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Abstract

Synchrotron observation serves as a tool for studying magnetic fields in the interstellar medium and intracluster
medium, yet its ability to unveil three-dimensional (3D) magnetic fields, meaning probing the field’s plane-of-the-
sky (POS) orientation, inclination angle relative to the line of sight, and magnetization from one observational data,
remains largely underexplored. Inspired by the latest insights into anisotropic magnetohydrodynamic (MHD)
turbulence, we found that synchrotron emission’s intensity structures inherently reflect this anisotropy, providing
crucial information to aid in 3D magnetic field studies: (i) the structure’s elongation gives the magnetic field’s POS
orientation and (ii) the structure’s anisotropy degree and topology reveal the inclination angle and magnetization.
Capitalizing on this foundation, we integrate a machine learning approach—convolutional neural network (CNN)
—to extract this latent information, thereby facilitating the exploration of 3D magnetic fields. The model is trained
on synthetic synchrotron emission maps, derived from 3D MHD turbulence simulations encompassing a range of
sub-Alfvénic to super-Alfvénic conditions. We show that the CNN is physically interpretable and the CNN is
capable of obtaining the POS orientation, inclination angle, and magnetization. Additionally, we test the CNN
against the noise effect and the missing low-spatial frequency. We show that this CNN-based approach maintains a
high degree of robustness even when only high-spatial frequencies are maintained. This renders the method
particularly suitable for application to interferometric data lacking single-dish measurements. We applied this
trained CNN to the synchrotron observations of a diffuse region. The CNN-predicted POS magnetic field
orientation shows a statistical agreement with that derived from synchrotron polarization.

Unified Astronomy Thesaurus concepts: Interstellar magnetic fields (845); Interstellar synchrotron emission (856);
Magnetohydrodynamics (1964); Convolutional neural networks (1938)

1. Introduction

Synchrotron radiation, emanating from relativistic electrons
gyrating around magnetic field lines (G. B. Rybicki & A. P. Lig-
htman 1979; J. J. Condon 1992), is a probe of magnetic fields in
interstellar medium (ISM) and intracluster medium (ICM)
(V. L. Ginzburg & S. I. Syrovatskii 1965; X. H. Sun et al.
2008; Planck Collaboration et al. 2016a; F. Govoni et al. 2019;
Y. Hu et al. 2020, 2024b; R.-Y. Wang et al. 2020; I. Heywood
et al. 2022). This radiation not only facilitates the estimation of
magnetic field strengths at equipartition (R. A. Chevalier &
D. Luo 1994; T. G. Arshakian et al. 2009; F. Yusef-Zadeh et al.
2022, 2024), which is pivotal for elucidating cosmic-ray
acceleration mechanisms (J. R. Jokipii 1966; A. R. Bell 1978;
A. M. Bykov et al. 2012; A. Bonafede et al. 2014; D. Caprioli &
A. Spitkovsky 2014; S. Xu & A. Lazarian 2022; S. Xu 2022), but
it also allows the determination of magnetic field orientations
(R. Beck 2001, 2015; Planck Collaboration et al. 2016a;
J.-F. Zhang et al. 2019a; Y. Guan et al. 2021). This is crucial
for understanding different physics across scales, from large-scale
galaxy clusters (F. Govoni & L. Feretti 2004; G. Brunetti &
T. W. Jones 2014; C. Stuardi et al. 2021; Y. Hu et al. 2024b),
galaxies (R. Beck 2001, 2015; L. N. Tram et al. 2023) to small-

scale individual supernova remnants (I. S. McLean et al. 1983;
L. Xiao et al. 2008, 2009; S. P. Reynolds et al. 2012). Despite its
critical role, our comprehension of synchrotron radiation and the
magnetic field insights it can offer is still evolving.
Extracting three-dimensional (3D) magnetic field informa-

tion from synchrotron radiation poses a substantial challenge.
Polarized synchrotron emission offers two-dimensional (2D)
insights into the magnetic field orientation within the plane of
the sky (POS; G. B. Rybicki & A. P. Lightman 1979;
I. S. McLean et al. 1983; R. Beck 2001; L. Xiao et al. 2009;
S. P. Reynolds et al. 2012; R. Beck 2015; Planck Collaboration
et al. 2016a; J.-F. Zhang et al. 2019a; Y. Guan et al. 2021), but
it cannot directly probe the POS direction and the inclination
angle of the magnetic field relative to the line of sight (LOS).
The scenario is further complicated by the Faraday rotation
effect, which alters the intrinsic polarization angle of the
emission sources (M. Haverkorn 2007; A. R. Taylor et al.
2009; N. Oppermann et al. 2012; S. Xu & B. Zhang 2016;
M. Tahani et al. 2019). Consequently, not only is accurately
measuring the POS magnetic field from synchrotron polariza-
tion challenging, but tracing the actual 3D magnetic field
structure becomes a formidable task.
Recent advancements have unlocked the potential of using

anisotropy in synchrotron radiation to trace 3D magnetic fields
(i.e., determining the POS orientation, inclination angle, and
magnetization simultaneously). The theory that relates the
anisotropy of synchrotron radiation with the properties of
magnetohydrodynamic (MHD) turbulence (P. Goldreich &
S. Sridhar 1995; A. Lazarian & E. T. Vishniac 1999) was
formulated in A. Lazarian & D. Pogosyan (2012). The
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anisotropy means the observed synchrotron intensity structures
tend to elongate along the magnetic field lines intersecting
them. The elongation therefore can be used as a probe of the
magnetic field orientation. Based on this property, A. Lazarian
et al. (2017) introduced the synchrotron intensity gradients
(SIG) technique to trace the POS magnetic field orientation
(A. Lazarian et al. 2017; Y. Hu et al. 2024b). The technique
was demonstrated to be applicable (with an uncertainty of less
than 8°) for application under both sub-Alfvénic and super-
Alfvénic conditions, notably within galaxy clusters, as
demonstrated by Y. Hu et al. (2024b). Crucially, subsequent
research by Y. Hu et al. (2021a) and Y. Hu et al. (2024a) has
shown that the observed anisotropy in the POS contains
information on the underlying 3D magnetic field structures.
This insight stems from the fact that the anisotropy, or
elongation along the magnetic field line, is inherently a 3D
phenomenon. Therefore, the observed POS anisotropy of
synchrotron intensity structures is influenced by the projection
effect, which is determined by the field’s inclination angle and
the magnetization4 level of the medium.

