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1 Introduction

A defining feature of holography is that it allows for the computation of observables via some
sort of dimensionally reduced description, the best understood example being AdS/CFT.
Compared to AdS/CFT, our understanding of a holographic description of flat space is
primitive. In (asymptotically) flat space, a natural observable to focus on is the S-matrix,
and for massless particles the natural location for a putative holographic dual is null infinity,
I, or a subspace thereof, though more abstract possibilities may also be entertained. A large
body of work has arisen in recent years trying to develop this picture.

Most of the recent progress on flat space holography has been from a bottom-up perspec-
tive, where there are presently two major approaches in the literature. Celestial holography1

proposes to formulate S-matrix elements in four dimensions as correlators in some putative
CFT2 on the celestial sphere. This framework, in the absence of gravity, uses the isomorphism
between the Lorentz group and the conformal group in two fewer dimensions to match the
basic symmetries on both sides of the duality. The other proposal, which will be our primary
interest in this work, is Carrollian holography [7–27]. This proposal interprets S-matrix
elements as correlators in a putative Carrollian CFT3 supported on I. One approach [11] to
Carrollian CFTs is to think of them as the hyperboosted limit of a standard CFT3, making
them a natural candidate for a theory living on a null hypersurface. This construction uses
that the bulk Lorentz group is isomorphic to the boost limit of the conformal algebra in
one dimension lower.

In the presence of gauge and gravitational dynamics, the existence of large gauge transfor-
mations makes identifying the precise symmetry group of asymptotically flat spacetimes more
subtle. For example, in the presence of gravity it has long been understood that the Lorentz
group is extended to an infinite dimensional group found by Bondi, van der Burg, Metzner,
and Sachs (BMS) [28, 29]. But there are several consistent extensions to the BMS group and
the correct one depends on the precise definition used for asymptotically flat spacetime [30–36].
Such subtleties in identifying the true symmetry group of asymptotically flat spacetimes are
not isolated to considerations of holography. As symmetries, they must have real, measurable
consequences for scattering processes. Indeed, via the discovery of the IR triangle [1], these
asymptotic symmetry groups are closely related to the soft theorems [37, 38] that control the
soft expansion of amplitudes. At tree level, one can organize these symmetries to predict
an infinite tower of constraints on amplitudes [39]. But beyond the tree approximation such
statements become entangled with the usual issue of IR divergences that modify the soft
expansion and make it subtle to give a precise definition of the S-matrix [40, 41]. Which sym-
metry implications are obeyed by the usual Feynman diagrams? Do these symmetries survive,
perhaps with a deformation, to loop order? To address such questions it is advantageous to
develop a formalism that allows symmetries to be represented in a clean way.

Carrollian partition function.

In the recent work [42], we explored a formulation of the S-matrix in terms of a path integral
with specified asymptotic boundary data, as originally proposed by Arefeva, Faddeev, and

1The literature on celestial holography is by now extensive and we direct the reader to [1–6] for a selection
of reviews and further references.
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Slavnov (AFS)2 [43]. The path integral defined in this way serves as a generating functional
for S-matrix elements, in close analogy with the GKP/W dictionary [44, 45] of AdS/CFT that
defines boundary correlators in terms of the path integral over fields in the bulk with specified
boundary conditions.3 The specific boundary conditions relevant for the S-matrix can be
understood as fixing the positive (negative) frequency content4 of the field configurations
in the path integral along I− (I+), see figure 1,

Z[ϕ̄−1 , ϕ̄
+
1 ] =

∫
DϕeiI[ϕ]+iIbndy[ϕ,ϕ̄] (1.1)

where (ϕ̄−1 , ϕ̄
+
1 ) encode the asymptotic boundary conditions as

ϕ(x) ≈


1
r ϕ̄

−
1 (u, x̂) + positive frequency on I+

1
r ϕ̄

+
1 (v, x̂) + negative frequency on I−

. (1.2)

As in AdS/CFT, the boundary term in the action can be determined by demanding a
good variational principle. In section 2 we review how Z may be used to generate the
usual S-matrix elements. Since asymptotic symmetries are naturally defined to act on the
asymptotic data of the fields, the AFS formulation is well-suited to describing such symmetries
and their implications, treating asymptotic symmetries on the same footing as standard
global symmetries. For example, it was shown in [42] that the leading soft photon theorem
follows easily from the invariance of Z under large gauge transformations. In section 5 we
show that this demonstration can be simplified even further to sidestep direct reference
to symplectic structures.

In this work we further explore the AFS generating functional with an eye towards
the Carrollian description of flat holography,5 where the fixed frequency data amounts to
specifying the waveforms ϕ̄−1 (u, x̂) and ϕ̄+

1 (v, x̂). In terms of this Carrollian data, the AFS
generating functional (1.1) for the S-matrix can be interpreted as a generating functional
for Carrollian correlators; for example the contribution corresponding to 2→2 scattering,
in the case of a real scalar, is

Z[ϕ̄−1 , ϕ̄
+
1 ] =

1
(2!)2

∫
I−
d3Y1d

3Y2

∫
I+
d3Z1d

3Z2G2,2(Y1, Y2, Z1, Z2)

× ∂v1 ϕ̄
+
1 (Y1)∂v2 ϕ̄

+
1 (Y2)

(
− ∂u1 ϕ̄

−
1 (Z1)

)(
− ∂u2 ϕ̄

−
1 (Z2)

)
(1.3)

where Yi = (vi, x̂i) denote coordinates on I− and Zi = (ui, x̂i) are coordinates on I+. Written
in this form, the AFS generating functional is supported only on the boundary. In analogy
with the AdS partition function in the presence of dual CFT sources, we refer to this object as
the Carrollian partition function. Since (1.1) and (1.3) are two equivalent ways of writing the

2In our context, AFS can also stand for asymptotically flat spacetime.
3This is to be contrasted with the BDHM, or “extrapolate”, dictionary [46] where boundary correlators are

obtained by taking the boundary limit of bulk correlators, a formulation that bears more similarity to LSZ
reduction.

4The realization of this formalism in Euclidean signature has recently been explored in [47]. In that context,
one can arrange to use Dirichlet boundary conditions instead.

5The conversion of basis between the Carrollian and celestial descriptions is straightforward and has already
been worked out in [19].
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Figure 1. Minkowski Penrose diagram with asymptotic boundary conditions indicated; a pure
negative (positive) frequency waveform is specified along I+(I−).

same object, we use it to work out the relation between Carrollian correlators and standard
momentum space amplitudes which, as proposed in previous works [19, 25, 26, 48], essentially
amounts to a Fourier transform in u or v space. The approach adopted here nicely explains
the underlying origin of this relation.

Since the partition function (1.3) descends from the path integral (1.1), it’s clear that
the action of symmetries on our asymptotic data will be an invariance of the Carrollian
partition function. Also, since only the asymptotic transformations of fields enter, it’s
clear that large gauge/diffeomorphism transformations are treated on an equal footing with
more familiar global symmetries6 of the Carrollian partition function. We demonstrate how
this invariance can be used to deduce the properties of Carrollian correlators, first in the
example of a scalar field and then in scalar QED. In both cases we obtain the action of
Lorentz transformations on the asymptotic data and demand invariance of (1.3) to obtain
the Lorentz invariance properties of the Carrollian correlators. In the case of scalar QED,
we do the same for large gauge transformations, which yields the Carrollian representation
of the leading soft photon theorem.

One can also pose the inverse question: given a relation satisfied by the Carrollian
correlators, what is the transformation of the asymptotic data that would imply this property?
We use the example of the tree-level subleading soft photon theorem [37] to demonstrate

6This is strictly only true of symmetries that do not mix the fixed and unfixed frequency content. Poincaré
transformations and all internal symmetries have this property. More general symmetries would imply that Z

obeys a functional differential equation.
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how this question may be answered. While the deduced transformation acts non-locally on
the asymptotic field as was noted in [49], it has a local action on ∂uϕ̄1, which is the only
combination appearing in (1.3). As a related example, we obtain the action of (infinitesimal)
special conformal transformations on the asymptotic data in appendix A, which also appears
to act non-locally on the asymptotic field data while acting locally on ∂uϕ̄1.

Flat limit of AdS.

Another approach to obtain a holographic understanding of the S-matrix is by attempting to
import our understanding of holography in AdS/CFT by taking the flat limit of AdS. This is
an idea with a history almost as old as AdS/CFT itself, with most of the important conceptual
points laid out early on in [50, 51], and further developed in many works including [20, 52–64].
The essential idea of the limit is to consider high energy, with respect to global AdS time,
particles sent into the bulk of AdS, aimed such that their interactions occur only on a scale
much smaller than the AdS radius. In this special case, the interactions are insensitive to
the curvature of AdS, making quantities calculated from the process agree with their flat
counterparts. In practice, one constructs wavepackets emanating from thin strips of the AdS
boundary, as shown in figure 2. The distance between these strips can be chosen such that,
as emphasized in [52], the bulk point singularity [65] of the bulk Witten diagrams occurs
within a region much smaller than the AdS curvature radius R.

While the above arguments, and indeed most of the literature on the subject, are phrased
with the BDHM dictionary in mind, it’s straightforward to rephrase the setup in terms of
the GKP/W dictionary. In that case, one chooses the boundary sources localized to the
same strips on the AdS boundary, in global AdS time centered on τ = ±π

2 . It is simplest to
construct a source J with the desired support by going to momentum space. For example,
a positive frequency source centered about τ = −π

2 may be written as

J+(τ, x̂) =
∫ ∞

0

dω

2π J̃(ω, x̂)e
−iωR(τ+ π

2 ). (1.4)

At large R the resulting J+(τ, x̂) is concentrated around τ = −π
2 . Then under the assumption

that no particle interactions occur outside the flat region in the center of AdS, we just need
to follow this data into the flat region by computing7 ϕ(x) =

∫
ddx′

√
−hK(x;x′)J+(x′),

where K(x;x′) is the usual bulk-boundary propagator, in the limit where the bulk point x
is within the flat region and at large R. There is a corresponding expression for a negative
frequency source J− localized near τ = π

2 . This approach shares some features with the HKLL
reconstruction used in [56, 57] to find a map between the creation/annihilation operators
of particles in flat space and normalizable modes in AdS. The flat limit has recently been
approached from a Carrollian perspective in [20, 25, 63] and the celestial perspective in [3, 66].
See [59] and references therein for a recent survey of other approaches.

We compute the bulk-boundary propagator integral along with the analogous expression
for a bulk gauge field. The result is most simply written in Carroll form, and provides a map

7This prescription is valid for particles that become massless in the flat region, corresponding to ∆ ∼ O(R0)
on the boundary. A similar prescription for massive particles, having ∆ ∼ O(R), may be found in [56, 57].
See [58] for a recent discussion of additional subtleties that arise in the massive limit.
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Figure 2. Flat space may be embedded in a small region in the center of Lorentzian AdS, much
smaller than the curvature radius R. The flat space data on I± maps to AdS Dirichlet data in thin
strips about τ = ±π

2 in global AdS time. The violet caps represent a Euclidean state preparation that
projects onto the vacuum.

between the AdS data J on the strip and the Carroll data that appears in the Carrollian
partition function (1.3). Under the assumption that interactions are effectively confined to
the flat region in the large R limit, we deduce that the AdS and AFS generating functionals
are equal in this limit. In the case of a massless bulk scalar this relation reads

ZAdS[J+(τ, x̂), J−(τ, x̂)] = ZAFS[ϕ̄−1 (u, x̂), ϕ̄
+
1 (v, x̂)] . (1.5)

with the data mapping

ϕ̄−1 (u, x̂) = −R2∂uJ
−
(π
2 + u

R
, x̂
)
, ϕ̄+

1 (v, x̂) = R2∂vJ
+
(
− π

2 + v

R
, x̂
)
. (1.6)

The appearance of the u and v derivatives is dictated by symmetry, and the factors of R by
dimensional analysis. The above formulas provide a very simple and direct embedding of flat
space physics in AdS. This includes both the extraction of S-matrix elements and, because
the dictionary is written in position space, the incorporation of large gauge transformations
(which are singular in Fourier space).

The dictionary in the case of gauge fields is even simpler. On the flat space side, the
AFS data consists of the leading r0 asymptotics of the angular components of the gauge
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field, whose positive and negative frequency components on I− and I+ we denote as Â
±
A,0.

The AdS boundary sources for the gauge field are written as a±A(τ, x̂). The corresponding
partition functions are then equal under the map

Â
−
A,0(u, x̂) = a−A

(π
2 + u

R
, x̂
)
, Â

+
A,0(v, x̂) = a+

A

(
− π

2 + v

R
, x̂
)
. (1.7)

Furthermore, by working out the extension of a large transformation in flat space to the
AdS boundary, the invariance of ZAdS under gauge transformations of the boundary sources
maps to the invariance of ZAFS under large gauge transformations, which implies the leading
soft photon theorem, a result obtained from a slightly different perspective in [57]. For
massless scalar QED, the general relation between the Carrollian and AdS partition can
be summarized as

ZAdS[J+(τ, x̂), J−(τ, x̂), a+
A(τ, x̂), a

−
A(τ, x̂)] = ZAFS[ϕ̄+

1 (v, x̂), ϕ̄
−
1 (u, x̂), A

+
A,0(v, x̂), A

−
A,0(u, x̂)]

under the data mapping displayed above.
When thinking about a hypothetical Carrollian theory holographically dual to Minkowski

space a natural question is how degrees of freedom on I− and I+ are related. When embedded
in AdS, these flat space boundaries map to the thin strips on the AdS boundary located
at τ = ±π

2 . In this CFT picture the degrees of freedom in the two strips are related by
Hamiltonian evolution over the ∆τ = π interval of time separating them. This suggests that
there is no simple local way to couple the degrees of freedom on I− to those on I+, since
this coupling would have to encode the highly nontrivial CFT time evolution.

As summarized above, the main purpose of this work is to use the path integral formulation
of the flat space S-matrix and AdS partition functions to arrive at simple and coherent
derivations of the Carrollian dictionary for flat space amplitudes and their recovery from
the AdS/CFT correspondence, including the incorporation of large gauge transformations.
The results so obtained are consistent with previous results, and in particular resonate
particularly strongly with the relatively recent works [19, 20, 57], which in turn build on
the literature noted above.

The organization of the paper is as follows. In section 2 we briefly review the AFS
approach to the S-matrix. The AFS path integral expressed in terms of boundary data serves
as a generating functional of the S-matrix that may be thought of as a Carrollian partition
function; this interpretation is developed in section 3 in the case of scalar field theory. In
section 4 this is extended to scalar QED, followed by a discussion of obtaining soft photon
theorems from invariance under large gauge transformations in section 5. We turn to general
comments on the flat limit of AdS in 6, and then proceed to work out the relation between
Carrollian and AdS partition functions for scalar fields (section 7) and scalar QED (section 8).
The relationship between spacetime and gauge symmetries acting on the flat space boundary
versus AdS boundary is discussed in section 9. A series of appendices contain supplementary
material on the action of special conformal transformations on the flat space boundary data,
on the relationship between flat space and AdS boundary terms, and on the derivation of
the massless spin-1 bulk-boundary propagator.
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2 Review of AFS approach to the S-matrix

The S-matrix in asymptotically flat spacetime may be computed by evaluating a path integral
with specified asymptotic boundary conditions [43]. We focus here on theories of massless
particles, for which the boundary conditions are imposed at past and future null infinity, I−

and I+ respectively, though the extension to massive particles is straightforward. Roughly
speaking, we specify the positive(negative) frequency part of fields at I−(I+). The “roughly
speaking” clause refers to the fact that in theories with gauge symmetry we also need to
specify the zero frequency Goldstone modes, as we review in due course.

