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The Atomic, Molecular, and Optical Science Gateway [T]] is a comprehensive cyberinfrastructure for
research and educational activities in computational AMO science. The B-Spline atomic R-Matrix (BSR)
suite of programs is one of several computer programs currently available on the gateway. It is an excellent
example of how the gateway increases the scientific productivity of AMOS users. While the suite is available
to be used in batch mode, its complexity does not make it well-suited to the approach taken in the gateway’s
default setup. The complexity originates from the need to execute many different computations and to
construct generally complex workflows, requiring numerous input files that must be used in a specific
sequence. The BSR graphical user interface (GUI) described in this paper was developed to considerably
simplify employing the BSR codes on the gateway, making BSR available to a large group of researchers

and students interested in AMO science.

I. INTRODUCTION

The field of Atomic, Molecular, and Optical Science
(AMOS) has a rich history of using computational methods
to tackle pressing research questions. As well as providing
support and guidance to experimental efforts, in some sub
domains, such as electronic structure and electron scattering,
computational approaches are the most prevalent, and most
successful, ways of performing AMOS research. Despite
this widespread adoption of computation, the field of AMOS
suffers from a lack of code sharing and standardization efforts.
Most AMOS groups develop their own software in-house,
resulting in small user bases, duplication of efforts across
groups, difficulty in comparing the outputs from different
codes even when tackling the same physical problem, and
software that is burdensome for novice external scientists to
use.

A recent effort seeking to address this situation is
the Atomic, Molecular, and Optical Science (AMOS)
Gateway [, 2]. Following from a 2019 workshop at the
Institute for Theoretical Atomic and Molecular Physics|at
the Harvard Smithsonian Center for Astrophysics, a number
of active researchers in computational atomic and molecular
physics grouped together to create the AMOSGateway,
which is now entering a rapid stage of development thanks
to support from the National Science Foundation through
a Cyberinfrastructure for Sustained Scientific Innovation
award. The overarching goal of the AMOS Gateway is to
create a comprehensive cyberinfrastructure for the AMOS
community, where practitioners can access a synergistic,
full-scope platform for computational AMOS. Software
suites are contributed by AMOS researchers, then compiled
on a number of NSF-supported computational platforms,
and an interface is created linking this deployment to
the AMOSGateway website. This means that using the
AMOS Gateway does not require the user to download

and build these codes on their own platform, which is
often difficult, especially for non-experts. Instead, the user
starts with appropriate data input files for the gateway
software interfaces, or takes and/or modifies example inputs
provided and ready for execution, submits the calculation
via the gateway interface, and the results are returned on the
gateway. Data may then be analyzed in situ or downloaded
to another platform for more detailed inspection. Recent
descriptions of the AMOS Gateway can be found in [3} 4.

In order to achieve the goal of making the AMOS
Gateway useful as both a research and an educational tool
for practitioners and researchers interested in computational
AMOS, the AMOS Gateway team is investing significant
effort in the creation and development of user interfaces
for each hosted software suite. Our overarching design
principles are that the interfaces must be 1) intuitive for
novice users, 2) maintain the functionality desired by
advanced users, 3) provide efficient ways to perform complex,
multi-step calculations, and 4) allow future interoperability
between software suites. Of the ten currently-hosted
software suites, development of these new interfaces has
begun for two codes: time-dependent Recursive indeXin
(tRecX) and the B-Spline atomic R-Matrix code (BSR).

In this paper, we will use the updated BSR interface
as a case study in interoperable and accessible software
development via the AMOS Gateway. We first give
a brief overview of the BSR code and its operation in
traditional batch mode, before presenting the new AMOS
Gateway BSR user interface and commenting on our
design philosophy and process. We will then describe the
implementation of workflows into the BSR user interface
and detail how these could be used in the future to
perform multi-step calculations using several different BSR
calculations, or several different software suites. Finally, we
will comment on future plans for both the BSR interface
and the larger AMOS Gateway ecosystem.


https://pweb.cfa.harvard.edu/people/institute-theoretical-atomic-molecular-and-optical-physics

This case study is expected to be useful to the Chemical
Physics community for two reasons. Firstly, computational
chemical physicists are end-users of data generated by codes
on the AMOS Gateway. Hence, they may be interested in
how these data are produced and how to possibly create such
data themselves. Secondly, members of the computational
chemical physics community may wish to develop science
gateways themselves, and so can draw inspiration from this
example.

II. THE B-SPLINE ATOMIC R-MATRIX CODE

One important illustration of the kind of physical
problems the AMOS gateway can treat involves the
quantum-mechanical description of collisions of atoms
and molecules with electrons and photons. Treatment of
these processes provides insights into elastic and inelastic
collisions, ionization, atomic and molecular structure
and stability, which are essential for understanding
plasma processes, lasers, and generating data to interpret
astrophysical observations. Among the many currently
available approaches to treat such problems, the R-Matrix
method [i3] is significant, as it treats the problem as a general
(N +1)-electron system with an N-electron target and a
colliding electron. Non-relativistic, semi-relativistic (Breit-
Pauli), and even full-relativistic (at the Dirac-Breit level)
formulations and associated computer codes exist. For
practical applications, the most-frequently employed version
is the Belfast suite of codes, as published many years ago [6]
with updates available through various websites.

