is designed to
handle time-varying well controls and to provide long-term predictions. We present a modified Recur-
rent R-U-Net to allow for time-varying control and arbitrary time steps, based on the work in Tang et al.
(2022), as a baseline model due to its similar architecture and capability. The predictive performance
of FFDL is investigated using a field-scale model of GCS in a saline aquifer. Our results show that by
incorporating the general form of the flow equations FFDL is able to outperform the Recurrent R-U-Net
on test sets featuring unseen permeability, well controls, and time frames.

Methodology

Problem Statement

This study addresses a spatial-temporal prediction task governed by a set of coupled PDEs within a
3D storage reservoir composed of grid blocks 2 C R>. The prediction task can be formulated as X =
Z(x',m,U), given the inputs x' as the dynamic states at time step ¢, m as parameters, and U as future
controls. The output sequence X = {x'*! x/*2 ...} represents the dynamic variables over the subsequent
time steps, and the operator .% denotes the mapping from inputs to outputs. For each coordinate @ €
2, the dynamic variable x'(@) at time step ¢ consists of pressure p’(®) € R and saturation of non-
wetting phase S%, (@) € R. The input parameter m(®) € R9 characterizes the model parameters, such
as permeability and porosity at point @. The control sequence U = {u'*!,u'*2, ...} denotes well controls
over future time steps. The notation u’(®) € R% corresponds to the control value (e.g., injection rate)
at a well location @ and is zero if the cell does not contain a well. Superscripts d, d,,, and d, indicate
the dimensions of dynamic states, input parameters, and control variables of coordinate ®, respectively.
The goal of this work is to approximate the operator .# with the proposed deep learning model %y,

where 6 represents the trainable parameters.

In this approach, we convert the dynamic variables, pressure and saturation, into physically meaningful
latent variables 2’ = {z/,..,2} ;.25 } to represent the accumulation, advection, and sink/source terms of
the governing PDE:s in the latent space, respectively. As depicted in Figure 1, the proposed deep learning
model mainly consists of the encoder, processor, control encoder, and decoder modules. Initially, the

encoder predicts the first two latent variables over the next time step, z,-' and z;}i, using x’ and m as

inputs. Concurrently, the control encoder produces the latent variables z.! given the control variables
u'*!. The processor receives three latent variables as input and generates the updated latent variables

Zt! and zta“;i as outputs. These outputs are then sent to: 1) the decoder for the prediction of the dy-

namic variables x'*!; and 2) the processor itself for the estimation of the new latent variables z/,}2 and

;Zf The decoder takes the updated latent variables 77! and Z;Zvls as well as the static variable m, as
inputs. By including m, the decoder is designed to decouple the effects of parameters from the latent
variables, functioning as the inverse of the encoder. The processor utilizes the previous latent variables
as initial estimates and recurrently updates them for the next step by integrating z.,\! as external inputs.

To articulate the model’s function, the process X = .% (x',m,U) can be modularized as follows:

1 1
{zgfc 7z25v} = ﬁelnputToLdlem (xt m)?

{ ;;’tn} {JGCon[rolToLﬁlen[ (ul+n)} n= 1 27 M
flté’l ? zlazc} {ﬁeLatemToLatem (Zfltg’zzzg’zgj;n) }3 n= 17 27 cre
{ l+n} = {yeLatemTUOulpul (ZZ?27Z;ZZ7 )}’ n= 1727 MR}

a7
Where’ the Operators tQhelnpulToLa[en[ ’ yOConlrolToLatenl’ <j¢9Lalemjl'oLalenl’ and tﬁ.eLalemTQOulpul represent the enCOder, con-
trol encoder, processor, and decoder modules, respectively.

