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Abstract: Upgrading the capacity of existing transmission lines is essential for meeting the growing energy 

demands, facilitating the integration of renewable energy, and ensuring the security of the transmission 

system. This study focuses on the selection of lines whose capacities and by how much should be expanded 

from the perspective of the Independent System Operators (ISOs) to minimize the total system cost. We 

employ advanced multi-parametric programming and an enhanced branch-and-bound algorithm to address 

complex mixed-integer linear programming (MILP) problems, considering multi-period time constraints 

and physical limitations of generators and transmission lines. To characterize the various decisions in 

transmission expansion, we model the increased capacity of existing lines as parameters within a specified 

range. This study first relaxes the binary variables to continuous variables and applies the Lagrange method 

and Karush-Kuhn-Tucker (KKT) conditions to obtain optimal solutions and identify critical regions 

associated with active and inactive constraints. Moreover, we extend the traditional branch-and-bound 

(B&B) method by determining the problem’s upper bounds at each node of the B&B decision tree, helping 

to manage computational challenges in large-scale MILP problems. We compare the difference between 

the upper and lower bounds to obtain an approximate optimal solution within the decision-makers’ tolerable 

error range. In addition, the first derivative of the objective function on the parameters of each line is used 

to inform the selection of lines for easing congestion and maximizing social welfare. Finally, the capacity 

upgrades are selected by weighing the reductions in system costs against the expense of upgrading line 

capacities. The findings are supported by numerical simulations and provide transmission-line planners 

with decision-making guidance. 
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Sets 
off

iT  Minimum off (down) time for the i-th 

generator 

N  Sets of buses, indexed by i N . iSD  
Shutdown limit on Bus i (MW) 

K  Sets of lines, indexed by k K . iDR  Ramp limit at Bus i (MW) 

Parameters Continuous variables 

itC  Generation cost at Bus i in period t ($/MWh) itG  
Generation dispatch of generator i  in 

period t  (MWh) 

itUC  
Fixed cost to turn on generator i in period t  

($/MWh) 
Binary variables 

itSC
 

Start cost for generator i in period t  ($/MWh) itU  
1 if generator i  is on in period t; else is 0 

itD  Demand at Bus i  in period t  (MWh) itV  1 if generator i  starts up in period t, else 

is 0 

k iGSF −

 Generation shift factor to branch k  from Bus i  Sensitivity parameters 

max

kF  Transmission limit of branch k  (MW) k
 Transmission limit variety of branch k 

(MW) 

max

itG  
Maximum power generation capacity at 

generator i  in period t  (MWh) 
  

iSR  Startup ramp limit at Bus i  (MW)   

iUR  Ramp-up ramp limit at Bus i (MW)   

on

iT
 

Minimum on (up) time for the i-th generator   
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1. Introduction 

The power industry is undergoing a significant transformation, driven by the pursuit of clean energy and 

zero carbon emissions. As a result, renewable energy now accounts for a substantial portion of the global 

electrical supply. By 2022, renewable sources like hydropower, wind, and solar energy accounted for 29.1% 

of the global electrical supply [1]. However, this rapid increase in renewable energy presents challenges 

such as volatility and supply-side uncertainty, exerting pressure on grid capacity and stability [2,3]. The 

inability of the grid to accommodate a power source with such characteristics can lead to many technical 

problems, such as line congestion, overvoltage, and stability issues [4]. Furthermore, with the increased 

demand for power, the capacities of the existing lines strain to keep up, resulting in line congestion. 

Uncertainties in renewable energy generation, consumer participation in load flexibility, and transmission 

capacity constraints can lead to sudden cost increases and jeopardize electricity procurement security. 

        To mitigate network congestion and ensure system security and stability, strategies such as demand 

response and transmission expansion planning (TEP) are implemented [5,6]. These strategies include 

upgrading the capacities of existing transmission lines and identifying new lines to be integrated into an 

existing electrical system [3,7,8]. Recent developments in this field have primarily focused on addressing 

uncertainties, such as those associated with wind turbine load and output power uncertainties. Notable 

research includes Ugranli and Karatepe’s [9] TEP methodology that considers N-1 contingency conditions, 

Muñoz et al.’s [10] dynamic thermal level-based model to maximize line current capacity, and González et 

al.’s [11] analysis of how the community energy sector impacts power system expansion. Baldick and Neill 

[12] and Sebastian et al. [13] identified enhancing existing lines’ capacity as a cost-effective alternative to 

building new ones, especially for renewable energy integration.  

         Given the changes in the power transmission system regarding planning and operation, Larruskain et 

al. [14] proposed achieving higher current densities in existing transmission lines to upgrade the 

transmission capacity. Increasing the power-carrying capability and reducing the conversion losses between 

AC (alternating current) distribution lines and DC (direct current) lines can significantly upgrade the 

transmission capacity [15,16,17,18]. Estimates suggest that by 2026, global investment in transmission and 

distribution infrastructure will reach $351 billion, with a portion allocated to eliminating line capacity 

restrictions [19]. Securing location approvals for new lines may extend project timelines; therefore, 

prioritizing the enhancement of existing lines’ transmission capacity is crucial. Consequently, enhancing 

the transmission capacity of current lines is essential to meet the rising and unpredictable demands of 

renewable energy transmission cost-effectively, leveraging existing infrastructure to minimize new 

constructions costs. This research aims to develop a more suitable model for actual power grid operators or 

transmission planners to measure the effects of increased transmission capacity of existing lines. 

This expansion, vital for congestion relief and both intra-regional and inter-regional power 

transmission, is often undervalued, particularly considering its resilience against the impacts of extreme 

weather on renewable energy generation [20]. According to research from the Lawrence Berkeley National 

Laboratory [21], existing transmission planning approaches run the risk of understating the economic value 
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of new transmission infrastructure. This is because extreme conditions and high-value hours, which account 

for only 5% of the time but contribute to approximately 50% of the transmission’s value in alleviating 

congestion, are difficult to model and thus often overlooked in transmission planning. 

There are various ways to alleviate line congestion, including line planning expansion and capacity 

enhancement [5,22,23]. However, practical methods to formulate the minimum cost function for increased 

transmission lines capacities during the entire grid are lacking. This study aims to create a practical model 

for power grid operators that quantifies the impact of increased line capacity. Using multi-parametric 

programming, the model provides precise solutions that analyze how enhanced transmission capacity 

reduce system costs and effectively alleviate line congestion. 

Multi-parametric programming efficiently resolves the challenges presented, allowing adjustable 

parameter settings to enhance line transmission capacity. The parameter analysis produces an explicit affine 

formula for the investment of increasing the line capacity and decreasing system costs. Meanwhile, the 

changing range of line capacity on different lines is represented by different parameters, and this study 

discovers the cost-related parameter changes to select the most suitable line (s) for capacity adjustment by 

deriving the explicit system cost expressions obtained for each line with respect to parameter changes. In 

electricity markets, the independent system operator (ISO) aims to minimize system costs or maximize 

social welfare by efficiently managing energy clearance, reserves, and generator commitments [24,25].  In 

contrast to the previous power grid linear economic dispatch programming model [26,27,28,29], which 

focuses on demand uncertainty, this study includes a large number of binary variables in the security 

constrained unit commitment and economic dispatch (SCUCED) problem to better reflect the transmission 

capacity upgrade and ISO’s goal of minimizing the system cost. 

Contrasting with models that solve single-period problems [9,30,31,32], [33] explored constrained 

dynamic programming for multi-stage mixed-integer linear problems with linear objective functions. This study 

is characterized by a complex, multi-period, and multi-parametric mixed-integer linear programming (mp-

MILP) model. Two methods for multi-parametric mixed-integer programming (mp-MIP) problems are 

iterating between two subproblems decomposed from the mp-MILP problem [34] and using the novel 

branch and bound algorithm [35]. However, the B&B method [36] may not effectively solve the problem 

when there are too many nodes/binary variables to explore because all possible nodes must be checked to 

determine the best solution, which increases the computational burdens of that task and makes this option 

impractical and unlikely.  

To tackle the challenges associated with TEP, this study aims to answer two key questions: 1) How 

can an approximately affine solution be efficiently found for a multi-period and mp-MILP problem that 

considers transmission capacity uncertainty? 2) Given a cost budget, which transmission lines’ capacity 

should be upgraded, and by how much, to increase societal welfare or reduce system costs? To address 

these questions, this study develops a right-hand side (RHS) parametric analysis MILP problem [37,38] by 

incorporating uncertainty parameters on the RHS of the capacity constraints of the transmission lines to 

capture their uncertain capacity. Our methodology involves solving the relaxed SCUCED problem to obtain 
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lower bounds, transforming continuous variables into binary ones to establish upper bounds, and comparing 

these bounds to find the best approximate solution within an acceptable error tolerance. This study is the 

first to use parametric analysis for mp-MILP to model TEP challenges, addressing the shortcomings of 

current transmission models that fail to handle uncertainty over multiple stages. 

This study makes three significant contributions: First, by adding a time dimension to the left-side 

constraints matrix form used to represent the single-period programming problem, we first employ state-

of-the-art modeling techniques and extend the single-period programming problem to the multi-period 

programming problem. To characterize the uncertainty in transmission expansion in this scenario, the 

domain of the parameter represents the existing line’s increased capacity in each period. Then, we formulate 

the problem in matrix format and use the Lagrange function and the KKT condition to obtain the best 

solution at each node by relaxing the binary variables of unit commitment (UC) to continuous variables. 

This parametric analysis constructs a functional relationship between system costs and line capacity 

upgrades, advancing both theoretical methodologies and providing practical strategies for real-world energy 

systems management. 