Given these theoretical considerations, the observed struc-
ture of synchrotron emission intrinsically encompasses infor-
mation pertinent to 3D magnetic fields. In this study, we
propose the employment of a machine learning paradigm—

specifically, convolutional neural networks (CNNs; Y. LeCun
et al. 1998)—to extract spatial features within the synchrotron
intensity maps, thereby facilitating the measurement of 3D
magnetic fields. This includes determining the orientation of
the magnetic field within the POS, ascertaining the magnetic
field’s inclination angle, and assessing the overall magnetiza-
tion. A similar method employing CNNs for 3D magnetic field
tracing has been previously proposed by Y. Hu et al. (2024a),
affirming the CNN’s capability to identify magnetic-field-
specific spatial features from spectroscopic data, thereby
yielding precise measurements in star-forming regions. The
physical conditions for these regions correspond to supersonic
cold gas, which contrasts subsonic warm/hot gas in typical
synchrotron-emitting regions. This work aims to extend the
CNN method to trace the 3D magnetic field in diffuse
synchrotron-emitting regions, opening a new way of using
vast data sets of diffuse synchrotron emission to get
information unavailable through a traditional synchrotron data
analysis.

Crucially, our approach transcends mere algorithmic appli-
cation; we aim to understand which synchrotron intensity
features are indicative of magnetic field properties, why these
features are significant, and the fundamental physical principles
they represent. This strategy not only deepens our under-
standing of CNN’s efficacy in producing 3D magnetic field
mappings but also the relation between observed synchrotron
structures and magnetic field properties. For the CNN training,
we utilize 3D MHD subsonic simulations that encompass a
range of magnetization levels, ranging from sub-Alfvénic
conditions (i.e., strong magnetic fields), through trans-Alfvénic
to super-Alfvénic scenarios (i.e., weak magnetic fields). These
simulations are subsequently post-processed to create synthetic
synchrotron observations. The use of synthetic observations in
our study is crucial due to the inherent limitations of current
observational data in providing 3D magnetic field information.

Synthetic observations allow us to validate our technique under
controlled conditions where the magnetic field structure is
known prior.
This paper is organized as follows. In Section 2, we outline

the fundamental aspects of MHD turbulence anisotropy
observed in synchrotron emissions and their association with
3D magnetic field orientation and overall magnetization.
Section 3 provides a description of the 3D MHD simulations
and the synthetic observations utilized in this study, alongside
details of our CNN model. In Section 4, we present the results
of our numerical testing and observational application.
Section 5 delves into discussions surrounding the uncertainties
and future prospects of employing machine learning techniques
for astrophysical analysis. We conclude with a summary of our
findings in Section 6.

2. Theoretical Consideration

2.1. Anisotropy in MHD Turbulence

A significant advancement in our understanding of MHD
turbulence was the introduction of the “critical balance”
condition, equating the cascading time, ( )k vl 1d^

- , with the
wave periods, ( )k vA 1- , as proposed by P. Goldreich & S. Sri-
dhar (1995, hereafter GS95). Here, k∥ and k⊥ denote the
components of the wavevector parallel and perpendicular to the
magnetic field, respectively. The term δvl refers to the turbulent
velocity at scale l, and v B 4A pr= represents the Alfvén
speed, where B is the magnetic field strength and ρ is the gas
mass density. It is essential to note that GS95ʼs analysis is
grounded in a global reference frame, wherein the orientation
of wavevectors is defined relative to the mean magnetic field.
A. Lazarian & E. T. Vishniac (1999, hereafter LV99)

subsequently demonstrated that the “critical balance” condition
only holds in a local reference frame, defined relative to the
magnetic field intersecting an eddy at scale l. According
to LV99, the process of turbulent reconnection of the magnetic
field,5 occurring within one eddy turnover time, facilitates the
mixing of magnetic field lines perpendicular to the magnetic
field’s orientation. This mixing induces changes in fluid
velocities perpendicular to the local magnetic field lines,
ensuring that the motion of eddies sized l⊥ and oriented
perpendicular to the local magnetic field direction is dominant.
This implies that the perpendicular direction constitutes the
direction of minimal resistance to turbulent cascading. These
unopposed by magnetic forces eddies induce the the Kolmo-
gorov-type cascade.
Considering the critical balance condition in the local

reference frame, v vl ll,
1

A
1d ~^ ^

- - and the Kolmogorov relation

in the strong turbulence regime (i.e., ( )v v Ml
l

L,

1 3

inj A
1 3

inj
d d=^

^ ,

where δvinj is the injection velocity at injection scale Linj and
δvl,⊥ is turbulent velocity along the direction perpendicular to
the magnetic field at scale l), one can get the scale-dependent
anisotropy scaling (LV99):

( )⎜ ⎟
⎛

⎝

⎞

⎠
l L

l

L
M M, 1, 1inj

inj
A
4 3

A

2
3

= ^ - 

4 Magnetization is defined as 1/MA, where MA is the Alfvén Mach number.
Large MA suggests a relatively weak magnetic field, thereby a weak
magnetization.