The B-Spline R-Matrix (BSR) method discussed in this
paper was introduced by Zatsarinny and Froese Fischer [r7].
It was first applied as a proof-of-principle demonstration to
photoionization of atomic lithium. The method was then
turther developed by Zatsarinny who published his general
computer code in 2006 [8]]. The principal difference with
the Belfast codes mentioned above is the use of different
sets of non-orthogonal orbitals to represent both the bound
and continuum one-electron functions and to employ a set
of B-splines as the R-Matrix basis functions. The term-
dependent, and hence non-orthogonal, bound orbital sets
allow a much higher accuracy in the description of the target
states with small configuration-interaction expansions than
orthogonal bases, and the finite-element B-splines provide
computational flexibility due to their excellent numerical
approximation properties that are far superior compared to
finite-difference approaches.

For the past two decades, Zatsarinny’s code has been
applied to numerous atomic structure and collision problems,
including processes induced by weak-field continuous and
strong-field, short-pulse electromagnetic radiation, i.e.,
bound-bound and bound-continuum transitions. The
results are generally considered as benchmarks to be checked
against for predictions from any alternative method. For a
description of the basic theory, as well as an extensive list
of examples and early applications, we refer to the review
by Zatsarinny and Bartschat [g]]. The software suite is also

publicly available on Github [ro].

The BSR suite of codes is summarized in Fig. It
can be split into three categories: modules, utilities, and
workflows. Modules are units of a larger program that
carry out a speciﬁc operation. For example, BSR_CONF
computes the close-coupling expansions for later steps, while
BSR_HD performs the final matrix diagonalization. Utilities
are designed to carry out specific stand-alone tasks, such as
converting file types or to obtain selected observables from
the general output, such as cross sections from the transition-
matrix elements. Workflows then connect the inputs and
outputs of these individual programs and utilities in order
to carry out entire computations. For example, the STGF
workflow ingests information from the scattering workflow
and produces electron scattering cross sections.

In addition to the variety of programs that can be run,
each module has its own set of input files, usually generated
by previous modules in the calculation sequence. There
are also common input files, which are required at the
start of every BSR calculation. These are the rarger file
and associated name.c and name.bsw files, which contain
orbital information that may be updated further by some of
the programs executed during the workflow. The bsr_par
file contains specific numerical and calculation parameters,
and the knot.dar file describes the B-Spline grid. A full
description of each module, input and output files, and main
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FIG. 1. Structure of the BSR software suite, showing BSR modules
(BSR_X, contained in boxes), input files, output files (x.nnn), and
main observables (green boxes). Observables are obtained from
the various output files by additional utility codes, which are not
included in this schematic. Multiple modules and utilities must
therefore be run in the correct order to generate the desired
observables. These combinations are referred to as workflows.



utilities can be found in Ref. [§].

The multiple libraries, modules, and utilities make
compilation of the BSR suite relatively complex, and
preparing the necessary inputs, executing the modules and
utilities in the correct order, and handling the multiple
output files further complicates performing BSR calculations.
While one could prepare PERL or BASH scripts to create
workflows that would simplify the execution process, it
is difficult to make these sufficiently general, and this still
does not alleviate the burden of compilation. Experienced
users may also wish to use advanced functionalities of the
BSR suite. This typically involves adjustments to parameters
and input files between the execution of modules, which is
difficult to allow in a traditional script. Additionally, high-
performance computing resources are typically required to
perform any reasonably-sized scattering calculation within
an acceptable timeframe. The AMOS Gateway easily
handles both the first and last problem by making pre-
compiled software available to users on a variety of HPC
systems along with computing time on these resources. The
main challenge behind the AMOS Gateway development is
addressing the middle two concerns: how does one create
a user interface that maintains sufficient functionality for
experienced users, but is still accessible to novices who wish
to perform their first calculations?

III. BSR USER INTERFACE DESIGN

The design philosophy behind the BSR interface largely
follows that of the tRecX interface [11] whose goal was to
not only be useful for experienced users to setup multiple
runs with dynamically extendable user input interfaces, but
also to be made accessible for novice users with embedded
help and default values for many simulation parameters. This
played into many parts of the BSR interface design process,
including deciding between multiple revisions of the input
selector and ensuring similarities between the two interfaces.

In addition, the design for tRecX centered around the
concept of a "Run", which represents a computation with
its inputs, with multiple runs for potentially different
parameters that can be compared as a set. This led to designs
for the user to create the run, set it to be executed, monitor its
progress, and view its outputs. Alongside the runs, "Views"
allow users to group together a set of runs. These concepts
were brought directly into the BSR interface, not only to
save work, but also to provide consistency in user interfaces
across applications. Again, because of this, a conscious effort
was made to avoid changing the meanings of terms leveraged
from the tRecX user interfaces.

The design for the BSR "Run" page is shown in Fig. |2} It
was important to be able to carry out some operations on
many runs at a time: saving them into a view, comparing
them, and deleting them. Along with this, each run has
associated action but t ons, which allow the user to quickly
access copying and deleting the run.

