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ABSTRACT

2.5D integration is gaining popularity primarily due to its ability
to facilitate intellectual property (IP) reuse. Unlike conventional
2D and 3D approaches, 2.5D integration requires a more complex
design and analysis process and is highly sensitive to changes in
design parameters. However, research on the sensitivity of 2.5D
design parameters is notably scarce, with most studies still concen-
trating on 2D and 3D. In this paper, we propose an Al-driven model
for predicting sensitivity and an optimization methodology for 2.5D
parameters, with a particular focus on bump pitch. Our approach
employs advanced machine learning models to accurately predict
how variations in bump pitch impact the power, performance, and
area of chiplets, as well as the footprint, signal integrity, power
integrity, and thermal integrity of the interposer layout. We also
utilize Bayesian optimization to identify the optimal bump pitch
for specific design objectives. Experimental validation of our model
demonstrates high accuracy, with average relative errors of 2.69%
for interpolation and 2.7% for extrapolation. Furthermore, optimiza-
tion results, tailored by adjusting weights for various potential
design goals, show an average improvement of 11% in area, wire
length, and signal integrity-driven optimization, and 9% in power
and thermal integrity-driven optimization.

1 INTRODUCTION

Designing and analyzing in 2.5D differs significantly from conven-
tional 2D and 3D methods, often requiring additional time and
resources [1]. From a design perspective, 2.5D integration demands
a unique set of tools and methodologies for effective implementa-
tion. For example, while designers can readily create chip layouts
using an existing Process Design Kit (PDK) for both 2D and 3D,
implementing a 2.5D design requires an additional interposer PDK
as well as a chiplet PDK. This necessity arises because chiplet and
interposer designs involve distinct components, which in turn ne-
cessitate separate design environments. Moreover, the 2.5D design
process requires multiple commercial tools and significant manual
effort to achieve an optimized layout, leading to extended design
times. Additionally, compared to conventional methods, 2.5D anal-
ysis necessitates more detailed and precise examinations using a
larger number of Electronic Design Automation (EDA) tools. Un-
like 2D and 3D designs, which can straightforwardly assess power,
performance, and area (PPA), 2.5D designs require more complex
analyses, such as signal integrity (SI), power integrity (PI), and ther-
mal integrity (TI). The increased number of required tools and the
complexity of these analyses for 2.5D further complicate the process
and significantly extend the time needed to complete designs.
Furthermore, the 2.5D design parameters depicted in Fig. 1 play
a crucial role in determining the overall performance of the chip.
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Figure 1: 2.5D silicon interposer and its various design pa-
rameters, including metal and dielectric thickness, via size
and bump pitch. Every parameter significantly impacts on
the PPA of the chiplet, as well as the SI, PI, and thermal dy-
namics of the interposer.

For example, changes in bump pitch can significantly improve the
chiplet area, wire length, and SI, but may adversely affect the PI
and thermal metrics of the interposer. Additionally, even relatively
minor adjustments, such as altering the thickness of metal layers
and dielectrics or the dimensions of vias, can lead to substantial
and widespread impacts. Moreover, in addition to the changes in
diemensions, the choice of substrate material—whether silicon,
glass, or organic—significantly affects the chip and necessitates
modifications in the overall design process.

Thus, it is crucial to thoroughly investigate and precisely predict
the effects of parameter adjustments with a comprehensive and
efficient 2.5D design and analysis. This step is essential, as it sets a
valuable standard for those involved in semiconductor packaging
processes and manufacturing. By evaluating the benefits and draw-
backs that these adjustments bring to the entire system, it becomes
possible to identify which parameters most effectively enhance
performance, allowing for more targeted improvements. Moreover,
accurately predicting these adjustments provides an opportunity
to optimize parameters for specific design goals, enabling the iden-
tification of the most beneficial parameter value for critical aspects
such as thermal or signal integrity, without the need for extensive
preliminary designs.
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Numerous research endeavors have explored various aspects of
2.5D design. For example, [2] examines the trade-offs between using
silicon and organic interposers in 2.5D chiplet integration. Similarly,
[1] introduces a novel methodology for designing with glass inter-
posers, comparing its effectiveness against conventional materials.
While these studies have advanced our understanding of material
impacts on 2.5D designs, they do not fully address the influence of
design parameters, such as bump pitch, on overall design metrics.
Additionally, a growing body of work employs artificial intelligence
(AI) to explore design spaces for heterogeneous integration. [3]
introduces an Al model capable of predicting PPA for RISC-V ar-
chitectures under specific configurations, while [4] extends this
approach to 3D structures, optimizing accelerator configurations
for defined design goals. However, these studies primarily focus
on 2D and 3D environments, with limited exploration into 2.5D.
[5] attempts to bridge this gap by presenting a methodology for
predicting PPA in 2.5D-designed accelerators but lacks compre-
hensive prediction models for crucial aspects such as SI, PI, and
TI. Moreover, it does not validate the accuracy of these prediction
models and optimization methods through actual designs.