We begin by reviewing the simplest case, that of a massless real scalar field, following [42].
Working in (−,+,+,+) signature the action is

I[ϕ, ϕ̄] =
∫
d4x

(1
2ϕ∇

2ϕ− V (ϕ)
)
+ Ibndy[ϕ, ϕ̄] (2.1)

where ϕ̄ encodes the boundary conditions, as will be specified momentarily along with the
corresponding boundary terms. To specify boundary conditions we write the Minkowski
metric as

ds2 = −du2 − 2dudr + r2dΩ2

= −dv2 + 2dvdr + r2dΩ2 (2.2)

with

u = t− r , v = t+ r . (2.3)

Points on the unit S2 will be denoted here by x̂, and later by the complex coordinates (z, z).
We are interested in scattering solutions for which ϕ behaves as a free field at large r, falling
off as ϕ ≈ 1

rϕ1 at fixed v (on I−) or u (on I+). For the S-matrix the appropriate boundary
conditions involve fixing the positive frequency part of ϕ1 on I− and the negative frequency
part on I+. Here a “positive frequency” function is one whose Fourier expansion in time
contains terms e−iωt with ω ≡ p0 > 0. We thus write the asymptotics as

ϕ(x) ≈


1
r ϕ̄

−
1 (u, x̂) + positive frequency on I+

1
r ϕ̄

+
1 (v, x̂) + negative frequency on I−

(2.4)

so that the boundary conditions are encoded in the functions ϕ̄−1 (u, x̂), ϕ̄
+
1 (v, x̂), with the

superscripts denoting the frequency content, as shown in figure 1. It is useful to package this
boundary data into a free field ϕ̄(x), obeying ∇2ϕ̄(x) = 0, whose asymptotics also take the
form (2.4), and which can be decomposed into positive and negative frequency parts,

ϕ̄(x) = ϕ̄+(x) + ϕ̄−(x) . (2.5)

The free field ϕ̄(x) contains the same information as the pair
(
ϕ̄−1 (u, x̂), ϕ̄

+
1 (v, x̂)

)
.

The boundary term in (2.1) may now be deduced by demanding that the variation of
I[ϕ, ϕ̄] with respect to ϕ takes the form δI =

∫
d4x(eqs of motion)δϕ under variations that

respect the boundary conditions, i.e. for which δϕ̄−1 |I+ = δϕ̄+
1 |I− = 0. A suitable choice is

Ibndy[ϕ, ϕ̄] = (ϕ̄−, ϕ)I+ − (ϕ̄+, ϕ)I− , (2.6)

– 8 –
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with

(ϕ̄−, ϕ)I+ = 1
2 lim
r→∞

∫
dud2x̂r2(ϕ̄−∂uϕ− ∂uϕ̄

−ϕ) = 1
2

∫
I+
dud2x̂(ϕ̄−1 ∂uϕ1 − ∂uϕ̄

−
1 ϕ1),

(ϕ̄+, ϕ)I− = 1
2 lim
r→∞

∫
dvd2x̂r2(ϕ̄+∂uϕ− ∂uϕ̄

+ϕ) = 1
2

∫
I−
dvd2x̂(ϕ̄+

1 ∂vϕ1 − ∂vϕ̄
+
1 ϕ1), (2.7)

where ϕ = 1
rϕ1 + (subleading in r).

The basic object of interest is the path integral viewed as a functional of the boundary data,

Z[ϕ̄] =
∫
ϕ̄
DϕeiI[ϕ,ϕ̄] . (2.8)

Z[ϕ̄] is a generating functional for the S-matrix. To make this explicit it is convenient to
introduce mode expansions. The boundary-condition-encoding free field ϕ̄(x) admits the
mode expansion

ϕ̄(x) =
∫

d3p

(2π)3
1

2ωp

(
b(p⃗)eip·x + b†(p⃗)e−ip·x

)
, p0 = ωp = |p⃗| . (2.9)

The large r asymptotics are obtained from the following formula obtained by saddle point
approximation of the integral at large r (see e.g. [1]),

∫
d2p̂

(2π)2ωpf(p̂)e
ip·x =

− i
2πrf(x̂)e

−iωu on I+

i
2πrf(−x̂)e

−iωv on I−
(2.10)

where d2p̂ is the standard measure on the unit sphere in p⃗ space. This gives

ϕ̄(x) ≈


−i

8π2r

∫∞
0 dω

(
b(ωx̂)e−iωu − b†(ωx̂)eiωu

)
on I+

i
8π2r

∫∞
0 dω

(
b(−ωx̂)e−iωv − b†(−ωx̂)eiωv

)
on I−

(2.11)

The boundary conditions therefore may be expressed in terms of the modes
(
b(p⃗), b†(p⃗)

)
via

ϕ̄−1 (u, x̂) =
i

8π2

∫ ∞

0
dωb†(ωx̂)eiωu

ϕ̄+
1 (v, x̂) =

i

8π2

∫ ∞

0
dωb(−ωx̂)e−iωv . (2.12)

To compute Z[ϕ̄] in perturbation theory one can expand around the free field solution ϕ̄

by writing ϕ = ϕ̄ + ϕG and then perform the path integral over ϕG order by order in the
coupling. One then arrives at the standard diagrammatic expansion, where the use of the
Feynman propagator for internal ϕG lines is dictated by the boundary conditions. Related
methods have been used to study tree level scattering in curved space in [67–69].

In terms of this mode data, S-matrix elements are obtained as

⟨q1, . . . , qM |Ŝ|p1, . . . , pN ⟩ =
[
N∏
k in

(
2ωpk

(2π)3 δ

δbk(p⃗k)

) M∏
ℓ out

(
2ωqℓ

(2π)3 δ

δb†ℓ(q⃗ℓ)

)
Z[ϕ̄]

]
ϕ̄=0

.

(2.13)

– 9 –
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Alternatively, the S-matrix operator can be written directly by promoting
(
b(p⃗), b†(p⃗)

)
to

operators obeying

[b̂(p⃗), b̂†(p⃗′)] = (2π)32ωp⃗δ(3)(p⃗− p⃗′) (2.14)

as

Ŝ = :e−iIbndy[ ˆ̄ϕ, ˆ̄ϕ]Z[ ˆ̄ϕ]: (2.15)

where the prefactor sets Ŝ = 1 in the case of a free field in Minkowski space.8 These
statements may be derived either by starting from the coherent state representation of the
path integral, or by verifying perturbative equivalence with the LSZ prescription for the
S-matrix. See [42, 43, 70, 71] for more details.

It is also straightforward to combine (2.9) and (2.12) to compute the bulk-boundary
propagator for the Carrollian data. That is, an arbitrary free solution obeying the boundary
conditions (2.4) may be written9

ϕ(x) =
∫
I+
d3x′KI+(x;x′)ϕ̄−1 (x′) +

∫
I−
d3x′KI−(x;x′)ϕ̄+

1 (x′) (2.16)

where x′ = (u′, x̂′) or x′ = (v′, x̂′) with

KI+(x;x′) = i

(2π)2
1

(u′ + q(x̂′) · x− iϵ)2

KI−(x;x′) = i

(2π)2
1

(v′ + q(−x̂′) · x+ iϵ)2 . (2.17)

To keep this expression compact we have defined qµ(x̂′) = (1, x̂′). These expressions are
closely related to the Kirchoff-d’Adhemar formulas studied in [19]. We make use of (2.17)
in sections 3.3 and 7.4.

In analogy with the bulk-boundary propagator of AdS, these expressions may also be
related to the usual Feynman bulk-bulk propagator, GF (x − y) = ⟨0|Tϕ(x)ϕ(y)|0⟩, which
in position space takes the form

GF (x) =
1

4π2
1

x2 + iϵ
, (2.18)

and obeys ∇2GF (x) = iδ(4)(x). By direct comparison with (2.17) we have

KI+(x;x′) = 2i lim
r′→∞

r′∂u′GF (x;x′) (2.19)

where the limit should be taken at fixed u′. Similarly,

KI−(x;x′) = −2i lim
r′→∞

r′∂v′GF (x;x′) (2.20)

8For a free field in a curved asymptotically flat spacetime there is in general nontrivial scattering and
particle creation, corresponding to the fact that prefactor does not cancel the path integral in such cases;
see [42].

9These expressions assume suitable falloff conditions in u′ or v′ for the data on scri.
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with the limit taken at fixed v′. These relations can also be derived by a standard Green’s
function argument: for any solution ϕ of the wave equation with asymptotics (2.12),

ϕ(x) =
∫
d4x′δ(x− x′)ϕ(x′)

= i

∫
I+
d3x′r2(∂u′GFϕ− −GF∂u′ϕ

−)− i

∫
I−
d3x′r2(∂v′GFϕ+ −GF∂v′ϕ

+)

=
∫
I+
d3x′(2ir∂u′GF )ϕ−1 +

∫
I−
d3x′(−2ir∂v′GF )ϕ+

1 . (2.21)

3 Structure of the Carrollian partition function

3.1 Definition of the partition function

The generating functional Z[ϕ̄] is properly thought of as depending on the functions ϕ̄+
1 (v, x̂)

and ϕ̄−1 (u, x̂), defined on I− and I+ respectively. It follows that Z[ϕ̄] can be viewed as the
generating function for “correlators” supported on I±. For example, a particular term in Z,
namely one that turns out to describe 2→2 scattering, takes the form10

Zbndy
2,2 [ϕ̄] = 1

(2!)2

∫
I−
dv1d

2x̂1dv2d
2x̂2

∫
I+
du3d

2x̂3du4d
2x̂4G2,2(v1, x̂1; v2, x̂2;u3, x̂3;u4, x̂4)

× ∂v1 ϕ̄
+
1 (v1, x̂1)∂v2 ϕ̄

+
1 (v2, x̂2)

(
− ∂u3 ϕ̄

−
1 (u3, x̂3)

)(
− ∂u4 ϕ̄

−
1 (u4, x̂4)

)
.

(3.1)

As discussed below, the correlator G2,2 is essentially the Fourier transform with respect to
energy of the standard momentum space on-shell 2→2 amplitude; the u and v derivatives
appearing in (3.1) are there to make this connection appear in the most direct fashion, as is
the convention that each u derivative is accompanied by a minus sign.11 Note that we take the
ϕ1 functions to die off at infinity sufficiently rapidly that we can freely integrate by parts in
u or v and neglect any boundary terms. G2,2 can be assumed to be purely positive frequency
with respect to its u arguments, and purely negative frequency with respect to its v arguments,
since the integrations against the ϕ̄ project out the opposite frequency components.

It is sometimes convenient to rewrite (3.1) in more compact notation. We write the
terms at nth order in ϕ̄ as

Zbndy
n [ϕ̄] = 1

n!

∫
I
Gn(uI , x̂I)

n∏
i=1

(
− ∂ui ϕ̄1(ui, x̂i)

)
. (3.2)

Here we are using the notation uI = {u1, u2, . . . , un} and similarly for x̂I . To recover the
previous form (3.1) for n = 4, ∂uϕ̄1(u, x̂) should first be replaced by ∂uϕ̄−1 (u, x̂)− ∂vϕ̄

+
1 (v, x̂).

We then expand out the product and keep the term corresponding to (3.1), while also replacing
(u1, u2) by (v1, v2) in both the integration measure and in G4. When appropriate we may
also make explicit the dependence on fields living on I+ versus I−.

10This is equivalent to (1.3), with a less condensed notation.
11In fact, each u derivative originally appears in the combination ϕ̄(u, x̂) 1

2

↔
∂ uG(u, x̂). For present purposes

it is convenient to integrate by parts so that the u derivative acts purely on ϕ̄. The relative minus sign between
u and v derivatives is due to the fact that ∂u and ∂v are outward and inward pointing normals respectively.
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3.2 Relation to conventional amplitudes

We now address the question of how the correlators appearing in the expansion of Z[ϕ̄]
relate to conventional amplitudes computed via Feynman diagrams in momentum space.
To that end, let Ãn(p1, . . . , pn) denote the off-shell, momentum space, amputated, n-point
scalar amplitude computed via Feynman diagrams, including the momentum conserving delta
function. We define off-shell position space amplitudes via Fourier transform,12

An(x1, . . . xn) =
∫ ( n∏

i=1

d4pi
(2π)4

)
Ãn(p1, . . . pn)ei

∑
i
pi·xi . (3.3)

From this we define

Zbulk
n [ϕ̄] = 1

n!

∫ ( n∏
i=1

d4xi

)
An(x1, . . . xn)ϕ̄(x1) . . . ϕ̄(xn) , (3.4)

where ϕ̄ is a free field with mode expansion (2.9). As the notation indicates, this is in fact the
same object as appears in (3.2), but written in the “bulk description”. To see this, note that
we should think of (3.4) as defining the generating functional for the S-matrix computed via
the LSZ prescription, where the free field ϕ̄(x) supplies the external on-shell wavefunctions
that project the amplitude to its on-shell part. The equivalence of the two expressions for
Zn is the same as the equivalence between the LSZ and AFS prescriptions for the S-matrix,
which is known to be true (at least within perturbation theory) [42, 43, 70, 71].

We now wish to relate A and G by equating (3.2) and (3.4). We begin by writing

ϕ̄(x) =
∫

d4p

(2π)4 2πδ(p
2)B(p0, p⃗)eip·x (3.5)

where

B(p0, p⃗) =
{

b(p⃗) p0 > 0
b†(−p⃗) p0 < 0

(3.6)

It is straightforward to plug (3.3) and (3.5) into (3.4) and perform the spatial integrals
to obtain

Zbulk
n [ϕ̄] = 1

n!

∫ ( n∏
i=1

d4pi
(2π)4 2πδ(p

2
i )B(p0

i , p⃗i)
)
Ã(−p1, . . . ,−pn) (3.7)

Doing the p0 integrals using the delta functions generates 2n terms,

Zbulk
n [ϕ̄] = 1

n!
∑
ηi=±

∫ ( n∏
i=1

d3pi
(2π)3

1
2ωpi

B(ηiωpi , p⃗i)
)
Ã(−η1ωp1 ,−p⃗1; . . . ;−ηnωpn ,−p⃗n) (3.8)

with ωpi = |p⃗i|. We then use (3.6) and change integration variables so that the argument
of b† is given according to b†(p⃗). Finally, we convert to spherical coordinates in momentum

12With this sign convention for the Fourier transform, Ã is defined with all external momenta outgoing.
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space. Explicitly, for the n = 2 case we have

Zbulk
n [ϕ̄] = 1

2

∫
d2p̂1
(2π)2

∫ ∞

0

dωp1

2π
ωp1

2

∫
d2p̂2
(2π)2

∫ ∞

0

dωp2

2π
ωp2

2

×
[
b(ωp1 p̂1)b(ωp2 p̂2)Ã(−ωp1 ,−ωp1 p̂1;−ωp2 ,−ωp2 p̂2)

+ b†(ωp1 p̂1)b(ωp2 p̂2)Ã(ωp1 , ωp1 p̂1;−ωp2 ,−ωp2 p̂2)
+ b(ωp1 p̂1)b†(ωp2 p̂2)Ã(−ωp1 ,−ωp1 p̂1;ωp2 , ωp2 p̂2)

+ b†(ωp1 p̂1)b†(ωp2 p̂2)Ã(ωp1 , ωp1 p̂1;ωp2 , ωp2 p̂2)
]

(3.9)

For present purposes it will be sufficient to be more schematic and explicitly display dependence
on a single field variable only, so that we write

Zbulk[ϕ̄] =
∫

d2p̂

(2π)2

∫ ∞

0

dωp
2π

ωp
2
[
b(ωpp̂)Ã(−ωp,−ωpp̂) + b†(ωpp̂)Ã(ωp, ωpp̂)

]
(3.10)

We now turn to the boundary partition function. In Zbndy
n there are once again 2n terms

corresponding to taking each ϕ̄ to live on either I+ or I−. As in the bulk case, we can adopt
a schematic notation and display only a single field insertion. This gives

Zbndy[ϕ̄] =
[∫

I−
d2x̂dv∂vϕ̄

+
1 (v, x̂)G(v, x̂) +

∫
I+
d2x̂du

(
− ∂uϕ̄

−
1 (u, x̂)

)
G(u, x̂)

]
(3.11)

Plugging in (2.12) yields

Zbndy[ϕ̄] =
[
1
2π

∫
I−
d2x̂

∫ ∞

0

dω

2π
ω

2 b(ωx̂)G̃(−ω,−x̂) +
1
2π

∫
I+
d2x̂

∫ ∞

0

dω

2π
ω

2 b
†(ωx̂)G̃(ω, x̂)

]
(3.12)

with

G̃(−ω,−x̂) =
∫ ∞

−∞
dvG(v,−x̂)e−iωv ,

G̃(ω, x̂) =
∫ ∞

−∞
duG(u, x̂)eiωu . (3.13)

Equating this with (3.10) we deduce

G̃(−ω,−x̂) = 1
2π Ã(−ω,−ωx̂) ,

G̃(ω, x̂) = 1
2π Ã(ω, ωx̂) (3.14)

Note that the second argument in Ã originally involved a momentum variable p̂, but now
involves a position variable x̂; this is just a change of labeling, where we note that both
variables are unit vectors that define a point on S2. Here ω > 0 in both relations, but
we may combine them to write

G̃(ω, x̂) = 1
2π Ã(ω, |ω|x̂) (3.15)
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which then holds for either sign of ω. Restoring all the arguments, the full relation is

G̃(ω1, x̂1; . . . ;ωn, x̂n) =
1

(2π)n Ã(ω1, |ω1|x̂1; . . . ;ωn, |ωn|x̂n) (3.16)

The sign choices for the frequencies determine which boundary component the corresponding
argument refers to: ωi < 0 means that the ith argument lives on I−, while ωi > 0 means
that the ith argument lives on I+.