5 Note that reconnection happens not just at a specific scale and phase, but
everywhere the magnetic field lines get intersected. Turbulence induces
fluctuations in field lines, so reconnection happens in 3D volume.
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3

d d=^
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where l⊥ and l∥ represent the perpendicular and parallel scales
of eddies with respect to the local magnetic field, respectively.
MA= δvinj/vA is the Alfvén Mach number. This scaling
relation has been demonstrated by numerical simulations
(J. Cho & E. T. Vishniac 2000; J. Maron & P. Goldre-
ich 2001; J. Cho & A. Lazarian 2003; G. Kowal & A. Lazar-
ian 2010; Y. Hu et al. 2021b, 2022c, 2024c) and in situ
measurements in the solar wind (X. Wang et al. 2016;
L. Matteini et al. 2020; D. Duan et al. 2021; S. Zhao et al.
2024).

Equation (2) provides the scaling relation for velocity
fluctuations and reveals the anisotropic nature of turbulent
eddies (i.e., l∥? l⊥). In other words, the perpendicular velocity
fluctuation is more significant than the parallel fluctuations at
the same scale (Y. Hu et al. 2021b). The relationships for
density and magnetic field fluctuations can also be derived
using the linearized continuity and induction equations,
considering the components as a sum of their mean and
fluctuating parts: ρ= ρ0+ δρl, v= v0+ δvl, and B=B0+ δBl,
where ρ0 and B0 denote the mean density and mean magnetic
field strength, while the mean velocity field v0= 0 (J. Cho &
A. Lazarian 2003). The equations in Fourier space are

· ( )k v , 3k k0wdr r d=

( ) ( )B k B v , 4k k0wd d= ´ ´

in which the dispersion relation for Alfvénic turbulence is
ω/k= vA. Considering the displacement vector ξ, where the
time derivative of ξ gives the velocity vector ˆvt vx x¶ ¶ = = ,
we obtain

(∣ ˆ · ˆ∣) ( )kv
v

, 5l l
0

A

1 xdr d
r

= -

(∣ ˆ ˆ∣) ( )BB v
B

v
, 6l l

0

A

1
0 xd d= ´-

where k̂ and x̂ represent the unit wavevector and displacement
vector, respectively. 1- denotes the inverse Fourier transform.
The density and magnetic field fluctuations induced by
turbulence are proportional to the velocity fluctuations and
dominated by their perpendicular components.

In addition to the anisotropy, the topology of magnetic field
lines is regulated by the magnetization. Within a domain of
strong magnetization, magnetic field lines exhibit minimal
deviation attributed to subdued fluctuations, resulting in
predominantly straightened topology. In contrast, a weaker
magnetic field, signified by a higher MA, is associated with
stronger orientation fluctuations in the magnetic field. This
enhancement leads to field lines adopting more curved
formations (K. H. Yuen & A. Lazarian 2020). Together with
Equation (2), we have three important properties of MHD
turbulence (Y. Hu et al. 2024a):

1. Turbulent eddies predominantly stretch along the local
magnetic field (i.e., l∥? l⊥), underscoring an anisotropy
in velocity, density, and magnetic field structures.

2. The degree of anisotropy, quantified as l∥/l⊥, is
intricately linked to the magnetization, represented
by MA

1- .

3. Difference in magnetization manifests distinctively in the
magnetic field topology.

Note that for super-Alfvénic scenarios where MA? 1,
turbulence approaches isotropy, dominated by hydrodynamic
turbulence. However, turbulence cascades energy from larger
injection scales down to smaller scales and progressively
diminishes turbulent velocity. Assuming Kolmogorov turbu-
lence, the magnetic field’s energy approaches that of turbulence
(i.e., the Alfvén Mach number becomes unity) at the transition
scale lA, which can be derived from (see A. Lazarian 2006)

( )

⎜ ⎟
⎛

⎝

⎞

⎠

l

L
v B

l L M

1

2

1

8
,

, 7

A

inj

2 3

inj
2 2

A inj A
3

r d
p

=

=

below which the magnetic field’s role becomes important and
the anisotropy can be observed (see Equation (2)).

2.2. Anisotropy in Synchrotron Emission

The intrinsic relationship between synchrotron emission and
the density of relativistic electrons and magnetic fields (see
Equation (10)) ensures that the anisotropy and magnetic field
topology are naturally encoded in the observed synchrotron
intensity structure. The observed intensity I(x, y) is expressed
as (A. G. Pacholczyk 1970; G. B. Rybicki & A. P. Light-
man 1986; H. Lee et al. 2016)

( ) ( ) ( )I x y j j dz, , 8òµ +^

where j⊥ and j∥ denote synchrotron emissivities perpendicular
and parallel to the POS magnetic field, respectively. Further
expansion of j⊥ and j∥ reveals the intrinsic synchrotron
emission Ii(x, y, z)= j⊥+ j∥, as follows:

( ) ( ) ( )I x y z n B B B, , , 9i e x y
2 2µ + a

^

where B B Bx y
2 2= +^ represents the magnetic field comp-

onent perpendicular to the LOS, with Bx and By as its x and y
components, respectively. ne indicates the relativistic electron
number density and α denotes synchrotron emission index.
As indicated in Equation (6), when describing the density

and magnetic field as a sum of their mean and fluctuating
components, their fluctuations are predominantly perpendicular
to the magnetic field. The expressions in Equation (9) suggest
that fluctuations in synchrotron emission intensity are deter-
mined by these in the magnetic field and density. Other
constant factors are not explicitly detailed in Equation (9), as
they do not alter the characteristics of these fluctuations.
Consequently, the fluctuations in Ii exhibit pronounced
anisotropy, showing more significant fluctuations perpendicular
to the magnetic field.
This anisotropy implies that the contours of synchrotron

intensity, as illustrated in Figure 1, are elongating along the
magnetic fields. The elongation in the projected intensity
structure unveils the orientation of the POS magnetic field,
while more information is needed to infer the POS direction.
Projection effect. The observed synchrotron intensity is

subject to the projection along the LOS. The projection effect
changes the observed anisotropy degree, defined as l∥/l⊥. As
shown in Figure 1, a large inclination angle of the magnetic
field indicates a weak projection effect, resulting in a larger
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l∥/l⊥ ratio. Conversely, a small inclination angle reduces the
parallel scale l∥, thus diminishing the anisotropy degree.
Therefore, the observed anisotropy degree provides insights
into the magnetic fieldʼs inclination angle.