Second, multi-parameter programming problems with integer variables have exponential complexity, 

meaning that the computational burden and simulation time increase rapidly as the number of binary 

variables grows. Our proposed approach generates exact optimal analytical solution for small-scale mp-

MILP parametric analysis problems and provides the best approximation analytical results for large-scale 

mp-MILP problems. We achieve this by calculating upper bounds (based on feasible integer solutions at 

each node) and lower bounds (achieved using the relaxed problem) at each node. Our dual-bound solution 

strategy significantly reduces the computational burden and accelerates the process. This method showcases 

substantial improvements over traditional techniques and underscores our commitment to 

enhancing both the efficiency and applicability of B&B algorithms in complex system environments. 

Third, to adapt to changing operational conditions, such as increased demand and higher penetration 

of renewable energies, we advocate for strategic enhancements to transmission line capacity. This study 

investigates the functional relationship between reduced system costs and increased transmission capacity 

over multiple periods, using the RHS uncertainty of parametric analysis in ISO’s SCUCED problem. By 

analyzing the first-order derivative of the objective function with respect to varying parameters, our method 

provides transmission line planners with a robust tool to optimize social welfare and minimize investment 

costs. This approach underscores the practical relevance of our theoretical innovations and makes a 

compelling case for their implementation in real-world energy system management scenarios. 

The remainder of this paper is structured as follows: Section 2 reviews relevant studies. Section 3 

establishes the model and formulates the transmission line capacity expansion problem from the perspective 

of the ISO, utilizing the SCUCED problem. Section 4 discusses RHS parametric analysis for large-scale 

MILP optimization. Section 5 illustrates the proposed approach by applying it to a single-period problem 

and multiple-period problems, including the IEEE-5 bus SCUCED and the IEEE-30 bus SCUCED. Finally, 

Section 6 summarizes the study and provides recommendations for further research. The supplementary 
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material of this paper contains several appendices. Detailed proofs, algorithmic procedures, and additional 

case studies are provided in the appendices. 

 

2. Literature Review 

This paper reviews the applications of multi-parametric programming models, approaches for solving mp-

MIP problems, and the electricity market with uncertainty. Each of these topics is reviewed separately. 

 

2.1 Multi-Parametric Programming Model 

Dua et al. [34] introduced a model for engineering problems that treats control variables as optimization 

variables and state variables as parameters. This model addresses multi-parametric mixed-integer quadratic 

problems (mp-MIQPs) in mixed logical dynamical systems. In 2002, Dua et al. [39] applied the Lagrange 

method to solve multi-parametric quadratic problems (mp-QPs) and mp-MIQPs, characterized by convex 

and quadratic objective functions with linear constraints. They utilized an affine expression to 

systematically define parameter spaces, delineating optimality regions within model predictive and hybrid 

control contexts. In 2011, Gupta proposed a novel approach to multi-parametric programming that relies 

on enumerating active sets [40]. This method circumvents the combinatorial explosion typically associated 

with such enumerations and implicitly solves mp-QPs. 

Habibi et al. [41] proposed a multi-parametric programming model to obtain explicit solutions to 

optimal control problems for certain classes of hybrid systems. They also developed an approximation 

algorithm for solving general types of mp-MILP problems. Avraamidou et al. [42] defined seasonal demand 

variability in supply chain planning problems as multi-parametric mixed-integer bi-level linear 

programming problems and proposed a novel algorithm that provided an exact, global, and parametric 

solution with or without demand uncertainty. Russo et al. [32] introduced a supervised learning framework 

to solve mp-MILP in Model Predictive Control. Fong et al. [30] presented a MILP approach for cost-

effective and optimal deployment of base stations and repeaters. 

Mate et al. [43] proposed an offline combinatorial approach to identify all active sets of constraints for 

the nonlinear model predictive control (MPC) problem by applying KKT conditions a priori. Mate [43] 

investigated KKT conditions to identify active constraints and presented piecewise affine control laws and 

the accompanying critical regions as part of the multi-parametric MPC technique for linear systems. Shokry 

et al. [44] analyzed multi-parametric programming to solve chemical process operation optimization 

problems with unavoidable Sensitivity parameters. Pappas et al. [45] examined an algorithm for the exact 

solution of explicit nonlinear MPC problems with convex quadratic constraints based on the second-order 

Taylor approximation of Fiacco’s basic sensitivity theorem applied to an exact nonlinear MPC problem. 

Mahéo et al. [46] introduced a novel Benders decomposition framework for mixed-integer two-stage 

problems with uncertain recourse parameters. 

 Based on the above studies, multi-parametric programming models can address uncertainty problems 

in many fields. This study proposes an mp-MILP model in the multi-period electricity market to address 
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the challenges associated with the uncertainty of transmission line capacity in the SCUCED problem from 

the perspective of ISO, which contains binary variables reflecting the UC of generators; is mathematically 

characterized and yields an analytical solution. 

 

2.2 MP-MIP Problems  

Acevedo and Pistikopoulos [47] introduced a novel B&B algorithm that solves multi-parametric linear 

programs at each node of the search tree. This algorithm incorporates specialized bonding procedures to 

manage MILP problems with variable right-hand-side parameters. Dua and Pistikopoulos [48] decomposed 

the mp-MILP problem into two subproblems and then iterated between them. The first sub-problem was 

formulated as a multiple parametric linear programming (mp-LP) problem by fixing integer variables, and 

the second sub-problem was formulated as a MILP problem by relaxing the parameters as variables. Faísca 

et al. [49] developed a method for solving the mp-MILP problem by changing the parameters in the 

objective function and the RHS of the constraints, thus splitting the mp-MILP problem into two sub-

problems: a master MINLP problem and a slave multi-parametric global optimization problem.  

In the process of solving the mp-MILP, the mp-LP problem must be solved first. Gal and Nedoma [50] 

considered the computational aspects of the mp-LP problem and presented fundamental notations, theorems, 

and definitions; they demonstrated how to solve the mp-LP issue. Mitsos and Barton [51] introduced an 

enhancement of the well-known rational simplex approach for parametric LPs, which involved fewer 

successive operations on rational functions. Hladík [52] presented support set invariancy and optimal 

partition invariancy and compared them to the classical optimal basis approach for solving multi-parametric 

linear programming problems. Adelgren and Wiecek [53] suggested a new two-phase method to address 

the multi-parametric linear complementarity problem with sufficient matrices, where the mp-LCP solution 

was invariant over each region as a function of the parameters. 

Crema [54,55] created a method for achieving a comprehensive multi-parametric analysis by solving 

a family of ILP problems and by selecting a suitable finite sequence of nonparametric MILP questions. 

Domínguez and Pistikopoulos [56] proposed two multi-parametric programming algorithms for handling 

pure-integer and mixed-integer bi-level programming problems, and the second algorithm targeted the 

mixed-integer case of the bi-level programming problem. Oberdieck et al. [35] proposed a new algorithm 

for solving mp-MILP problems that employ a B&B strategy and McCormick relaxation procedures to 

overcome the presence of bilinear terms in the model, thereby resulting in an envelope of parametric profiles 

containing the optimal solution to the mp-MILP problem.  

This study specifies the combined constraints within matrix models, detailing both equality and 

inequality constraints comprehensively. Considering the uncertainty of transmission line capacity, this 

study proposes an effective approach for parametric analysis in multi-period MILP of ISO’s SCUCED 

problem, which has not been addressed previously. 

 

2.3 Uncertainty of Electricity Market 

In the United States, both day-ahead and real-time electricity markets have a market-clearing process 
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modeled as a SCUCED problem [57,58]. Carrión and Arroyo [59] presented a new mixed-integer linear 

formulation that required fewer binary variables and constraints for the UC problem of thermal units. Lin 

et al. [60] described a transmission and distribution network coordinated dynamic economic dispatch (DED) 

model and proposed an efficient decentralized method to solve this problem using multi-parametric 

quadratic programming. Wang et al. [61] proposed a two-stage distributionally robust UC framework using 

both regular and flexible generation resources. 

The resources for a wind-thermal DED problem fluctuate depending on the weather conditions [62]. 

Moarefdoost et al. [63] provided an alternative consideration for the uncertainty of renewable energy 

sources and the consequent ramping of conventional generation by a robust reformulation of the problem. 

Wind and solar availability are highly intermittent, resulting in uncertainty in demand fulfillment. The 

generation of these sources may differ according to the season and daily weather conditions. For example, 

temperature changes can lead to fluctuations in solar power output, and wind power generation can 

suddenly change with the wind speed variations [64]. Prajapati et al. [65] suggested the installation of an 

energy storage system to contend with the uncertainties caused by the unreliability of the power system 

owing to the high penetration of renewable energy sources. 

From the perspective of the ISO, modeling and optimizing generators across multiple market-clearing 

processes with uncertainties and incomplete information, such as load demand, generate new challenges. 

Li [26] proposed an approach to eliminate the step change in the continuous locational marginal price curve 

regarding load fluctuation and smoothed the price curve step changes. Li and Bo [27] introduced a more 

efficient algorithm to identify new binding constraints and new marginal unit sets when the load increases. 

Vaskovskaya et al. [66] employed a nonlinear alternating current power system model to develop an 

analytical formula for expressing LMPs. Kara et al. [67] proposed a stochastic local flexibility market to 

solve grid issues, such as voltage deviations and grid congestion in distribution grids under demand 

uncertainty and random bidding processes.  