)]

Physical Operators

The encoder is designed to capture the relationship between the latent representations of the governing
terms (i.e., accumulation and advection) and various input variables (e.g., pressure, saturation, perme-
ability, etc.) using physical operators. Inspired by the Operator-Based Linearization (OBL) approach
(Voskov, 2017), we adopt the concept of physical operators to map the input variables to physically
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Figure 2 Overview of the physics-based encoder (left) and the residual-based processor (right). Each
circle represents a variable corresponding to a single voxel in the 3D representation of the reservoir.

meaningful latent variables that represent accumulation and advection terms. In this work, we simplify
the CO,-brine system to an immiscible two-fluid-phase system with no internal component gradient. As
a result, the mass balance equation can be written in terms of phase-based balance equations:

0
> (0Sepe) +V - (peve) = pede. & €{wn}, (2)

where ¢ is the porosity; Sg and pg are the saturation and density of phase &, respectively; Ve is the
volumetric flux vector for phase &; ge 1s external sources or sinks of volumetric rate per unit volume of
phase £. The phase & is n for the non-wetting phase (supercritical CO;) and w for the wetting phase
(brine). We rewrite Eq. 2 as a combination of operators in an algebraic form for the whole reservoir in
three-dimensional space Z:

re (x)m7u) = (zacc,é (x) ~Zace,é (xtil)) — Zadv,¢ (x7m) +zsrc,§ (xau) =0, (3)

where r¢ is the residual of the governing equation for phase & over the entire reservoir; Zace,&s Zadv & » and
Zye¢ are the accumulation, advection, and sink/source terms for phase &, respectively. The governing
terms are calculated through the physical operators, which are defined as follows:

Zace g (X) =€po0Sgope = (I+c,0(p—py))oSe °Pe¢, “4)
Zagv (X,m) = a(m) O;ﬁg,z(x) oby(x,m), (%)
Zyeg (¥,u) =a(m)opsoge =a(m)opsoVoge, (6)
a(m) = At Ipy, (7)
Bei(x)=Az0p;, ®)
bix,m) =T, 0 Ay: = Ti0 (WL — wt), ©

where the symbol o represents the Hadamard (or element-wise) product; ¢y is defined as an update
multiplier for the initial porosity; ¢, p,. s, and V are rock compressibility, reference pressure, and grid
volume, respectively; g¢ is the volumetric flow rate for phase &, Ar is a scalar and represents the time
interval; Ipy is the inverse of the initial pore volume of a grid cell ¢yV; 2,5 is the mobility of phase &; T' ﬁ,,
is the geometric part of the transmissibility of interface / between two grids « and v; Al[llg is the phase
potential difference between the two grid cells u and v, of which the phase potentials are lllg and IIIE,

respectively. For the design of the encoder, the phase potential is simplified by neglecting the capillary
pressure and represented as Ye = p + p oD. The variable D = gd refers to the gravity term defined
as the product of the gravitational acceleration (g) and the elevation (or depth) of grid cells (d). The
parameter m is defined as a set of three components {T,,Ipy,D}.
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Physics-based Encoder

The encoder consists of three stages in a sequence (See Figure 2 (a)). The first stage of the encoder takes
the dynamic variables x and parameter m as inputs. The output from the first stage is a set of physical
features f used in the operators and defined as follows:

f:{clp,péaa',Ap)A(pg OD)} (10)

The dependencies of ¢y and p ¢ on pressure and the dependency of ),{g on pressure and saturation are
parameterized using two-layer fully-connected (FC) NNs with the hidden unit d,, named state-related
operator. Features Ap and A(p. oD) are the differential pressure and gravity terms used in the potential
difference Ay, calculated through a non-parametric spatial-related operator. In a structured grid system,
p and D are first padded with reflection padding around the edges of tensors, which serves as a closed
boundary. Given the padded terms, Ap and A(p € oD) are computed along the x-, y-, and z-directions.
The differential operator is implemented by applying the discretization stencil 0.5 x [—1,0, 1] along each
of the three directions.