However, the "Create new run" page required a different
approach due to differences in BSR’s many input files and

All Runs New Run

Run Name Status Resource Actions
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FIG. 2. Design of the BSR runs page. The user can select runs to
save them to a view, quickly view run status, and copy and delete
runs.

types of programs to be executed as workflows. The
design of the page, therefore, was centered around the
run type/input selector, whose design required that the
user should be able to select from any of the computations
organized into the aforementioned categories of modules,
utilities, and workflows. In addition, since each of these
computations had their own inputs, the user needed to be
able to see what inputs are required and which of those
must be uploaded/satisfied. Multiple variations for this
element were designed with the goal of compactness and
the ability to show the current state of all inputs. The design
employed buttons for both selecting the computation
and the appropriate files for viewing/editing. During the
implementation, the design was slightly altered as shown
in Fig. [3|in order to clearly distinguish between the inputs
and the run type, and to better communicate the state of the
input with different icons.

Another part of the design was the table view as seen in
Fig. |4} In order for the interface to be friendly to new users,
it is important that they have a graphical user interface with
input validation and labels as opposed to just a text view. This
is accomplished by a tab selector above the file editor, which
switches between a text mode, table mode, and graphing
mode. When a file supports any of the options, the button
will be enabled and the user can opt to switch between them.
If a file supports a table view, that option is automatically
selected when the file is opened. The table view provides
the information under individual tabs to organize the input
data into sections and reduce the complexity.

The program is deployed via a Github webhook that
runs on the creation of a new github tag. A webhook is an
HTTP-based call-back program that provides event-driven
communication between two programs or event triggered
execution of a second program as part of an automated
workflow. A webhook is registered at the git repository with
a specific secret that sends the trigger message. A webhook
daemon on the gateway server listens for this message and,
once the message is received, triggers the update code. The
BSR-Update triggering webhook configuration is presented
in listing |1} The execution of the bsr-update script is
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FIG. 3. The current design of the run type/input selector. All run
type options are displayed in the left column, with the currently
selected run type highlighted in blue. Additional options for the
selected run type are displayed in the middle column. Once a run
type and additional options have been selected, required input file
names are displayed in the input file selector. Uploaded / selected
input files have an icon of a file with a check mark displayed to
their right, required files that have yet to be uploaded have an icon
of a file with a plus sign displayed to their right.
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FIG. 4. Table view for editing/viewing a targer file, one of the
required BSR input files. The farget file contains three key sections:
"Basic Data" related to the number of electrons and coupling
scheme; "Target States" with the names of the .c and .bsw files
that provide the atomic structure descriptions of the N-electron
system (shown on the left), and "Partial Waves" that describe the
(N + D)-electron symmetries.

then triggered.

The Auto Update script is depicted in listing 2] These
scripts are executed in a controlled virtual environment. The
update carries out a git pull to refresh the BSR interface code
from the git repository, installs any required dependencies,
and then builds the BSR Django application using the
Yarn package and build manager. Once the code is ready,
instructions to propagate changes in models (adding a

Listing 1. Webhook configuration for BSR Update deployment.
See text for details.

{
"id": "bsr-update",
"execute—-command": "/g/pga/webhooks/
commands/bsr—-update",
"pass—arguments—-to—-command": [ {
"source": "payload",
"name": "repository.name" } 1,
"trigger-rule": {
"and": [ {
"match": {
"type": "payload-hash-shal",
"secret":

Mok kkkkkkkkhkkhkhxx",

"parameter": {
"source": "header",
"name": "X-Hub-Signature" }

Pyl

Listing 2. BSR Auto Update. See text for details.

# Instead of pip install, manually update
the django app

cd /var/www/portals/django—-amp/
bsr_django_app/

git pull

pip install -e

cd bsr_django_app

yarn

yarn build

cd /var/www/portals/django—amp/airavata-
django-portal/

python manage.py migrate

python manage.py collectstatic -i
node_modules —-noinput

touch django_airavata/wsgi.py

field, deleting a model, etc.) into a Django local database
schema are executed using the Django migrate function.
The Django collectstatic function updates the node
modules and applications. Finally, a touch command will
refresh the Django application to provide the new interface
pages in the gateway. Currently, we use this procedure
to deploy and test the newly developed user interfaces in a
developmental gateway and once finalzied, a separate process
updates the production gateway.

IV. IMPLEMENTATION

For the BSR user interface, the Django web Framework
was used to interface with the Airavata Django Portal
Framework (ADPF) [12] to provide REST APIs for the
Vue [13] front end. These technologies were chosen to



match the software stack used in the rest of the Airavata
ecosystem. In order to match the visual style seen in
the rest of the website, Bootstrap Vue [14] components
were employed where possible and other components were
developed as needed. The structure of the entire program,
from the use of the Django REST framework to Vuex [3]]
state management and Bootstrap Vue, were adapted from
the tRecX interface development [r1].

In the back end, Django’s object relational model (ORM)
was used to store data as Models with the same general
structure as tRecX. A brief description of these models is
contained in Table[ll In order to connect these models to the
front end, the Django REST framework was used to set up
APIs using its ModelSerializer and ModelViewSet.
Since the ViewSets allow posting/updating/getting models
directly through the API, it was used to connect the views,
runs, and plot parameters as described in the Table
By default any Mode1ViewSets implement the following
actions through the API: list, create, retrieve,
update, partial_update, destroy. These can be
overwritten if needed.