Therefore, we propose a new framework that utilizes machine
learning to predict the sensitivity of 2.5D design parameters and
identify the optimal configurations, with a particular focus on bump
pitch. Based on an efficient design and analysis flow that extracts
data from 2.5D designs, our framework provides initial insights
into the impact of bump pitch on 2.5D technology. Moreover, we
suggest suitable ML models for each design metric and present an
appropriate optimization methodology. Our contributions are as
follows:

(1) We propose an effective 2.5D co-design and co-analysis
methodology specifically tailored for exploring the sensi-
tivity of bump pitch.

(2) We demonstrate how adjustments in bump pitch affect the
PPA of chiplets as well as wire length, SI, PI, TI of the
interposer.

(3) To the best of our knowledge, we are the first to present a
machine learning-based model that is capable of predicting
the effects of bump pitch on 2.5D.

(4) We are also first to present an optimization methodology
to find the optimal bump pitch for specific design goals.

(5) Our framework successfully predicts various design metrics
with an average relative error of 2.69% in interpolation and
2.7% in extrapolation.

(6) Our framework also derives the desired points for all possi-
ble optimization configurations, exhibiting an 11% improve-
ment for area, wire length, and signal integrity optimization,
and a 9% improvement for power and thermal integrity op-
timization.

2 DESIGN FLOW AND BENCHMARK

2.1 Proposed Design and Analysis Flow

The design process is outlined in Fig. 2. We individually design
and analyze both the chiplet and the interposer from various per-
spectives. First, the chiplet design and analysis process, illustrated
in Fig. 2 (a), involves several key steps. The chipletization process
is pivotal in 2.5D integration. Initially, we combine the register
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Figure 2: Proposed 2.5D design and analysis flow.
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Figure 3: OpenPiton as a benchmark for 2.5D integration.

transfer level (RTL) with the chiplet’s PDK specific to a particular
technology node and partition the netlist. Synthesis is performed
using Design Compiler. Subsequently, I/O drivers are integrated
into the partitioned netlist to establish off-chip connectivity be-
tween chiplets. After successful implementation of micro-bumps
and establishment of signal and power connections, we proceeded
with chiplet placement and routing, followed by analysis of PPA
metrics. Cadence Innovus was utilized for place and route (PnR)
operations, and Cadence Tempus was used for PPA analysis.

In the interposer design depicted in Fig. 2 (b), we initially gather
information such as die dimensions, bump locations, and port
names. Subsequently, the interposer PDK, containing essential in-
formation such as material properties, dimensions of metal and
dielectric layers, and wire width and spacing within the interposer,
is linked. Connections between chiplets are defined based on the
overall system architecture RTL, chiplets are placed in appropri-
ate locations, and interposer routing is carried out. Siemens Xpe-
dition software is used to create the interposer layout, with the
autorouting function employed. In cases where automatic routing
failed, manual routing is undertaken. Once the interposer layout
is finalized and examined, SI, PI, and Thermal analyses were con-
ducted. For SI analysis, Siemens HyperLynx is used to calculate
the s-parameters of the target net, and Keysight Advanced Design
System (ADS) is employed to simulate the eye diagram. For PI anal-
ysis, assuming an integrated voltage regulator (IVR) operating at



Table 1: Silicon interposer specification and the number of
bumps used in this paper

Logic [ Memory
# Metal layer 4
Metal thickness (um) 1
Dielectric thickness (um) 1
Min. wire W/S (um) 0.4/0.4
Via size (um) 0.7
Bump size (um) 20
Die-to-Die spacing (um) 100
Micro-bump pitch (um) 40
# Signal bump 299 231
# P/G bump 165 130
# Total Bump 464 361

Table 2: Material Properties for 2.5D Silicon Interposer.

Substrate | Dielectric
Material Silicon SiOy
Permittivity (Dk) 11.7 3.9
Loss tangent (Df) - 0.001
Thermal cond. (W/mK) 148 1.5

125 MHz, the power delivery network’s s- and z-parameters were
obtained using Siemens Xpedition. Impedance is measured, and
IVR is incorporated into the schematic in Keysight ADS to simulate
settling time and voltage drop. Finally, for Thermal analysis, Ansys
Redhawk is utilized to extract the chip thermal model (CTM) of the
chiplet, which is combined with the thermal model of the interposer
layout to measure the maximum temperature of both the chiplet
and interposer.