 TEP has been widely used to address network congestion in electricity markets and to ensure system 

security and stability. Building on the generation expansion planning framework by Lara et al. [68], Li et 

al. [69] proposed a MILP formulation for the Generation and Transmission Expansion Planning (GTEP) 

problem, which considers both generation and transmission upgrades. Georgiev et al. [70] proposed a risk-

informed TEP method centered around an AC-based cascading failure model that simulates the power 

system responses after contingencies. The method aimed to provide an optimal expansion plan, striking a 

balance between the cost of expansion and the risk of systemic failures. Yin et al. [71] proposed a two-stage 

adaptive robust TEP model to address the limitations of existing models, which often overlook the temporal 

correlation among renewable energy outputs and fail to utilize extensive real-world data to reduce solution 

conservatism. This innovative model leverages a data-driven uncertainty set those accounts for spatio-

temporal correlations. Meanwhile, Motta et al. [72] reviewed optimization approaches in the literature for 

integrating Demand Response into three critical areas of power systems planning: optimal power flow, UC, 

and generation and TEP. Furthermore, El-Meligy and Sharaf [73] designed a robust TEP model under long-

term and short-term uncertainty to find the most cost-effective expansion plan while minimizing the highest 
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operation cost identified within a predetermined uncertainty framework.  

Unlike previous research, this study first identifies congested lines by exploring the relationship 

between the optimal solution and uncertain line capacity parameters. Subsequently, we employ parametric 

analysis to assess the impact of transmission line capacity increases on optimization goals. Lines’ capacity 

needing improvement is detected, and the suitable space for improvement is assessed, which boosts the 

social welfare of the system (i.e., maximizing social welfare through minimum investment). 

 

3. Model Setup  

To address the problem posed by the current transmission line upgrades, we develop a mp-MILP model 

aimed at minimizing ISO costs. Our model is based on assumptions drawn from previous work by Li [26], 

Li and Bo [27], and Vaskovskaya et al. [66]. See the following for the listed uses: 

1) Each bus has one generator and one load for notational convenience. 

2) The cost of electricity generation is assumed to be linear or piecewise linear, in accordance with 

electricity market rules. 

With reference to previous studies, we construct the following mp-MILP model, which is a RHS mp-

MILP model, detailed in Eq. (1): 
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where (1a) denotes the power balance constraint (i.e., energy supply matches the power demand). Eq. (1b) 

represents the transmission capacity limit on each line. Decision variables are constrained by startup ramp 

rates and ramp-up rates, as shown in Eq. (1c). Eqs. (1d) and (1e) impose constraints based on shutdown 

ramp rates and ramp-down rates on the current generation dispatch levels. The relationship between the 
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state of UC and the UC start state is shown in Eq. (1f). Eqs. (1g)–(1h) denote the minimum up and down 

time limits, on

iT  is the minimum on (up) time for the i-th generator, and off

iT  is the minimum off (down) time 

for the i-th generator. The constraint for the generation dispatch limit corresponding to UC for the i-th 

generator in the t-th period is denoted by Eq. (1i).  

        Unlike previous studies that applied multi-parametric linear programming to parametric analysis 

problems in various fields, our research specifically addresses uncertainties in transmission line capacities 

using an mp-MILP approach. Consequently, our proposed approach reveals an affine relationship between 

the objective function and changes in existing transmission line capacities with sensitivity parameters. In 

the scenario of adding new transmission lines to the existing system, the parameters domain represents the 

uncertain capacities of newly constructed lines.  

 

4. Model Optimization and Analysis 

To address the problem of RHS parametric analysis for mp-MILP, we employ a B&B method, considering 

previous studies [35,47]. The proposed algorithm and its related procedures are illustrated in Figure 1. 

The algorithmic process for mp-MILPs is split into the following five steps.  Section 4.1 describes step 

0 for initialization. In Section 4.2, this study solves the fully relaxed problem, calculates the initial upper 

bound, and compares the optimal solution and the upper bound at the root node, representing step 1. Section 

4.3 (step 2) describes selecting a branching variable and updating the set of nodes. Section 4.4 (step 3) 

determines whether the collection of nodes is empty. Section 4.5 (step 4) analyzes the process of solving 

and comparing the lower and upper bounds at every node. Section 4.6 (step 5) introduces the process to 

determine whether the Sensitivity parameter space is null. Finally, we summarize the application and insight 

for this proposed method in transmission network expansion and cost allocation in electricity markets. 
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Solve the Fully Relaxed Problem Eq. (2)

Select a Branching 

Variable and Update List 

of Nodes N

N = {Ø}?

STOP

Select a Node i.N=N-{i}

Solve the mp-LP Problem Eq. (28) 

Compare the objective Function Value of the 

Current Solution with the Current Upper Bound

Ξi  = {Ø}?

Remove from Ξi the uncertain space where

1)problem is infeasible or

2)an integer solution is found or

3)the solution is greater than the upper bound

Determine and update the upper bound

Error < α%?

Compare the objective Function Value of the 

Current Solution with the Current Upper Bound

Determine the upper bound

Error < α%?

YES

YES

YES

NO

YES

NO

NO

NO

Initialize n = 0, N = {Ø} Step 0

Step 1

Step 1.1

Step 1.2

Step 1.3

Step 2

Step 3

Step 4

Step 5

 

Fig.1: Algorithm for mp-MILPs 

 

4.1 Initialization (Step 0) 

First, initialize the collection of nodes that need to be solved, denoted as  N =  , and record their counter 

0=n . 

 

4.2 Solve the fully relaxed problem and determine upper bound (Step 1) 

4.2.1 Solve the fully relaxed problem (Step 1.1) 

After initialization, we address the fully relaxed problem at the root node to discover the lower bound in 

the entire parameter space, as shown in Figure 1. In the fully relaxed problem, the binary variables are 
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relaxed to continuous variables with values ranging from 0 to 1. Consequently, the mp-MILP problem in 

Eq. (1) is transformed into an mp-LP problem (2). 
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        To simplify the problem in Eq. (2) and to facilitate the solution of subsequent problems, this study 

includes a matrix structure, as shown in Eq. (3)1: 
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Following the work of Oberdieck et al. [35], we combine the continuous variable representing power 

generation (economic dispatch) and the binary variable representing generator UC into a single matrix for 

the Lagrange Multiplier Method. 

Several auxiliary submatrices are defined in Eq. (3), such as the matrix M, which is composed of three 

submatrices comprising all the coefficient information of the decision variables in the objective function. 

                                         
( )

1 (3 1)

11 1 1 11 1 1 12 1 2

(   )

    ;  ;

T T T T

N T

T

T N NT T N NT T N NT

M C UC SC

C C C C UC UC UC UC SC SC SC SC

 −=

=
          (3a) 

In Eq. (3a), submatrix TC , for example, has NT rows corresponding to the coefficient of the per-unit 

electricity generation cost for all generators in each period. Submatrix TUC  has NT rows corresponding to 

the fixed cost coefficients of UC. Submatrix TSC  has N(T-1) rows corresponding to the coefficient of the 

startup cost in the objective function.       

        We define three vectors: , ,  and D G U , each with NT rows and 1 column. Here, D represents the 

demand for each bus in each period (e.g., 11D  indicates the demand for bus 1 at period 1), G represents the 

generation dispatch decision variables, and U represents the UC decision variables. The startup or shutdown 

status of each generator is represented by V, which is an N(T-1) row and 1 column vector. 

 

( )

( )

( )

( )

11 1 1 1

11 1 1 1

11 1 1 1

12 1 2 1 ( 1)

 

 

 

 

T

T N NT NT

T

T N NT NT

T

T N NT NT

T

T N NT N T

D D D D D

G G G G G

U U U U U

V V V V V







 −

 =

 =


=


=


 (3b) 

Utilizing the aforementioned vectors, this study defines a new vector  , detailed in Eq. (3c), 

consisting of three sub-vectors:  G, U, and V. 

 
1 In this study, if T is the right superscript of a matrix or vector, it means transpose; otherwise, it means the end of the optimization period. 
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1 (3 1)(   )T

N TG U V  −=
 (3c) 

Note that A is the left-side coefficient matrix for all the inequality constants in Eq. (2), which includes 

1

12 4 ( )
N

on off

i i

i

KT NT N T T
=

+ − − +  rows and (3 1)N T −  columns. The zero elements in the first row indicate 

that zero matrices are required to keep A intact. The diagonal submatrices are minus one element and one 

element, respectively. For simplicity, we use ( Num ) in the subscript to represent 

1

12 4 ( )
N

on off

i i

i

KT NT N T T
=

+ − − + ( Appendix A provides a detailed summary of matrix A).  

 

min

max

      0           0

 

 

 

 

min

 min  

ˆ1                0

ˆ1              0

0         1          0

0             1          0

0            0       1

0   

=

−

−

−

−

GSF

ramp up

shut down

ramp down

state transition

on

A off

G

G

(3 1)

 

         0          1
 −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 Num N T

                                  (3d) 

In Eq. (3e), b  and maxF̂  are vectors with Num  rows and 1 column, consisting of elements that are 

either ones or zeros, representing specific coefficients in the constraints. 

 
( )

( )

max max

1

max max

1

    0    0  0  1  0  0  0  1  0  1    

ˆ   0  0  0  0  0  0  0  0  0  0  0  0

T

i i Num

T

Num

b GSF D G G

F F 





 = 

 = +


  (3e) 

In Eq. (3f),   and maxF  are row vectors with KT rows and 1 column. The element in  denotes the 

uncertainty parameter for each line, which also indicates the possible enhanced capacity. The current 

maximum capacity of the lines is denoted by maxF .  