Model Description

Run Used to represent a prepared computation with
its inputs.

Input Connected to a run, it represents an input
that can be a parameter, files, or the run type.
Closely interfaces with the Airavata application
interface.

File Connected to an input, represents a file
uploaded to a run.

Remote Connected to a run, represents an execution

Execution of the run.

View Connected to multiple runs, represents some

logical grouping of runs.
Plot Parameters Holds plot parameters for the plotting of a file,
so they can be reused.

TABLE I. The Django models used for the updated BSR interface.

On the front end the Django REST API is called using
Axios [16]], an HTTP client. The calls to the API are
grouped within objects that are exported from a JavaScript
module as services. These services also ensure that the objects
returned are properly encoded in the expected format both
to and from the API. This allows the services to switch
field names between snake to camel case, remove irrelevant
fields, convert data, etc. While these services can be called
anywhere in the program, it is often more useful to store
the fetched values in a single Javascript module. Vuex, a state
management library for Vue, accomplishes this through
Vuex stores. Each store consists of a state, commit methods,
getters, and actions; commit methods edit the state, getters
read the state, and actions perform tasks like fetching views
or submitting runs. This allows the state of the interface
to be centralized within the Vuex store, freeing each page
from having to carry the entire state.

The pages for the interface are routed on the front end
with vue-router [[17], which provides the router-view

component that controls client-side routing by updating
its content based on the pages’s URL. This is used in the
main App.vue component to display several pages that make
up the interface, each page being composed of several Vue
components. This allows pages to be broken down into
their base components, which can then be reused. Figure
shows the breakdown of part of the "Create new run" page,
to illustrate this organization. Inside the page, two Badge
components are used to display the Experiment and Job
statuses of a run. The color of the badge changes to help
communicate the status of the run. For example, when the
run is completed the badge will be green, and if it fails it will
be red. There is also the PathSelector, which selects
the file to be viewed. This is then separated, for the sake
of clarity, into two buttonsGroup components. There
is also the FileOptions component that contains various
views for a file and allows the user to switch between them.
In the figure, the table view is selected. This brings up
the TableView component in which each input uses the
DatalInput component that holds the label as a header,
validation checks, and value for the given input.

A. Input Handling

Due to BSR’s many input files, allowing users to upload
all files at once is a critical feature. However, categorizing,
validating and handling the input files is quite complex.
Some BSR modules require a single file, while others require
multiple. Typically, whenever a computation requires many
of a particular file type, there will be an index in the filename
with the rest of the name matching (e.g., bound.nnn files,
where nnn is a three-digit number). This comes with a few
exceptions, however. For example, the tr_nnn_nnn files have
two distinct indices while the .c and .bsw files have their
own unique names. When all files are uploaded the code in
Listing|3|is run. This function maps the name of a file to the
name of the corresponding input. To do this, each filename
is checked against valid input names. If the name matches,
it returns the name. Otherwise it will try to replace any
indices in the file name with nnn to check if the name with
nnn replaced matches. If not, it is checked whether the file
is a .c or a .bsw file.

Even though this process matches all valid file inputs,
uploading a file with a mismatched name to a specific input
is still possible. This matching also maps the filename to its
required input name. For a single file, the input name is
the same, but for an input with multiple files such as name.c
with changing name or bound.nnn with changing nnn the
matching becomes slightly more complicated. Listing
shows pseudocode to resolve this.

Since the structure and layout of BSR’s files vary, the
code that handles the specifics of each file is kept within the

fileData.js module. In this module, the input name is used as

a key to access data for the file and the specifics of how to
process it. The exported objects are listed below:

* descriptions: Hold text descriptions of the run types and
inputs, which are displayed to the user to help them work



ModelViewSet API call Description
defaults
create Creates a directory for the files of the run alongside input and
Run file models, this then returns the resulting run model.
update Updates the run model and any files or inputs that have been
changed.
destroy Deletes the model and all input and file models associated with
it. In addition, a boolean delete_associated is passed
in which, if set to true, also deletes the run’s directory in
BSR_Runs.
get_output_files Since BSR has many different outputs from its various
programs, this call returns all of the runs outputs, obtained
from the ARCHIVE directory in its experiment directory.
submit Collects all the inputs into a dictionary in order to
set the experimentInputs on a newly created
ExperimentModel.
defaults
View create Adds itself to the runs’ views with the specified runIds
update If override=true is passed into the call, the view will be
removed from runs that it is no longer attached to, regardless
of whether the view is added to runs in runIds.
PlotParameters defaults
plot With the plot files and the plotting parameters, it runs the

Python script plot.py to generate the graph, which is returned
as a base64-encoded image

api_settings

Returns the application id for BSR.

TABLE II. The API setup for the updated BSR interface. See text for details.