In the second stage, convolutional layers are used to project dynamic variables x, input parameters m, and
physical features f into high-dimensional hidden features &. Each hidden feature has a dimensionality
of dj, at the point @. The hidden features are then passed to the operator blocks defined in Egs. (4 - 9),
which serves as hard constraints and returns the high-dimensional representations of the accumulation
and advection terms. In the third stage, we further map the accumulation and advection terms into a
high-dimensional latent space with dimension d; (d; > dj,) to output the latent variables z/,.. and 2’ , .
The latent variables are simultaneously downsampled through the convolutional layers, reducing the
spatial dimension by a factor of 2. The downsampling is employed to increase the receptive field of the

convolutional layers while reducing the GPU memory demand.

The latent variables will be further updated by the processor, taking into account the external effect of
the control variable. The encoder Fg, 5 e €20 then be decomposed into three stages as follows:

f = ’gzelnputToFeature (x’ m)7
h = yeFealureToHidden (‘fy x’ m) ? (1 1)
{zﬂCC ) zlldV} = geHiddenToLalenl (h) ?

a7 a7
Where ’/GlnpuIToFealure’ y and ’/GH

O eatureTotidden* refer to the three stages of the encoder, respectively.

iddenToLatent

Residual-based Processor

The processor is implemented as a variant of recurrent neural network (RNN) with a customized re-
current unit, as illustrated in Figure 2 (b). The processor unit in this study is called a residual-based
processor, as it is composed of residual layers and draws inspiration from the concept of residuals in
the governing equations. The inputs to the processor are the governing terms in the latent space z' to
represent the accumulation z/,.., advection 2, , and sink/source z},. for wetting and non-wetting phases.
The latent representation of the sink/source term comes from the control encoder .Zg. . irouen- Each
customized recurrent unit, named processor block, consists of N,; residual layers to update the latent
variables. To make the model more memory-efficient, we further reduce the spatial dimension of the
latent variables z',.., 2., , and z/,, € R?*% by a factor of 2 and simultaneously project them onto the
feature space with a higher dimension d, (d, > d;). The resulting latent features are used to calculate
the residual term 0z', which is then projected back to the original dimension 2 x d; and added to the
latent variable z'. The residual layer updates the latent variables based on the concept of the residual of
governing equations used in numerical solvers. For a numerical solver, the Newton-Raphson method is

commonly applied, which is written as:
J(x5) -8k = J (k) - (FT —xb) = —r(xb), (12)

where J is the Jacobian matrix of the non-linear solver; r(x*) denotes the residual of the governing
equations for iteration k. We update the latent variables and parameterize the update procedure using
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neural networks. The dependency of input difference §x* on terms x* and X is parameterized by the
operator Fg, ..o WE then introduce another operator Fgy .. to convert the difference 8x* to the
latent space 8z = z¥+! —zX | where Fg,.. . approximates the mapping between the input difference
Sx* and the latent difference 8z*. Then, we can rewrite Eq. (12) as:

-1
k k k _k
fa" = — (J ) rf gekcsidualToDiff (r v4 ),

k k k
07" ~ F, 9DiffroDiff(6x ) =7 19Diffro[)iff(<gZ eResidua]ToDiff(rk )% ))

(13)

For brevity, we neglect the superscript k in the following derivation of the processor unit. For each
residual layer within the processor unit, we first calculate the residual term of current time step r*. After
calculating the latent residual 7, each of the latent variables (i.e., z},.., Z/,;,- and z{,..) is multiplied by 7,
and their products are sent to the operator Fg, ... LD derivations are expressed as follows:

IJ = ztacc - zta;cl + z;dv + ztsrcv (14)
ztaCC rt

I’; =7 GResidualToDiff( zladv o|r ) (15)
zi’rc r

The Eq. (14) is similar to Eq. (3), with the distinction that each term in Eq. (3) corresponds to a specific

phase. The output 7, refers to the term — (J*) ' ¥ in the latent space. Then, the latent residual term 8z’
and the updated latent variable 7' can be derived as follows:

d; = <§.6Lalean0Diﬂ' (zt)7
67 =7 ObifrToDift (dtz or tz)? (16)
7 =7+67.

The operator Fg, ... 15 tO transform the latent variable into a new term to introduce non-linearity.
The operator Fg,, .., takes the product d’, or! as input and returns the latent residual term 8z'.