The position space boundary amplitudes are recovered by Fourier transform

G(v1,x̂1;...;vm,x̂m;um+1,x̂m+1;...;un,x̂n)

=
(

m∏
i=1

∫ 0

−∞

dωi

2π

) n∏
j=m+1

∫ ∞

0

dωj

2π

G̃(ω1,x̂1;...;ωn,x̂n)e
−i
∑m

i=1
ωivi−i

∑n

j=m+1
ωjuj

= 1
(2π)n

(
m∏

i=1

∫ 0

−∞

dωi

2π

) n∏
j=m+1

∫ ∞

0

dωj

2π

Ã(ω1,|ω1|x̂1);...;ωn,|ωn|x̂n)e
−i
∑m

i=1
ωivi−i

∑n

j=m+1
ωjuj

(3.17)

Thus the Carrollian boundary amplitudes are given by the frequency Fourier transform of
the on-shell momentum space amplitudes, as proposed in [17–19, 25, 48], and with explicit
examples worked out in [14, 24–26]. The derivation given here makes the origin of this
relation particularly transparent.

Since the amplitude contains an overall energy conserving delta function,
Ã(ω1, |ω1|x̂1); . . . ;ωn, |ωn|x̂n) ∝ δ(ω1+ . . .+ωn), it follows that any Carrollian correlator with
all legs on the same boundary component vanishes. On the other hand, this conclusion need
not hold if Minkowski space were replaced by a time-dependent asymptotically flat background.

3.3 Witten diagrams for flat space

Given the Carrollian bulk-boundary propagators (2.17), one can construct the flat space analog
of AdS Witten diagrams by replacing each external leg in a bulk diagram by a bulk-boundary
propagator terminating somewhere along I. What object do such diagrams compute?

Consider again (3.4), but now using (2.16):

Zbulk
n = 1

n!

∫
I+

(∫
M4

An(x1, . . . , xn)KI+(x1;x′1) · · ·KI+(xn;x′n)
)
ϕ̄−1 (x′1) · · · ϕ̄

−
1 (x′n).

(3.18)
Here we have written the expression for the case where all boundary points are on I+. Though
this term is technically zero by energy conservation, we make this choice to save writing.
The same expression holds for any combination of points on I±.

Since An is given by the sum of amputated diagrams, it’s clear that the coefficient of
the data ϕ̄−1 in (3.18) is, by definition, the sum over Witten diagrams. Comparing with our
earlier definition (3.2) of Carrollian correlators, we see that the sum of Witten diagrams
computes a differentiated Carrollian correlator. Explicitly,

∂u′1 . . . ∂u′nGn(x
′
1, . . . , x

′
n) =

∫
M4

(
n∏
i=1

d4xi

)
An(x1, . . . , xn)KI+(x1;x′1) . . .KI+(xn;x′n) .

(3.19)
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In the case where any of the external lines are instead on I−, we should apply the replacement
∂u′ → −∂v′ .

3.4 Carrollian two-point function

The two-point function is a special case, and is worth spelling out in more detail. It may be
computed in the free theory, where we assume that the wavefunction renormalization factor
has been set to unity by a field redefinition if necessary. The on-shell bulk action reduces to
a sum of boundary terms given by (2.6). After an integration by parts we have

Ibndy = (ϕ̄−, ϕ)I+ − (ϕ̄+, ϕ)I−

=
∫
I+
d3xϕ̄−1 (x)∂uϕ1(x)−

∫
I−
d3xϕ̄+

1 (x)∂vϕ1(x) . (3.20)

In the first term only the positive frequency part of ∂uϕ1(x) survives the u integration,
and this part is sourced entirely by the fixed data on I−, so for this term we can write
ϕ(x) =

∫
I−d3x′KI−(x, x′)ϕ̄+

1 (x′) and extract the leading 1/r coefficient. Similarly, in the
second term we can write ϕ(x) =

∫
I+d3x′KI+(x, x′)ϕ̄−1 (x′). The action can then be written as

Ibndy =
∫
I+
d3x

∫
I−
d3x′∂uK

(1)
I−(x, x′)ϕ̄−1 (x)ϕ̄

+
1 (x′)−

∫
I−
d3x

∫
I+
d3x′∂vK

(1)
I+ (x, x′)ϕ̄+

1 (x)ϕ̄
−
1 (x′)

(3.21)

where we use the notation K(1)
I±(x, x′) = limr→∞[rKI±(x, x′)], the factor of r coming from the

asymptotic relation ϕ̄1 ∼ rϕ̄. The expressions (2.17) yield the near boundary asymptotics13

KI+(x, x′) ≈
(
i

2π
1

u′ − v − iϵ

)
δ2(x̂+ x̂′)1

r
+ . . .

KI−(x, x′) ≈ −
(
i

2π
1

v′ − u+ iϵ

)
δ2(x̂+ x̂′)1

r
+ . . . (3.22)

where the delta function is defined by
∫
d2x̂′δ2(x̂ + x̂′) = 1. The two lines in (3.22) are

equivalent since they only differ by the order in which we take points to the boundary.
Inserting these expressions into (3.21) yields

Ibndy = − i

π

∫
I+
d3x

∫
I−
d3x′

1
(u− v′ − iϵ)2 δ

2(x̂+ x̂′)ϕ̄−1 (x)ϕ̄
+
1 (x′) . (3.23)

On the other hand, the definition of the Carrollian two-point function is

Z2 = iIbndy =
∫
I+
d3x

∫
I−
d3x′∂u(−∂v′)G2(x, x′)ϕ̄−1 (x)ϕ̄

+
1 (x′) . (3.24)

Comparing yields

∂u(−∂v′)G2(x, x′) =
1
π

1
(u− v′ − iϵ)2 δ

2(x̂+ x̂′) . (3.25)

Integrating to get G2 requires boundary conditions, which are not fixed by our general
considerations. Finally, we note that the two-point functions with both points on the same
component of I vanish, as noted earlier in the general case.

13These expressions may be obtained by noting that in (2.17) we have 1/r2 falloff except when x̂ + x̂′ = 0.
This signals the presence of δ2(x̂ + x̂′) 1

r
, whose prefactor may be obtained by integrating over x̂′. This is the

same strategy as employed to deduce the boundary behavior of the AdS bulk-boundary propagator [45].
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3.5 Bulk Poincaré transformations

The Carrollian partition function is based on the Poincaré invariant bulk action and so
inherits that symmetry. The symmetry acts on the data appearing in the partition function,
which consists of the asymptotic field data. The invariance of the partition function under
transformations of this data implies invariance properties of the boundary amplitudes, which
are of course to be understood as the Ward identities associated with Poincaré symmetry.

We will focus on Lorentz transformations, commenting on translations at the end.
Formulas look the simplest if we recast Lorentz transformations xµ→xµΛ = Λµνxν in SL(2,C)
language; see e.g. [72]. Define

X =
(
x0 − x3 x1 + ix2

x1 − ix2 x0 + x3

)
(3.26)

and let S be an element of SL(2,C),

S =
(
a b

c d

)
, ad− bc = 1 (3.27)

A Lorentz transformation then acts as

X → XΛ = SXS† , S ∈ SL(2, C) (3.28)

This looks rather messy when written in terms of the xµ, but since we are interested in the
transformation of the asymptotic field data we only need the asymptotic transformation
formulas for the coordinates. Let’s consider the transformations near I+, as usual defined as
taking r→∞ at fixed u = t− r. Further, it is convenient to use complex coordinates on the
sphere, defined via stereographic projection. We then have coordinates (r, u, z, z) defined as

x⃗2 = r2, t = u+ r, x1 + ix2 = 2rz
1 + zz̄

, x3 = r
1− zz̄

1 + zz̄
(3.29)

with inverse

r2 = x⃗2, u = t− r, z = x1 + ix2

x3 + r
, z = x1 − ix2

x3 + r
. (3.30)

The metric on the unit S2 is

dΩ2 = dθ2 + sin2 θdϕ2

= 2γzzdzdz (3.31)

with

γzz̄ =
2

(1 + zz̄)2 . (3.32)

The full metric is then

ds2 = −dt2 + dx⃗2

= −du2 − 2dudr + 2r2γzz̄dzdz̄ (3.33)
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To obtain the formulas on I− simply replace u→− v in the above.14 At large r we then have

r → rΛ = r

fΛ(z, z)
+O(r0)

u → uΛ = fΛ(z, z)u+O(r−1)

z → zΛ = az + b

cz + d
+O(r−1)

z → zΛ = az + b

cz + d
+O(r−1) (3.34)

Here we have defined

fΛ(z, z) =
1 + zz̄

|az + b|2 + |cz + d|2
, (3.35)

which is the Weyl factor picked up by the unit sphere metric under the Möbius transfor-
mation z→zΛ,

dΩ2→dΩ2
Λ =

(
fΛ(z, z)

)2
dΩ2 . (3.36)

For a general Poincaré transformation we just replace the u transformation in (3.34) by
u→fΛ(z, z)

(
u+ α(z, z)

)
where α(z, z) is any linear combinations of the spherical harmonics

Y m
ℓ with ℓ = 0, 1. To see this, consider an infinitesimal translation by bµ. This acts by

δr = b⃗ · x⃗
r
, δu = b0 − δr, δz = b1 + ib2

x3 + r
− (b3 + δr) z

x3 + r
. (3.37)

It’s clear that the above only act at subleading order in the large r expansion, with the
exception of δu,

δu = bt − b⃗ · x̂ = bt − b1 z + z

1 + zz
− b2−i(z − z)

1 + zz
− b3 1− zz

1 + zz
. (3.38)

In terms of stereographic coordinates the ℓ = 0, 1 harmonics Y m
ℓ are

Y 0
0 (z, z) =

1√
4π
, (3.39)

Y −1
1 (z, z) =

√
3
2π

z

1 + zz
, Y 0

1 (z, z) =
√

3
4π

1− zz

1 + zz
, Y 1

1 (z, z) = −
√

3
2π

z

1 + zz
, (3.40)

hence the asymptotic transformation of u is a linear combination of these functions as
claimed. Furthermore, the asymptotic action of translations integrates up trivially, making
our statements valid for finite translations as well.

We will also need momentum space versions of these formulas. We label the components
of a null momentum qµ by its energy q0 = ωq and the angle on the sphere to which it points,
described in complex coordinates by (zq, zq). The Cartesian components of qµ are then

qµ = (q0, q1, q2, q3)

= ωq
1 + zq z̄q

(
1 + zq z̄q, zq + z̄q,−i(zq − z̄q), 1− zq z̄q

)
(3.41)

The Lorentz transformation qµ→qµΛ = Λµνqν then acts as

zqΛ = azq + b

czq + d
, zqΛ = azq + b

czq + d
, ωqΛ = ωq

fΛ(zq, zq)
. (3.42)

14Note that the sphere coordinates on I± used here are not related by an antipodal map.
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3.6 Lorentz invariance of the Carrollian partition function

Turning now to the transformation of the field variables, the scalar field transforms as

ϕ̄(x) → ϕ̄Λ(x) = ϕ̄(Λx) . (3.43)

Recalling the definition of ϕ̄1 as ϕ̄(x) ≈ 1
r ϕ̄1(u, z, z), as well as the transformation of r given

in (3.34), we have that

ϕ̄1(u, z, z) → ϕ̄1Λ(u, z, z) =
r

rΛ
ϕ̄1(uΛ, zΛ, zΛ) = fΛ(z, z)ϕ̄1(uΛ, zΛ, zΛ) . (3.44)

Lorentz invariance of the partition function implies that the boundary correlators must obey

Gn(Y1, . . . , Yn) =
(

n∏
i=1

fΛ(zi, zi)
)
Gn(Y Λ

1 , . . . , Y
Λ
n ) . (3.45)

with Yi = (ui, zi, zi). To derive (3.45) we can start from the Lorentz invariance of the standard
momentum space amplitudes and then use the results in section 3.2 to convert this to a
transformation law for the boundary correlators, the main point being the transformation
from frequency space to u space. In general, if a momentum space function obeys

F̃ (ω, z, z) = F̃ (ωΛ, zΛ, zΛ) (3.46)

then in u-space, defined by

F (u, z, z) =
∫
dω

2π F̃ (ω, z, z)e
−iωu, (3.47)

it obeys

F (u, z, z) = fΛ(z, z)F (uΛ, zΛ, zΛ) (3.48)

from which (3.45) follows.
Alternatively, we can verify Lorentz invariance directly from the Carrollian partition

function. Using (3.44) and (3.45) gives

Zn[ϕ̄] → Zn[ϕ̄Λ]

= 1
n!

∫
I
Gn(ui, zi, zi)

n∏
i=1

(
− ∂ui ϕ̄1Λ(ui, zi, zi)

)
= 1
n!

∫
I
Gn(uΛi, zΛi, zΛi)

n∏
i=1

duid
2x̂i
(
fΛ(zi, zi)

)2(− ∂ui ϕ̄1Λ(uΛi, zΛi, zΛi
)
. (3.49)

We now use (3.36) to deduce

duid
2x̂i
(
fΛ(zi, zi)

)2
∂ui = duΛid

2x̂Λi∂uΛi
(3.50)

so that a change of integration variable in (3.49) gives Zn[ϕ̄] = Zn[ϕ̄Λ].
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4 Scalar QED

We now consider massless scalar QED, following the treatment in [42]. The action is

I =
∫
d4x

(1
2A

µ∇2Aµ +
1
2ϕ

∗D2ϕ+ 1
2(D

2ϕ)∗ϕ
)
+ Ibndy . (4.1)

where UV counterterm and ghost actions are suppressed. We work in Lorenz gauge, ∇µAµ = 0.
The covariant derivative for a charge Q scalar is

Dµϕ = (∂µ − ieQAµ)ϕ (4.2)

The scalar field is assumed to obey the same asymptotics as in (2.4). The scalar mode
expansions are generalized in the obvious way; e.g. in (2.9) b†(p⃗) is replaced by c†(p⃗), the
creation operator for anti-particles.

In Lorenz gauge the asymptotic data associated with the gauge field consists of the order
r0 behavior of the angular components AA. The timelike and longitudinal components are
fixed in terms of these by the Maxwell equations and gauge condition. For the purposes
of studying large gauge transformations and their associated soft theorems it’s important
to isolate the Goldstone mode by writing [73]

Aµ = Âµ + ∂µΦ. (4.3)

The hatted part Âµ admits a Fourier expansion and asymptotically can be separated into
positive and negative frequency parts. It thus obeys boundary conditions analogous to
those of the scalar field,

ÂA(x) ≈

Â
−
A,0(u, x̂) + positive frequency on I+

Â
+
A,0(v, x̂) + negative frequency on I+

(4.4)

where the remaining components can be determined through the Maxwell equations and the
Lorenz gauge condition. The Goldstone mode Φ obeys ∇2Φ = 0 by virtue of the Lorenz gauge
condition. We allow Φ to have r0 leading behavior, and the Laplace equation then imposes

Φ(x) ≈
{

Φ0(x̂) on I+

Φ0(−x̂) on I− (4.5)

where −x̂ denotes the sphere point antipodal to x̂. Our boundary data for the gauge field
thus consists of the functions

(
Â

−
A,0(u, x̂), Â

+
A,0(v, x̂),Φ0(x̂)

)
. As with the scalar field, it is

convenient to adopt a compact notation and express the boundary data in terms of a single
function AA,0(u, x̂). When evaluated on I+ this stands for Â

−
A,0(u, x̂) + ∂AΦ0(x̂), while on

I− it stands for Â
+
A,0(v, x̂) + ∂AΦ0(x̂′).