Listing 3. Pseudocode for matching filenames

FUNCTION getInputName (filename, inputNames
)
IF filename is in inputNames THEN
RETURN filename
END IF

LET nnnReplacedFilename =
filename.replaceAll (/\\d{3}/g, "
nnn")

IF nnnReplacedFilename is in
inputNames THEN
RETURN nnnReplacedFilename
END IF

IF filename ends with ".c" THEN
RETURN "name.c"
END IF

IF filename ends with ".bsw" THEN
RETURN "name.bsw"
END IF

RETURN null
END FUNCTION

with the files.

* plotObjects: Contain the x-axes and y-axes available for

plotting.

* tableObjects: Contain an object that describes how to
create a table for its input. The table object is structured
into pages that split the file into parts. Each page is then
either displayed as a table of values or as a list of key value
pairs as shown in Figs.[4|and[¢} These objects use regular
expressions on the text to get and set data in place, which
avoids issues with keeping the text and table in sync.

The selection of compute resources uses the same Vue
RunResource component from tRecX, which makes use
of the ADPF components provided through Airavata; see
Fig. |7l These allow the user to select how the computation
will be allocated alongside other options. Once the run is
saved, the settings are stored inside the Run model in the
Django back end.

B. Status Updates

Through the course of using the interface, it is important
that the user is kept aware of the state that the interface is in.
For this reason, it was important to show loading screens
and error messages. The code snippet below, Listing was
a common pattern used in the code to combine both error
handling and the use of loading screens, since API calls often
required being wrapped in both.

To display errors to the user, an event bus was employed
in order to allow any part of the program to surface an error.
Wherever an important error might occur, the code was
wrapped in a try-catch block with a caught error being
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FIG. 5. "Create new run" interface with each component marked and labeled. The purple box is the router-view, which updates
based on the selected page, in this case the "Create new run" page. Badges are included (black boxes) to display the Experiment and Job
statuses. The blue box is the path selector, which contains two but t onsGroups (orange boxes) for selecting the BSR run type and the
input files. The green FileOptions box allows the user to select a text, table, or a plot view for a selected file. A table view is shown in
the deep green box. It contains multiple DataInput components (red boxes) which allow for the selection or setting an input value for

the selected input file in the Input Files buttonsGroup.

emitted into the event bus. This is picked up and displayed
through vue-toastification [[18], as shown in Fig.[8| This lets
the user know when something goes wrong, so they can
try again later or potentially resolve the issue.

Loading screens were handled through the Vuex store
and the LoadingOverlay component. The store allowed
for similar flexibility to the event bus, while also being
able to mantain its state between different instances of the
component. Furthermore, in order to help communicate
that things are happening to the user, the loading overlay
component has a spinner to indicate this and a label on the
loading screen to convey the current process.

C. Plotting

The BSR interface uses largely the same code for plotting
as tRecX, albeit with some tRecX-specific functionality
replaced. On the back end, a call to the plotting API would
take in plot parameters along with a list of input files to plot.
The code used to generate the graph was taken directly from
tRecX, enabled by the fact that the majority of the code
was generalized to work outside of just tRecX’s plottable
data files. The plot parameters contain the columns to be

graphed, the axes to be plotted along, and the flags to change
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Listing 4. Example on incorporating error handling and loading
screens.

this.$store.commit ("loading/START", {
key: "plot",

message: "Fetching Plot Parameters"
})i
try {
this.plotParameters = await this.S$store.
dispatch (

"plotParameters/fetchPlotParameters"
)i
} catch (error) {
eventBus. $emit ("error", {
name: "Error while trying to load plot
parameters",
error
})i
}

this.$store.commit ("loading/STOP", {
key: "plot",
message: "Fetching Plot Parameters"
1)

the plotting utility’s behavior.

On the front end, the returned base64-encoded image
is displayed through the FileOptions component in a
graph view. Figure |§| shows an example of this. When
graphing the user can select an x-axis, multiple y-axes, flags,
and multiple runs to be plotted. A list of the available flags
and their descriptions is provided via a popup modal.

Allocation Compute Resource

Default s

“

Expanse

Settings for queue shared

1 1 30 minutes

NODE CORE TIME
COUNT COUNT LIMIT

Select a Queue
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PHYSICAL
MEMORY

shared $
Shared compute queue
Node Count

1

© Max Allowed Nodes =1
Total Core Count

1

@ Max Allowed Cores = 127. There are 128
cores per node.

Wall Time Limit

30 minutes

© Max Allowed Wall Time = 2880 minutes
Total Physical Memory

0 MB

© Max Physical Memory = 64000 MB
X Hide Settings

FIG. 7. Interface for selecting compute resources. Users can select
the Compute Resource from a list of machines that the application
has already been deployed on, and which allocation to be charged
against. Users can also change the queue the job is submitted to,
the node / core count, the wall time limit, and the total physical
memory required.

Error while trying to fetch the runs

A Error message: Request failed with status code 403

You might need to log in again, you can do that here

Show More

FIG. 8. An example error message as displayed on the
AMOSGateway. The error is displayed in the top-left corner
of the screen and gives hints on how the user can correct it.

