

1 **Nitrogen fixation and fertilization have similar effects on biomass allocation in**
2 **nitrogen-fixing plants**

3

4 Duncan N. L. Menge^{1*}; ORCID: 0000-0003-4736-9844

5 Amelia A. Wolf²; ORCID: 0000-0001-7660-3455

6 Jennifer L. Funk³; ORCID: 0000-0002-1916-5513

7 Steven S. Perakis⁴; ORCID: 0000-0003-0703-9314

8 K.A. Carreras Pereira¹; ORCID: 0000-0003-0079-4050

9

10 ¹Department of Ecology, Evolution, and Environmental Biology, Columbia University

11 ²Department of Integrative Biology, University of Texas at Austin

12 ³Department of Plant Sciences, University of California, Davis

13 ⁴U. S. Geological Survey, Forest and Rangeland Ecosystem Science Center

14

15 *Author for correspondence. dm2972@columbia.edu

16

17

Acknowledgements

18

19 We are grateful for help from many undergraduate and other assistants. Any use of trade, firm, or
20 product names is for descriptive purposes only and does not imply endorsement by the U.S.
21 Government.

22

Funding

23

24 This work was supported by the National Science Foundation under grant nos. DEB-1457444,
25 DEB-1457650 and IOS-2129542.

26

Author Contributions

27

DNLM, AAW, JLF, and SSP designed the research. DNLM, AAW, and KACP performed the
research. DNLM analyzed the data. DNLM drafted the initial manuscript, and AAW, JLF, SSP,
and KACP edited the manuscript.

30

Data Availability Statement

31

Data and code associated with this manuscript are available from the Dryad data repository at
doi:10.5061/dryad.cnp5hqc9s.

33

Conflict of Interest Statement

34

The authors declare and certify that they possess no conflict of interest in the materials, subject
matter, methods, and so forth contained herein.

36

37

Abstract

- 38 1. Plants adjust their allocation to different organs based on nutrient supply. In some plant
39 species, symbioses with nitrogen-fixing bacteria that live in root nodules provide an
40 alternate pathway for nitrogen acquisition. Does access to nitrogen-fixing bacteria modify
41 plants' biomass allocation? We hypothesized that access to nitrogen-fixing bacteria
42 would have the same effect on allocation to aboveground versus belowground tissues as
43 access to plentiful soil nitrogen.
- 44 2. To test this hypothesis and related hypotheses about allocation to stems versus leaves and
45 roots versus nodules, we conducted experiments with 15 species of nitrogen-fixing plants
46 in two separate greenhouses. In each, we grew seedlings with and without access to
47 symbiotic bacteria across a wide gradient of soil nitrogen supply.
- 48 3. As is common, uninoculated plants allocated relatively less biomass belowground when
49 they had more soil nitrogen. As we hypothesized, nitrogen fixation had a similar effect as
50 the highest level of fertilization on allocation aboveground versus belowground. Both
51 nitrogen fixation and high fertilization led to ~10% less biomass allocated belowground
52 (~10% more aboveground) than the uninoculated, lowest fertilization treatment.
53 Fertilization reduced allocation to nodules relative to roots. The responses for allocation
54 of aboveground tissues to leaves versus stems were not as consistent across greenhouses
55 or species as the other allocation trends, though more nitrogen fixation consistently led to
56 relatively more allocation to leaves when soil nitrogen supply was low.
- 57 4. Synthesis: Our results suggest that symbiotic nitrogen fixation causes seedlings to
58 allocate relatively less biomass belowground, with potential implications for competition
59 and carbon storage in early forest development.

60 Keywords: Symbiosis, legume, rhizobial, actinorhizal

61
62

Introduction

63 Plants allocate biomass to different organs with different functions (Bazzaz & Grace,
64 1997). For example, leaves photosynthesize, stems provide structure and aid in light competition,
65 and roots anchor plants to the ground and forage for nutrients and water (Poorter et al., 2011).
66 Allocation to different tissues has important consequences ranging from life history to the global
67 carbon cycle (Bazzaz & Grace, 1997; Iwasa, 2000). For example, stems persist longer and
68 decompose slower than leaves or fine roots, so more biomass allocation to stems sustains carbon
69 storage, with clear implications for global climate (Friend et al., 2014). In certain plants, root
70 nodules house symbiotic bacteria that fix dinitrogen gas (Sprent, 2009; Huss-Danell, 1997). As
71 an additional source of nitrogen (N), N fixation could influence biomass allocation, but this has
72 been much less explored than the effect of soil N.