2.2 Benchmark Architecture

We use OpenPiton as a benchmark with RISC-V Ariane Core for
2.5D implementation [6]. There are a total of four cores in each
OpenPiton tile, and we utilized two tiles in total as shown in the
Fig. 3. For cache capacity, we set L1 cache to 8KB, L2 cache to 16KB,
and L3 cache to 1.8MB per tile. Then, we synthesize the configured
RTL with chiplet PDK and partition the netlist by defining L3 cache
and L3-related modules as ‘'memory chiplet’ and other modules
including cores as "logic chiplet’. Thus, two logic chiplets and two
memory chiplets are utilized. Also, the SerDes module is applied to
the I/O driver design to reduce the 64-bit parallel communication
to 8-bit serial communication. Thus, there are 68 logic-to-logic
connections between tiles and 231 logic-to-memory connections.
Furthermore, the number of power and ground bumps is assumed
to be 165 for logic and 130 for memory. Therefore, the final number
of bumps in each chiplet is 464 for logic and 361 for memory as
indicated in Table 1.

3 INTERPOSER TECHNOLOGY SPECS

3.1 Geometries and Material Properties

The interposer specification utilized is as depicted in Table 1. The
type of interposer is Silicon, and we use Chip-on-Wafer-on-Substrate
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Figure 4: Impact of micro-bump pitch on chiplet and inter-
poser sizes. (a) chiplet and (b) interposer. Smaller bump pitch
leads to smaller chiplets and interposers.

(CoWoS) technology [7] as a default technology. According to this
technology, the thickness of both metal and dielectric is 1um, and
the wire width and spacing are assumed to be 0.4um. A total of four
metal layers are used, two for signal and two for power. For our
study, we only make adjustments to the bump pitch while main-
taining the default settings for other parameters. We also employ
material properties for accurate interposer simulation as indicated
in Table 2. Silicon substrate features a permittivity of 11.7 and a
thermal conductivity of 148 W/mK. SiO2, used as the dielectric
material, has a permittivity of 3.9, complemented by a loss tangent
0f 0.001 and a thermal conductivity of 1.5 W/mK. By utilizing these
specific material properties, we can successfully conduct precise
interposer analysis.

3.2 Why Bump Pitch Sensitivity?

Parameter sensitivity plays a crucial role in 2.5D IC design, where
even slight variances to design parameters can have a significant
impact on the overall. In particular, bump pitch can significantly
impact both the chiplet and interposer. To explore this phenomenon,
we conduct experiments with bump pitches of 40pym and 32um,
analyzing their impacts from various perspectives. Fig. 4 depicts
the layout design results in both the chiplet and interposer. It is
noteworthy that reducing the bump pitch not only reduces the
area of the chiplet but also effectively reduces the footprint of
the interposer. Table 3 provides detailed numerical changes in the
chiplet and interposer metrics. Our numerical investigation shows
that there is a notable decrease in the chiplet’s die width as the
bump pitch is reduced. Additionally, there is a slight reduction in
power while still achieving the target frequency.

A significant reduction in wire length and a decrease in footprint
size are also observed in the analysis of the interposer. This reduc-
tion occurs despite the wire width and spacing remaining constant
across both scenarios, suggesting that the reduction in chiplet area
results in the decreased average distance between chiplets’ bumps,



Table 3: Impact of Bump Pitch Reduction on Design Metrics.
We observe improvement in chiplet power consumption, in-
terposer wire length and eye diagram, while deterioration in
PI and thermal metrics.

40um Bump 32um Bump
Logic Mem [ Logic Mem
Chiplet
Area (um?) 938 820 | 752 738
Pwr (mW) 1403 47.6 | 137.7 454
frnax (MHz) 689.2 669.3 | 687.8 654.9
Interposer
Footprint (mm?) 2.2x2.2 1.7 x 1.7
Max WL (mm) 3.0 24
Avg WL (mm) 1.6 14
Tot WL (mm) 842.2 750.7
Eye Width (ns) 0.90 1.26
Eye Height (V) 0.31 0.42
PDN Imp. (Q) 7.52 12.53
PI Time (us) 4.14 4.15
PI Drop (mV) 27.30 28.70
Log Temp (°C) 30.15 35.10
Mem Temp (°C) 25.16 27.49

which in turn significantly impacts on wire length reduction. Fur-
thermore, improvements in the eye diagram are noted as bump
pitch decreased, indicating that shorter wire lengths have a more
beneficial effect on signal integrity than the negative impacts of
increased wire density. Conversely, power integrity metrics such
as Power Delivery Network (PDN) impedance, PI settling time, and
voltage drop deteriorates with smaller bump pitches, likely due to
the reduced dimensions of the power plane which increase current
density. Similarly, temperature results also deteriorate, suggest-
ing that the chiplet’s power density increases as its size decreases,
exacerbating thermal challenges.