Additionally, fluctuations cause the magnetic field lines to
exhibit curvature, which is naturally mirrored in the elongation
of synchrotron structures along these curved fields within the
3D spatial space. However, both the observed curvature of the
magnetic field lines and the elongation of these structures on
the POS are also influenced by the projection effect, providing
further insights into the magnetic fieldʼs inclination angle.
Magnetization effect. The degree of observed anisotropy is

affected not only by projection effects but also by the medium’s
magnetization. A higher degree of anisotropy in the intensity
structure is more pronounced in environments with strong
magnetization, while weaker magnetization not only reduces
the anisotropy but also leads to more pronounced curvature in
both the magnetic field and the corresponding intensity
structure. Thus, understanding the anisotropy degree, along
with the topology of the projected intensity structure, offers
valuable information on both the magnetization and the
inclination angle.

3. Numerical Method

3.1. CNN

3.1.1. CNN Architecture

To construct a deep neural network (Y. LeCun et al. 1998) to
trace the 3D magnetic field from a synchrotron emission map,
we adopt a CNN architecture similar to that used in Y. Hu et al.
(2024a). The CNN architecture, as illustrated in Figure 2,
consists of initial layers comprising a stack of convolutional
layers followed by pooling and dropout layers. To facilitate

faster convergence during the network training process using
backpropagation of the loss and enhance the learning stability,
we introduce a batch normalization layer following each
convolution layer. After several iterations of convolution and
pooling layers, we extract a compressed image feature, which is
then processed by the fully connected layers to predict the
desired properties. A detailed discussion of each layer’s
function is given in Y. Hu et al. (2024a). Such a CNN
architecture has been proven to be applicable in tracing 3D
magnetic fields using spectroscopic observations. The median
uncertainties are under 5° for both POS and inclination angles
and less than 0.2 for MA in sub-Alfvénic conditions. Compared
with Y. Hu et al. (2024a), our CNN architecture uses fewer
convolutional layers, accelerating the training process with less
computational time.

3.1.2. Network Training

The trainable parameters within the CNN are optimized
following a conventional neural network training approach,
where the mean-squared error of the 3D magnetic field
prediction acts as the training loss for backpropagation. This
methodology is grounded in the foundational principles
established by D. E. Rumelhart et al. (1986).
Random cropping. To bolster the CNN model’s ability to

generalize, our training strategy includes diversifying the
training data set through data augmentation (D. A. van Dyk
& X.-L. Meng 2001). One effective technique is random
cropping (R. Takahashi et al. 2018), which involves generating
smaller patches of size 22× 22 cells from the input images.
This approach not only expands the data set but also introduces
a variety of perspectives within the data, thereby enhancing the
modelʼs exposure to different features present in the synchro-
tron emission maps. The size of 22× 22 cells is chosen to

Figure 1. An Illustration of how the observed synchrotron intensity structures are regulated by the Alfvén Mach number MA and inclination angle γ. Within all three
panels, these intensity structures elongate along the POS magnetic field where l∥ > l⊥. Structures 1 and 2, depicted in panels (a) and (b) are projected onto the POS
with identical inclination angles γ1 = γ2, yet exhibit different magnetization with M MA,1

1
A,2
1>- - . Notably, the anisotropy observed, represented as l∥/l⊥, in the weakly

magnetized Structure 2 is less pronounced than in Structure 1. Structure 2 is less straightened because the weak magnetic field has more fluctuations. Comparatively,
Structures 1 and 3—showcased in panels (a) and (c)—possess equivalent magnetization M MA,1

1
A,3
1=- - , but divergent inclination angles with γ1 > γ3. The observed

anisotropy decreases with smaller γ, though it is crucial to note that the straightness of Structure 3 remains unaffected by this projection. Modified from Y. Hu et al.
(2024a).

4

The Astrophysical Journal, 975:66 (12pp), 2024 November 1 Hu & Lazarian



avoid numerical dissipation of turbulence and achieve a high-
resolution measurement. As shown in Appendix A, the size
does not affect the CNN’s accuracy after sufficient training, but
training large patches is more computationally expensive.

Random rotation. Additionally, images lack rotational
invariance from the perspective of the computational model.
Each image cell corresponds to an element in a matrix, and
rotating an image alters the matrix’s element arrangement,
presenting the image as novel data to the model (H. Larochelle
et al. 2007). This characteristic is exploited in two ways: first,
by randomly rotating the 22× 22 cell patches to further
augment the training data set, and second, by leveraging the
original, unrotated data sets for validation, simulating a
prediction test scenario.

These augmentation strategies enrich the training data set with
diversity and randomness (D. A. van Dyk & X.-L. Meng 2001),
which are crucial for refining CNN’s predictive accuracy and
generalization across different physical conditions.