Given these boundary conditions we can write down suitable boundary terms in the action,

Ibndy = (AA−0 , AA)I+ + (ϕ̄∗−1 , ϕ)I+ + (ϕ̄−1 , ϕ∗)I+

− (AA+
0 , AA)I− − (ϕ̄∗+

1 , ϕ)I− − (ϕ̄+
1 , ϕ

∗)I− , (4.6)
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where we use the notation (2.7) and where A indices are raised using γAB obeying γABγBC =
δAC . We are also assuming standard falloffs of fields at infinity; see e.g. [74].

The mode expansion of the non-Goldstone part of the boundary-condition-encoding
free gauge field takes the form

Âν(x) =
∑
α=±

∫
d3q

(2π)3
1
2ω
[
ε∗αν (q⃗)aα(q⃗)eiq·x + εαν (q⃗)aα(q⃗)†e−iq·x

]
(4.7)

where α = ± denotes the two photon helicity states. A convenient choice of polarization
vectors is

ε+µ(q⃗) = 1√
2
(z̄, 1,−i,−z̄), ε−µ(q⃗) = 1√

2
(z, 1, i,−z) , (4.8)

which obey qµε±µ(q⃗) = 0 and εµαε∗βµ = δαβ , and we write qµ as in (3.41). The asymptotic data
is best expressed in terms of AA = ∂Ax

µAµ where A = (z, z), and where the stereographic
coordinates on the sphere are given as

x1 + ix2 = 2rz
1 + zz̄

, x3 = r
1− zz̄

1 + zz̄
. (4.9)

Using this we have on I+

Âz(x) ≈
−i
8π2

∫ ∞

0
dω
(
ε̂∗+
z (ωx̂)a+(ωx̂)e−iωu − ε̂−z (ωx̂)a

†
−(ωx̂)eiωu

)
Âz(x) ≈

−i
8π2

∫ ∞

0
dω
(
ε̂∗−z (ωx̂)a−(ωx̂)e−iωu − ε̂+

z (ωx̂)a
†
+(ωx̂)eiωu

)
(4.10)

where we have defined

ε̂A(ωx̂) =
1
r
∂Ax

µεµ(ωx̂) , A = z, z (4.11)

given explicitly by

ε̂+
z (ωx̂) = 0 , ε̂+

z (ωx̂) =
√
2

1 + zz

ε̂−z (ωx̂) =
√
2

1 + zz
, ε̂−z (ωx̂) = 0 (4.12)

and which obey

ε̂Aα ε̂
∗
βA = δαβ , (4.13)

where A indices are raised using the inverse unit sphere metric γAB.
On I− we have the asymptotics

Âz(x) ≈
i

8π2

∫ ∞

0
dω
(
η̂∗−z (−ωx̂)a−(−ωx̂)e−iωv − η̂+

z (−ωx̂)a
†
+(−ωx̂)eiωv

)
Âz(x) ≈

i

8π2

∫ ∞

0
dω
(
η̂∗+
z (−ωx̂)a+(−ωx̂)e−iωv − η̂−z (−ωx̂)a

†
−(−ωx̂)eiωv

)
(4.14)
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where now

η̂αA(−ωx̂) =
1
r
∂Ax

µεαµ(−ωx̂) (4.15)

Note that η̂αA(−ωx̂) ̸=
[

1
r∂Ax

µεαµ

] ∣∣
−ωx̂ because xµ and −ωx̂ lie at antipodal points on the

sphere. Expressions for η̂µ(−ωx̂) are given by replacing z→−1/z and z→−1/z in (4.8), which
acts as the antipodal map. The expressions for η̂A therefore look different from ε̂A. To restore
the symmetry between expressions on I+ and I− one can introduce new complex coordinates
(z′, z′) on I−, related to the original ones by the antipodal map, i.e. z′ = −1/z. This gives

η̂+
z′(−ωx̂) = 0 , η̂+

z′
(ωx̂) = −

√
2

1 + z′z′

η̂−z′(−ωx̂) = −
√
2

1 + z′z′
, η̂−

z′
(−ωx̂) = 0 (4.16)

which just differ from (4.12) by an overall sign coming from the xi→− xi antipodal action.
The boundary generating functional takes a form analogous to the pure scalar case,

where the data now consists of

ϕ̄−1 (u, x̂) , ϕ̄∗−1 (u, x̂) , A
−
A,0(u, x̂) on I+

ϕ̄+
1 (v, x̂) , ϕ̄∗+

1 (v, x̂) , A
+
A,0(v, x̂) on I− , (4.17)

along with the Goldstone mode Φ(x̂). Note that ϕ̄∗− refers to the negative frequency part
of ϕ̄∗1 (as opposed to the complex conjugate of ϕ̄−1 ).

To illustrate the general structure of the partition function including the gauge field
we write out a particular cubic term,

Zbndy
1,1,1 =

∫
I−
d2x̂1dv1

∫
I+
d2x̂2du2

∫
I+
d2x̂3du3 (4.18)

∂v1 ϕ̄
∗+
1 (v, x̂1)

(
− ∂u2 ϕ̄

−
1 (u2, x̂2)

)
AA,0(u3, x̂3)

1
2
↔
∂ u3G

A(v1, x̂1;u2, x̂2;u3, x̂3).

where A
↔
∂B = A∂B − ∂AB. Several comments are in order. First, the Goldstone mode is

included via AA,0(u, x̂) = Â
−
A,0(u, x̂) + ∂AΦ(x̂). Second, unlike for the scalar field, for the

gauge field we cannot freely integrate by parts since the Goldstone mode implies that the
vector potential cannot be assumed to go to zero at the boundaries of I. The choice of 1

2
↔
∂ u3

thus represents a particular choice, which as we’ll see below is what is needed in order that
invariance under large gauge transformations yields the leading soft photon theorem with the
correct coefficient. By carefully considering asymptotic falloffs and boundary terms it should
be possible to arrive at this prescription from first principles, but we will not do so here.15

Finally, as for the scalars, if the gauge field appears on I− we should replace
↔
∂ u→−

↔
∂ v.

15It seems likely that this issue is the analog of a subtle factor of 1/2 in the canonical formulation [73].
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More general terms may be written schematically as

Zm,n,p[ϕ̄∗, ϕ̄, A] =
1

m!n!p!

∫
I

(
m∏
i=1

∂ui ϕ̄
∗
1(ui, x̂i)

) n∏
j=1

∂uj ϕ̄1(uj , x̂j)

( p∏
k=1

AAk,0(uk, x̂k)
)

× 1
2
↔
∂ uk1

. . .
1
2
↔
∂ ukp

GA1...Ap
m,n,p (ui, x̂i;uj , x̂j ;uk, x̂k)

(4.19)

This schematic form incorporates field insertions on both I+ and I− according to the rules
given above.

4.1 Relation to conventional amplitudes

We proceed using the same strategy as in the pure scalar case, starting with the bulk action,
which takes the form

Zbulk
m,n,p =

1
m!n!p!

∫ ( m∏
i=1

d4xi

) m+n∏
j=m+1

d4xj

( p∏
k=1

d4yk

)
Aµ1...µp(x1, . . . , xm+n; y1, . . . yp)

× ϕ̄∗(x1) . . . ϕ̄∗(xm)ϕ̄(xm+1) . . . ϕ̄(xm+n)Aµ1(y1) . . . Aµp(yp)

(4.20)

where Aµ1...µp(x1, . . . , xm+n; y1, . . . yp) is the Fourier transform of the polarization stripped,
off-shell, amputated correlator with m external ϕ lines, n external ϕ∗ lines, and p external
Aµ lines. The next step is to plug in the mode expansions and perform the spatial integrals.
The gauge field analog of (3.5) is

Aµ(y) =
∫

d4q

(2π)4 2πδ(q
2)
∑
α

ε∗αµ (q)Dα(ω, q⃗)eiqy (4.21)

with

Dα(ω, q⃗) =
{

aα(q⃗) ω > 0
a†α(−q⃗) ω < 0

(4.22)

and

εαµ(ω, q⃗) =
{

εαµ(q⃗) ω > 0
ε∗αµ (−q⃗) ω < 0

(4.23)

As in the scalar case it is sufficient to be schematic and only display dependence on a single
gauge field insertion. The analog of (3.10) works out to be

Zbulk
m,n,p (4.24)

= 1
m!n!p!

∫
d2q̂

(2π)2

∫ ∞

0

dω

2π
ω2

2ω
∑
α

[
aα(ωq̂)ε∗αµ (ωq̂)Ãµ(−ω,−ωq̂) + a†α(ωq̂)εαµ(ωq̂)Ãµ(ω, ωq̂)

]
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We now turn to the partition function. For the comparison to ordinary amplitudes we
can omit the Goldstone mode and hence are allowed to integrate by parts along I. Focusing,
as above, on a single photon, we have

Zbndy
m,n,p =

1
m!n!p!

[ ∫
I−
d2ŷdv

(
∂vAz,0(v, ŷ)Gz(v, ŷ) + ∂vAz,0(v, ŷ)Gz(v, ŷ)

)

−
∫
I+
d2ŷdu

(
∂uAz,0(u, ŷ)Gz(u, ŷ) + ∂uAz,0(u, ŷ)Gz(u, ŷ)

)]
(4.25)

We then insert the asymptotic expressions (4.10) and (4.9) which gives

Zbndy
m,n,p =

1
m!n!p!

[
1

8π2

∫
d2q̂

∫ ∞

0
dωωaα(−ωq̂)η̂∗αA (−ωq̂)G̃A(−ω,−q̂)

+ 1
8π2

∫
d2q̂

∫ ∞

0
dωωa†α(ωq̂)ε̂αA(ωq̂)G̃A(ω, q̂)

]
(4.26)

Comparing to (4.24) we find

ε̂αA(ωq̂)G̃A(ω, q̂) =
1
2πε

α
µ(ωq̂)Ãµ(ω, ωq̂)

η̂∗αA (−ωq̂)G̃A(−ω,−q̂) = 1
2πε

∗α
µ (ωq̂)Ãµ(−ω,−ωq̂) (4.27)

Using (4.13) we solve the top line as

G̃A(ω, q̂) = 1
2π
[
εαµ(ωq̂)Ãµ(ω, ωq̂)

]
ε̂∗Aα (ωq̂) (4.28)

Using (4.16) the solution of the bottom line may be written

G̃A
′(−ω,−q̂) = − 1

2π
[
ε∗αµ (ωq̂)Ãµ(−ω,−ωq̂)

]
ε̂A

′
α (ωq̂) , A′ = (z′, z′) , (4.29)

where we recall that the antipodally flipped complex coordinates are (z′ = −1
z , z

′ = −1
z ).

The expressions above hold for ω > 0, and the sign of the frequency argument in G̃ deter-
mines whether the argument of the correlator is on I+ (positive argument) or I− (negative
argument).

The (u, v) space correlators are then recovered as in (3.17). For illustration we write this
out explicitly for the correlator that appears in the partition function as in (4.18),

GA(v1, x̂1;u2, x̂2;u3, x̂3) =
1

(2π)3

∫ 0

−∞

dω1
2π

∫ ∞

0

dω2
2π

∫ ∞

0

dω3
2π

· εαµ(ω3x̂3)Ãµ(ω1, |ω1|x̂1;ω2, |ω2|x̂2;ω3, |ω3|x̂3)e−iω1v1−iω2u2−iω3u3 ε̂∗Aα (ω3x̂3)
(4.30)

We have thus arrived at the dictionary between the Carrollian correlators and standard
momentum space amplitudes in scalar QED.
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4.2 Lorentz invariance of the Carrollian partition function

We first recall some facts regarding the Lorentz transformation of the vector potential
Aµ. Under a Lorentz transformation described in SL(2,C) language (3.28) the polarization
vectors (4.8) obey

Λβµε+
β (Λq) =

czq + d

czq + d
ε+
µ (q)−

c

czq + d

1 + zqzq√
2ωq

qµ

Λβµε−β (Λq) =
czq + d

czq + d
ε−µ (q)−

c

czq + d

1 + zqzq√
2ωq

qµ (4.31)

The inhomogeneous terms on the right hand side are responsible for the familiar fact that
the physical vector potential only transforms like a four-vector up to a gauge transformation.
From (4.31) we compute

Aµ(Λx)Λµν =
∑
α=±

∫
d3q

(2π)3
1
2ω
[
ε∗αν (q⃗)aαΛ(q⃗)eiq·x + εαν (q⃗)aαΛ(q⃗)†e−iq·x

]
+ ∂νΦΛ(x) (4.32)

where we have defined

a+Λ(q⃗)† =
czq + d

dzq + d
a+(Λq⃗)†

a−Λ(q⃗)† =
czq + d

czq + d
a−(Λq⃗)† (4.33)

and

ΦΛ(x) = i

∫
d3q

(2π)3
1

2ωq

[
c

czq + d
a+(Λ⃗q) +

c

czq + d
a−(Λ⃗q)

]
1 + zqzq√

2ωq
eiq·x +H.C. (4.34)

To define a Lorentz transformation law for Aµ that is equivalent to a transformation of
the mode operators we need to include a compensating gauge transformation that cancels
the ∂νΦΛ term,

Aν(x) → AΛ
ν (x) = Aµ(Λx)Λµν − ∂νΦΛ. (4.35)

This transformation is then equivalent to the transformation of the modes given in (4.33).
Lorentz invariance requires that the compensating gauge transformation be an invariance
of the bulk generating functional, which implies that the bulk amplitudes obey the usual
transversality condition, e.g. qµÃµ(p1, p2, q) = 0, where q denotes the photon momentum. It
should be noted that although ΦΛ is exotic in the sense that it is a state-dependent gauge
transformation, ∂µΦΛ obeys the same fall-offs as Aµ and hence is a small gauge transformation.

The Lorentz transformation of the modes in (4.33) applied to the asymptotic expres-
sions (4.18) is readily seen to imply the following Lorentz transformation of the gauge field
boundary data

Az,0(u, z, z) → A
Λ
z,0(u, z, z) =

dzΛ
dz

Az,0(uΛ, zΛ, zΛ) =
1

(cz + d)2Az,0(uΛ, zΛ, zΛ)

Az,0(u, z, z) → A
Λ
z,0(u, z, z) =

dzΛ
dz

Az,0(uΛ, zΛ, zΛ) =
1

(cz + d)2Az,0(uΛ, zΛ, zΛ) (4.36)
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Inserting this in the boundary generating functional (4.19) and performing some manipulations
analogous to (3.49) shows that Lorentz invariance requires that the boundary correlators
obey (recall that (m,n, p) stand for the number of ϕ∗, ϕ, and AA insertions respectively)

(
m∏
i=1

fΛ(zi, zi)
) n∏

j=1
fΛ(zj , zj)

( p∏
k=1

fΛ(zk, zk)
)2

GA1...Ap
m,n,p (uΛi, zΛi;uΛj , zΛj ;uΛk, zΛk)

=
( p∏
k=1

dx̂Ak
Λ

dx̂Bk

)
GB1...Bp
m,n,p (ui, zi;uj , zj ;uk, zk)

(4.37)

The factors of
(
fΛ(zk, zk)

)2 come from the transformation of the sphere measure (see (3.36)).
Only a single power of fΛ appears for the scalar arguments because the factor of r stripped
out to define ϕ̄1 introduces a compensating factor. More generally, Carrollian correlators
and sources can all be assigned a weight corresponding to the power of fΛ that appears, and
Lorentz invariance requires a combined weight that cancels that of the integration measure.