The variations in bump pitch have a significant impact on differ-
ent design metrics, and the optimal bump pitch may vary depending
on the design requirements. Hence, precise prediction and adjust-
ment of these metrics are essential, necessitating the utilization
of an appropriate regression model and optimization methods to
ascertain the optimal bump pitch for attaining desired design goals.

4 PROPOSED AI FRAMEWORK

In this section, we describe our proposed framework for 2.5D sen-
sitivity prediction model and optimization methodology. Section
4.1 gives an overview of the overall framework, while Section 4.2
describes how the training dataset is derived. Section 4.3 introduces
the model required to predict various design metrics based on bump
pitch, and Section 4.4 describes the optimization methodology to
find the optimal bump pitch for a specific design goal based on the
prediction model.

4.1 Overview

The overall framework for sensitivity prediction and optimization
is depicted in Fig. 5. We first utilize the 2.5D design methodology

Table 4: Models employed for predicting (interpolation and
extrapolation) each metric and their accuracy. We utilized
Multi-layer Perceptron (MLP) for SI, PI and TI due to their
non-linear attributes. We also show how each metric reacts
to bump pitch reduction under “React”.

Pred. Inter. Extra.

React Model R2 Err[%] Err[%]
Chiplet Area better Linear 1.00 0 0
Interposer Area | better Linear 0.96  1.84 0.35
Total WL better Elastic 0.96  0.35 2.09
Max. WL better Linear 091  0.18 2.74
Eye Height better MLP  0.86 2.6 0.1
Eye Width better MLP 0.78 2.6 0.2
PDN Impd worse MLP 072  7.76 0.07
Logic Temp. worse MLP 090 1.15 9.47
Mem. Temp. worse MLP 087  2.52 3.96
Interposer Temp. | worse MLP 0.84  0.94 10.21
Average - - 088  1.99 2.92

Table 5: Boundary conditions for thermal analysis

Type and Value
Simulation Env. Air
Flow regime Turbulent
Radiation model Ray Tracing
# Iteration 10
Initial Temp. (°C) 20
Fan speed (cfm) 2.12
Fan direction negative Z
Fan radius (um) 320

described in Section 2 to adjust the bump pitch and create a train-
ing dataset within the appropriate range. Subsequently, a machine
learning-based prediction model is built for chiplet PPA, eye dia-
gram, PDN impedance, and maximum temperature for each bump
pitch. Using these prediction models, we establish an objective
function and perform suitable optimization.

4.2 Training Dataset

2.5D design and analysis process is highly time-consuming. In par-
ticular, unlike the relatively automated process of chiplet design,
the interposer design and analyses of SI, PI and TI necessitate
substantial manual effort. This makes the processes not only time-
consuming but also challenging to execute in parallel. For instance,
if auto-routing fails for interposer layouts, manual routing is re-
quired. In SI analysis, the aggressor with the most overlap with
the victim net must be manually identified in the visualized layout.
Additionally, the thermal analysis involves extracting the CTM
from chiplets and integrating these into a new 3D model for every
bump pitch. Given these complexities, constructing a large dataset
is impractical due to inefficiencies in 2.5D design and analysis.
Therefore, our strategy to construct training dataset focuses on
developing a highly representative dataset for 2.5D designs. We
follow the design flow outlined in Section 2 to generate a training
dataset. We also establish a suitable range of the bump pitch. The
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Figure 5: Our Al-driven bump pitch prediction and optimiza-
tion framework.

bump pitch was adjusted by increasing it from 32um to 40um. In
chiplet’s PPA analysis, we focus on areas where the bump pitch
exhibited significant variation. We not only determine the area with
the bump pitch but also verify the feasibility of that chiplet area
by scrutinizing the actual PPA. Meanwhile, for the interposer, we
extract wire length data from the layout after finishing the rout-
ing. While wirelength typically has the most substantial impact
on the eye diagram, it is crucial to consider the aggressor, a net
significantly affecting crosstalk. As depicted in Fig. 6, in order to
efficiently determine the worst-case eye diagram, we rank the nets
based on wirelength and analyze the eye diagrams of the top three
nets. Subsequently, we identify the most severe net as the worst-
case scenario. This approach allows us to effectively analyze the
signal integrity (SI) of the design for each bump pitch, despite the
time-consuming nature of the process. For PI analysis, we assume
the utilization of a 125MHz IVR as mentioned in Section 2. Conse-
quently, we analyze the Power Delivery Network (PDN) impedance
across a frequency range of 1IMHz to 1GHz and determine the
impedance specifically at 125MHz. Finally, for thermal analysis,
we initially build a 3D structure of the interposer as depicted in
Fig. 7. Using this model and boundary condition in the Table 5, we
simulate the maximum temperature of the interposer as well as the
logic and memory chiplets.