3.2. MHD Simulations

The MHD numerical simulations presented in this study
were generated from the ZEUS-MP/3D and AthenaK codes, as
detailed by J. C. Hayes et al. (2006) and J. M. Stone et al.
(2020), respectively. We executed an isothermal simulation of
MHD turbulence, employing the ideal MHD equations within
an Eulerian framework, complemented by periodic boundary
conditions. Kinetic energy injection was solenoidally applied at
wavenumber 2 to emulate a Kolmogorov-like power spectrum.
The turbulence was actively driven until achieving a state of
statistical equilibrium. The computational domain was dis-
cretized into a 7923 cell grid, with numerical dissipation of
turbulence occurring at scales between approximately 10 and
20 cells. See Y. Hu et al. (2024c) for more details.

Initial conditions for the simulations featured a uniform
density field and a magnetic field oriented along the y-axis. The
simulation cubes were subsequently rotated to align the mean
magnetic field inclination with respect to the LOS, or the z-axis,
at angles of 90°, 60°, and 30°, respectively. Characterization of
the scale-free turbulence within the simulations was achieved
through the sonic Mach number, Ms= δvinj/cs, and the
Alfvénic Mach number, MA= δvinj/vA. To explore various
physical scenarios, the initial density and magnetic field
settings were adjusted, producing a range of MA and Ms

values. The simulations are referenced throughout this paper by
their designated model names or key parameters, as enumerated
in Table 1.

3.3. Synthetic Synchrotron Observation

To generate a synthetic synchrotron observation from our
simulations, we utilize the density field, ρ(x), and the magnetic
field, B(x), where x= (x, y, z) denotes the spatial coordinates.
The calculation for synchrotron intensity I(x, y) follows
(A. G. Pacholczyk 1970; G. B. Rybicki & A. P. Light-
man 1986; H. Lee et al. 2016)

( ) ( ) ( )I x y n B B B dz, , 10e x y
2 2ò= + a

^

where ne= ρ(x) is the density of relativistic electrons.
Compared with the original definition given in A. G. Pacholc-
zyk (1970), G. B. Rybicki & A. P. Lightman (1986), and
H. Lee et al. (2016), the wavelength-dependent term, as well as
other constant factors, are ignored since it does not change the
properties of the fluctuations in a scale-free MHD turbulence
simulation.
Considering the anisotropy in synchrotron emission is

relatively insensitive to the electron energy distribution’s
spectral index (A. Lazarian & D. Pogosyan 2012; J.-F. Zhang
et al. 2019b), we assume a homogeneous and isotropic electron
energy distribution N(E)dE= N0E

− pdE with a spectral index
p= 3, where N0 is the pre-factor of the electron distribution.
This assumption yields a synchrotron emission index of
α= (p – 3)/4. The magnetic field predicted from CNN using
I(x, y) is insensitive to Faraday rotation. We therefore did not
include the Faraday rotation effect here for comparison
purposes, while in real observations, polarization synchrotron
emission is contaminated by Faraday rotation.

Figure 2. Architecture of the CNN model. The input image is a 22 × 22 cell map cropped from the synchrotron intensity map. The network outputs the prediction of
the magnetic field’s POS orientation angle f, inclination angle γ, or the Alfvén Mach number MA. Modified from Y. Hu et al. (2024a).

Table 1
Ms and MA are the Sonic Mach Number and the Alfvénic Mach Number

Calculated from the Global Injection Velocity, Respectively

Run Ms MA Range of MA
sub Range of Ms

sub Code

Z0 0.66 0.26 0.17–0.36 0.37–0.91 ZEUS-MP
Z1 0.62 0.50 0.26–0.75 0.37–0.89 L
Z2 0.61 0.79 0.38–1.00 0.38–0.82 L
Z3 0.59 1.02 0.42–1.37 0.37–0.80 L
Z4 0.58 1.21 0.49–1.55 0.38–0.82 L

A0 1.21 1.25 0.51–1.56 0.58–1.53 AthenaK

Note. MA
sub and Ms

sub are determined using the local velocity dispersion
calculated along each LOS in a 22 × 22 cells subfield.
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3.4. Training Images

Our training input is the synchrotron intensity map I(x, y)
generated from the ZEUS-MP/3D simulations, while the
AthenaK simulation serves as a validation test. The intensity
map is normalized by its maximum intensity so only
morphological features in the map are the most important.
The 792× 792 cells I(x, y) are randomly segmented into
22× 22 cell subfields for input into the CNN model. For each
subfield, we also generate corresponding projected maps of
fsub, γsub, MA

sub, and Ms
sub as per the following:

( )
( )

( )

( )
( )

( )

( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

x y
B x y z dz

B x y z dz

x y
B x y z dz

B x y z dz

M
v

B

M
v

c

, arctan
, ,

, ,
,

, arccos
, ,

, ,
,

4
,

, 11

y

x

z

sub

sub

A
sub inj
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where B B B Bx y z
2 2 2= + + is the total magnetic field

strength, and Bx, By, and Bz are its x, y, and z components.
〈ρ〉sub and 〈B〉sub are the mass density and magnetic field
strength averaged over the subfield, respectively. MA

sub and
Ms

sub are defined using the local velocity dispersion for each
subfield (i.e., vinj

sub), rather than the global turbulent injection
velocity vinj used to characterize the full simulation. The ranges
of MA

sub and Ms
sub averaged over the subfield in each simulation

with different γ are listed in Table 1, while γsub spans from 0°
to 90°. These values of MA

sub, Ms
sub, and γsub cover typical

physical conditions of diffuse medium.