V. BSR WORKFLOWS

As described in Section BSR calculations are typically
performed by executing a series of modules and utilities in
a prescribed order with the goal of obtaining one specific
observable. The BSR suite, therefore, lends itself to the
creation of workflows, which group these modules, utilities,
and relevant calculation parameters in the correct order of
execution. Traditionally housed in simple shell scripts and
passed amongst users, the AMOS Gateway is an attractive
alternative to implement BSR workflows, offering many
advantages, particularly for novice users. Two types of BSR
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FIG. 9. Plotting view of two cross sections for electron-carbon
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extracted from the #_oor1_oo2 file (excitation of the first excited
state from the ground state), while the cyan line on the bottom
is from the tr_oo1_o03 file (excitation of the second excited state).
The legend uses the * wildcard from the title of the graph.

workflows are currently supported by the AMOS Gateway:
ready-made workflows that are geared towards novice users,
and chained task workflows, which allow advanced users
the flexibility to create their own workflows.

A. Ready-made workflows

For novice users, executing the many different steps
of a BSR calculation with their many inputs can be an
intimidating and difficult task. Novice users also typically
want to perform small, quick calculations, and are more
interested in examining the final output of a BSR calculation
rather than a thorough investigation of the suites numerical
and physical capabilities. For these users, it is much
more convenient to run BSR calculations in the form of
a workflow: a pre-arranged sequence of BSR executables
that produce one final output that is of interest to the user.
These workflows, coupled with the provision of sets of small
example calculations made available on the AMOSGateway,
are helpful in engaging novice users and allowing them

Name Executables Inputs Output
bsr_prep target
bsr_conf name.c
Bound Dbsr_breit name.bsw
bsr_mat knot.dat
bsr_hd bsr_par
bound_tab bound_tab
bsr_prep target
bsr_conf name.c
Scattering bsr_breit name.bsw
bsr_mat knot.dat
bsr_hd bsr_par
sum_hh HDAT
stgf target
STGEF add_stgf HDAT
sec_om dstg f tr_nnn_nnn

TABLE I11. Description of the completed AMOS Gateway BSR
workflows. Shown are the workflow names, the ordered list of BSR
modules and utilities that constitute the workflow, the input files
required from the user, and the main output file. The file bound_tab
contains an ordered list of the bound-state energies for the system
under investigation, H.DAT contains the diagonalized Hamiltonian
matrix for all the partial waves, and fr_nnn_nnn contains the
electron-impact excitation cross section for an individual transition.

to become familiar with the BSR suite. Novice users
could include undergraduate and graduate researchers, and
scientists from domains that utilize AMO data.

There are currently three workflows on the interface
ready for use: bound, scattering, and STGF. The bound
and scattering workflows take in the same input files, which
are prompted by the interface: target, knot.dat, bsr_par,
and .bsw files. The bound workflow calculates bound-state
energies, the scattering workflow calculates the H.DAT file
containing the diagonalized Hamiltonian matrix, and the
STGF workflow uses this HDAT file along with the target
file to produce scattering cross sections. The BSR suite
executables, input files, and major outputs are summarized
in Table Users additionally specify the initial and final
partial-wave indices to determine the range of partial waves
for which bound states and the H.DAT file are calculated
in the bound and scattering workflows, and can upload a
file containing desired numerical parameters for the STGF
workflow to consume. Additional workflows to calculate,
for example, dipole polarizabilities, oscillator strengths, and
photoionization cross sections (see Fig. [1) could also be

produced.

We hope that these workflows, along with restricted
parameter choices and the provision of sample inputs for
each workflow type, will make calculations by novice users
much more achievable. While using a workflow, users are
still able to make the usual range of selections regarding
computing resources.



B. Chained Task Workflows

While the ready-made workflows offer novice users a
convenient way to perform BSR calculations, they, by
design, considerably limit the extent to which a user
can customize a calculation. Ready-made workflows are
therefore less useful for advanced users, who may wish to
perform adjustments to the calculation after every individual
step, or wish to perform very large calculations that could not
be completed within the 48-hour walltime limit imposed by
most supercomputing centers. However, manually handling
the upload / download of input and output data from a
multi-step calculation can be time-consuming, and so the
AMOSGateway includes options for chained task workflows
to make calculations more convenient for advanced users.

An advantage of the AMOSGateway is that chaining
files in the interface is fairly simple. The first run in a
multi-step calculation can be executed in the usual manner,
with the user uploading input files or selecting them from
example suites on the Gateway. Once the first part of
the calculation has finished, the Create new run with
outputs button creates a new run and automatically
populates the inputs with all the files from the last run.
This avoids the user having to download and re-upload
input/output files.

Behind the scenes, if data from a previously executed task
(run) are needed by subsequent tasks, the gateway can handle
the staging of data on the remote HPC resource. This can
be assumed and no data upload will be needed. However, it
requires the handling of the previous run, such as the JobID
to enable the data availability. Chaining runs this way allows
faster execution, as the uploading step is bypassed, and gives
users greater flexibility in how they perform calculations.

VI. USING THE INTERFACE

The interface is composed of multiple pages: the home
page, the runs page, the views page, the tutorials page, and
the create/edit/view run page. Across all the pages is a
navigation bar for quick access.

A good place to start when learning the interface is the
tutorials page. Each tutorial has a description which will
explain what the run carries out and which inputs could be
modified with interesting results.