4.3 Prediction Models

Utilizing the previously extracted dataset, our framework construct
a model to predict various design metrics. As stated in Section
4.2, the unique characteristics of 2.5D design and analysis present
difficulties in creating large datasets. In order to address these chal-
lenges, our framework employs a method to determine the most
suitable model for predicting sensitivity. In addition, we imple-
mented an advanced model evaluation approach to account for
the inaccuracies resulting from the limited dataset. The machine
learning model we suggest for each metric can be found in Table 4.

Select
Top 3 Nets

Wire Length

Rank Net
1 noc15
2 noc23
3 | chipid3

Victim Net

Less severe
crosstalk effect

Figure 6: Our approach for interposer signal integrity (SI)
analysis to find the worst case eye diagrams.
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Figure 7: Thermal model for interposer layout: (a) 3D thermal
model structure, (b) top view and (c) front view of the model.

4.3.1 Area, Footprint, Wire Length. Linear and elastic net models
are employed to predict the values of Area, Footprint, and Wire
Length. Due to the lower variability of these metrics in relation
to bump pitch compared to other metrics, we can make relatively
accurate predictions using straightforward models. Also, to figure
out the exact input range of model, we investigate the range of bump
pitches that are suitable for ensuring the validity of the area on our
current benchmarks by analyzing the overall PPA of the chiplets.
Our investigation shows that chiplet size cannot be further reduced
for bump pitches below 32um or above 100um, as doing so would
result in negative slack exceeding 100% of the target frequency.
Therefore, we devised a linear regression model to predict the area
within the constrained span of 32um to 100um. This range acts as
the input range for all prediction models. Linear regression is also
utilized for the footprint and maximum wire length. As for Total



Table 6: Time taken for data construction (build time), train-
ing and inferencing

Build | Training | Infer.
Model # Data | Range Time | Time Time
Chiplet Area 18 3h <lmin | <lmin
Footprint 9 4h <lmin | <lmin
Wirelength 9 32{"” 4h <lmin | <lmin
Eye Diag. 27 40pum 12h 5min <lmin
PDN Impd. 9 7h 3min <1min
Max. Temp. 27 15h 6min <1min

wire length, we construct a prediction model utilizing an elastic net.
The model’s non-linearity stems from the fact that the reduction in
bump pitch does not result in a proportional decrease in the total
wire length, owing to the constant width and spacing of the wire.

4.3.2  Eye Diagram, PDN Impedance, Maximum Temperature. The
datasets for eye diagram, PDN impedance, and maximum tempera-
ture exhibit a non-linear tendency. Since we vary bump pitch with
other parameters unchanged, the impact of this overhead is not
straightforward. For example, especially concerning SI, multiple
factors influence the eye diagram, such as the overlap between
aggressor and victim nets, as well as the route taken by the victim
net. These variations cannot be accurately predicted using a basic
model. Consequently, we employ the Multi-layer Perceptron (MLP)
technique in this case. The input values range from 32ym to 100um,
consistent with the previous model. The layer count is set to 1000,
and the alpha value is adjusted to improve the model’s accuracy.

4.3.3  Evaluation. To enhance the reliability and accuracy of our
machine learning models for 2.5D design predictions, we imple-
ment a comprehensive evaluation strategy. This includes not only
assessing R2 scores but also conducting practical tests through in-
terpolation and extrapolation at some bump pitches, such as 36.5um
and 45um. By comparing the models’ predictions against actual
metrics from implemented designs, we can adjust the fitting of
the models to minimize discrepancies. This methodology ensures
that our models are both robust within training dataset and practi-
cally applicable in complex 2.5D design environments. In our study,
when using 36.5ym and 45pum as an evaluation bump pitch, our
models achieve an average R2 score of 0.88, with mean relative
errors of 1.99% for interpolation and 2.92% for extrapolation as
demonstrated in Table 4. This underscores the models’ predictive
accuracy and their capacity to adapt to diverse scenarios outside of
training dataset, which is critical for bump pitch optimization.

4.4 Optimization Method

Based on the prediction model, we propose a method for identifying
the most optimal bump pitch. Bayesian optimization is utilized to
accomplish this goal once an objective function has been defined.