4. Results

4.1. Numerical Training and Tests

Figure 3 shows how the Alfvénic Mach number (MA) and
the inclination angle (γ) shape the anisotropy within synchro-
tron intensity maps, particularly focusing on local intensity

structures. When MA is small and γ is large, representing a
strong magnetic field and insignificant projection effect, the
intensity structures prominently emerge as narrow strips,
aligning with the POS magnetic fields. With an increase in
MA, corresponding to a weakening in the magnetic field, both
the magnetic field topology and the synchrotron intensity
structures exhibit increased curvature.
On the other hand, small γ suggests a magnetic field

orientation closer to the LOS, diminishing the observed
anisotropy due to projection effects. Consequently, the
elongation along the POS magnetic field becomes less distinct,
indicating a reduced anisotropic degree. Thus, the character-
istics of anisotropic elongation, curvature, and degree within
the intensity structures offer insights into the magnetic fields’
POS orientation, inclination angle, and magnetization (MA

1- ),
respectively.
Figure 4 offers a visual comparison between the actual 3D

magnetic fields from a simulation characterized by 〈MA〉= 0.79,
〈Ms〉= 0.61, and 〈γ〉= 60°, and those predicted by a trained
CNN model. In this figure, the orientation of the POS magnetic
field, represented by the position angle (f), and γ, are visualized,
with the projected MA values depicted through color coding. A
significant observation from this comparison is the congruence
in the orientations of the actual and CNN-predicted 3D magnetic
fields. The predicted MA values, however, are observed to be
marginally higher by approximately 0.1–0.2—compared to the
actual simulation values.
Figure 5 presents 2D histograms of the CNN

predictions—fCNN, γCNN, and MA
CNN-against the actual values

from two distinct test simulations, Z2 (〈MA〉= 0.79,
〈Ms〉= 0.61) and A0 (〈MA〉= 1.25, 〈Ms〉= 1.21). It is
noteworthy that these simulations were generated using
different numerical codes: Z2 by ZEUS-MP/3D (J. C. Hayes
et al. 2006) and A0 by the AthenaK code (J. M. Stone et al.
2020). Importantly, simulation A0, characterized by a higher
Mach number than those included in the CNN training data set,
was not utilized during the training phase. Despite the inherent
differences in the numerical simulations and the turbulence
conditions they represent, the histograms reveal a statistical
concordance between the CNN predictions and the actual
simulation values. The proximity of the data points to the one-
to-one reference line indicates a strong agreement between
predicted and true values, highlighting the CNN model’s
accuracy, albeit with some scatter that reflects deviations from
the actual values.

Figure 3. A numerical illustration of the anisotropy in normalized synchrotron intensity map. The black streamlines represent the POS magnetic field orientation.
Panel (a) 〈MA〉 = 0.26, 〈Ms〉 = 0.66, and 〈γ〉 = 90°. Panel (b) 〈MA〉 = 1.21, 〈Ms〉 = 0.58, and 〈γ〉 = 90°. Panel (c) 〈MA〉 = 0.26, 〈Ms〉 = 0.66, and 〈γ〉 = 30°.
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4.2. Noise Effect

Noise is an inherent challenge in observation that can
potentially influence CNN predictions. To evaluate this effect
comprehensively, we introduce Gaussian noise into the
synchrotron intensity maps used for training the CNN model.
The amplitude of this noise varies, representing 10%, 50%, and
100% of the mean intensity of the maps, corresponding to
signal-to-noise ratios (SNRs) of 10, 2, and 1, respectively. This
allows us to train the CNN model across a range of noise
levels.

Figure 6 presents box plots that illustrate the deviations
between the CNN-predicted values and the actual 3D magnetic
field using simulation A0 (〈MA〉= 1.25, 〈Ms〉= 1.21,
〈γ〉= 60°) as a case study. We quantify these deviations by
calculating the absolute differences in the magnetic fieldʼs
position angle (|fCNN− f|), inclination angle (|γCNN− γ|), and
Alfvén Mach number (∣ ∣M MA

CNN
A- ), represented as σf, σγ,

and MAs , respectively.
In noise-free conditions (see Figures 5 and 6), the median

values of MAs , σγ, and σf are approximately 0.2, 5°, and 4°.
Upon introducing noise to the simulation, uncertainties
increase, with the median value of MAs rising to about 0.4,
and median σγ and σf extending to the range of 8°–10°.
Remarkably, these uncertainties remain consistent across
different SNRs of 10, 2, and 1, underscoring the CNN model’s
ability to extract magnetic field information amidst varying
levels of noise.

4.3. Removing Low-spatial-frequency Components

Traditional magnetic field mapping via polarimetry necessi-
tates a comprehensive range of spatial frequencies, incorporat-
ing both the high-spatial-frequency data from interferometers
and the low-spatial-frequency data from single-dish observa-
tions. However, recent studies (A. Lazarian et al. 2020; Y. Hu
& A. Lazarian 2024) have illuminated that the anisotropy
inherent in MHD turbulence and synchrotron emission is more
pronounced at higher spatial frequencies. This suggests that the
CNN approach could effectively obtain the POS orientation,
inclination angle, and magnetization using exclusively high-
spatial-frequency data. To examine this proposition, we applied

a k-space filter to synchrotron intensity maps before CNN
training, involving (i) performing a fast Fourier transform
(FFT) on a 2D map; (ii) filtering out the intensity values at
specified wavenumbers k to highlight high-spatial frequencies;
and (iii) applying an inverse FFT to transform the filtered map
back to the spatial domain.
Figure 7 presents box plots showing the deviations- MAs , σγ,

and σf, resulting from the removal of low-spatial-frequency
components in the synchrotron intensity maps. Across different
scenarios of wavenumber removal (k< 10, k< 20, and k< 30),
the median values of MAs , σγ, and σf exhibit some variability
but generally maintain stability within <0.4, <10°, and <10°,
respectively. This underscores the CNN method’s robustness in
probing 3D magnetic fields, even without the contribution of
low-spatial frequencies-highlighting its particular suitability for
processing interferometric data devoid of single-dish
measurements.