The first page on the interface is the home page. This page
contains a description of the BSR codes, a walk-through for
using the interface, and quick access to the most recently
updated runs. Additionally, the description provides a link
to [8]], which gives the most comprehensive documentation
of the BSR codes currently available.

The runs page displays all the runs in a table, with links
to each run, showing their job status and date of the last
update, in addition to providing quick access buttons.
These buttons allow cloning, submitting, or deleting of
the run. In order to find runs, the page has a search bar and
allows the user to sort by name, status, or date modified.

I0

Runs can also be selected in the table. This will pop up
new buttons to allow the user to delete all the selected
runs or save them as a view.

If any of these runs contain plottable files, a sidebar will
appear where these files can be compared with each other as
shown in Fig. While there is only one kind of plottable
file right now, the first selection box allows the user to choose
which file to plot. The plot parameters selection box makes
it possible to view and choose from the previously used
plotting parameters. One can then select the x- and y-axes
to be plotted and add any additional flags to change the

plotting. The descriptions are available in a pop-up modal.

Run244: Clone of Continuation of Carbon scattering
Run247: continue clone clone NEW: Carbon stgf
Plotted Files

Run244__tr_001_001

Run244__tr_001_002
Run244__tr_001_003
Run244__tr_005_006

Run247__tr_001_002
Run247__tr_001_003

FIG. 10. Plotting sidebar on the runs page. A user-generated
description of each run number is displayed (default descriptions
are also generated), and files selected for plotting are highlighted
with a check mark.

VII. WALK-THROUGH OF SPECIFIC EXAMPLES

The goal of these walk-throughs is to start from the home
page and guide the user through adding files, editing files,
saving, submitting, checking the status, viewing the outputs,
and chaining computations for specific examples. These
example runs are provided on the tutorials page, which can
be cloned. Alternatively, one can open up the interface
and follow one of these examples to get a grasp for using
the interface. In addition to the text walk-throughs, videos
demonstrating a bound-state calculation| and a scattering
cross-section calculation are available on YouTube.

First, go to https://amosgateway.org and log in or create
an account. It is recommended that an institutional
login is used so that their email is pre-verified and secure
authentication is established. The users need to be authorized
to access the applications and resources by the gateway
administrator. Once logged in and authorized, click on the
dropdown in the navigation at the top of the page labeled
"Workspace" and select "BSR Django App". This will
redirect the users to the BSR interface page from the default
Workspace dashboard.


https://youtu.be/JiOxmGBjrB4
https://youtu.be/W60CXSIjSfM
https://youtu.be/W60CXSIjSfM
https://amosgateway.org

A. Carbon bound-state calculation

On the BSR interface page, click on "Create new run"
on the right side of the screen. This leads to the new run
page, where you can change the default name for the run
by clicking on the title at the top. Additionally, if you click
the drop-down arrow next to the title, you will be able to
add a description, which can provide additional metadata
for the run. To select the type of run, scroll down to the
box labeled "Run Type" and select "WORKFLOW" on
the left side. "BOUND" module is selected by default
on the right side of the Run Type box. Now, since
"Upload" is selected in the Input Files box, you can scroll
down to the Uploading section and click "Upload from

storage", which will open up the gateway’s user storage.

The files for this example computation are available in
ishared/Sample_Inputs/BSR/Carbon_bound_2024] Navigate
into the folder through the file system and click the selection
box at the left of the header row. This selects all the files,
and clicking "Open" at the bottom right will upload them
to for the run. Looking at the files listed in the "Input Files"
box, notice that the file icons now have checkmarks in them,
thereby indicating that the files have been uploaded.

If you want to edit or view any of these input files, clicking

on a file in Input Files will open it up in file viewer below.

Depending on the file type, it might support being viewed
in different ways. Directly above the file viewer and to the
right are three icons representing a text, table, and plot view,
respectively. If the selected file does not support a view, its
button will be disabled. For this run, only bsr_par, target, and
knot.dat are meant to be edited by users. Therefore, they are
the only ones with a table view. In addition to the input files,
the bound-state calculation requires the parameters "Index
of the first partial wave" and "Index of the final partial wave"
to be set. These will define the range of partial waves for
which bound states will be calculated. Since there are four
partial waves in this calculation, try setting the first index
to I and the final index to 4.

In addition to the inputs to the run, there are compute
resource settings that can be set. To change the defaults, click
on the box containing all the settings and adjust each field to

suit the run. The defaults should work for the current run.

If you want a short run to complete more rapidly, change
"Select a Queue" to "shared" in order to have the run put in
the shared queue.

Now the run can be saved and submitted using the
buttons at the bottom of the page. Once submitted, the
user is redirected to the Runs page and the status of the run
can be seen near the top of the run page. The runs are also
listed on the left navigation bar of the page and are accessible

through the "Runs" link. Wait for the run to be completed.

This calculation will typically take 3-5 minutes, depending
on the waiting time at the compute resource. Once the run
is completed as suggested by the Status, you will be able
to see the input files, intermediate files, logs, job info, and
bound_tab. Click on bound_tab to view its contents and you
will see the excited states of carbon. To double check you
got the correct outputs, the first entry "2p_3s_3P" should
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have an E_au value of -37.48158374.