73 It has long been known that plants adjust their allocation based on resource supply
74 (Brenchley, 1916; Maximov & Yapp, 1929; Shirley, 1929). Decades of empirical work show that
75 plants allocate more biomass belowground when in need of belowground resources, particularly
76 nutrients (Brenchley, 1916; Chapin, 1980; Ingestad & Ågren, 1991; Poorter & Nagel, 2000;
77 McCarthy & Enquist, 2007; Poorter et al., 2011). However, the degree of plasticity of biomass
78 allocation varies widely across plants (Chapin, 1980), and plants also have other ways to respond
79 to nutrient limitation, such as altering stoichiometry within plant organs (Poorter et al., 2011).
80 The physiological and genetic mechanisms underpinning how nutrient limitation alters
81 belowground versus aboveground allocation are relatively well understood (Hermans et al.,
82 2006; Poorter et al., 2011). Substantial theory using multiple approaches also supports the idea
83 that nutrient limitation leads to greater allocation belowground (e.g., Thornley, 1972; Bloom et

84 al., 1985; Wilson, 1988; Ingestad & Ågren, 1991; Reynolds & Pacala, 1993; Poorter & Nagel,
85 2000; Dybzinski et al., 2011). These theoretical approaches range from optimality approaches
86 that maximize growth rates (e.g., Thornley, 1972; Bloom et al., 1985) to evolutionarily stable
87 strategy approaches that maximize fitness in a competitive context (e.g., Dybzinski et al., 2011).

88 Given the different functional roles of leaves versus stems and the different degrees of
89 scaling with body size, a number of researchers have suggested dividing tissues into roots,
90 leaves, and stems rather than simply roots and shoots (Poorter & Nagel, 2000; McCarthy &
91 Enquist, 2007). Theoretical predictions for how nutrient addition affects allocation to leaves
92 versus stems are less consistent than they are for aboveground versus belowground allocation.
93 For example, Dybzinski et al. (2011) found that data from canopy-level trees matched theoretical
94 expectations from an evolutionarily stable strategy approach, which predicted that N addition
95 leads to greater investment in wood as opposed to foliage. The proposed mechanism for their
96 finding is that allocation to stems, which increases height, is more beneficial for light
97 competition than packing additional leaves into an already full canopy (Dybzinski et al., 2011).
98 However, a review across a broad array of plant types found different patterns at different
99 degrees of N limitation. When N was scarce, increasing N availability led to greater investment
100 in foliage as opposed to stems, but at moderate to high N availability, increasing N availability
101 led to similar increases in both foliage and stems (Poorter et al., 2011). These studies focused on
102 N rather than all nutrients, as do we, given its importance as a commonly limiting nutrient
103 (LeBauer & Treseder 2008) and given that our focus in this work is on the unique trait of N
104 fixation.

105 In addition to acquiring N from the soil via their roots or mycorrhizal partners, certain
106 species of plants can procure atmospheric N₂ gas via symbioses with N-fixing bacteria. These

107 plants include most legumes (Fabaceae), which form “rhizobial” symbioses with rhizobia-type
108 bacteria (Spren, 2009), and plants from eight other families that form “actinorhizal” symbioses
109 with *Frankia*-type bacteria (Huss-Danell, 1997). Rhizobial plants are morphologically diverse,
110 ranging from tropical trees to Mediterranean shrubs to arctic herbs (Spren 2009). They account
111 for all N-fixing crops and forage, such as soybean and alfalfa, and thus are indispensable for
112 feeding humanity (Peoples et al. 2021). Actinorhizal plants are almost entirely woody (Huss-
113 Danell 1997). Actinorhizal plants comprise the majority of mid-to-high-latitude N-fixing tree
114 symbioses, whereas rhizobial plants dominate the N-fixing tree community at lower latitudes
115 (Menge et al. 2017). Given their phylogenetic and morphological diversity, it is conceivable that
116 rhizobial versus actinorhizal groups allocate biomass differently. Alternatively, given their
117 common ecological role as N-fixers, perhaps their biomass allocation is similar. In both
118 symbiotic types, dinitrogen gas is fixed in specialized root organs known as nodules whose sole
119 purpose is to house symbiotic bacteria. Nitrogen fixation in nodules can provide large quantities
120 of N, raising interesting questions about biomass allocation. Does N fixation have similar effects
121 on allocation as additional soil N, such that fixing N leads to less allocation belowground? Or
122 does the biomass required to build nodules simply replace the biomass that would have been
123 used for roots, leading to similar aboveground versus belowground allocation? In addition to the
124 structural cost of building nodules, N fixation also has metabolic costs (Tjepkema and Winship
125 1980, Gutschick 1981), but we focus on the structural costs, given our focus on biomass
126 allocation.