5 Invariance under large gauge transformations and soft theorems

We now consider a collection of scalar fields of charge Qi. To lighten notation, in this section
we replace complex conjugate fields ϕ∗ by ϕ fields of the opposite sign charge.

5.1 Soft photon theorems

Let Ãn(p1, . . . pn) be the scalar n-point amplitude, and let Ãµ
n,1(p1, . . . pn; q) be the same

(polarization stripped) amplitude with the addition of a photon of momentum q. The soft
photon expansion consists of the relation [37]

εµ(q)Ãµ
n,1(p1, . . . pn; q) =

[
S(0) + S(1)]Ãn(p1, . . . pn) +O(ωq) (5.1)

where

S(0) = e
n∑
i=1

Qi
pi · ε(q)
pi · q

, S(1) = −ie
n∑
i=1

Qi
εµ(q)qνJµνi

pi · q
(5.2)

and the angular momentum operator is

Jµνi = i

(
pµi

∂

∂piν
− pνi

∂

∂piµ

)
. (5.3)

The leading O(ω−1) part associated with S(0) is completely universal, holding for any type of
matter at any loop order. The situation is different for the subleading O(ω0) part associated
with S(1). For example, at loop level there is generically a lnω part which dominates [75].
For this reason, when we discuss the subleading soft theorem we will restrict to tree level
processes computed in the scalar QED theory defined above.
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5.2 Leading soft theorem from large gauge transformations

Our interest here is in the invariance of the partition function under large gauge trans-
formations,

δϕ̄1i = ieQiλϕ̄1i , δAA = ∂Aλ , (5.4)

where λ obeys ∇2λ = 0 to preserve Lorenz gauge and hence has asymptotics as in (4.5),

λ(x) ≈
{

λ0(x̂) on I+

λ0(−x̂) on I− (5.5)

This invariance of the action is manifest from its bulk definition. The invariance of the
partition function involves a cancellation between the variations of terms with p photons
and p + 1 photons, the extra factor of the coupling associated to the latter compensated
for by the factor of e in δϕ̄1i. For notational simplicity we consider the p = 1 case. The
relevant terms in the partition function are then

Zϕn [ϕ̄i] =
∫
I

(
n∏
i=1

(
− ∂ui ϕ̄1i(ui, zi)

))
Gn(ui, zi)

Zϕ,An,1 [ϕ̄i, A0] =
∫
I

(
n∏
i=1

(
− ∂ui ϕ̄1i(ui, zi)

))
AA,0(u, z)

1
2
↔
∂ uG

A
n,1(ui, zi;u, z) , (5.6)

where we are using the condensed notation which allows for fields on both I+ and I−. The
gauge variations of these are

δZϕn [ϕ̄i] = ie

∫
I

(
n∑
i=1

Qiλ(zi)
)(

n∏
i=1

(
− ∂ui ϕ̄1i(ui, zi)

))
Gn(ui, zi)

δZϕ,An,1 [ϕ̄i, A0] = −1
2

∫
I
∂u∇̂(z)

A GAn,1(ui, zi;u, z)
n∏
i=1

(−∂ui ϕ̄1i(ui, zi))λ(z), (5.7)

where ∇̂A is the covariant derivative on the unit S2. The bottom line should be thought
of as a sum of two terms, corresponding to the gauge variation of Aµ on I− and I+; these
two contributions are equal [73] so we just retain the I+ contribution and remove the factor
1
2 . Cancellation of the two terms in (5.7) then implies

√
γ(x̂)∇̂(x)

A

∫
du∂uG

A
n,1(ui, x̂i;u, x̂)= ie

(
m∑
i=1

Qout
i δ(2)(x̂−x̂out

i )−
n∑
i=1

Qin
i δ

(2)(x̂−x̂in
i )
)
Gn(ui, x̂i)

(5.8)
where we have now separated out the matter contributions on I+ and I−. This is readily
solved using the Green’s function on S2, which in complex coordinates gives

√
γ(z, z)

∫ ∞

−∞
du∂uG

z
n,1(ui, zi;u, z) =

ie

2π

(
m∑
i=1

Qout
i

z − zout
i

−
n∑
i=1

Qin
i

z − zin
i

)
Gn(ui, zi)

√
γ(z, z)

∫ ∞

−∞
du∂uG

z
n,1(ui, zi;u, z) =

ie

2π

(
m∑
i=1

Qout
i

z − zout
i

−
n∑
i=1

Qin
i

z − zin
i

)
Gn(ui, zi) (5.9)
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To convert this to the usual soft theorem we first of all use the Fourier transform relation∫ ∞

−∞
du∂uf(u) = lim

ω→0

[
− iωf̃(ω)

]
(5.10)

so that the integrals on the left hand side of (5.9) pick out the 1/ω poles. We then convert
the boundary amplitudes to ordinary amplitudes using (4.28),

G̃z(pi, q) =
1
2π

1 + zz√
2

ε+
µ (ωq̂)Ãµ(pi;ω, ωq̂)

G̃z(pi, q) =
1
2π

1 + zz√
2

ε−µ (ωq̂)Ãµ(pi;ω, ωq̂) (5.11)

Finally we use the identity

1 + zz̄√
2

[
m∑
k=1

Qout
k

z − zout
k

−
n∑
k=1

Qin
k

z − zin
k

]
=
[
m∑
k=1

ωQout
k pout

k · ε+

pout
k · q

−
n∑
k=1

ωQin
k pin

k · ε+

pin
k · q

]
(5.12)

where momenta are written as in (3.41). We likewise have an identity with z→z and ε+→ε−.
Putting these facts together we arrive at the standard leading soft theorem for emission
of a photon,

ε+
µ (ωq̂)Ã

µ
n,1(pi;ω, ωq̂) = e

[
m∑
k=1

Qout
k pout

k · ε+

pout
k · q

−
n∑
k=1

Qin
k pin

k · ε+

pin
k · q

]
Ãn(pi) + . . . (5.13)

where . . . are higher order in ω. This generalizes in the obvious way to amplitudes with any
number of hard photons along with the soft photon. This derivation of the soft theorem
from large gauge invariance clearly contains the same basic ingredients as the original
derivation [73], the difference being the use of a functional formalism rather than the
canonical formalism of [73].

5.3 Subleading soft theorem

The subleading soft theorem gives a relation between the O(ω0) part of the amplitude to
emit a photon with energy ω and the same amplitude without the photon. This relation then
implies a relation between the corresponding terms in the partition function. This can be
written as an invariance of the partition function under a transformation of the boundary
data, which one can regard as a symmetry. For the reasons noted above, this symmetry only
holds as a statement regarding the transformation of the on-shell tree level action with respect
to boundary data. How to identify this symmetry directly, i.e. without reverse engineering
it from the amplitudes, is somewhat mysterious, as we discuss at the end of this section.
The analysis that follows draws heavily on [49].

In position space, the O(ω0) part of the photon emission amplitude is written as∫∞
−∞duG

A
n,1(uI , zI ;u, z). Converting the O(ω0) part of (5.1) into a relation between boundary

correlators eventually gives√
γ(z)

∫
duGzn,1(uI , zI ;u, z) =

ie

2π
1

1 + zz

n∑
i=1

Qi
z − zi

[
− (1 + zzi)uiGn(uI , zI)

+ (z − zi)(1 + zizi)∇̂zi

∫ ui

du′iGn(u1, z1, . . . , u
′
i, zi, . . . un, zn)

]
(5.14)
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and similarly for Gzn,1. This is the subleading analog of (5.9). Using this relation we can
now engineer a transformation of the asymptotic data under which the transformations of
Zn[ϕ̄] and Zn,1[ϕ̄, A] cancel. For the Gzn,1 part of Zn,1 this works out to be, after somewhat
lengthy manipulations,

δAz,0(u, z) = u∇̂z∇̂Aλ
A(z, z)

δAz,0(u, z) = 0

δ∂ui ϕ̄1i(ui, zi) = ieQi
[
∂ui

(
ui∇̂Aλ

A(zi.zi)ϕ̄1(ui, zi)
)
+ λA(zi, zi)∇̂Aϕ̄1(ui, zi)

]
(5.15)

where λA is a vector field on S2 with λz = 0. For Gzn,1 we have the analogous transformations,
where now λz = 0 and Az,0 transforms via a nonzero λz.

The first line and the first term on the right hand side of the third line in (5.15) look
like a gauge transformation with parameter λ = u∇̂Aλ

A, but the other terms spoil this
interpretation. Most notably, the transformation of ϕ̄1i is nonlocal since what appears on the
right hand side of the third line is not a total ui derivative. The symmetry corresponding
to this transformation is certainly not manifest in the scalar QED action, but this can be
accounted for by the nonlocal nature of the transformation together with the fact that it has
only been defined to act on the on-shell classical action expressed in terms of asymptotic
data, so the extension of this transformation into the bulk remains unclear.16 We should
also note that we have not kept sufficiently careful track of possible boundary terms at the
endpoints of I; these are likely to be relevant if one tries to directly verify that (5.15) leaves
the action invariant. For all these reasons, the status and implications of the subleading
symmetry within our framework is rather murky.

Our analysis is based on looking for symmetries that preserve our asymptotic boundary
conditions. We should note that there is an alternative approach [76–80] based on extending
the phase space to allow for gauge transformations that grow at large r. This approach
does lead to a symmetry based derivation of subleading soft theorems, and so would be
interesting to accommodate within our framework.

6 Flat space limit of AdS

The formulation of the Minkowski S-matrix in terms of the AFS path integral is directly
analogous to the GKP/W version of the AdS/CFT dictionary. Since S-matrix elements are
obtained from the large AdS radius limit of the AdS/CFT partition function, it is natural
to ask for the relation between these generating functionals.

The flat space S-matrix is extracted from AdS boundary correlators by generating highly
collimated wavepackets at the AdS boundary which fall freely into the bulk before colliding
in a region much smaller than the AdS radius [50, 51]. We work in global coordinates (ρ, τ, x̂)
on global AdSd+1 where the metric is

ds2
AdS = R2

cos2 ρ
(−dτ2 + dρ2 + sin2 ρdΩd−1) (6.1)

16We note, however, that a non-local transformation of the boundary data does not preclude an extension to
a local action on the bulk fields. In appendix A we show as an example that special conformal transformations
also have this property.
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and 0 ≤ ρ ≤ π
2 is the radial coordinate with AdS boundary at ρ = π

2 , τ the global time,
and R the AdS radius. The flat region can be placed at the center of AdS and identified
by taking R → ∞ while holding

r = ρR, t = τR (6.2)

fixed. The metric in this region indeed becomes flat,

lim
R→∞

ds2
AdS = −dt2 + dr2 + r2dΩ2

d−1. (6.3)

A highly collimated wavepacket having width on the order of δτ = 1
R at the AdS boundary

has high energy content with respect to global time. Hence, these excitations travel radially
inwards and outwards concentrated along null geodesics and collide at the bulk point sin-
gularity [52]. The travel time for a null geodesic between the origin and the AdS boundary
is ∆τ = π

2 , so for collisions to occur within the flat region defined by (6.2), we center our
thin packets about τ = ±π

2 . We summarize the setup in figure 2. This construction [50, 51],
or modifications thereof, is adopted in most work on this subject [20, 52–58, 60, 62–64].
See [59] for a survey of approaches.

Since AdS acts as a box, one should worry that the wavepackets will collide with
periodicity 2π, muddying our ability to extract the S-matrix elements of a single collision.
However, this can be avoided by truncating the cylinder with Euclidean “caps” at τ = ±π, as
shown in figure 2 and emphasized in [57], projecting us onto the vacuum state at early and
late times, but before a repeat collision can occur. In perturbation theory, this amounts to
using the bulk-bulk and bulk-boundary propagator obeying Feynman boundary conditions.

In order to obtain the flat S-matrix, it’s necessary to assume that evolution is free
everywhere except within the flat region. This assumption should be thought of as the AdS
analog of the basic assumption of LSZ reduction that all particles are asymptotically free. In
sections 6.1 and 6.2 we show more precisely how this assumption together with the setup
described above allows one to extract flat S-matrix elements from AdS boundary correlators.

Though the present approach to taking the flat limit is capable of producing both massive
and massless particles in the flat region, we focus on the massless case for simplicity. In
the bulk AdS, this corresponds to fixing any ∆ ∼ O(1) while a massive flat particle would
descend from taking ∆ ∼ O(R) since m2R2 = ∆(∆− d). See [56, 57] for comments on the
massive case, and [58] for some subtleties special to the massive limit.

Our main results for this paper are the data map under which the AdS and AFS partition
functions are equal in the case of spin 0, in section 7, and spin 1 fields, in section 8. For
the scalar field we find

ZAdS[J+(τ, x̂), J−(τ, x̂)] = ZAFS[ϕ̄−1 (u, x̂), ϕ̄
+
1 (v, x̂)] (6.4)

where the data are related by

ϕ̄−1 (u, x̂) = −R2∂uJ
−
(π
2 + u

R
, x̂
)
, ϕ̄+

1 (v, x̂) = R2∂vJ
+
(
− π

2 + v

R
, x̂
)
. (6.5)

The mapping for the gauge field is even simpler,

ZAdS[a+
A(τ, x̂), a

−
A(τ, x̂)] = ZAFS[Â

−
A,0(u, x̂), Â

+
A,0(v, x̂)] (6.6)
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with the data map17

Â
−
A,0(u, x̂) = a−A

(π
2 + u

R
, x̂
)
, Â

+
A,0(v, x̂) = a+

A

(
− π

2 + v

R
, x̂
)
. (6.7)

6.1 Witten diagrams

Though less in the spirit of the generating functionals of interest in this work, the structure
of Witten diagrams offer the most straightforward path to the flat limit. A generic Witten
diagram, smeared against boundary sources, takes the form

A =
∫

AdS

√
−g1d

Dx1 · · ·
√
−g1d

DxnGn(x1, . . . , xn)ψ1(x1) · · ·ψn(xn) (6.8)

where Gn is the sum of bulk diagrams with external legs stripped and the wavefunctions are

ψk(x) =
∫
∂AdS

√
−hddyK(x; y)Jk(y) (6.9)

with K the bulk-boundary propagator and hij the CFT metric. We assume that the
sources Jk do not overlap so that the particles represented by the Ψk do not collide at
the boundary of AdS.

The key assumption to obtain the flat limit is that the dominant contribution to (6.8) is
given when all bulk points in the Witten diagram — both those explicitly appearing in (6.8)
and those appearing inside Gn — are contained within the flat region. If this is the case,
then the flat limit is immediate due to (6.3), which also implies that the wavefunctions
ψk appearing in the integration obey the flat space wave equation. In words, (6.8) would
now be the sum of Feynman diagrams with external legs stripped and replaced by external
wavefunctions obeying the flat wave equation, which is nothing more than a flat S-matrix
element obtained by LSZ reduction written in position space.

In order for the Witten diagrams to plausibly be dominated by bulk points contained
in the flat region, we must tune the boundary data Jk such that the wavefunctions ψk are
well-collimated outside, and hence only collide inside the flat region.

To see how this works, recall the Lorentzian bulk-boundary propagator corresponding
to a scalar boundary operator of dimension ∆, corresponding to a bulk scalar field of mass
m2R2 = ∆(∆ − d), is18

K(x;x′) = iΓ(∆)
2∆π

d
2 Γ(∆− d

2)

( cos ρ
cos((1− iϵ)(τ − τ ′))− sin ρx̂ · x̂′

)∆
(6.10)

where xµ = (ρ, τ, x̂) denotes a bulk point and x′µ = (τ ′, x̂′) is a boundary point. This has a
light cone singularity regulated by the iϵ, which is smoothed out when integrating against Jk
along the time direction. It follows that when the source’s support in τ is thin, the resulting
wavepacket ψk will be similarly well-localized as it falls towards the flat region. Hence the
dominant contribution from interaction vertices with external legs will come when the vertex

17It’s worth noting that working with the Carroll data has the advantage of avoiding potential headaches to
do with matching polarization vectors on both sides of the flat limit.