Experimental Setup

In this study, we first investigate the model’s performance in the presence of unseen pairs of control vari-
ables and permeability inputs. This assessment requires the model to generalize and handle complex and
diverse scenarios. Then, we explore the model’s extrapolation capability by applying it to the prediction
over the post-injection period while the training set only covers the injection period. This extrapolation
task poses a significant challenge due to the distinctive dynamics involved. We applied our model to a set
of simulated datasets generated by a synthetic 3D simulation model of a deep saline aquifer, as shown in
Figure (3). The simulation model consists of CO; injection over 15 years, followed by a post-injection
period of 15 years. The simulated dataset consists of 30 steps, where each step represents one year.
During the injection, the well controls are randomly perturbed for each year while being constrained to
have a total injection amount over 15 years.

We proposed a modified version of Recurrent R-U-Net by modifying the original model proposed by
Tang et al. (2021). These modifications were aimed at improving the model’s performance and aligning
it with the setup of our model to ensure fair and meaningful comparisons. Specifically, we introduced
control input to the Recurrent R-U-Net and redefined the input variable m by 1) adding Ipy and D as
part of the input, and 2) replacing permeability K with the term T,.

The training in this study employs the Adam optimizer. In our proposed model and the modified Recur-
rent R-U-Net, we apply the relative ¢»-loss as the loss function, which is defined as follows:

Hstlitz _St1:t2||2 + Hptl:l‘z _ﬁt1:t2||2
18,1, |2 Ponll

where {S’ ,D}1,, represents the predicted saturation and pressure over time steps from #; to ;.

L({Sap}tlitza{gvﬁ}tl:tz) - (17)
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Figure 3 Numerical simulation model of 3D deep saline aquifer reservoir.
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Figure 4 Prediction errors of saturation and normalized pressure over the test set for two models:
our proposed model (Ours) and modified Recurrent R-U-Net (RUNET). The error band and solid line
represent a 95% confidence interval and the median of RMSE, respectively.

Results and Discussion

Testing on Unseen Control and Permeability

In this experiment, we evaluate our model for the simulation of subsurface CO, storage. Specifically,
the performances of two models (our model and the modified Recurrent R-U-Net) are evaluated on the
test set where both control and permeability are unseen during training. The two models are trained
using 700 simulated samples to predict pressure and CO, saturation over a 15-year injection. The 700
simulated samples are then divided into 5600 training data samples, each of which spans eight years.
The validation and test sets consist of 100 and 200 simulated samples, respectively. For brevity, we will
refer to the modified Recurrent R-U-Net as RUNET in the following experiments.

Figure 4 shows that our proposed model exhibits consistently lower mean and variance of RMSE com-
pared to RUNET. The saturation error shows increasing trends over time due to the spreading of the
saturation front. In contrast, the pressure error is more stationary, which is attributed to the presence of
an aquifer region surrounding the storage reservoir, facilitating pressure dissipation and maintaining the
pressure within a certain range. Figures 5 and 6 provide visualizations of saturation and pore pressure
predictions for both models. The errors in both saturation and pressure tend to occur in areas where
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Figure 5 Visualization of saturation prediction over unseen control and permeability.

RUNET

Ground Truth

o

N
o

Pressure
=
o

RMSE: 0.1951 RMSE: 0.1600

By B

Predlctlon Error

Figure 6 Visualization of pressure prediction over unseen control and permeability. The pressure values
are measured in MPa, and the RMSE is also reported in MPa.

there are significant changes (or gradients). Specifically, for saturation, the errors are prominent near
the front of the CO, plume, where the saturation values experience rapid transitions. On the other hand,
for pressure, the errors are more noticeable in the vicinity of the wells. The 3D pressure map changes
significantly over time due to variations in injection control. In Figure 5, the saturation prediction from
RUNET shows significant errors around the top layer, leading to physically inconsistent results. In con-
trast, our model exhibits only slight discrepancies near the saturation front in the top layer, indicating its
improved accuracy and ability to maintain consistency with the underlying physics.