B. Carbon scattering cross-section calculation

Moving on to a slightly more complex calculation, the
scattering workflow starts out the exact same way as above.
From home go to create a new run, change the title
and description, and select " WORKFLOW" followed
by " SCATTERING" under "Run Type". From here
click "Upload from storage", navigate into the folder at
lshared/Sample_Inputs/BSR/Carbon_LS_2024} select all of
the files using the checkbox in the header row, and click
"OPen".

The partial-wave index parameters can be changed here
as well to include any of the 12 partial waves provided. It
is important to note for these computations that the range
should not only include one partial wave such as 1-1, because
this will cause the first cross-sections to be trivial. For this
example computation, set the range to 1-12.

The default compute settings should work here as well,
but you can change the queue to "Shared" in order to
potentially get the computation to start sooner. You can then
submit the run and wait for it to finish, which should take
4-7 minutes, depending on the waiting time at the compute
resource. Once the run is completed, there will be a button
in the top right corner of the page labeled "Create new
run with outputs". This will create a new run and upload
all the output files from the previous run. Once you are on
this new page, select "WORKFLOW" followed by "STGF".
Then you will need to upload shared/BSR/Carbon_LS/dstgf]
specifically for the STGF workHow. Do this by navigating
to the folder, finding dstg f from the list of files, selecting it,
and clicking "Open".

The parameters for this computation need to be filled
out. A good input for this is to set both the initial and final
scattering-state indices to 1 and 3. This will set the range for
the initial indices to be 1-3 and the range for the final indices
to be 1-3. From here, set the queue to "Shared" again and
then submit the run. This run should take about 3-5 minutes.
After it is completed, there will be a plottables section
available to select. Inside this are the electron scattering
cross sections produced by the computation with labels
tr_00I_00I, tr_00I_002, tr_00I_003, etc.

These files can plotted and viewed as text. You can switch
between the two using the icons directly above the file
viewer. Using Plot View for the file, you can select the x-
and y-axes to be plotted. This will produce the plot as an
image. There are some additional flags that can be added to
change the plotting. To see a list of the flags, click "(help)"
above the flags box. Specifically, the cross section can be
seen by plotting sigma vs. eV. More tr_nnn_nnn files from
the same run can be plotted alongside the current file by
selecting more files under "Plotted Files".
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FIG. 11. Diagram of relationships between software suites hosted on the AMOSGateway. Existing relationships / interfaces are denoted
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and interfaces which are currently under development are marked with a dashed line. The AMOSGateway developers plan to extend the
Chained Task Workflow functionality to allows users to perform calculations using multiple different software suites.

VIII. COMPUTATIONAL RESOURCES

The availability of appropriate computational resources to
perform many of the calculations on the AMOS gateway is
critical to its success. As part of the operation of the gateway,
community allocations are available on a number of the
computers funded by the National Science Foundation via
the ACCESS program and on the leadership class machines
at the Texas Advanced Computer Center. These include
Expanse, Bridges, Delta, Anvil, Ookami, and Frontera. The
gateway developers write proposals for these allocations,
which are awarded yearly on a competitive basis. Individual
allocations can be registered to use the gateway as well.
When a person is authorized as a gateway user, they have
access to these allocation on all the machines hosted by the
AMOS gateway. While the gateway has allocations on many
NSF machines, executables for some of the codes may only
be available on a subset of the machines. For example, some
codes are GPU-capable, and they are available on GPU
resources. It is also possible for a group, having its own
allocation, to make all or part of that allocation available
for use on the gateway while restricting access to only
authorized group users. This allows group members to
freely use the codes and computational resources available
on the gateway.

IX. CONCLUSIONS AND OUTLOOK

In this paper, we have introduced the AMOS gateway
using the BSR method for atomic bound-state and electron-
scattering calculations as an example. The gateway hosts a
number of other software suites to study molecular collisions,
photoionization and photodetachment, and the interaction

of short, intense radiation with atoms and molecules.
These include the Convergent Close-Coupling method,
the UK R-matrix suite, the time-dependent R-matrix code,
XCHEM and ePolyscat for molecular photoionization, and
MESA, a code to compute electron-molecule collisions
and photoionization using the complex-Kohn approach.
Figure shows an overview of the current relationships
between the various codes. The AMOSGateway developers
plan to extend the Chained Task Workflow functionality to
allows users to perform calculations using multiple different
software suites. The AMOS science gateway provides a
portal of tools that, in principle, enables both novice and
expert users to perform calculations at quite sophisticated
levels. Importantly, it can also be used to teach students the
principles that underlie a given scientific field, e.g., atomic,
molecular, and optical physics and chemistry.

We hope that this democratization of science will lead to
a rapid advancement of the field and expand the user base far
beyond the local developers who are typically responsible
for the development of the application. The gateway makes
the software accessible to everyone, especially when user-
friendly GUIs are part of the gateway landscape. We
encourage readers who have applications that could benefit
from our developments to contact the authors. Expanding
the code base to include other areas of computational AMOS
is certainly desirable and part of our mission.
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