18The factor of i is a result of working in Lorentzian signature; see e.g. [81]. Note also that the iϵ prescription
here is the one valid globally in AdS.
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is within the flat region. The remaining vertices find their dominant contributions from the
flat region due to the decay of the bulk-bulk propagator for proper distances of order O(R).19

The simplest way to build a source with the desired support is to construct a wavepacket
in the frequency domain20 after rescaling away R. For example, in the strip about τ = −π

2
we may define the rescaled variable v = R(τ + π

2 ). If the wavepacket had width of order
1/R in τ about −π

2 , then it is free to have any O(R0) width in v, and hence also have
any O(R0) width in ω:21

J(τ, x̂) =
∫ ∞

0

dω

2π J̃(ω, x̂)e
−iωR(τ+ π

2 ). (6.11)

Since the source specification J̃ automatically produces the type of wavepacket which
localizes us to the flat region, and ψk becomes a free field in the free region, it only remains
to compute the dτ integral in

ψ(x) =
∫ ∞

0

dω

2π

∫ 0

−π

√
−hdτ ′dd−1x̂′K(x;x′)e−iωR(τ ′+ π

2 )J̃(ω, x̂′) (6.12)

when x is in the flat region to determine the map between the J̃ and the corresponding flat
space data. There is a completely analogous expression for the outgoing wavepackets. We
perform this computation for spin 0 and spin 1 fields in sections 7 and 8, respectively.

This argument establishes the connection between Witten and Feynman diagrams for
some map between AdS data and flat external wavefunctions. Since the AdS and AFS
path integrals are the generating functionals for these objects, it follows that the generating
functionals themselves must also be equal, with the possible exception of contact terms
where AdS sources overlap.

It’s important to note that in the above we have neglected 2-point corrections on the
external legs. Such corrections would not be suppressed by our arguments about localization
onto the bulk point singularity. However, just like in LSZ, such corrections amount to a
wavefunction renormalization Z. In any perturbative evaluation the prescription to avoid
these factors entirely is identical to LSZ: do not include any diagrams with bubbles on
the external legs.

6.2 Path integral

The argument of the previous section establishes the equivalence of the AdS and AFS path
integrals indirectly, by instead relating the objects they generate. This relation can be
established more directly using a combination of operator and path integral methods. To do

19One might worry about internal vertices which are light-like separated, but the Feynman iϵ regulating the
lightcone singularity forces the Green’s function to decay in these directions as well.

20If one has already constructed a boundary source with the required support on the strip, it is possible
to avoid using momentum space for integer ∆ ≥ 2 by comparison with the Carrollian bulk-boundary
propagators (2.17). We demonstrate how to perform this calculation in section 7.4 but otherwise focus on the
momentum space computation since it makes the desired support automatic.

21We write a strictly positive frequency source here, but this unnecessary. It will be simple to see later that,
in the strip about τ = −π

2 , the negative frequency component of J will not contribute to the wavefunction in
the flat limit.
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Figure 3. An Euclidean cap prepares the vacuum below Σ−π, then the evolution operator
eiĤ0τiÛ(Σi,Σ−π) prepares the in state that Ŝ = eiĤ0τf Û(Σf ,Σi)e−iĤ0τi acts upon. A symmet-
ric construction at future times prepares an out state in terms of a region whose lower boundary is
the surface Σf . If the AdS data is chosen so the in and out states are non-trivial only on the diamond,
the result coincides with a matrix element of the flat S-matrix.

this, first define the time evolution operator in the presence of boundary sources

Û(Σf ,Σi) = T exp
(
−i
∫ Σf

Σi

Ĥdτ + i

∫ Σf

Σi

JÔdτ

)
(6.13)

where Σi and Σf are a pair of initial and final time slices. The explicit details of this operator
are largely unimportant for our present purposes. The only important properties of this
object are that it obeys the usual composition property

Û(Σf ,Σi) = Û(Σf ,Σ′)Û(Σ′,Σi) (6.14)

for any slice Σ′ between Σi and Σf . The AdS partition function, with Euclidean caps as
in figure 2, may be expressed in terms of this operator by

Z[J ] = ⟨0|Û(Σπ,Σ−π)|0⟩ (6.15)

where Σ±π are the constant τ = ±π slices.
We now introduce the slices Σi,Σf as in figure 3, which bound the flat region, and write22

Z[J ] = ⟨0|Û(Σπ,Σf )e−iĤ0τf eiĤ0τf Û(Σf ,Σi)e−iĤ0τieiĤ0τiÛ(Σi,Σ−π)|0⟩. (6.16)

22We write τi, τf as a shorthand in the free evolution operators for free evolution between τ = 0 and the
surfaces Σi, Σf .
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Inserting an overcomplete basis of AdS coherent states between the free evolution oper-
ators gives

Z[J ] =
∫
[Dϕα+Dϕα−][Dϕ

β
+Dϕ

β
−]e

−2i(ϕα
−,ϕ

α
+)Σf e−2i(ϕβ

−,ϕ
β
+)Σi (6.17)

· ⟨0|Û(Σπ,Σf )|ϕα+(τf )⟩⟨ϕ−(τf )|Û(Σf ,Σi)|ϕβ+(τi)⟩⟨ϕ
β
−(τi)|Û(Σi,Σ−π)|0⟩. (6.18)

This is a lengthy expression, but the measure is just the norm of the coherent states written
covariantly as in (2.6). The first and last Û factors prepare the state as it falls from the
AdS boundary towards the flat region, and the factor

S[ϕα−, ϕ
β
+] = ⟨ϕα−(τf )|Û(Σf ,Σi)|ϕβ+(τi)⟩ (6.19)

will become the AFS generating functional.
To this point, we have not made any assumptions about the boundary data that would

allow us to conclude that S should be identified with the AFS generating functional. Indeed,
it is only equal to the AFS generating functional on the subspace of coherent data where ϕα−
and ϕβ+ have support only at the boundary of the flat region. To get a handle on how the
kinematic choice of boundary source is transported to the coherent data on Σi,Σf , we use
path integral expressions for the infalling and outfalling factors. Focusing on the infalling
factor, we are instructed to compute the path integral

⟨ϕβ(τi)|Û(Σi,Σ−π)|0⟩ =
∫

DϕeiI[ϕ]+iI∂ [ϕ] (6.20)

over fields obeying

ϕ−(τi) = ϕβ−(τi)
ϕ(ρ, τ, x̂) → cosd−∆ ρJ(τ, x̂)
ϕ+(Σ−π) = 0 (6.21)

That is, the path integral over fields obeying the usual boundary conditions at the AdS
boundary in addition to the boundary conditions implied by the vacuum at Σ−π and the
coherent state at Σi. The boundary term is determined by demanding a good variational
principle compatible with these boundary conditions,

I∂ [ϕ] = (ϕ−, ϕ+)Σi − (ϕ−, ϕ+)Σ−π + I∂AdS[ϕ] (6.22)

where we have assumed that the kinetic term is written in the form ϕ∇2ϕ. The inner product
at Σ−π vanishes since ϕ+ = 0 there.

As usual, it is useful to move the boundary data dependence into the integrand by
shifting the integration variable to

ϕ = ϕ̄+ ϕ̃, ϕ̄(x) =
∫ 0

−π

√
−hddyK(x; y)J(y)︸ ︷︷ ︸

ψin(x)

+ϕβ−(x). (6.23)
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Here ϕ̃ is required to have zero negative frequency on Σi and zero positive frequency on
Σ−π. Hence the boundary terms reduce to

I∂ [ϕ] = (ϕβ−, ψin + ϕ̃+)Σi + I∂AdS[ϕ̄+ ϕ̃]. (6.24)

Using this shift in the bulk action,

I[ϕ] = 1
2

∫
dDx

√
−g ϕ̄∇2ϕ̃+

∫
dDx

√
−g

[1
2 ϕ̃∇

2ϕ̃− V (ϕ̄+ ϕ̃)
]
. (6.25)

The first term is bulk free action linearized around the free solution ϕ̄. As such, the demand
of a good variational principle, or direct calculation, implies that this term exactly cancels23

the ϕ̃ dependence in I∂ . The total action is therefore

I + I∂ = (ϕβ−, ψin)Σi + I∂AdS[ϕ̄] +
∫
dDx

√
−g

[1
2 ϕ̃∇

2ϕ̃− V (ϕ̄+ ϕ̃)
]
. (6.26)

By a straightforward calculation, the details of which are included in appendix B, we may
evaluate the AdS boundary terms to find

I + I∂ = 2(ϕβ−, ψin)Σi +
∫
dDx

√
−g

[1
2 ϕ̃∇

2ϕ̃− V (ϕ̄+ ϕ̃)
]
. (6.27)

If the ϕ̃ path integral were trivial, the boundary term above would imply24

Z[J ] =
∫
[Dϕα+Dϕα−][Dϕ

β
+Dϕ

β
−]e

−2i(ϕα
−,ϕ

α
+−ψout)Σf e−2i(ϕβ

−,ϕ
β
+−ψin)ΣiS[ϕα−, ϕ

β
+] (6.28)

= S[ψout, ψin]. (6.29)

As already discussed, this object is the AFS generating functional in the special case where
the data ψin and ψout is supported only in the flat region. But since ψ is defined by the
bulk-boundary propagator, we know that this support can be engineered by placing the
sources within a width 1/R window of τ = ±π

2 , exactly as in (6.12).
To argue that the interactions in (6.27) can be neglected, we can first imagine the

boundary source decomposing as J =
∑
k Jk into sources with disjoint support on the

boundary. Each source produces a well-collimated particle track falling towards the flat
region. Since these tracks are well-collimated, we expect that the ϕ̃ path integral factors
into integrals over fluctuations about each particle track. This is the path integral analog
of the diagrammatic observation that the well-separated and well-localized particles are not
expected to interact with each other until they enter the flat region.

This still leaves, however, the possibility of self-interactions, but this is identical to the
discussion of diagrams with bubbles on external legs at the end of section 6.1. Hence these
interactions just amount to a wavefunction renormalization and can be ignored.

23More generally, only the linear dependence on ϕ̃ would be guaranteed to cancel, but I∂ is a linear functional
of ϕ̃ here.

24The result of the coherent state integrals are simplest to see in terms of the mode data where they take
the schematic form

∫
dzdz
2πi

e−z(z−w).
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7 Flat space limit for scalar fields

With the formal comments in the previous section in mind, we turn to computing the map
between the AdS and AFS data by computing the flat limit of (6.12). To do this, we first
recall some explicit formulas for scalar fields in AdS.

7.1 Basic formulas

The bulk-boundary propagator corresponding to a scalar boundary operator of dimension
∆, corresponding to a bulk scalar field of mass m2R2 = ∆(∆ − d), is

K(x;x′) = C∆

( cos ρ
cos((1− iϵ)(τ − τ ′))− sin ρx̂ · x̂′

)∆
(7.1)

where xµ = (ρ, τ, x̂) denotes a bulk point and x′µ = (τ ′, x̂′) is a boundary point. We have
also defined25

C∆ = iΓ(∆)
2∆π

d
2 Γ(∆− d

2)
. (7.2)

The bulk-boundary propagator obeys (∇2 − m2R2 + iϵ)K(x;x′) = 0, after a redefinition
of ϵ, and has leading boundary behavior

K(x;x′) → 1√
−h

δ(d)(x− x′) cosd−∆ ρ as ρ→ π

2 (7.3)

where 1√
−hδ

(d)(x− x′) is the invariant delta function with respect to the boundary metric
ds2
b = −dτ2 + dΩ2

d−1. As is standard, given a boundary source J(x′) we define a bulk
free field solution as

ϕ(x) =
∫
ddx′

√
−h(x′)K(x;x′)J(x′) (7.4)

which has leading boundary behavior ϕ(x) → J(x) cosd−∆ ρ.
The flat limit of the bulk-boundary propagator is obtained by taking the bulk point to

lie in the flat region, i.e. at fixed (r, t, x̂), defined as in (6.2), as R → ∞,

Kf (x, x′) = C∆R
∆
( 1
R cos τ ′ + t sin τ ′ − rx̂ · x̂′ + iϵR|τ − τ ′| sin |τ − τ ′|

)∆
. (7.5)

As argued in the previous section, it’s important that we integrate Kf against only
sources localized to the vicinity of τ ′ = ±π

2 . To zoom in on these regions we write

τ ′ =


π
2 + u

R (future source)
−π

2 + v
R (past source)

(7.6)

It’s simple to check that sin |τ − τ ′| > 0 so long as t − v, t − u ∼ O(R0). Hence we can
redefine the ϵ to simplify the flat limit:

Kf (x, x′) = C∆R
∆
( 1
R cos τ ′ + t sin τ ′ − rx̂ · x̂′ + iϵ

)∆
. (7.7)

25The factor of i is a result of working in Lorentzian signature; see e.g. [81].
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7.2 Past sources

We first focus on past sources localized near τ ′ = −π
2 . Writing τ ′ = −π

2 + v
R , the flat limit

of the bulk-boundary propagator becomes

Kf (x;x′) = C∆(ωR)∆
( 1
ωv + p · x+ iϵ

)∆
(7.8)

where we have defined pµ = ω(1,−x̂′) for some arbitrary frequency ω that we will identify
with the integrated frequency in (6.12).

Indeed, the flat limit of the wavefunction (6.12) is given by

ψ(x) = C∆R
∆−1

∫ ∞

0

dω

2π d
d−1p̂ω∆−1J̃+(ω,−p̂)eip·x

∫ π
2R

−π
2R
dv

e−iv

(v + iϵ)∆ . (7.9)

Here we have only written the contribution due to the positive frequency component of
J̃ , but the iϵ in the dv integration will annihilate any negative frequency component of
J̃ at leading order in R. The positive frequency integral above can be computed using a
simple contour analysis to find∫ ∞

−∞
dv

e−iv

(v + iϵ)∆ = 2π
Γ(∆)e

−iπ
2 ∆ , (7.10)

so the wavefunction becomes

ψ(x) = C∆R
∆−1 2π

Γ(∆)e
−iπ

2 ∆
∫ ∞

0

dω

2π d
d−1x̂ω∆−1J̃+(ω,−p̂)eip·x . (7.11)

We can put the wavefunction into the standard form of a positive frequency flat space
free solution by noting ddp = ωd−1dωdd−1p̂ to find

ψ(x) = C∆R
∆−1 2(2π)d

Γ(∆) e
−iπ

2 ∆
∫

ddp

(2π)d
1
2ωω

∆−d+1J̃+(ω,−p̂)eip·x (7.12)

≡
∫

ddp

(2π)d
1
2ωb(p⃗)e

ip·x . (7.13)

This immediately gives the data map in terms of mode data,

b(p⃗) = C∆R
∆−1 2(2π)d

Γ(∆) e
−iπ

2 ∆ω∆−d+1J̃+(ω,−p̂) (7.14)

= −iω
2π R2J̃+(ω,−p̂), ∆ = d = 3. (7.15)

We can now express this map in terms of the Carroll data (2.12) in the special case d =
∆ = 3 to find

ϕ̄+
1 (v, x̂) = R2∂vJ

+
(
− π

2 + v

R
, x̂
)
. (7.16)

It is perhaps worth mentioning that the choice ∆ = 3 is not crucial here, and for example
∆ = 2 would have produced the map ϕ̄+

1 (v, x̂) = RJ+(−π
2 + v

R , x̂).
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7.3 Future sources

We now write τ ′ = π
2 + u

R to consider a negative frequency source

J−(u, x̂′) =
∫ ∞

0

dω

2π J̃
−(ω, x̂′)eiRω(τ ′−π

2 ) (7.17)

in the vicinity of τ ′ = +π
2 . As with the sources near τ ′ = −π

2 , the bulk-boundary propagator
simplifies to

K(x, x′) → C∆(ωR)∆ 1
(−ωu− p · x+ iϵ)∆ (7.18)

with the notable distinction that now

pµ = ω(1, x̂′) (7.19)

includes no antipode in its definition.
The wavefunction in the flat region therefore reduces to

ψ(x) = C∆

∫ π

0
dτ ′dd−1p̂′

∫ ∞

0

dω

2π
ω∆eiωR(τ ′−π

2 )

(−ωu− p · x+ iϵ)∆ J̃
−(ω, p̂) (7.20)

= C∆R
∆−1

∫ ∞

0

dω

2π d
d−1p̂ω∆−1J̃−(ω, p̂)e−ip·x

∫ π
2R

−π
2R
du

eiu

(−u+ iϵ)∆ . (7.21)

Once again this takes the form of a flat space free solution, but now of negative frequency
content. The remaining du integral is identical to the (7.10) under u→ −u, and so we find

ψ(x) = C∆R
∆−1 2(2π)d

Γ(∆) e
−iπ

2 ∆
∫

ddp

(2π)d
1
2ωω

∆−d+1J̃−(ω, p̂)e−ip·x (7.22)

from which we read off the mode data map

b†(p⃗) = C∆R
∆−1 2(2π)d

Γ(∆) e
−iπ

2 ∆ω∆−d+1J̃−(ω, p̂) (7.23)

= − iω

2π J̃
−(ω, p̂), ∆ = d = 3. (7.24)

Comparing with the Carroll data (2.12) and specializing to d = ∆ = 3,

ϕ̄−1 (u, x̂) = −R2∂uJ
−
(π
2 + u

R
, x̂
)
. (7.25)

As with the past sources, had we chosen, for example, ∆ = 2 we would have found the
map ϕ̄−1 (u, x̂) = RJ−(π2 + u

R , x̂).