 
( )

( )

max max max max max max max

1 1 2 2 1

1 1 2 2 1

   

   

T

K K KT

T

K K KT

F F F F F F F

      





 =

 =

 (3f) 

Using Eq. (3), we derive the matrix structure requirements for the equality constraints from matrix H, 

which consists of T rows and N(3T-1) columns.  Eq. (4a) is used to present H , and Eq.(4b) denotes ˆHD :  
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(2 1)
(3

1 0  1 0  1 0   0  0

0 1 0  0 1 0 0 1 0  0  0

                                                     

0 1 0 1 0 1 0  0

N N N

N N N

N TN N N
T N

H

−


 
 
 
 

=  
 
 
 
 

1

(3 1) 1

1)

N

it

i

N T

T

G

U G

V
=

− 

−

 
   

=   
  

 

                   (4a) 

                         

(2 1)
(

1 0  1 0  1 0   0  0

0 1 0  0 1 0 0 1 0  0  0
ˆ

                                                     

0 1 0 1 0 1 0  0

N N N

N N N

N TN N N
T N

HD

−


 
 
 
 

=  
 
 
 
 

1(3 1) 1

3 1)

0

N

it

iN T

T

D
D

=− 

−

   
=   
  
                 (4b) 

In this model, the original problem in Eq. (3) can be rewritten as follows: 

 
max

min

ˆ 0
. 

ˆ 0

TM

A b F
st

H HD








 − − 


− =

 (5) 

Based on Eq. (5), the constraints are drawn as follows, assuming ( )ig   denotes an inequality 

constraint and ( )jh   stands for an equality constraint. 

 

maxˆ( )

ˆ( )

i i i i

j j j

g A b F

h H H D

 

 

 = − −


= −

 (6) 

Here, the subscripts i and j denote the i-th and j-th rows of the corresponding matrices, respectively. 

The formulas in Eq. (5) in the following form in accordance with the Lagrange method are used: 

1 1

max

( ) ( )                                  (7)

( )                                                                       (7 )

ˆ( ) 0                             

( )
Num T

i i j j

i j

T

g hL

f M a

g A b

f

F

    

 

 

= =

 +

=

= −

+

−

=



 

                      (7 )

ˆ( ) 0                                                          (7 )

b

h H HD c 








 = − =

 

Considering that *  is the optimal solution to the problem, the best response function (i.e., the first-

order derivative function) of Eq. (7) is shown as follows: 
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***

1 1

* * *

* * max

* * *

*

( )( )( )

( ) (

( )

0

,

ˆ,  ( ) ,

ˆ(

)

( )) ,

Num T
j T Ti

T

i j

i j

i i i

j

T

T

i

j j

f M

hgL f
M A H

where g A b F

h H H

g

M

h H

A

f

D


   

   

  

 

 





= =

 
= +  +  = + + =

  

= =

=



 


= − −


= −

=







 

                 (8) 

Based on the KKT conditions, the following findings are produced: 

 
* max

max

0 0

ˆ0 0, 1,2, ,

ˆ( ) 0, 1,...,

0,  1,2,  ...,

ˆ( ) ( ) 0, 1,...,

 =   =  + + =

 =   =  − = = 


= − −  =
  =

 = − − = =


j

T T

x

j

i i i i

i

T

i i

L L M A H

L L H HD j T

g A b F i Num

i Num

g A b F i Num



  

 

 



   

 (9)  

Using the second and fifth lines of Eq. (9) yield: 

 

maxˆ( ) 0

ˆ( ) 0

T

T

A b F

H HD

 

 

 − − =


− =
 (10)  

Let 
A

Y
H

 
=  
 

,

maxˆ

ˆ

b F
N

HD

 +
=  
 
 

, Lm




 
=  
 

, and Eq. (10) be combined as 

 ( ) 0 − =TLm Y N  (11)  

The best solutions of the convex LP problem are always located at the vertices of its feasible region; 

hence, matrix Y   is split into two submatrices, pY   and sY  , where pY  is the matrix containing all active 

constraints and sY   is the matrix containing all inactive constraints. pN   and sN   are RHS terms of the 

corresponding constraints of pY  and sY , respectively. Eq. (11) can be expressed as follows: 

 ( ) 0T

p p pLm Y N − =  (12a)  

 ( ) 0T

s s sLm Y N − =  (12b) 

For the active constraints in Eq. (12a) and inactive constraints in Eq. (12b), the Lagrange multipliers 

of 0pLm   and 0sLm =  are discovered. Then, pY  is a square and invertible matrix; thus, the following 

results are obtained, as shown in Eq. (13). 

 * * 10p p p pY N Y N  −− =  =                                                    (13)  

It is seen from Eq. (3e) that pN  contained  . Plugging *  into ( )f   of Eq. (5) yields the following 

optimal solution: 
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( ) ( ) ( )

3 3 3

1 1

4
1

2

2

3 3

3 2
3 1 2

4
1

max

max

* 1 1 1

max

1 1 1

ˆ
0( ) =

ˆ
ˆ

ˆ         

− − −

− − −

  + +
    +
 +  = =  

   
   

 

 +
= + + = + 

 
 

T T T

T T T

p p p

p p

pp p p p p

p
p

p
p

p p

p p p p pp p p
p

p

b F
b F

bz Y N Y Y
H D

H D

b F
Y Y Y H

M M

D

M

M M M P w
b





 

 (14) 

where ( )
3

1−= p p

TYMP and ( ) ( )
3 3

2
1 2

4
1

max

1 1 ˆ
p p

p p pp p

p
p

T T
b F

w Y Y H D
b

M M− −

 +
 = +
 
 

. 

Here, pN   is a p-dimensional row vector where 
1 1

maxˆ
p pb F+   are inequality constraints and 

2

ˆ
pH D   are 

equality constraints. Where, 
3 3 3

max

p p pb F + +  indicates that   is contained by the inequality constraints and 

4pb   does not include   in the corresponding inequality constraints. The coefficient of    is P   and the 

constant term of *( )z    is w . As mentioned above, ( )1 1 2 2 1
 

T

K K KT
      


=  ; Eq. (14) takes the 

following form: 

 ( ) ( ) ( )
3 3

3 2
3 1 2

4
1

max

* 1 1 1 ˆ( )= − − −

 +
 + +
 
 

p p

p p p p pp

T T T

p p

p
p

b F
z Y Y YM H D

b
M M   (15) 

where the subscript of   corresponds to the subscript of the active constraint row number A. In the same 

critical region, which refers to the parameter region where the optimal solution is the same, pY  and pN  are 

identical. Here, 
3p  refers to a row vector and kθ  is a specific parameter. 

If 
3k pθ , then the following applies: 

 ( ) ( )
1

* 1   
k

T

T
T TT T

p k
p

k

A
z Y C UC SCM

H


−

−
  
  = =     

 (16) 

If 
3k pθ , then we will get the following results:  

 
* 0

k

z =  (17)  

By evaluating the value of different variable scalar 
*

k
z  and by providing maximal social welfare 

with minimal investment, the transmission planners or ISOs chose which lines’ capacities should be 

improved. Assuming the inside parameter space is set, the active and inactive constraints remained constant 

(i.e., in the given critical region). Therefore, parameter kθ  is modified with the highest rate of change of 

the objective function z , under the effect of the parameters, because increasing the capacity of that line 

resulted in maximum return on investment.  

Considering multiple lines’ capacities can be increased simultaneously using the obtained objective 

function and the investment cost function regarding the increased capacity (i.e., all feasible parameter 

spaces), for this instance, the study finds the following optimal conditions: 
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1 2

1 1 2 2

min  ( ,  ... )

( ) ( ) ( )
. .

0  ( 1,2, , )

K

k K

k k

z F

IC IC IC BUD
s t

k K

  

  

 

=

+ + + 


  =

 (18)  

where ( ),( 1,2, , )k KIC k K = represents the investment cost function for line k and 0 k k    denotes the 

potential capacity space for line K that can be increased. The largest budgetary limit for a transmission-line 

expansion planning project is represented by BUD . This is an optimization problem with multiple 

parametric variables as decision variables. The best solutions for all the uncertainty parameters are found, 

and we adjust the transmission capacity of each line using *

1 2( ,  ... )K   . As a result, the lowest cost of 

electricity generation is achieved within the limited budget, and line congestion is reduced. This is another 

innovation in determining the best candidate transmission line for capacity expansion. 

Based on the Simplex Method, parametric problems are solved using the optimal basic matrix, optimal 

solution, and optimal value. The corresponding critical region is derived using the Simplex Method because 

the dual solution does not depend on   for RHS parametric linear programming problems. Two optimal 

basic matrices are considered as neighboring matrices when they both have optimal bases for the same *

in parametric space. One can transform into another via a dual step (Gal and Nedoma, 1972). 

 If B is an optimal basic matrix and f represents the related index set of basic variables, then Eq. (19) 

applies, indicating that all variables must be non-negative, which is also the primary condition of  . This 

is the initial condition for the decision variables in a programming problem. The optimal decision variable 

results are as follows:  

 
* 1 ( ) 0fB b −=   (19)  

         At the same time, the parameters themselves have certain constraints, as shown in Eq. (20); these two 

sets of constraints form the range of values for the parameters under the same basic variables [50]. The 

feasible critical regions of the parameters are as follows: 

 G g   (20)  

 To use the simplex approach, linear programming must be transformed into a standard type through 

slackness variables to convert all unequal constraints into equation constraints. Constraints (19) and (20) 

reflect the critical region.  In the Lagrange method, the original inequality constraints are not normalized, 

and the inequality constraints contain the feasible space of the decision variables. As a result, the inactive 

constraint is indeterminate, and under the same active constraints and different parameters, the value on the 

left of the inactive constraint changes or does not satisfy the inequality relation for the inactive constraints. 