127 A number of studies have examined the relative effects of soil N versus N fixation on
128 biomass allocation in seedlings. Multiple studies with the actinorhizal genus *Alnus* – *A. incana*
129 (Ingestad 1980; Sellstedt 1986; Sellstedt & Huss-Danell 1986), *A. viridis* (Markham & Zekveld

130 2007), and *A. rubra* (Arnone & Gordon 1990) – found that inoculation had similar effects on
131 aboveground versus belowground allocation as adding sufficient amounts of inorganic soil N to
132 overcome N limitation of plant growth. These studies found that both inoculation and sufficient
133 soil N led to relatively less biomass allocated belowground and relatively more aboveground
134 biomass allocated to stems rather than leaves. Some of these studies also found that adding
135 inorganic soil N decreased allocation to nodules (Ingestad 1980, Markham & Zekveld 2007),
136 though another did not (Arnone & Gordon 1990). Dovrat et al. (2020) grew three species of
137 herbaceous Mediterranean legumes and observed a different trend that suggests a role of
138 inoculation itself: inoculation of plants that were already N-sufficient led to relatively less
139 biomass belowground. In an experiment with the tropical rhizobial N-fixing tree *Pentaclethra*
140 *macroloba*, Taylor & Menge (2021) found yet another trend: inoculated plants had similar
141 aboveground to belowground allocation as uninoculated plants, regardless of fertilization level,
142 suggesting that nodule biomass simply replaced root biomass. Data from additional species are
143 needed to determine if these distinct effects of inoculation on biomass allocation are broadly
144 representative of the different taxonomic groups (actinorhizal trees versus Mediterranean
145 rhizobial shrubs versus tropical rhizobial trees), the environmental conditions under which they
146 were studied, or some other factor.

147 Here, we studied allocation of biomass to different tissues in 15 symbiotic plant taxa. We
148 conducted two separate experiments, in two greenhouses, using similar manipulations in both
149 experiments. We grew the plants across a wide range of soil N supply and, at the highest level of
150 soil N supply, across two levels of soil P supply (see Methods). We also manipulated the ability
151 to fix N by inoculating half the plants with symbiotic bacteria. Within inoculated plants, the
152 amount of fixation varied enough to allow us to statistically separate the effects of inoculation

153 versus N fixation itself. We asked one basic question about three different allocation patterns:
154 How do soil N supply, inoculation, and N fixation interact to affect allocation to (1) aboveground
155 versus belowground tissues? (2) leaves versus stems, and (3) nodules versus roots? In the second
156 experiment, we added a question: How do these allocation patterns differ between three different
157 types of N-fixing symbiosis: rhizobial tree species, actinorhizal tree species, and an agricultural
158 herb (soybean)? We chose soybean as the agricultural herb because it is the largest provider of
159 grain worldwide and it is a species in which N fixation has been well studied (Peoples et al.
160 2021).

161 Our overall hypotheses were that N fixation would have similar effects as soil N supply
162 on allocation and that the effect of inoculation would be negligible aside from its effects on N
163 fixation. Specifically, we tested the following hypotheses. (H1a) Both N fertilization and N
164 fixation would decrease allocation to belowground tissues, as observed elsewhere for N
165 fertilization in many non-fixing species (Brenchley, 1916; Ingestad & Ågren, 1991; Poorter &
166 Nagel, 2000) and for both N fertilization and inoculation (presumably through N fixation) with
167 *Alnus* (Ingestad, 1980; Sellstedt, 1986; Sellstedt & Huss-Danell, 1986; Arnone & Gordon, 1990;
168 Markham & Zekveld, 2007) and with Mediterranean shrubs (Dovrat et al., 2020). (H1b)
169 Inoculation would act primarily through its effect on N fixation, i.e., through increased N supply.
170 In other words, an inoculated plant fixing a negligible amount of N would allocate biomass
171 similarly to an uninoculated plant. For leaves versus stems, the theoretical work of Dybzinski et
172 al. (2011) suggests greater allocation to stems relative to leaves with increasing soil N supply,
173 but their theory was developed in the context of a closed canopy forest, whereas our experiments
174 were in greenhouse conditions where additional leaves would also help capture more light.
175 Therefore, we had competing hypotheses for leaves versus stems: both N fertilization and N