7.4 Approach in position space

The momentum space representation of the boundary source was introduced as a convenient
tool for constructing boundary sources with the required support on the thin strips about
τ = ±π

2 . This isn’t strictly necessary, and for the special case of integer scaling dimension
with ∆ ≥ 2 one can slightly simplify the calculations in the previous two subsections by
comparing the flat limit of K with the Carroll bulk-boundary propagators (2.17).
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In the special case ∆ = 2 the bulk-boundary propagator for a source at τ ′ = −π
2 + v′

R ,
renaming v → v′ compared with (7.8), may be written

Kf (x;x′) = i

(4π)2R
2 1
(v′ + q(−x̂′) · x+ iϵ)2 (7.26)

where we have defined qµ(x̂′) = (1, x̂′) as below (2.17). Then in the flat region the wave-
function (6.9) becomes

ψ(x) =
∫
dv′d2x̂′

(
i

(2π)2
1

(v′ + q(−x̂′) · x+ iϵ)2

)
RJ+

(
− π

2 + v′

R
, x̂′
)
. (7.27)

Comparing with the Carroll bulk-boundary propagator (2.17), we immediately find ϕ̄+
1 (v, x̂) =

RJ+(−π
2 +

v
R , x̂). This is the same map found for ∆ = 2 via the momentum space computation

in section 7.2.
For integer ∆ ≥ 2 the same approach can be used by first writing Kf as some number of

derivatives acting on the ∆ = 2 case. For non-integral ∆ Fourier space seems unavoidable
since to apply the argument in this subsection one would need to introduce Fourier space
to define a fractional derivative of the ∆ = 2 case. The calculation for future sources is
essentially identical and leads to the ∆ = 2 map derived in section 7.3.

8 Flat space limit for gauge fields

Now that we have oriented ourselves with scalar fields, we turn to the flat limit in the case of
gauge fields. Here it will be useful to adopt stereographic coordinates on the sphere so that

ds2 = R2

cos2 ρ

(
− dτ2 + dρ2 + 2 sin2 ργzzdzdz

)
(8.1)

where γzz = 2
(1+zz)2 . These coordinates relate to the unit vector representation of the sphere by

x̂ = 1
1 + zz

(z + z,−i(z − z), 1− zz). (8.2)

We are interested in gauge fields Aµ that are solutions of the source free Maxwell equations
with specified AdS boundary conditions. Such solutions may be expressed in terms of the
1-form valued bulk-boundary propagators Ki as

Aµ(x)dxµ =
∫
d3x′

√
−h

(
Kτ (x;x′)aτ (x′) +Kz(x;x′)az(x′) +Kz(x;x′)az(x′)

)
(8.3)

which obey the Maxwell equations ∇µF
µν = 0, Lorenz gauge ∇µAµ = 0, and which behave as

Aµ(x)dxµ → aτ (x)dτ + az(x)dz + azdz (8.4)

near the AdS boundary.

– 38 –



J
H
E
P
0
1
(
2
0
2
5
)
1
8
3

We review how to obtain the bulk-boundary propagators satisfying these requirements
from the more familiar Euclidean Poincaré coordinate expression in appendix C. The ex-
pressions are

Kτ (x;x′) = i

2π2
cos ρ

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ
d

( sin(τ − τ ′)
cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ

)
, (8.5)

Kz(x;x′) = i

4π2
cos ρ

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ
d

(
sin ργz′z′∂z′(x̂ · x̂′)

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ

)
, (8.6)

Kz(x;x′) = i

4π2
cos ρ

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ
d

(
sin ργz′z′∂z′(x̂ · x̂′)

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ

)
. (8.7)

The iϵ prescription here is valid only for sin |τ − τ ′| > 0, but this is all we will require, as
was the case for the scalar field. We also note

γz
′z′∂z′(x̂ · x̂′) = 1 + z′z

1 + zz
(z − z′), (8.8)

γz
′z′∂z′(x̂ · x̂′) = 1 + zz′

1 + zz
(z − z′). (8.9)

Taking the bulk point in (8.5) to lie in the flat region and taking R → ∞, we find

Kτ → i

2π2
R

R cos τ ′ + (t sin τ ′ − rx̂ · x̂′) + iϵ
d

( −R sin τ ′

R cos τ ′ + (t sin τ ′ − rx̂ · x̂′) + iϵ

)
(8.10)

= − iR
2

4π2 sin τ ′d
[( 1

R cos τ ′ + (t sin τ ′ − rx̂ · x̂′) + iϵ

)2
]
, (8.11)

Kz → i

4π2
R

R cos τ ′ + (t sin τ ′ − rx̂ · x̂′) + iϵ
d

(
rγz

′z′∂z′(x̂ · x̂′)
R cos τ ′ + (t sin τ ′ − rx̂ · x̂′) + iϵ

)
, (8.12)

Kz → i

4π2
R

R cos τ ′ + (t sin τ ′ − rx̂ · x̂′) + iϵ
d

(
rγz

′z′∂z′(x̂ · x̂′)
R cos τ ′ + (t sin τ ′ − rx̂ · x̂′) + iϵ

)
. (8.13)

We see that in the flat region the τ component of the bulk-boundary propagator is an exact
form. It’s straightforward to see that for either τ ′ = −π

2 + v
R or τ ′ = +π

2 + u
R this total

derivative takes the form de±ip·x, and hence is pure gauge, removable by a small gauge
transformation. The physically interesting solutions thus correspond to Kz and Kz, so we
restrict attention to these.

8.1 Past sources

As with the scalar field we write τ ′ = −π
2 + v

R for sources in the past. As already discussed,
we may ignore Kτ , and Kz is the same as Kz under swapping z ↔ z and z′ ↔ z′. Focusing
on the Kz contribution, in the flat limit we have

Kz → iRω2

4π2
1

ωv + p · x+ iϵ
d

(
rγz

′z′∂z′(x̂ · x̂′)
ωv + p · x+ iϵ

)
(8.14)

where pµ = ω(1,−x̂′). As with the scalar field, we write the boundary source as

a+
z (τ ′, x̂′) =

∫
dω

2π ã
+
z (ω, x̂′)e−iωR(τ ′+ π

2 ) (8.15)
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so the bulk wavefunction in the flat region is given by

ψz(x) =
i

4π2

∫
dω

2π d
2p̂ω2ã+

z (ω,−p̂)
∫ ∞

−∞
dv

e−iωv

ωv + p · x+ iϵ
d

(
rγz

′z′∂z′(x̂ · x̂′)
ωv + p · x+ iϵ

)
. (8.16)

Three type of terms will arise from the differential: d(p · x), dr, and d(x̂ · x̂′). Our goal
here is find the asymptotic Carroll data specified by this field configuration. As discussed in
section 4, in Lorenz gauge this data is entirely contained in the transverse angular components.
Hence for the sake of obtaining the data map we can ignore the longitudinal d(p · x) and
radial dr terms, since they are fixed in terms of the transverse angular components. The
remaining angular terms are

ψang
z = ir

4π

∫
dω

2π d
2p̂ωã+

z (ω,−p̂)eip·xd(γz
′z′∂z′(x̂ · x̂′))

∫
dv

e−iv

(v + iϵ)2 (8.17)

= − ir

2π

∫
dω

2π d
2p̂ωã+

z (ω,−p̂)d(γz
′z′∂z′(x̂ · x̂′)). (8.18)

We note that

d(γz′z′∂z′(x̂ · x̂′)) =
(1 + z′z

1 + zz

)2
dz −

(
z − z′

1 + zz

)2
dz (8.19)

so together with the saddle point approximation (2.10), the angular part of the wavefunction
on I− is given by

ψang
z → a+

z

(
− π

2 + v

R
, x̂
)
dz. (8.20)

The complete map to the flat Carroll data is therefore given by

Â
+
0 (v, x̂) = a+

z

(
− π

2 + v

R
, x̂
)
dz + a+

z

(
− π

2 + v

R
, x̂
)
. (8.21)

We see that the flat Carroll data is precisely the background gauge field of the CFT, suitably
localized on the AdS boundary. This is the simplest possible relation between the AdS and
Carroll data. Indeed, working with the Carroll data has allowed us to avoid a potential
headache in trying to match the polarization induced by the flat limit to a polarization
choice in flat space.

8.2 Future sources

The flat limit of Kz with a source spread over τ ′ = +π
2 + u

R is given by

Kz → iRω2

4π2
1

−ωu− p · x+ iϵ
d

(
rγz

′z′∂z′(x̂ · x̂′)
−ωu− p · x+ iϵ

)
(8.22)

where now pµ = ω(1, x̂′), as was the case for the scalar field. We write the boundary source

a−z (τ ′, x̂′) =
∫
dω

2π ã
−
z (ω, x̂′)eiωR(τ ′−π

2 ). (8.23)

The remainder of the calculation is essentially identical to the case of past sources, and
the result for the Carroll data map is

Â
−
0 = a−z

(π
2 + u

R
, x̂
)
dz + a−z

(π
2 + u

R
, x̂
)
dz. (8.24)
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9 Flat space vs. AdS symmetries

9.1 Flat space Lorentz transformations at the AdS boundary

It’s useful to verify how Lorentz transformations acting on the flat space boundary data are
realized in the AdS boundary description. Recall that the former are, on I+,

r → rΛ = r

fΛ(z, z)
u → uΛ = fΛ(z, z)u

z → zΛ = az + b

cz + d

z → zΛ = az + b

cz + d
. (9.1)

We now wish to write down AdS isometries which reduces to (9.1) in the flat region and then
analyze their behavior at the AdS boundary. Recall that the AdS4 hyperboloid condition

(X−1)2 + (X0)2 − (X1)2 − (X2)2 − (X3)2 = R2 (9.2)

is solved using global coordinates as

X−1 = R
cos τ
cos ρ

X0 = R
sin τ
cos ρ

X1 = R tan ρ(z + z)
1 + zz

X2 = R tan ρ−i(z − z)
1 + zz

X3 = R tan ρ1− zz

1 + zz
(9.3)

Since the flat region is obtained by writing τ = t
R and ρ = r

R and then taking R→∞, we see
that X−1→1 in this limit. Lorentz transformation thus leave X−1 invariant. This suggests
that we combine the remaining embedding coordinates into a matrix as

X =
(
X0 −X3 X1 + iX2

X1 − iX2 X0 +X3

)
(9.4)

and consider the AdS isometries

X→XΛ = SXS† (9.5)

with S ∈ SL(2, C) as in (3.27). Given that Xµ→xµ = (t, rx̂i) in the large R limit, it’s
immediately clear that we recover (9.1) in this limit.

Next we ask how such AdS isometries act on the relevant parts of the AdS boundary.
Let’s focus on the thin strip near τ = π

2 and choose suitable notation to make clear the relation
to the Lorentz transformations in the flat region. To zoom in on this boundary strip we write

U = X0 − R

cos ρ (9.6)
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and take cos ρ→0 at fixed (U, z, z). This forces τ→π
2 as desired. We can also trade ρ for r

by defining r = R
cos ρ . The transformation (9.5) in general acts in a messy way on the AdS

coordinates but simplifies near our boundary region to give

r → rΛ = r

fΛ(z, z)
U → UΛ = fΛ(z, z)U

z → zΛ = az + b

cz + d

z → zΛ = az + b

cz + d
(9.7)

Finally, we write τ = π
2 + u

R in which case the U transformation at large R can be worked
out to give

u → uΛ = fΛ(z, z)u (9.8)

and we recover the flat space formulas (9.1). The same analysis goes through relating
the transformations on I− to those in the strip at τ = −π

2 . These AdS isometries acts
as conformal transformations on the AdS boundary on account of the rescaling of r. The
conformal invariance of the boundary CFT thus implies, under the data map relating the
flat space and AdS generating functionals, the Lorentz invariance of the flat space S-matrix.
In more detail, a CFT source J is identified by the non-normalizable asymptotics of the
bulk scalar field via

ϕ(ρ, u, z, z) ∼ J(u, z, z)(cos ρ)d−∆ + . . . (9.9)

where d = 3 for AdS4. Since the scalar field obeys ϕΛ(ρ, u, z, z) = ϕ(ρΛ, uΛ, zΛ, zΛ) the
boundary source transforms as

JΛ(u, z, z) = [fΛ(z, z)]∆−dJ(uΛ, zΛ, zΛ) (9.10)

The invariance of ZAdS[J ] under this transformation translates into the invariance of ZAFS
under Lorentz transformations.

9.2 Large gauge transformations

We wish to relate large gauge transformations in Minkowski space and AdS. We restrict to
4 spacetime dimensions and draw on formulas in [57].

9.2.1 Large gauge transformations in Minkowski space

A large gauge transformation in Minkowski space is a solution of ∇2λ = 0 with boundary
conditions on I given by (5.5). Taking λ0(x̂) = Y m

ℓ (x̂) and writing the ansatz

λ(x) = fℓ

(
t

r

)
Y m
ℓ (x̂) (9.11)

we find, with y = t
r ,

∇2λ = 1
r2

[
(y2 − 1)f ′′ℓ (y)− ℓ(ℓ+ 1)fℓ(y)

]
Y m
ℓ = 0 (9.12)
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The solution that is smooth at r = 0 is

λ(y) = (1− y2)y−2−ℓF

(2 + ℓ

2 ,
3 + ℓ

2 ,
3 + 2ℓ

2 ,
1
y2

)
Y m
ℓ (x̂) (9.13)

where F = 2F1 is the usual hypergeometric function. The asymptotics on I+ are given by
taking y = t

r = u+r
r →1. To read off these asymptotics its convenient to use a hypergeometric

transformation to obtain

λ(y) = −(1 + y)−ℓF
(
ℓ, ℓ+ 1, 2ℓ+ 2, 2

1 + y

)
Y m
ℓ (x̂) (9.14)

which gives

λ0(x̂) = λ
∣∣
y=1 = − 2−ℓΓ(2ℓ+ 2)

Γ(ℓ+ 1)Γ(ℓ+ 2)Y
m
ℓ (x̂) (9.15)

For the asymptotics on I− we use another transformation to write

λ(y) = (−1)ℓ+1(1− y)−ℓF
(
ℓ, ℓ+ 1, 2ℓ+ 2, 2

1− y

)
Y m
ℓ (x̂) (9.16)

so that the limit y = v−r
r → − 1 gives

λ
∣∣
y=−1 = (−1)ℓλ0(x̂) = λ0(−x̂) (9.17)

in terms of (9.15), where x̂→− x̂ is the antipodal map. This is in accord with (5.5).