This indicates that the parameters are within a certain range and that the active constraints and optimal 

solutions are unchanged.  Previous research addresses multi-parametric linear programming problems but 

does not describe how to construct critical regions in detail. This study uses active constraints to solve 

critical regions. Plug *  determined by Eq. (13) into inactive constraints: 

 
*

s sY N   (21)  
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 The parameter range obtained by the inequality in Eq. (21) is the feasible range of this critical region:  

    

 

7 7 73 3 3

84
51

2 6

7 3 3

*

maxmax

1

( ) |  

0          |  

ˆ ˆ

          |

s s

p p pp p p

pp
pp

s p

p p
p s

p p p

CR Y N

b Fb F

A A
bb

H H

H D H D

A A

H H

  







−

−



=  

       + ++ +
            +   =        

      
        

   
=     

   
( )

( )

3 3 3 7 7 7

7 7 3 3

7 3 3

1

max max

1

' max max

 

          |   

p p p p p p

p p p p

p p p

b F b F

A A
b F b F

H H

 

 

−



  
+ +  + + 

  

     
=   + − +    

                            (22)  

In sN , an s-dimensional row vector, there are 7 7 7

8
5

max

p p p

p
p

b F

b

 + +
 
 
 

 from inequality constraints, 
6

ˆ
pH D  

from equality constraints, 
7 7 7

max

p p pb F + + containing  , and 
8pb without  from inequality constraints. 

The index of the critical regions is denoted by m , where K refers to the set of all feasible parameters. 

The entire parameter space is represented by  , and problems have no feasible solution in some regions, 

so K  . 

  ,mCR K K=                                                             (23)  

When the RHS of the inactive constraint *

s sY N   changes as a result of the parameter   change, 

both active and inactive constraints are altered simultaneously, allowing this study to find new variable 

solutions and critical regions until the entire parameter space is covered.  

If we find a new integer solution in a critical region for the relaxed LP problem, we must compare and 

update the upper bounds in this region before removing it from the unexplored parameter space. The mp-

MILP problem is considered infeasible if the fully relaxed problem has no feasible solution. Finally, the 

procedure is terminated when all parameter spaces have been explored and no further solutions can be found. 

 

4.2.2 Determine the upper bound (Step 1.2) 

We use the optimal solution from the fully relaxed problem at this node to establish the upper bound within 

the feasible parameter space for cost-minimizing problems. This approach initiates parametric analysis for 

large-scale MILP, leading to an innovative and practical model. 

1) To obtain the lower bound of the objective function, a relaxed mp-LP problem is solved. The critical 

regions CRs are discovered, and the optimal decision variables G  and the optimal objective functions 

( )z   are expressed in terms of parameters after solving the multi-parametric problem at each node. 

2) Approximate integer decision variables are obtained by applying the following rule. For each binary 
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decision variable from the relaxed problem, if *

mU   ( 0 1  ), we set *

mU  to one in the m-th critical 

region; otherwise, we set *

mU  to be zero. This study combines the variables U  and V  that emerge from 

this issue, and terms it mUV . An integer linear programming (ILP) model, as shown in Eq. (24), is then 

constructed and solved for variable V, with fixed binary variables U . 

Unlike the traditional B&B method, our approach in Eq. (24) seeks an ILP solution that meets specific 

conditions. Specifically, each inequality must meet the requirement that the left-hand side is less than one, 

and the RHS is a binary variable in the first constraint. The second inequality imposes a minimum on time 

limit, which must be satisfied when the corresponding binary variable itU  is equal to one. Similarly, the 

third inequality imposes a minimum off time limit, which must be satisfied when the corresponding binary 

variable 
( )

off
ii t T

U
−

 is equal to zero.  

Then, the optimal integer solution V is obtained:  

 

12 13 1

( 1)

1

( )
1

min   

. ,  2,3, ,

0, 1, 2, ,

+  1, 1, 2, ,

on
i

off
i

off
i

T NT

it i t it

t
on on

ik it i i

k t T

t
off off

ik i ii t T
k t T

V V V V

st U U V t T

V U t T T T

V U t T T T

−

= − +

−
= − +

+ + + + +

−  =

 −  = + +


  = + +






 (24)  

In summary, by finding a feasible solution to the ILP problem described in Eq. (24), we can obtain the 

upper bound at each node for the RHS mp-MILP model in Eq. (1) based on the feasible integer solution. 

This approach can effectively reduce simulation time compared to the traditional B&B method. 

 3) When we substitute mUV  into the original MILP problem at this node in the m-th critical region mCR

and solve the LP problem in region mCR . The corresponding updated optimal decision variable 
mG  is found, 

and the sub-region upper objective function ( )iz   with parameters  in the mCR  is denoted.  

 4) At node i, the problem's upper bound ( )iz    is obtained by combining the sub-region upper bound 

objective functions , ( )i mz   across all regions ,i mCR . 

 

4.2.3 Compare the objective function of the current solution with the current upper bound (Step 1.3) 

The lower bound for the original problem is determined at the root node. Meanwhile, the upper bound 

( )iz   established at the root node in Section 4.2.2 serves as the initial upper bound ( )z   for the problem.  

At each node i, the objective value ˆ ( )iz  —which is the lower bound—is calculated by relaxing the 

problem, along with the associated upper bound ( )z  , across all parameter regions. To simplify the 

analysis, we select Q  random points within the parameter. The errors between the upper and lower bounds 

at each point are calculated. These errors are then used to compute the final error rate by applying a weighted 

average across all selected random points, as detailed in Eq. (25). 
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z z
Q

z
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If the error rate   , the calculation process concludes; otherwise, the procedure advances to Step 2. 

Here,  represents a hypothetical threshold or error-tolerance limit, adjustable to align with real market 

objectives or computational burdens—an innovative aspect of this study. 

 

4.3 Select a branching variable and update the set of nodes N (Step 2) 

A binary variable from vector U is selected, and two new node-fixing variables are generated, each set to 0 

and 1, respectively. The unexplored parameter spaces of these nodes, 1n+  and 2n+ , correspond to the 

remaining critical regions. We then add the new nodes to N and 2= +n n is updated (i.e., we add two 

nodes to each branch). 

 

4.4. Determine at the node (Step 3) 

If  N =  , no solutions are found, the iteration stops; otherwise, we select a node i  from N  and remove 

it from the list of uncalculated nodes: 1= −n n  . Here, n is the number of nodes that are not yet calculated. 

 

4.5. Solve and compare (Step 4) 

By substituting fixed binary variables into the mp-LP problem (referring to Eq. (2) in the first iteration and 

Eq. (26) in next subsequent iteration), Eq. (26) is obtained. Here, '  denotes the variable vector after the 

binary variables are determined by substitution: 

 

, ,

max

ˆ( ) min '

ˆ'
. 

ˆ'

T

G U V
z M

A b F
st

H HD

 





=

  +


=

 (26)  

The mp-LP problem is solved for node i with unknown parameter spaces i , using the Lagrange 

method as Step 1. If the problem is infeasible for all i  , we must go back to step 3. On the other hand, 

if the problem is feasible, we determine and update the upper bound as in Step 1; the upper bound obtained 

at node i is recorded as ( )iz  . The ( )iz   and current upper bound ( )oldz   are segmented by piecewise 

functions over the region. Here, ( )oldz    refers to the optimal global upper bound as the algorithm 

progresses to node i. This study merges critical regions of ( )iz    and ( )oldz   to generate new critical 

regions and selects a smaller upper bound ( )iz   and ( )oldz  . In every new critical region, we select the 

smaller upper bound ( )newz   across all parameter regions (Dua and Pistikopoulos, 2000). Decision-makers 

calculate the error between the optimal function value ˆ ( )iz   at node i and the current upper bound ( )iz  ; 

if    holds, the iteration ends; otherwise, we continue. 

This study compares the solution at node i with the current upper bound, ( )oldz  . The obtained optimal 
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solution for the transmission planning problem at node i, denoted as ˆ ( )iz  , and it is composed by m optimal 

value linear functions ,
ˆ ( )i mz  . The corresponding critical region is identified as ,i mCR . The current upper 

bound is recorded as ( )oldz  and is defined by a set of functions, ' ( )mz  , and their corresponding critical 

regions are '

UB

mCR . Their intersection is shown in intCR  in Eq. (27): 

 int

, '

UB

i m mCR CR CR= 
   (27)  

If intCR   and the optimal solution is greater than the upper bound in the m-th critical region, it 

should be removed from the uncertain space. One must check whether ,
ˆ ( )i mz   is smaller than ' ( )mz  :  

 
, '

ˆ ( ) ( ) 0i m mz z −              (28) 

 

4.6. Determine nodes and critical region of  (Step 5) 

If any of the following conditions are met within a certain parameter space, that space is removed from  i
, 

indicating it is part of the Sensitivity parameter space at node i: 

(i)    The problem is not feasible. 

(ii)    A better integer solution is found.  

(iii)   The solution of a node is greater than the current best upper bound in the same space.  

This process simplifies the operational steps and facilitates iteration through all nodes in all parameter 

spaces. If the values of all binary variables U  at node i are fixed, planners update the upper bound by 

employing the comparison method outlined in Step 4. If all the critical regions of node i are eliminated, we 

return to Step 3 to explore the uncalculated node; otherwise, we return to Step 2 to build a new branch. 

In summary, considering transmission capacity constraints, generation and demand-balance conditions, 

physical constraints of generators, and the ongoing increase in the demand for renewable energy, this 

research develops a RHS mp-MILP model to reflect the uncertainty in line capacity. The steps outlined in 

Section 4 yield the following managerial insight and application. 

Managerial Insight and Application: Parametric analysis enables the identification of congestion in 

specific lines based solely on function parameters and facilitates the establishment of a mathematical 

relationship between system costs and line capacity expansions. By analyzing the marginal benefits, such 

as decrease in system costs from increased line capacity versus the costs of upgrading line capacity, 

transmission line planners can effectively implement suitable line-capacity enhancements. This approach 

enables them to allocate resources efficiently and maximize social welfare with minimal investment. 