4.4. Observational Application

For our observational tests, we selected a diffuse emission
region from the Sino-German λ6 cm polarization survey
(X. Y. Gao et al. 2010). This region, situated away from the
Galactic plane, minimizes the complexity arising from the LOS
projection of multiple components. It also avoids energetic
sources such as supernova remnants, which could significantly
alter the properties of the surrounding gas. The synchrotron
intensity data has a beam resolution of 9 5 and an rms noise
level of 0.5–0.7 mK in brightness temperature TB, while the
noise level for polarized intensity is 0.3–0.5 mK in TB.
As shown in Figure 8, there is consistency between the POS

magnetic field orientations predicted by the CNN and those
derived from synchrotron polarization, though misalignment is
evident in the northeast clump. This clump is associated with
the H II complex SH-236, where radiation and stellar winds
from young stars may compress the surrounding gas and alter
its physical properties. Currently, our CNN model does not
account for the impacts of stellar winds and radiation, which
could explain the inaccurate predictions observed in this
region. Additionally, Faraday rotation is not corrected for the

Figure 4. A comparison of the CNN-predicted 3D magnetic fields using the simulation 〈MA〉 = 0.79, 〈Ms〉 = 0.61, and 〈γ〉 = 60°. Each magnetic field segment is
constructed by the POS magnetic field’s position angle (i.e., f) and the inclination angle γ. Note that the magnetic field obtained is the projection along the LOS and
averaged over 132 × 132 pixels for visualization purposes. The third axis of the LOS is only for 3D visualization purposes and does not provide distance information
here. The total intensity map I is placed on the POS, i.e., the x–y plane.
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synchrotron polarization data, which might introduce further
uncertainties.

A significant advantage of our CNN approach over
traditional polarization methods is its capability to probe the
inclination angle γ and magnetization MA. The CNN-predicted
γ and MA maps are shown in Figure B1. These predictions are
summarized in histograms in Figure 9. According to the
histograms, the median γ and MA are estimated at ≈40° and
≈0.82, respectively. According to our study of the uncertainties
(see Figure 6), there could be 5°–10° uncertainty in the
predicted median γ and 0.2–0.4 uncertainty in the predicted
median MA.

5. Discussion

5.1. Comparison with Earlier Studies

Exploring 3D magnetic fields within the ISM using CNNs is
rapidly progressing. An initiative by Y. Hu et al. (2024a)
showcased the use of a CNN model to trace the 3D magnetic
field structure in molecular clouds. This achievement was
facilitated by CNN’s application to thin velocity channel maps
(A. Lazarian & D. Pogosyan 2000; Y. Hu et al. 2023) derived
from spectroscopic data.
Building on this CNN approach, our study extends the

application of CNN to synchrotron emission, aiming to trace

Figure 5. 2D histograms of the CNN predictions, i.e., fCNN (right), γCNN (middle), and MA
CNN (left) and the corresponding actual values in simulation. The dashed

reference line represents the ideal scenario, where the predicted values and actual values match perfectly.
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the 3D magnetic field in the warm/hot gas phase. This includes
determining the orientation of the POS’s magnetic field, the
field’s inclination angle, and the total Alfvén Mach number. As
the synchrotron intensity is not subject to Faraday rotation, it
does not require multiple frequency measurements to compen-
sate for the Faraday effect. Potential applications of the CNN
approach extend across a diverse range of astrophysical
environments. These include studying the warm ionized phase

of the ISM, the Central Molecular Zone (CMZ), external
galaxies, supernova remnants, and galaxy clusters. It can
provide important information to address fundamental ques-
tions related to the origins of ultrahigh-energy cosmic rays
(G. R. Farrar 2014; G. R. Farrar & M. S. Sutherland 2019), as
well as issues concerning Galactic foreground polarization
(E. D. Kovetz & M. Kamionkowski 2015; Planck Collabora-
tion et al. 2016b).

Figure 6. Box plots of difference in CNN-predicted fCNN (right), γCNN (middle), and MA
CNN (left) and the actual values in the simulation A0 (〈MA〉 = 1.25,

〈Ms〉 = 1.21, 〈γ〉 = 60°) with Gaussian noise introduced. The upper and lower black lines represent the deviationʼs maximum and minimum, respectively. The box
gives ranges of the first (lower) and third quartiles (upper) and the orange line represents the median value. The amplitude of the noise varies from 10%, 50%, to 100%
of the mean intensity of the maps, corresponding to SNRs of 10, 2, and 1, respectively.

Figure 7. Box plots of difference in CNN-predicted fCNN (right), γCNN (middle), and MA
CNN (left) and the actual values in the simulation A0 (〈MA〉 = 1.25,

〈Ms〉 = 1.21, 〈γ〉 = 60°) when spat. The upper and lower black lines represent the deviationʼs maximum and minimum, respectively. The box gives ranges of the first
(lower) and third quartiles (upper) and the orange line represents the median value. kmin represents the minimum wavenumber remaining in the filtered synchrotron
intensity map and Lbox is the size of the simulation box.

Figure 8. Comparison of the POS magnetic fields predicted by the CNN (right) using the Sino-German λ6 cm synchrotron emission data and inferred from
synchrotron polarization (left). The background image is the integrated synchrotron intensity map.
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5.2. Application to Interferometric Observations

The challenge of missing low-spatial frequency data in
observations made with interferometers, due to constraints
imposed by their baseline, is a notable concern in radio
astronomy. Instances such as the observations by the Australia
Telescope Compact Array at 1.4 GHz (B. M. Gaensler et al.
2011), which lacked single-dish measurements, and the
Westerbork Synthesis Radio Telescope observations of the
3C 196 field at 350MHz (V. Jelić et al. 2015), where single-
dish measurements at the same frequency were unfeasible,
underscore this issue. Additionally, data from the Low-
Frequency Array also experience the loss of low-spatial
frequencies (V. Jelić et al. 2014).
Notwithstanding these challenges, the absence of low-spatial

frequency information does not impede the application of
CNNs for probing 3D magnetic fields. This resilience stems
from the CNN approach’s foundation on the anisotropy
inherent in MHD turbulence and synchrotron radiation, which
is more conspicuous at higher spatial frequencies (A. Lazarian
et al. 2020; Y. Hu & A. Lazarian 2024). As demonstrated in
this study, the CNN model is adept at capturing this anisotropy,
leveraging only the high-spatial-frequency data accessible from
interferometric observations. This unique capability signifies a
significant advantage of the CNN approach, enabling the
reconstruction of 3D magnetic fields even in the absence of
comprehensive spatial frequency coverage.