9.2.2 Large gauge transformations in AdS4

We now wish to write down a solution of ∇2λ = 0 in AdS global coordinates that reduces
to (9.13) in the flat space limit. This turns out to be surprisingly easy to achieve. In
particular if we consider the ansatz

λ(x) = fℓ

(sin τ
sin ρ

)
Y m
ℓ (x̂) (9.18)

then

R2∇2λ = cot2 ρ
[
(y2 − 1)f ′′(y)− ℓ(ℓ+ 1)f(y)

]
Y m
ℓ (x̂) (9.19)

so the solution is the same as in (9.14) but now with y = sin τ
sin ρ , which manifestly has the

desired flat space limit, since y→ t
r in this limit. Furthermore, taking ρ→π

2 with τ = ±π
2 takes

y→± 1. So the large gauge transformation takes the same form on I+ as it does at the τ = π
2

thin strip boundary region, and likewise for I− and the τ = −π
2 thin strip boundary region.

This result could have been foreseen given that the AdS → Carroll map essentially equates
the gauge fields on the respective boundaries. The implication is that large gauge invariances
of the AdS partition function immediately carry over to invariances of the Carroll partition
function, and vice versa. However, we should note that the gauge transformation (9.18) is
nontrivial on the entire AdS boundary, not just in the strips I+ and I−. But since the
boundary partition function is separately invariant under gauge transformations that act
outside the strips, we can effectively ignore contributions outside the strips. It follows that
the leading soft theorem in flat space, when embedded in AdS, converts a standard statement
about the gauge invariance of the AdS partition function, which in turn implies Ward identities.
This was the conclusion reached in [57] by a slightly different chain of argument.
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9.2.3 Boundary gauge modes

Since the Minkowski space null boundaries I+ and I− are Cauchy surfaces the large gauge
transformations that act there act on phase space. Under the embedding into AdS these
surfaces map to portions of the timelike AdS boundary, so the above extension of the
large gauge transformations act as changes in boundary conditions (i.e. change the theory)
rather than in phase space, so we do not obtain “boundary photons” on the AdS boundary
via this construction. This is to be contrasted with the behavior found in [82, 83] where
boundary photon/gravitons of an “IR” AdS space map, via an extension of the large gauge
transformations/diffeomorphims, to boundary gravitons of the full UV AdS. The difference
is that in the latter case the extension lead to normalizable behavior at the UV boundary
rather than a change of boundary conditions. However, it is possible that there exists an
analogous extension in the present setup.
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A Asymptotic special conformal transformations

Here we work out the action of special conformal transformations26 (SCTs) on the asymptotic
data of a real scalar field, focusing on the transformation at I+. We begin by recalling that
a finite SCT with parameters bµ acts as

ϕ(x) → ϕ′(x) = Ω−1(x)ϕ(x′) (A.1)

where

Ω(x) = 1− 2b · x+ b2x2

x′µ = xµ − x2bµ

Ω(x) . (A.2)

We may express this in terms of u = t − r as

u′ =
u+ r − x2bt −

√
r2 + 2x2r⃗b · x̂+ x4⃗b2

Ω(x)

r′2 = r2 − 2x2r⃗b · x+ x4⃗b2

Ω2(x)

x̂′ = rx̂i − x2bi√
r2 − 2x2r⃗b · x̂+ x4⃗b2

. (A.3)

26The closely related example of inversions have been studied in the context of the celestial basis in [84]
where inversions were related to the shadow transform on the celestial sphere.
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At leading large r, these yield

u′ ≈
1 + 2btu−

√
1 + 4u⃗b · x̂+ 4u2⃗b2

−2(−bt + b⃗ · x̂)− 2b2u
,

r′ ≈

√
1 + 4u⃗b · x̂+ 4u2⃗b2

−2(−bt + b⃗ · x̂)− 2b2u
,

x̂′i ≈ x̂i + 2ubi

1 + 4u⃗b · x̂+ 4u2⃗b2
. (A.4)

Note that for finite bµ, r′ does not diverge as r → ∞. This is because finite SCTs move the
location of null infinity to a finite coordinate location. Expanding in small bµ

u′ ≈ u− b2 − b⃗2 + (⃗b · x⃗)2

−bt + b⃗ · x̂
u2,

r′ ≈ −1
2

1
−bt + b⃗ · x̂

+ 1
2
b2 − 2(bt + b⃗ · x̂)⃗b · x̂

−bt + b⃗ · x̂
u,

x̂′i ≈ x̂i + 2u(bi − b⃗ · x̂x̂i) (A.5)

we see a pole develop in r′. Hence the boundary of flat space remains at null infinity only
in the limit where the components of bµ go to zero.

Our interest is in the transformation of the leading component of ϕ at large r, namely
ϕ1(u, x̂) where ϕ(r, u, x̂) → 1

rϕ1(u, x̂) + 1
r2ϕ2(u, x̂) + · · · . Hence we seek to compute

rϕ′(x) = ϕ′1(x) =
r

Ω(x)ϕ(r
′, u′, x̂′) (A.6)

by first taking r large, and then bµ small. With the expansions above it’s straightforward
to compute

ϕ′1(x) =
[
− 1
2(−bt+ b⃗ · x̂)

+ b2u

2(−bt+ b⃗ · x̂)2

]
ϕ

(
−1
2

1
−bt+ b⃗ · x̂

+ 1
2
b2−2(bt+ b⃗ · x̂)⃗b · x̂

−bt+ b⃗ · x̂
u,u′, x̂′

)
.

(A.7)
The small bµ expansion, using the 1/r expansion of ϕ, then produces at leading order

ϕ′1(x) = (1− 2⃗b · x̂u)ϕ1(u′, x̂′)− 2(−bt + b⃗ · x̂)ϕ2(u′, x̂′). (A.8)

The appearance of ϕ2 in (A.8) makes this transformation appear non-local on I+.
However, using the asymptotic equation of motion ∇2ϕ = 0 we note

∂uϕ2 = −1
2∇̂

2ϕ1 (A.9)

where ∇̂2 is the Laplacian on the sphere. Taking a u-derivative of (A.8) we may use the
equation of motion to write the local form

∂uϕ
′
1 =

[
(1− 2⃗b · x̂u)∂u + (−bt + b⃗ · x̂)∇̂2 − 2⃗b · x̂

]
ϕ1(u′, x̂′) (A.10)

where u′ and x̂′ are as in (A.5), so in particular the ∂u and ∇̂2 will generally act on both
arguments of ϕ1. We note that a similar relation between apparent non-locality in asymptotic
transformations and mixing with subleading terms in the 1/r expansion has been observed
in relation to the subleading soft theorem [85].
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B Equality of flat and AdS boundary terms

For concreteness we consider a massless real scalar field. As usual we should distinguish
between the normalizable and non-normalizable behavior of the field near the AdS boundary
at ρ = π/2,

non− normalizable : ϕ ∼ J(τ, x̂) + . . .

normalizable : ϕ ∼ f(τ, x̂) cos3 ρ+ . . . (B.1)

We will refer to J(τ, x̂) as a “source” due to its role as such on the CFT side of the AdS/CFT
dictionary where it corresponds to adding to the CFT action a term

∫
JO where O is the CFT

operator dual to ϕ. Our AdS boundary conditions will consist of fixing the positive frequency
part of the source in the boundary region near τ = −π/2, and the negative frequency part of
the source in the boundary region near τ = +π/2. As should be clear, this also corresponds
to the type of boundary conditions we impose at I± in flat spacetime.

In the main body of the text we worked out the relation between the AdS and flat space
boundary conditions. In order to establish a relation between the AdS and flat space path
integrals we need to understand how the respective actions, including boundary terms, are
related to each other. On the flat space side, as reviewed in section 2 the appropriate action is

Iflat[ϕ, ϕ̄] =
∫

flat
d4x

(1
2ϕ∇

2ϕ− V (ϕ)
)
+ (ϕ̄−, ϕ)I+ − (ϕ̄+, ϕ)I− , (B.2)

with

(ϕ̄−, ϕ)I+ = 1
2

∫
I+
dud2x̂(ϕ̄−1 ∂uϕ1 − ∂uϕ̄

−
1 ϕ1)

(ϕ̄+, ϕ)I− = 1
2

∫
I−
dvd2x̂(ϕ̄+

1 ∂vϕ1 − ∂vϕ̄
+
1 ϕ1) (B.3)

On the other hand, the AdS action takes the form

IAdS =
∫

AdS
d4x

√
g

(
− 1

2(∇ϕ)
2 − V (ϕ)

)
+ I loc

bndy[J ] (B.4)

We have indicated the AdS boundary terms, which are a local functional of the source
J . These are needed to render the AdS action finite for general sources, but they do not
contribute to boundary correlation functions of operators at non-coincident points, and
for the same reason they will not be relevant to our considerations and will be dropped
henceforth. We also note that the kinetic terms in Iflat and IAdS differ by an integration
by parts; this will be relevant in the comparison.

We are interested in comparing the actions for field configurations in which the field is
effectively in the outer region between the AdS boundary and the null boundary I of the
embedded flat space region. In this region we can therefore neglect the potential V (ϕ).

For scattering we work in a basis of solutions which look like localized wavepackets
traveling between I and the timelike boundary of AdS near τ = ±π

2 . We assume negligible
overlap of the wavepackets in the outer region. We focus on a wavepacket in the future
region, travelling between I+ and the τ = π

2 region of the AdS boundary which we denote
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as ∂AdS+. We first rewrite the flat boundary term (ϕ̄−, ϕ)I+ as an AdS boundary term;
assuming a free field we have27

(ϕ̄−, ϕ)I+ = −1
2

∫
∂AdS+

dτd2x̂
1

cos2 ρ
(ϕ̄−∂ρϕ+ − ∂ρϕ̄−ϕ+) (B.5)

ϕ̄i has non-normalizable behavior corresponding to a negative frequency source near τ = π/2,
while ϕ+ ∼ cos3 ρ has normalizable falloff. Therefore only the first term on the right hand
side survives as ρ→π/2.

On the other hand, integrating by parts the AdS kinetic term gives

−1
2

∫
AdS

d4x
√
g(∇ϕ)2 = 1

2

∫
AdS

d4x
√
gϕ∇2ϕ− 1

2

∫
∂AdS+

dτd2x̂
1

cos2 ρ
ϕ̄−∂ρϕ+ (B.6)

where we again only retained the boundary terms that contributes as ρ→π/2. We can do
the same manipulations in the past region.

Under our assumptions it’s now clear that the two actions Iflat and IAdS agree, since
they only differ by terms involving V (ϕ) and ∇2ϕ in the outer region, both of which are
assumed to be negligible.

C Lorentzian spin-1 bulk-boundary propagator

Here we obtain the Lorentzian bulk-boundary propagator for spin-1 fields from the better
known expression in Euclidean Poincaré AdS. Throughout we consider only the special case
d = 3. The strategy will be to write the expression valid in Poincaré coordinates in terms of
embedding space quantities, which can then be expressed in terms of global coordinates.

Euclidean AdS4 can be defined as the hyperboloid

−R2 = ηMNX
MXN = −(X−1)2 + (X0)2 + (X1)2 + (X2)2 + (X3)2 (C.1)

embedded in R1,3. It’s useful to define X± = X−1 ±X0 in terms of which

−R2 = ηMNX
MXN = −X+X− + (X1)2 + (X2)2 + (X3)2 (C.2)

ds2 = ηMNdX
MdXN = −dX+dX− + (dX1)2 + (dX2)2 + (dX3)2. (C.3)

Euclidean Poincaré coordinates are defined by solving (C.1) as

X+ = R
x2

0 + |x⃗|2

x0
, X− = R

x0
, X i = R

x0
xi, i = 1, 2, 3. (C.4)

Points in the boundary of AdS are labeled by null vectors in embedding space. In practice
this means taking the leading coefficient of XM as x0 → 0,

P+ = R|x⃗′|2, P− = R, P i = Rx′i. (C.5)

27The minus sign stems from the fact that the flat boundary is null, and best viewed as a limit of spacelike
surface, while the AdS boundary is timelike.

– 47 –



J
H
E
P
0
1
(
2
0
2
5
)
1
8
3

The freedom to rescale the null vectors corresponds to a choice of conformal frame on the
boundary. A rescaling P → eω(x′)P acts on the boundary metric by hij → e2ω(x′)hij . The
choice here corresponds to selecting boundary metric

hijdx
idxj = dx⃗ · dx⃗. (C.6)

In this frame, the 3 1-form bulk-boundary propagators for a spin-1 field were written
down in [45]

Ki(x, x′) = 2
π2

(
x0

x2
0 + |x⃗− x⃗′|2

)
d

(
xi − x′i

x2
0 + |x⃗− x⃗′|2

)
. (C.7)

These obey Maxwell’s equations, satisfy Lorenz gauge, and have boundary behavior

Ki(x, x′) → δ3(x⃗− x⃗′)dxi. (C.8)

It is simple to check that

P ·X = − R2

2x0
(x2

0 + |x⃗− x⃗′|2) (C.9)

−1
2h

ij ∂

∂x′j
ln(−P ·X) = xi − x′i

x2
0 + |x⃗− x⃗′|2

(C.10)

from which it follows

Ki(x, x′) = R2

2π2
1

P ·X
hij

∂

∂x′j
d ln(−P ·X). (C.11)

Importantly, we note that
√
−hKi does not depend on our choice of conformal frame. This

is important as one can check that our choice of conformal frame in global coordinates differs
from the choice made in Poincaré coordinates.

Global coordinates on AdS4 are defined by

X+ = R
eτE

cos ρ, X− = R
e−τE

cos ρ, X i = R tan ρx̂i (C.12)

and the boundary given by

P+ = Reτ
′
E , P− = Re−τ

′
E , P i = Rx̂′i. (C.13)

With this we have

hijdx
idxj = dτ2

E + dx̂ · dx̂, (C.14)

P ·X = −R2 cosh(τE − τ ′E)− sin ρx̂ · x̂′

cos ρ . (C.15)

which implies

KτE (x, x′) = 1
2π2

cos ρ
cosh(τE − τ ′E)− sin ρx̂ · x̂′

d

(
sinh(τE − τ ′E)

cosh(τE − τ ′E)− sin ρx̂ · x̂′

)
, (C.16)

Kz(x, x′) = 1
4π2

cos ρ
cosh(τE − τ ′E)− sin ρx̂ · x̂′

d

(
sin ργz′z′∂z′(x̂ · x̂′)

cosh(τE − τ ′E)− sin ρx̂ · x̂′

)
, (C.17)

Kz(x, x′) = 1
4π2

cos ρ
cosh(τE − τ ′E)− sin ρx̂ · x̂′

d

(
sin ργz′z′∂z′(x̂ · x̂′)

cosh(τE − τ ′E)− sin ρx̂ · x̂′

)
. (C.18)
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We note that in the parametrization

x̂ = 1
1 + zz

(z + z,−i(z − z), 1− zz) (C.19)

we have

γz
′z′∂z′(x̂ · x̂′) = 1 + z′z

1 + zz
(z − z′), (C.20)

γz
′z′∂z′(x̂ · x̂′) = 1 + zz′

1 + zz
(z − z′). (C.21)

The Lorentzian signature bulk-boundary propagators are determined by demanding that
they produce the Lorentzian Dirac distribution on the boundary,28

Kτ
L = KτE

E → δ(τE − τ ′E)δ(2)(x̂− x̂′)dτE = δ(τ − τ ′)δ(2)(x̂− x̂′)dτ, (C.22)

Kz
L = iKz

E → iδ(τE − τ ′E)δ(2)(x̂− x̂′)dz = δ(τ − τ ′)δ(2)(x̂− x̂′)dz. (C.23)

Hence the Lorentzian signature bulk-boundary propagators are given by

Kτ
L(x, x′) =

i

2π2
cos ρ

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ
d

( sin(τ − τ ′)
cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ

)
, (C.24)

Kz
L(x, x′) =

i

4π2
cos ρ

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ
d

(
sin ργz′z′∂z′(x̂ · x̂′)

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ

)
, (C.25)

Kz
L(x, x′) =

i

4π2
cos ρ

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ
d

(
sin ργz′z′∂z′(x̂ · x̂′)

cos(τ − τ ′)− sin ρx̂ · x̂′ + iϵ

)
. (C.26)

Here we have given the iϵ prescription valid for sin |τ − τ ′| > 0 since that is all we will need in
the main text. The globally valid prescription is to instead replace τ − τ ′ → (1− iϵ)(τ − τ ′).
In the main text we never need the Euclidean bulk-boundary propagator, so we drop the
subscript L.
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