4.4.1 Objective Function. The objective function is created by nor-
malizing each metric, dividing it by the maximum value. The nor-
malized result is subsequently transformed into a scalar value
through a weighted sum method, in which metrics with compara-
ble impacts are combined into a single weight. Furthermore, if a

decrease in metric results in an improvement, such as area or wire
length, the negative weight is applied. As a result, based on the
"react" in Table 4, five crucial weight variables is constructed, which
together constitute an expression shown in Eq. 1. The variables in
this function are defined as follows: «a represents the area, ff repre-
sents the wire length, y represents the SI, § represents the P, and
€ represents the thermal weight. The function takes into account
various metrics, such as Chiplet Area (A), Interposer Footprint (IF),
Total Wirelength (TW), Maximum Wirelength (MW), Eye Height
(EH), Eye Width (EW), PDN Impedance (PDI), Logic Temperature
(LT), Memory Temperature (MT), and Interposer Temperature (IT).

A IF W MwW
f=-«a +— |- P+
Amax IFmax TWmax MWmax
EH EwW PDI
+y + -5 (1)
EHmax EWmax PDImax

( LT MT IT )
—¢ + +
LTmaX M Tmax I Tmax

4.4.2 Optimization Methodology. Utilizing the objective function,
we employ Bayesian optimization. Bayesian optimization is known
to be particularly beneficial in cases where the precise objective
function is unknown, but can obtain samples of the objective func-
tion value at specific points [8]. In a similar vein, we cannot repre-
sent the exact expression of the objective function in terms of the
bump pitch we established in the previous section, but we know the
value of the function at a particular bump pitch from the output of
the prediction model. Thus, we make use of Bayesian optimization,
the most advantageous method of optimization for our specific
problem. Furthermore, by employing a variable weight and allow-
ing the user to determine the weight of the objective function, we
can identify a bump pitch that satisfies a particular design objective.

5 EXPERIMENTAL RESULT AND DISCUSSION

We perform the optimization process and validated the accuracy of
both the prediction model and optimization results by implementing
them in the actual design. Python is utilized for implementing both
the prediction model and optimization. In Section 5.1 and Section
5.2, we present and discuss the time taken for data construction
and for training and inferencing. In Section 5.3, we scrutinize the
outcomes of executing the optimization process using two distinct
weight arrangements. Section 5.4 utilizes the optimal bump pitch
values determined by the optimizer to conduct the actual design
and verify the accuracy of the prediction model. Finally, in Section
5.5, we compare the two actual designs and demonstrate that the
optimization functions as intended.

5.1 Dataset Construction

Table 6 presents the time commitments required for the dataset, as
outlined in Section 4.2. We develop the training dataset by adjusting
the bump pitch between 32um and 40pm. Specifically, the chiplet
design process requires about 3 hours, while the interposer layout
design which provides footprint and wirelength data takes approxi-
mately 4 hours. More time-consuming are the analyses for the eye
diagram, PDN impedance, and maximum temperature, which take
12, 7, and 15 hours, respectively. As discussed in Section 4.2, our



Table 7: AI-driven optimization results under two different goals. Our database covers pitch values in [32um, 40um] with 1Tum

increment. We also show the model accuracy against the actual designs for the two optimized solutions.

Area+WL+SI-driven optimization PI+Thermal-driven optimization

(pitch chosen=38.5um, interpolation) (pitch chosen=43um, extrapolation)
Metric Model R2 | Predicted Actual Abs.Err. Rel. Err. | Predicted Actual Abs. Err. Rel. Err.
Logic Area (;lmz) Linear 1.00 904.19 904.75 0.56 0.06% 1009.34 1010.50 1.16 0.11%
Mem. Area (,umz) Linear 1.00 789.72 789.25 0.47 0.06% 876.00 881.50 5.50 0.62%
Footprint (mmz) Linear 0.96 | 2076.25  2000.00 76.25 3.81% 2302.68  2300.00 2.68 0.12%
Total WL (mm) Elastic  0.96 818.00 830.98 12.98 1.56% 867.08 889.34 22.26 2.50%
Max WL (mm) Linear 0.91 3.06 2.92 0.14 4.79% 3.31 3.19 0.12 3.76%
Eye Height (ns) MLP  0.86 0.39 0.37 0.02 6.25% 0.33 0.32 0.01 2.17%
Eye Width (V) MLP 0.78 1.02 0.99 0.03 3.04% 0.90 0.89 0.02 1.80%
PDN Impd. (Q) MLP 0.72 8.47 8.94 0.47 5.30% 6.45 6.77 0.32 4.69%
Logic Temp. (°C) | MLP  0.90 32.11 30.74 1.37 4.47% 27.82 29.82 2.00 6.69%
Mem. Temp. (°C) | MLP  0.87 25.62 25.62 0.00 0.01% 24.74 24.81 0.07 0.28%
Int. Temp. (°C) MLP 0.84 29.47 29.52 0.05 0.18% 26.01 27.96 1.95 6.96%
Average - 0.88 - - - 2.69% - - - 2.70%