 

5. Case Study 

We validate the proposed methodologies and results in Section 5.1 using a single-period SCUCED case to 

illustrate the calculation procedure in detail, which has two buses and two parameters, each representing 

the increased capacity of a transmission line. In Section 5.2, we employ the IEEE 5-bus SCUCED case with 
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24 periods to demonstrate the results and insights. For simplicity, we consider only one line’s capacity 

uncertainty. Section 5.2 builds upon the previous explanation by applying our approach to an IEEE 5-bus 

SCUCED with multiple periods that involves 335 binary decision variables. Despite the complexity, our 

approach successfully manages this large number of variables, highlighting its robustness and efficiency. 

It is noteworthy that existing tools for parametric analysis in MILP typically support only up to 50 integer 

variables. In Section 5.3, we extend our analysis to the IEEE 30-bus case, which incorporates 720 integer 

variables. This case further demonstrates the scalability of our approach, illustrating its effectiveness in 

managing a more complex system. The inclusion of this case study highlights our methodology’s ability to 

perform effectively across various scenarios, from those with only 2 binary variables in Section 5.1 to those 

with 335 and 720 binary variables in Sections 5.2 and 5.3, respectively. 

 

5.1 Single Period Synthetic Case 

Consider the following example of MILP parametric analysis, where 1 2(7) (8)D D+  indicates that the 

demand at bus 1 and 2 are 7 and 8 units, respectively: 

 

( ) 1 2 1 2
,

1 2 1 2

1 2 1

1 2 2

1 1

2 2

           3 5 18 15

15 (7) (8)

0.8 0.7 11.2
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. .    
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10 0
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x y

i s j

z min x x y y

x x D D

x x

x x
s t

x y

x y

y i s x j









= + + +

+ = = +


+  +

 +  +


− 
 − 


 =   =  =

                (29)  

In this single-period problem, the constraints for the start-up ramp rate, shut-down ramp rate, and the 

relationship between the UC of generators and the start-up state are ignored. This removal also eliminates 

the contrasts for minimum on time and minimum off time. Only the energy balance and generation 

constraints are considered.  In this synthetic case, two generators and two buses are connected by two lines. 

This case study incorporates two uncertainty parameters on the RHS of the transmission lines’ capacity 

constraints, demonstrating the proposed methods from Section 4 and illustrating the lines' capacity 

uncertainty. Both parameters range from 0 to 10, indicating potential enhancements in line capacities within 

this range. Because there are few integer variables, for simplicity, the upper bound at each node is not 

considered in this case (see Appendix B for derivations). Instead, we demonstrate how to compute the 

critical region. This problem will be solved based on the following steps:  

Step 0: Initialize the collection of nodes that need to be solved: denoted as  N =   and set the node 

counter 0=n . 

Step 1: Solve the fully relaxed problem as follows (at node 0): 
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 (30) 

        Based on the steps introduced in Section 4, when 1 20  0and = = , using Eq. (13) in Section 4, the 

best decision variable, 
*

0,1 , as shown in Eq. (7b), is derived as follows: 

 

1

1* 1 max

0,1

1

1

 10   7

 8  10
(  )

   7 /10

  4 / 5  

−

 + 
 

−  = + + =
 +
  − 

p p p pA b F




 





                                       (31) 

Based on Eq. (22), the critical region is as follows:  

   * max

0,1 1 2
ˆ|  0 0.3,0 10s s sCR A b F   =   + =    

                            (32)  

The optimal objective function at the root node is: 

  0,1 1 1 285.6 17.0 , 0 0.3,0 10z when  = −     
 (33) 

Here,   is recognized as a decision variable and is then used to calculate the first-order response 

function of 0,1 185.6 17z = −   on   using Eq. (17). We then determined the cost reduction rate (i.e., the 

first-order derivative) with the upgrade of the transmission line’s capacity in the same critical region (e.g., 

 1 20 0.3,0 10      ). 

Here, S  indicates the set of active constraints from A. From Eq. (7b), the following results are obtained. 

    1 2 3, , 1,5,6S S S S= =
 (34)  

Here, 'S  denotes the inequality constraint row subscripts with the parameters on the RHS. 

 
  ' | 1,2i iS S S= 

 (35)  

For the first parameter 1 , since 1 1 'S S=  , we have: 
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 (36)  

For the second parameter 2 , because  'iS S  , we have: 

 
2

* 0 =z  (37) 

The results from Eqs. (36) and (37) reveal that increasing the capacity of the first line by one unit 

reduces the cost of electricity generation by 17 units; however, increasing the capacity of the second line 

does not affect system costs. Therefore, increasing the capacity of the second line does not benefit ISO’s 

optimization goal. 

When the parameter 1 0.3 = , the fourth constraint, initially inactive in the matrix sA  from Eq. (8b), 

becomes active. Conversely, the first active constraint in the matrix pA from Eq. (7b) becomes inactive, 

thereby altering the matrix pA in Eq. (7b).  Similarly, using Eqs. (13), (14), and (22), the best expression 

for the decision variables 
*

0,2 , the critical region 0,2CR , and the optimal objective function 
*

0,2z  are 

calculated. The method for determining the analytically best objective function and related critical regions 

by utilizing active and inactive constraints is determined using optimal Lagrange multipliers. 

 
( )* 1 max

0,2 (  ) 10 5 1 0.5
T

p p p pA b F −= + + =
       (38) 

                                          * max

0,2 1 2
ˆ|  0.3 10,0 10s s sCR A b F   =   + =                              (39)  

                                                                *

0,2 1 280.5,  0.3 10,0 10z when  =    
                                  (40)  

 In this critical region (i.e., 1 20.3 10,0 10     ), this study explores the impact of changes in 

transmission line capacity on system costs, specifically examining the effects on the optimal objective 

function.  Here, S is determined using Eq. (7b) and 'S  is the same as in Eq. (35). 

    1 2 3, , 5,6,7= =S S S S  (41)  

For the first parameter, 1 , and the second parameter, 2 , because  'iS S  , the calculation is:  

 
1

* 0 =z  (42)  

 
2

* 0 =z  (43) 

       The findings from Eqs. (42) and (43) indicate that increasing the capacity of the first and second lines 

has no effect on the optimal electricity generation cost outcome *z  within the second critical region (i.e., 

1 20.3 10,0 10     ). We acknowledge that this is our innovation in identifying which lines’ capacity 

to upgrade its capacity and to what extent, from the perspective of the ISO, to minimize the system cost. 
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Step 2: Choose a node and fix UC binary variables, either 1 0y = or 1 1y = . Set the unexplored 

parameter space of these nodes as 1   and 2  , respectively. Update the node count to 2n = and 

 1 10, 1N y y= = = . 

Step 3: Fix 1 0y = , and 1n = ,  1 1N y= = . 

Step 4: Node1 (Fix 1 0y = ): The problem is infeasible; therefore, this node is fathomed. 

Step 5: Return to Step 3 due to 1 = . 

Step 3: Fix 1 1y = , and 0n = , N = . 

Step 4: Node2 (Fix 1 1y = ): The problem is feasible.  

According to the Lagrange method, the optimal function/value is determined using Eq. (13), the critical 

region is based on Eq. (14), and the optimal decision variable could be obtained from (22). The optimal 

solutions are shown as follows:  

 

1 1 2 1 1 2 1

2,1 1 2,1 1 2

1 2 1 2

2,2 2,2 1 2
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( ) 91.0 35             { | 0 0.3,0 10}
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x x y y

z CR

x x y y

z CR

  

   

  

=  + = −  = = −


= −  =     


= = = =
 = =     

 (44)  

Step 5: Return to Step 2 due to  2 1 2| 0 10,0 10  =      . 

Step 2: Choose a node and fix the UC (i.e., binary variables), 2 0y = or 2 1y = . Define the unexplored 

parameter spaces for these nodes as 1   and 2  ,respectively. Update the node count 2n =  and 

 1 2 1 21, 0; 1, 1N y y y y= = = = =  adjust accordingly. 

Step 3: Fix 1 21, 0y y= = , and 1n = ,  1 21, 1N y y= = = . 

Step 4: Node3 (Fix 1 21, 0y y= = ): The problem is infeasible. 

Step 5: Return to Step 3 due to 1 = . 

Step 3: Fix 1 21, 1y y= = , and 0n = , =N . 

Step 4: Node4 (Fix 1 21, 1y y= = ): Node 4 is plugged into the original problem, and the updated 

optimization problem is obtained. Similarly, using Eqs. (13) and (14), the optimal solutions (e.g., optimal 

decision variables, optimal objective functions, and corresponding critical regions) are   
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4,1 1 4,1 1 2

1 2 1 2

4,2 4,2 1 2

10 7, 8 10 , 1, 1

( ) 94.0 20.0 { | 0 0.3,0 10}
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( ) 88.0 { | 0.3 10,0 10}

x x y y
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x x y y
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 

   

  

=  + = −  = =


= −  =     


= = = =
 = =     

                    (45) 

        Based on the results of Eq. (45), the transmission planners should increase the 0.3-unit capacity of the 

first line. The results of Eq. (45) show that 1) increasing the capacity of the second line had no effect on the 
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reduction of system costs, indicating that this line is not congested in the original problem; and 2) in the 

same situation, increasing the capacity of the first line by more than 0.3-unit capacity had no effect on the 

optimization results.  

Step 5: Return to Step 3 due to 2 = . 

Step 3: Since  N =  , the iteration with solutions must be stopped. 

In summary, this study drew the following optimal three-dimensional plane curve through multi-

parametric toolbox (MPT) (see https://www.mpt3.org/Main/HomePage for details). 