5.3. Synergy with Other Methods

The CNN approach has been applied to spectroscopic
observations to trace the 3D magnetic fields (Y. Hu et al.
2024a). Extending CNNs to both spectroscopic and synchro-
tron emission data enables an in-depth analysis of the
distribution and variation of 3D magnetic fields across different
ISM phases. Compared to synchrotron emission, training
CNNs for conditions in molecular clouds presents additional
complexities due to the influence of self-gravity and outflow
feedback on fluid dynamics and magnetic field structures
(C. Federrath & R. S. Klessen 2012; C. L. H. Hull &
Q. Zhang 2019; Y. Hu et al. 2022a, 2022b; E. Vázquez-Sem-
adeni et al. 2024). This necessitates the use of nuanced
numerical simulations of molecular clouds for CNN training.

The SIG technique (A. Lazarian et al. 2017; Y. Hu et al.
2020, 2024b) offers a parallel approach to tracing the POS

magnetic field orientation, rooted in the anisotropy of MHD
turbulence evident in synchrotron emission. This anisotropy
manifests in both sub-Alfvénic and super-Alfvénic turbulence,
the latter resulting from the advection of turbulent flows (Y. Hu
et al. 2024b). With several numerical and observational
validation (A. Lazarian et al. 2017; J.-F. Zhang et al. 2019a;
Y. Hu et al. 2020, 2024b), SIG serves as a valuable benchmark
for assessing the efficacy of CNN-based models, particularly in
scenarios where polarization data are scarce, such as radio
halos in galaxy clusters.
Furthermore, it should be noted that the inclination angle

predicted by the CNN model is inherently limited to the range
of [0°, 90°]. This limitation arises because the anisotropy alone
cannot definitively discern whether the magnetic field is
oriented toward or away from the observer. A synergy with
Faraday rotation measurements (M. Haverkorn 2007;
A. R. Taylor et al. 2009; N. Oppermann et al. 2012; S. Xu &
B. Zhang 2016; M. Tahani et al. 2019) offers promising
avenues to resolve this degeneracy. On the other hand, the
proposed CNN method is based on the dominance of MHD
turbulence in synchrotron emission statistics. When other
physical processes are important, including inflow and outflow,
additional training data sets are required.

6. Summary

In this study, we developed and evaluated a CNN model
designed to investigate 3D magnetic fields, including the
orientation of the POS magnetic field, the field’s inclination
angle, and total magnetization, utilizing synchrotron intensity
maps. Our major findings are summarized as follows:

1. We designed and implemented a CNN model capable of
extracting the orientation of the POS magnetic field, the
field’s inclination angle, and the overall magnetization
from synchrotron intensity maps.

2. Through the utilization of synthetic synchrotron maps for
model training, we identified that the median uncertain-
ties for predicting the magnetic fieldʼs position angle (f)
and inclination angle (γ) remained below 10°, with the
Alfvén Mach number (MA) uncertainty staying under 0.4.

3. The model’s robustness against noise was evaluated,
demonstrating insensitivity to noise with adequate
training, ensuring reliable performance under various
observational conditions.

Figure 9. Histograms of CNN-predicted f (left), defined north from the west, γ (middle), and MA (right). The synchrotron polarization measured f is also given for
comparison.
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4. Our analyses confirmed the CNN method’s applicability
in tracing the POS magnetic field orientation, the field’s
inclination angle, and total magnetization, even in the
absence of low-spatial frequencies in the synchrotron
images—making it particularly adept for analyzing
interferometric data that lacks single-dish measurements.

5. We tested this trained CNN model by applying it to the
synchrotron observations of a diffuse region. The CNN-
predicted POS magnetic field orientation shows a
statistical agreement with that derived from synchrotron
polarization.

6. We discussed the potential and future applications of this
CNN method, particularly its utility in predicting the 3D
Galactic magnetic fields, and its implications for
comprehending 3D magnetic fields within the CMZ and
beyond, in external galaxies.
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Appendix A
Comparison of CNN’s Input Patch Size

Figure A1 shows the variation in validation loss for two
different input patch sizes, 22× 22 cells and 44× 44 cells.

The validation loss, representative of the mean-squared error
between the predicted and actual 3D magnetic fields, is
derived from validation data sets comprising patches ran-
domly extracted from the Zeus series simulations (see
Table 1). For each training iteration, 100,000 patches are
utilized to compute the validation loss, with the loss
being averaged across the magnetic field’s POS angle,
inclination angle, and Alfvén Mach number. We can see
regardless of the input patch size, whether 22× 22 or 44× 44
cells, the validation loss exhibits a comparable downward
trend toward a similar level after an adequate number of
training iterations.

Appendix B
Maps of CNN-predicted Inclination Angle and

Magnetization

The maps of CNN-predicted inclination angle γ and Alfvén
Mach number MA are shown in Figure B1. The Sino-German
λ6 cm synchrotron emission data is used. According to the
histograms shown in Figure 9, the median γ and MA are
estimated at ≈40° and ≈0.82, respectively.

Figure A1. Evolution of CNN’s validation loss, i.e., the mean-squared error.
Two cases with an input patch size of 22 × 22 cells or 44 × 44 cells are tested.
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