Table 8: Full-chip comparison between the two optimal solu-
tions from Table 7.

small large whois %

pitch  pitch Dbetter? gain
Logic Area (um?) 904.75 1010.50 small 10.47%
Memory Area (um?) 789.25 88150 small 10.47%
Footprint (mm?) 2000 2300  small 13.04%
Total WL (mm) 830.98 889.34 small 6.56%
Max WL (mm) 2.92 3.19 small  8.46%
Eye Height (ns) 0.37 0.32 small  14.29%
Eye Width (V) 0.99 0.89 small  11.27%
PDN Impedance (Q) 8.94 6.77 large  24.28%
Logic Temp. (°C) 30.74  29.82 large  3.00%
Memory Temp. (°C) 25.62  24.81 large  3.17%
Interposer Temp. (°C) | 29.52 27.96 large  5.28%
Average Imprv. 10.65% 8.94% - -

strategy has been to focus on developing a representative dataset
for 2.5D designs, while supporting the accurate prediction models.

5.2 AI Model Training and Inferencing

As demonstrated in Table 6, although the construction of the dataset
is time-consuming, the training and inferencing of our models are
remarkably swift, each taking only several minutes. This efficiency
is largely due to the small size of our dataset. As mentioned in
Section 4.3, we strategically choose machine learning models and
validate their effectiveness through interpolation and extrapola-
tion to overcome the potential accuracy issue. associated with a
small dataset. As a result, this ensures that models deliver reliable
performance despite the inherent constraints of the dataset.

5.3 Pitch Optimization Results

We conduct two weight configurations and derive the optimal bump
pitch, utilizing optimization methods. Table 7 illustrates the cor-
relation between bump pitch size and area, wirelength, and eye
diagram metrics. A reduction in bump pitch size generally results in

enhancements in these metrics, while PDN impedance and temper-
ature tend to worsen. An ideal optimizer should be able to prioritize
one of two sides and achieve desired optimization. Therefore, we
validate two scenarios: 1) area, wirelength, and eye diagram-driven,
and 2) PDN impedance and temperature-driven optimization. In
the former scenario, we assign the weights « (Area), f (wire length),
and y (SI) a value of 2, while the weights § (PI) and e (Thermal)
were assigned a value of 1. In contrast, for the later scenario, we
assign a value of 3.5 to § and €, while assigning a value of 1 to a, f,
and y. Consequently, we assign a weight of 75% to a selected set
of metrics for each case. The optimization range is delimited from
32pm to 100um, aligning with the input range of the prediction
model. Moreover, the total number of iterations is set at 50, with
an initial point of 5. Consequently, the optimizer suggests a bump
pitch of 38.5um as the optimal point for area, wirelength, and eye
diagram, while a bump pitch of 43um is chosen for PDN impedance
and temperature-driven optimization.

5.4

Based on the derived optimum bump pitch, the actual design is
carried out and analyzed as shown in Fig. 8. Also, the prediction
error is calculated by comparing the analyzed results with the
predicted values as indicated in the Table 7. The area, wirelength,
and eye diagram-driven optimization yield a value of 38.5um, which
is in the range of 32ym and 40pm in the training dataset. Hence,
this value falls under interpolation. Conversely, PDN impedance
and temperature-driven optimization yields a bump pitch of 43um,
which falls into the category of extrapolation. Consequently, we
evaluate the model’s performance in terms of both interpolation and
extrapolation. the interpolation displays an average error of 2.69%,
while the extrapolation exhibits an average error of 2.7%. Overall,
the errors deem to be small in both cases, suggesting a high accuracy
of the prediction model. Furthermore, the outcome demonstrates
the validity of our design process and the methodology employed
in generating the training dataset.

Model Accuracy Evaluation
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Figure 8: Actual design for optimum bump pitches: (a) chiplet and (b) interposer layout, (c) the worst eye diagram, (d) PDN

impedance, and (e) thermal distribution.