  
Fig. 2: Optimal solution with parametric analysis (at node 0) Fig. 3: Optimal solution with parametric analysis (at node 4) 

1 1 1 2

2 1 2
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
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z where
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  

 
 

 

Figure 2 displays the exact optimal parametric analysis solution, which considers the capacity 

uncertainties of two transmission lines at the root node, achieved by relaxing all binary variables to 

continuous ones.  This is a three-dimensional plane, with three dimensions representing theta1, theta2, and 

z. A lower bound of the mp-MILP problem is presented in this figure. According to the previous calculation 

process, the global optimal solution to the mp-MILP problem that satisfies all constraints is obtained at 

node 4 and the calculation ends. Two parameter regions and the corresponding optimal objective function 

expression are obtained. Figure 3 depicts the relationship between the parameters ( 1 2,  ) and the ideal 

objective function value at node 4 (i.e., 1 1y = and 2 1y = ). This constitutes the final, optimal solution for 

the mp-MILP problem as per Eq. (29), satisfying all constraints.  

Unlike traditional B&B methods, which typically focus on solving either the upper or lower bounds at 

each branching point, our approach concurrently resolves both bounds while integrating a tolerance range 

for acceptable errors. This enhancement not only accelerates the convergence process but also significantly 

improves the efficiency of the iteration cycle. By implementing a tolerance range, our method effectively 

balances computational accuracy with processing speed, providing a robust solution framework that is 

especially beneficial in large-scale optimization scenarios. These scenarios often challenge traditional B&B 

methods due to their computational intensity and the complexity of the problems involved. Our novel 

approach not only expedites the solution process but also extends the scalability and applicability of the 

https://www.mpt3.org/Main/HomePage
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B&B method to more complex mp-MILP problems, which are increasingly prevalent in modern industrial 

and systems engineering applications. 

 

5.2 IEEE 5-bus case with 24-periods SCUCED  

This section demonstrates the application of the proposed method to a 24-period IEEE-5 bus SCUCED 

problem. This problem has five buses and six lines, and all data (i.e., transmission capacity, generation shift 

factor, and per-unit electricity generation cost) are extracted in MATLAB using MATPOWER. The total 

load profile was sourced from the University of Washington’s database (available at 

https://labs.ece.uw.edu/pstca/rts/pg_tcarts.htm). The load was then distributed among the three buses (B, C, 

and D) in the ratios of 30%, 30%, and 40%, respectively. To simplify and intuitively demonstrate the 

algorithm and conclusion, we only consider the uncertainty of the transmission capacity of line 4 in this 

section (i.e., parametric analysis for other line capacity upgrading, see Appendix C).  

        As a result, this algorithm derives the lower bound 4z in the entire parameter space by solving the fully 

relaxed problem because the variables range of the mp-MILP problem is a subset of that for the fully relaxed 

problem. Solving the mp-LP problem yields a lower bound for the mp-MILP problem by treating the binary 

variables as continuous variables between 0 and 1. 
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
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 (46)  

        The parameter space is divided into five critical regions, each with an optimal parametric analysis 

objective function represented as a piecewise affine function split into five segments. Eq. (47) reveals that 

the optimal objective function is a constant value when 444.2195 100  . Here, we use subscript k to 

emphasize the dependence of the optimal solution on which the line’s capacity was upgraded. 

        After obtaining the fully relaxed solution at the root node, Eq. (24) is employed, and the obtained 

optimal continuous variables are transformed to zero or one. Here, assuming 0 =  (the UC variables), then 

fixing these variables, the upper bound of the IEEE-5 bus SCUCED problem is discovered by solving the 

mp-LP problem after converting continuous variables to binary variables. 
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 (47) 

The error values in each critical region between 4z  and 4z  are calculated when the upper and lower 

bounds at the root node are obtained. Here, we assume that 0.01= corresponds to the actual situation and 

represents the upper bound of the transmission planner’s tolerance error, which is calculated using Eq. (25). 

In this case, we compute the error by randomly selecting 50 values (i.e., 50Q = ) from each critical region.  
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                                                 (48) 

 The error in each crucial zone is less than 0.034%, which is within the permitted range (i.e., 

0.01  = ), so the iteration operation is terminated, as specified in Step 1 of Section 4. Compared with 

traditional B&B methods for exploring all potential nodes, this study concludes that the approximate 

optimal solution to this problem is obtained quickly based on the proposed method.  

Furthermore, the accuracy of the approximation is notably high, at approximately 99.994% for this 

problem. Therefore, by using the improved B&B method, the final optimal approximate results are obtained, 

which is the upper bound curve in Figure 4. 

 

Fig. 4: The lower and upper boundaries at root node when upgrading the capacity of line 4   

 

       The horizontal axis of the graph indicates the range of the parameter theta or the possible space for 

increasing the transmission line capacity, and the vertical axis represents the best objective value (i.e., 

system costs). The difference between the lower and upper bound curves represents the error in Eq. (48). 

The optimal solution falls within the lower and upper bound curves in Figure 4, which indicates the benefit 

of increasing line 4’s capacity over 24 hours. 

         However, when we use the MPT solver in MATLAB, the traditional B&B method is not supported 

due to the large number of binary values and the massive number of possible nodes. The SCUCED example 

in this IEEE 5-bus 24-period case contains a total of 335 binary decision variables. This includes 120 binary 

decision variables for the 24 UC periods across 5 buses (24 * 5 = 120) and 115 binary decision variables 

representing the UC start state, calculated as (𝑇−1)×𝑁 (where 𝑇=24 and 𝑁=5, leading to 23×5=115). 

According to our test, the MPT can only handle roughly 50 binary variables if we employ the traditional 

B&B method. As a result, we can reasonably conclude that the proposed approach in this study, which 
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employs the parametric analysis method, can address large systems planning problems more effectively 

than the traditional B&B method, particularly when there are more binary variables. 

       For the IEEE 5-bus with a 24-period SCUCED case, the current capacity of Line 4 is 150 MW. The 

first line segment (first critical region) in Eq. (48) shows that increasing line 4’s capacity from 150 MW up 

to 156.453 MW results in a system cost reduction of $90.580071 for each additional MW. This also implies 

that the optimal action to take for the transmission planner is to increase the capacity of line 4 up to 156.453 

MW (i.e., 150+6.453) to reduce generation costs, if and only if the cost of the unit capacity of the line 

upgrade is lower than $90.580071. Therefore, the ISO should abandon the strategy of upgrading line 4’s 

capacity to lower generation costs if the marginal cost per unit capacity of line 4 is higher than $90.580071.  

       The second line segment (third critical region) indicates that increasing line 4’s capacity from 

156.453MW (i.e., 150+6.453) to 164.935 MW (i.e., 150+14.935) results in a system cost reduction of 

$53.100241 for each additional MW. Therefore, from the first two critical regions, we can conclude that 

the planner should increase line 4’s capacity up to 164.935mw in order to minimize the generation cost if 

the cost of the unit capacity of the line upgrade is lower than $ 53.100241. The fifth line demonstrates that 

increasing the capacity of line 4 does not benefit the system if the existing capacity is already more than 

171.170 MW (i.e., 150+21.170=171.170).  

Therefore, utilizing the approximated optimal solution in equation (48) and Figure 4, the relationship 

between the optimal capacity upgrade for line 4 and the marginal cost of the capacity of the line 4 upgrade 

is plotted in Figure 5. Using the findings of the previous study (Baldick and Neill, 2009), we calculated the 

line 4 upgrade cost, which is a one-time investment cost. Simply multiplying the 24-hour benefit from 

equation (47) by 365 yields the annual benefit. Next, we compare the cost of the capacity upgrade with the 

annual benefit. 

 

Fig. 5: The optimal suitable amount of capacity upgrade for line 4 

 

       Figure 5 demonstrates how to select the optimal amount of capacity upgrade by balancing the cost 

reduction rate of the objective function on the parameters with the cost per unit capacity of the line upgrade, 

thereby reducing system generation costs. As a result, transmission planners or the ISO must balance the 

marginal benefits of increased line capacity against the cost of improving line capacity. Although system 

costs decrease as line capacity increases, the marginal benefit of each additional unit of capacity diminishes. 
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5.3 IEEE 30-bus Case with 24-periods SCUC/SCED 

This section demonstrates the application of the proposed method to a 24-period IEEE 30-bus SCUC/SCED 

problem. The system includes 30 buses, 41 transmission lines, and 6 generators, with all relevant data (i.e., 

transmission capacities, generation shift factors, and per-unit electricity generation costs) extracted in 

MATLAB using MATPOWER. The total load profile was derived from the CAISO daily load trend 

(available at https://www.caiso.com/todays-outlook) and the IEEE 30-bus case data (available at 

https://matpower.org/docs/ref/matpower5.0/case_ieee30.html). The load was then distributed among the 

buses in proportions that reflect typical operational scenarios. 

       To increase the complexity to our analysis, we extended the original IEEE 5-bus case by implementing 

a parametric analysis of the UCED problem on the IEEE 30-bus system. This involved introducing 24 

virtual generators (each with 𝐺𝑚𝑎𝑥 = 𝐺𝑚𝑖𝑛 = 0) and zero generation cost to maintain the model’s structure. 

Since the IEEE 30-bus case provides single-period load data, we created a realistic load profile for 24 

periods using the CAISO daily load trend, scaling it to match the total generation capacity of the six 

generators. Additionally, we introduced fixed costs for turning on each generator, proportional to 𝐺𝑚𝑎𝑥, 

while assuming zero start-up costs for simplicity. Notably, the impact of the UC start state was ignored, 

calculated as (𝑇−1)×𝑁 (where 𝑇=24 and 𝑁=30, leading to 23×30=690). Thus, the total number of binary 

decision variables included 720 for the 24- UC periods across 30 buses (24 * 30 = 720). 

       To streamline the analysis, we focused on the uncertainty of transmission line 15’s capacity. The 

algorithm derives the lower bound in the entire parameter space by solving the fully relaxed problem, as 

the variable range of the mp-MILP problem is a subset of that for the fully relaxed problem. Solving the 

mp-LP problem yields a lower bound for the mp-MILP problem by treating the binary variables as 

continuous variables between 0 and 1. 