Extrapolation over Post-Injection

In this experiment, we extend the application of these trained models to predict the storage reservoir
response over 30 years, including 15 years of injection and 15 years of post-injection. Specifically,
models trained in the previous experiment are directly applied to predict the last 15 years, from the 16th
to the 30th year, with the initial state being the predicted saturation and pressure in the 15th year. Figure
7 shows that our model exhibits significantly lower prediction errors for saturation and remains relatively
stable during post-injection, whereas errors from RUNET keep increasing for the saturation prediction.
On the other hand, the pore pressure of the entire reservoir becomes more uniform and approaches the
boundary pressure during post-injection. Therefore, the pressure prediction becomes less challenging for
the two models, as both exhibit decreasing prediction errors after the 15th year when the post-injection
period starts. Despite the comparable performance of pressure prediction for both models during the
injection period (Figure 7 (b)), our model consistently outperforms RUNET in terms of lower mean and
variance of prediction errors during post-injection. This indicates the robustness and accuracy of our
model in handling the extrapolation task of predicting the distinct dynamics of the post-injection period.
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Test Over Unseen Control and Permeability

0:08 a.Prediction Error of Saturation
&
s 0.041
= // _________________
0'00 l’ T T T T T T
1 5 10 15 20 25 30
0.02 =
b. Prediction Error of Pressure & Our Model (Injection)
I Our Model (Post Injection)
w RUNET (Injection)
Lo.01 RUNET (Post Injection)
o
M —/_\\~
0.00 - . . — —
1 5 10 15 20 25 30
Time (Year)

Figure 7 Prediction errors of normalized saturation and normalized pressure over injection and post-
injection for the examples of (left) unseen permeability and (right) unseen control and permeability. The
first 15 years denote the injection, while the last 15 years denote the post-injection where injection rates
are zeros for two wells.
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Figure 8 Visualization of saturation prediction in the 15th and 30th years. The permeability map is in
the unit of logyo (mD).
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Figure 9 Visualization of pressure prediction over the post-injection period.
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Figure 8 visualizes an example of the saturation predictions for two models in the 15th and 30th years.
During the post-injection period, CO, is dominantly driven by the buoyant force and accumulates on the
top layer, which is overburdened by cap rock. A common failure of RUNET is its physically inconsistent
prediction during extrapolation. Specifically, the predicted CO, plume from RUNET in the 30th year
shows disconnected patterns and deviates significantly from the reference case. On the other hand,
our model can extrapolate the CO, plume migration beyond the injection period. Figure 9 visualizes
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the pressure prediction of the 17th layer of the reservoir for two models during post-injection. It can
be observed that the pressure dissipates during post-injection and reaches the aquifer boundary, which
serves as a constant boundary condition due to its extensive volume. In contrast to RUNET, our model
demonstrates an accurate prediction of the pressure dissipation and eventual convergence to the aquifer
pressure. These findings underscore the superior performance of the FFDL model in capturing long-term
behavior and accurately predicting the saturation evolution beyond the injection period.

Conclusion

In this work, we propose a novel deep learning architecture, named FFDL, that incorporates the general
structure of the physics of fluid flow in porous media. We use the model to predict the spatial-temporal
distribution of pore pressure and phase saturation during geologic CO, storage. Specifically, we intro-
duce a new approach that inherits the general structure of the underlying physics (by encoding it into
the encoder and processor components of the architectures) and learns the specifics of the flow behavior
from simulated data through a training process. We investigate the prediction performance of FFDL over
different tasks and demonstrate its ability to learn the underlying physics-based behavior under varying
permeability distributions and time-varying control trajectories. The model is also used to perform an
extrapolation task by making predictions over both the injection and post-injection periods while being
trained based on data from only the injection period. Although our model primarily focuses on variations
in control and permeability, this work provides a general and flexible approach that can be extended to
various inputs in future studies, including heterogeneous porosity, and different well locations. Another
promising future work is the integration of physics-informed loss functions into our model to enable
data-free training or transfer learning.
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