5.5 Design Validation of Optimized Parameters

The validation of the optimization method is conducted by com-
paring the actual analysis results. Table 8 illustrates the extent of
improvement when comparing the actual analysis results with their
counterparts. For a bump pitch of 38.5um, there is a 10% decrease
in area, a 13% decrease in interposer footprint, a 7% decrease in
total wirelength, and an 8% decrease in maximum wirelength com-
pared to 43um. From a SI perspective, we observe a 14% increase
in eye height and an 11% increase in eye width. Conversely, 43ym
demonstrates a 24% improvement in PDN impedance compared
to 38.5um. Logic, memory, and interposer temperatures show im-
provements of 3%, 3%, and 6%, respectively. Consequently, area,
wire length, and signal integrity-driven optimization results in an
average improvement of 11%, while power and thermal integrity-
driven optimization yields an average improvement of 9%. Thus,
this demonstrates that our proposed optimization method offers an
optimal bump pitch that satisfies the design objective.

6 CONCLUSION

We present a novel machine learning-based framework for predict-
ing and optimizing the sensitivity of 2.5D parameters, focusing
specifically on bump pitch. By leveraging our efficient 2.5D design
and analysis flow for sensitivity exploration, we develop machine
learning models to predict key metrics such as area, wire length, eye
diagram, PDN impedance, and temperature. Our framework also
includes an optimization method to determine the optimal bump
pitch for specific design objectives. Experimental results show that
our models achieve high accuracy, with a relative error of about
2.7%, and demonstrate strong optimization performance.

ACKNOWLEDGEMENTS

This work was supported by the Semiconductor Research Corpora-
tion (CHIMES 3136.002), the Ministry of Trade, Industry & Energy
of South Korea (1415187652, RS-2023-00234159), and the National
Science Foundation (CNS-2235398).



REFERENCES

(1]

(3]

Pruek Vanna-Tampikul, Lingjun Zhu, Serhat Erdogan, Mohanalingam Kathape-
rumal, Ravi Agarwal, Ram Gupta, Kevin Rinebold, and Sung Kyu Lim. Glass
interposer integration of logic and memory chiplets: Ppa and power/signal in-
tegrity benefits. In 2023 60th ACM/IEEE Design Automation Conference (DAC),
pages 1-6, 2023.

Jinwoo Kim, Gauthaman Murali, Heechun Park, Eric Qin, Hyoukjun Kwon,
Venkata Chaitanya Krishna Chekuri, Nael Mizanur Rahman, Nihar Dasari, Arvind
Singh, Minah Lee, Hakki Mert Torun, Kallol Roy, Madhavan Swaminathan, Saibal
Mukhopadhyay, Tushar Krishna, and Sung Kyu Lim. Architecture, chip, and
package codesign flow for interposer-based 2.5-d chiplet integration enabling
heterogeneous ip reuse. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 28(11):2424-2437, 2020.

Xin Zheng, Mingjun Cheng, Jiasong Chen, Huaien Gao, Xiaoming Xiong, and
Shuting Cai. Bsse: Design space exploration on the boom with semi-supervised
learning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pages
1-10, 2024.

Gauthaman Murali, Aditya Iyer, Navneeth Ravichandran, and Sung Kyu Lim.
3dnn-xplorer: A machine learning framework for design space exploration of

heterogeneous 3d dnn accelerators. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pages 1-9, 2023.

Kaniz Mishty and Mehdi Sadi. System and design technology co-optimization of
chiplet-based ai accelerator with machine learning. In Proceedings of the Great
Lakes Symposium on VLSI 2023, GLSVLSI 23, page 697-702, New York, NY, USA,
2023. Association for Computing Machinery.

Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yangi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
Matthew Matl, and David Wentzlaff. Openpiton: An open source manycore
research framework. SIGPLAN Not., 51(4):217-232, mar 2016.

Raghunandan Chaware, Kumar Nagarajan, and Suresh Ramalingam. Assembly
and reliability challenges in 3d integration of 28nm fpga die on a large high density
65nm passive interposer. In 2012 IEEE 62nd Electronic Components and Technology
Conference, pages 279-283, 2012.

Jakang Lee, Jaeseung Lee, Seonghyeon Park, and Seokhyeong Kang. Multi-source
transfer learning for design technology co-optimization. In 2023 IEEE/ACM In-
ternational Symposium on Low Power Electronics and Design (ISLPED), pages 1-6,
2023.



	Abstract
	1 Introduction
	2 Design Flow and Benchmark
	2.1 Proposed Design and Analysis Flow
	2.2 Benchmark Architecture

	3 Interposer Technology Specs
	3.1 Geometries and Material Properties
	3.2 Why Bump Pitch Sensitivity?

	4 Proposed AI Framework
	4.1 Overview
	4.2 Training Dataset
	4.3 Prediction Models
	4.4 Optimization Method

	5 Experimental Result and Discussion
	5.1 Dataset Construction
	5.2 AI Model Training and Inferencing
	5.3 Pitch Optimization Results
	5.4 Model Accuracy Evaluation
	5.5 Design Validation of Optimized Parameters

	6 Conclusion
	References