       After obtaining the fully relaxed solution at the root node, we transformed the optimal continuous 

variables into binary variables. This transformation allows us to discover the upper bound of the IEEE 30-

bus SCUCED problem by solving the mp-LP problem after fixing these variables. The parameter space is 

divided into three critical regions, each defined by the operational limits of transmission line 15. We 

evaluated the performance of the proposed method by computing the error values in each critical region. 

The errors were calculated using 50 randomly selected values from each region, resulting in the following 

average error values: Region 1 exhibited an average error of approximately 0.0085%, while Region 2 and 

Region 3 both showed an average error of 0.0%. The overall average error across all regions is 

approximately 0.00282%, leading to an overall accuracy of approximately 99.9972%. Consequently, we 

derived the approximate optimal solution using the upper boundary determined, as follows: 

    

15 15

15 15 15

15
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https://matpower.org/docs/ref/matpower5.0/case_ieee30.html
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        These results demonstrate the efficiency in convergence and accuracy of our approach, especially 

when compared to traditional branch-and-bound (B&B) methods, which often struggle with the high 

number of binary decision variables involved. The optimal approximate results are illustrated in the upper 

bound curve shown in Figure 6. 

 

Fig. 6: The lower and upper boundaries at root node when upgrading the capacity of line 15 

   

       The horizontal axis of the graph indicates the parameter space for 𝜃15, while the vertical axis represents 

the best objective value (i.e., system costs) in Figure 6. The difference between the lower- and upper-bound 

curves illustrates the operational cost implications of capacity upgrades for line 15 across different load 

scenarios. Utilizing the approximated optimal solution in Eq. (49) and the data from Figure 6, the 

relationship between the optimal capacity upgrade for line 15 and the marginal cost of the upgrade is plotted 

in Figure 7.  

 

Fig. 7: The optimal suitable amount of capacity upgrade for line 15 

      Figure 7 presents similar results to those observed in Figure 5, illustrating the relationship between 

capacity upgrades and the corresponding reductions in system costs. The marginal cost of the capacity 

upgrade for line 15 follows a trend similar to that seen for line 4, demonstrating consistent operational cost 
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savings as capacity is enhanced. Moreover, the calculation method for capacity investment costs is identical 

for both line 15 and line 4. As outlined in Section 5.2 and based on Baldick and Neill (2009), we treat the 

upgrade cost as a one-time investment. By multiplying the 24-hour benefit from Equation (47) by 365, we 

derive the annual benefit, enabling a direct comparison between the upgrade costs and the projected annual 

savings for each line. This consistent methodology ensures the comparability of results across different 

lines within the system. 

        In our study, we utilized a variety of computational tools within MATLAB to address the challenges 

posed by mp-MILP problems. General solvers such as linprog, quadprog, and fmincon were employed, 

alongside commercial solvers like CPLEX and Gurobi. However, it’s important to note that CPLEX and 

Gurobi currently do not support solving mp-MILP problems directly. More information can be found on 

their respective websites: CPLEX Optimizer (https://www.ibm.com/products/ilog-cplex-optimization-

studio/cplex-optimizer/) and Gurobi Optimizer (https://www.gurobi.com/solutions/gurobi-optimizer/). 

This limitation necessitates alternative solutions for handling complex parameter interactions and deriving 

analytical solutions within each parameter region. 

       The advantage of using mp-MILP lies in its ability to generate optimal function expressions specific to 

each parameter region, offering nuanced insights for decision-making beyond the capabilities of methods 

that yield a single optimal outcome. For instance, our approach effectively managed a scenario involving 

720 integer variables—significantly more than the 50 integer variables limit of the MPT3 solver (see 

https://www.mpt3.org/), which frequently times out beyond this threshold. To expedite convergence and 

achieve this result, we applied a strategic value assignment where variables with relaxed values exactly 

equal to zero were set to zero, and those with relaxed values between zero and one were set to one. This 

method of fixing variables based on relaxed problem results, determined through extensive testing to be the 

most effective for rapid convergence, helped us quickly reduce the computational space and accelerate the 

solving process. As a result, we obtained an analytically approximate optimal solution for mp-MILP. The 

precision of this solution was remarkably high, achieving an accuracy of approximately 99.994% in the 

IEEE 5-bus case and 99.9972% in the IEEE 30-bus case. 

       This performance was facilitated by the computational power of a 16-core AMD Ryzen 9 3950X CPU 

at 3.49 GHz with 64 GB of RAM, using MATLAB R2023a and Yalmip 2023. We obtained an approximate 

optimal solution in 49,387.33 seconds (equivalent to 13 hours and 43 minutes) for the IEEE-30 bus case, 

and 2,361.61 seconds (equivalent to 39 minutes) for the IEEE 5-bus case. Compared to related studies, such 

as those by Charitopoulos et al. [37], who handled up to 25 integer variables, and Oberdieck et al. [74], who 

dealt with up to 10 optimization variables and 240 constraints, our study demonstrates significant 

advancements in tackling larger scale problems more efficiently and effectively. 

       Our method allows us to obtain upper bounds at each node, which reduces the number of nodes that 

need to be searched for solutions. In contrast to the B&B method that aims to find the optimal solution, our 

approach provides a feasible solution within a tolerance range of error. The use of upper bounds obtained 

by our method can guide the search for an optimal solution, allowing the B&B algorithm to focus on 

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
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promising nodes and further reducing computation time. Overall, our approach offers a practical solution 

for solving MILP problems, providing approximate solutions that are close to the optimal solution while 

significantly reducing computation time.  

        MILP focuses on finding optimal solutions for fixed parameters that most modern solvers efficiently 

handle. In contrast, mp-MILP extends this by exploring how varying sensitivity parameters influence 

solutions over a range, making it significantly more complex. mp-MILP requires mapping the relationships 

between changing parameters and their impact on solutions. It is a process beyond the capacity of tools like 

MPT3, which are limited to handling simpler scenarios with fewer variables. Unlike the previous parametric 

analysis methods, this research includes a large number of binary variables in the SCUCED problem, better 

reflecting the transmission line capacity upgrades and ISOs’ goal of minimizing system costs. Therefore, 

we assess the economic value of transmission expansion under both normal and extreme conditions. 

 

6. Conclusion and Future Work 

This is the first study to use parametric analysis for multi-period MILP to address TEP challenges, 

specifically tailored to address ISO’s multiple-period SCUCED problems. This study considers realistic 

modeling in transmission upgrade problems, which includes starting ramp rate restrictions, ramp-up rate 

limits, ramp-down limits, and shutdown constraints. This paper presents a novel approach for performing 

large-scale MILP parametric analysis using the B&B method to facilitate the solution process by 

investigating the upper and lower bounds to achieve the best approximate solution for multiple periods of 

SCUCED parametric analysis problems with a large number of binary variables.  

         Increasing the existing transmission line capacity is a desirable technique for responding to 

development by countering instability and ensuring transmission-line security. The optimum upgrade 

policy for a transmission line planning problem that includes increasing the capacity of existing lines 

corresponds to ISO’s perspective on which line capacity should be increased to reduce system production 

cost. This study characterizes this as an RHS uncertainty parametric analysis for the MILP. A new matrix 

approach is provided that employs the classical Lagrangian function and the B&B algorithm. The classic 

B&B approach is extended to efficiently produce approximate analytical solutions for large-scale MILP 

parametric analysis problems. At each node, the lower and upper bounds are compared, and if the error is 

smaller than a predefined tolerance range, the branching process ends, and the current upper bound becomes 

the final approximate solution.  The proposed method is especially useful for solving multi-period and mp-

MILP problems with transmission capacity uncertainty, which is a significant challenge in TEP. 

          By analyzing the analytically optimal system cost function and the potentially improved transmission 

capacity and comparing the cost-cutting rate to the capacity increase, decision makers can adopt realistic 

line capacity changes and achieve minimum system cost. As a result, transmission planners or the ISO must 

carefully balance the marginal benefits of additional line capacity with the cost of improving line capacity. 

Building new lines or increasing the transmission capacity of existing lines can help to relieve network 

congestion and maintain system security and stability. These new findings considerably contribute to this 

field of study and increase our knowledge of how to manage the expansion of transmission capacity. 
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        In this paper, only the upgrading capacity of the current transmission line is considered. Future studies 

should address establishing additional lines (TEP problem) by adding new branches and adjusting the 

generation shift factor (GSG) in the left-hand constraint matrix. It would also be worthwhile to identify 

suitable energy storage for upgrading or adding capacity, which will help relieve congestion and reduce 

total system costs. In addition, we are planning to develop sophisticated algorithmic packages for the 

parametric analysis of large-scale data systems. This initiative aims to advance the theoretical foundations 

and enhance the practical applications of mp-MILP, addressing the complexities of modern energy systems. 

The results of this study are based on the assumption that generators have linear generation costs. However, 

it is recognized that this linear modeling does not capture the more precise and realistic non-linear objective 

relationships in electricity generation costs, as demonstrated by Sioshansi [76] and Hua and Baldick [77]. 

Recognizing this limitation, we propose to explore advanced modeling techniques that incorporate 

piecewise linear and non-linear objective functions in future work. We are aware that integrating such 

functions into the mp-MILP framework introduces significant challenges, including increased model 

complexity, more intricate parameter space partitioning, and limitations of current solvers in handling the 

expanded problem size. Addressing these challenges requires developing new algorithms and solution 

methods. Such enhancements aim to improve the applicability and accuracy of our models across various 

real-world contexts. We need to consider how the transmission network expansion and cost allocation are 

set for the two scenarios to maximize decision-makers’ profit. We also investigate the importance of 

extreme weather and tail events in assessing transmission expansion value.  
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