176 fixation (H2a) increase, (H2b) have no effect on, or (H2c) decrease allocation to stems relative to
177 leaves. For nodules, much past work has shown that N fertilization reduces allocation to nodules
178 (Ingestad, 1980; Markham & Zekveld, 2007; Menge et al., 2015; Taylor & Menge, 2018; Dovrat
179 et al., 2018; 2020; McCulloch & Porder, 2021; Uni et al., 2024), consistent with a facultative or
180 incomplete-downregulation strategy of N fixation (Hedin et al., 2009; Menge et al., 2009; 2015).
181 However, some species in some conditions fix similar amounts of N with additional N fertilizer
182 (Arnone & Gordon, 1990; Binkley et al., 1994; Menge et al., 2023), consistent with an obligate
183 N fixation strategy (Hedin et al., 2009; Menge et al., 2009; 2015). Following the bulk of
184 evidence, we hypothesized (H3) a decrease in allocation to nodules with N fertilization.
185

186 **Methods**

187
188 *Greenhouses, growing conditions, and species*

189 For our first experiment, in 2016-2017, we grew plants at Barnard College (New York,
190 NY). For our second experiment, in 2018, we grew plants at UC Davis (Davis, CA). At Barnard
191 we used sharp sand (Gran-i-Grit) as a growing medium, whereas at UC Davis we used a mixture
192 of sharp sand and turfase (calcine clay). Unless otherwise stated, details described below applied
193 to both experiments.

194 As is common, we studied seedlings rather than later stages of life history, for two main
195 reasons. First, seedlings are an important life history stage, as the high mortality of seedlings
196 means that biomass allocation in the seedling stage helps determine persistence into later stages.
197 Second, seedlings are the only logically feasible stage for studying the effects of inoculation.
198 Furthermore, an investigation of the effects of N and P fertilization and N fixation (but not

199 inoculation) on biomass allocation in an older life stage (4–5-year-old trees) of six of these
200 species has been published recently (Carreras Pereira et al., 2023).

201 Prior to germination we surface-sterilized seeds, then we grew plants in 10 cm x 10 cm
202 pots. For inoculation, which was species-specific, we used a slurry from crushed field-collected
203 nodules (for all plants grown at Barnard and some at UC Davis), cultured inoculum from the
204 crushed nodules (for some plants grown at UC Davis), both the slurry and the culture (for some
205 at UC Davis), or, in the case of soybean, a commercial strain (Table S1). For the slurry, ~15-30
206 ml of fresh nodules were surface-sterilized, then crushed in a glass beaker with a glass rod. DI
207 water was added to create a slurry of ~100-150 ml total volume. Half of the slurry was sterilized
208 in an autoclave; half was not. Each plant of a given species received the same amount of slurry.
209 The slurry volume given to each plant was 1 ml for most species, but as low as 0.5 ml and as
210 high as 2 ml for some species. The cultured inoculum from the crushed nodules used the same
211 amount of surface-sterilized fresh nodules to start the culturing process. The non-inoculated
212 treatment received an equivalent volume of sterilized slurry or sterilized culture. Based on the
213 success of nodulation (determined by inspection of roots of extra individuals that were not part
214 of the main experiment), some species were reinoculated a second or a third time. Using
215 established techniques to avoid contamination (Menge et al., 2015; Wolf et al., 2017), we placed
216 the inoculated and uninoculated pots in separate trays, covered the surface of each pot (except
217 where the stem protruded) with aluminum foil, and watered from below. We did not inoculate
218 any of the plants with mycorrhizal fungi.

219 We fertilized plants biweekly at the top of the pots, using pipettes to add N, an N-free
220 Hoaglands solution (Ross, 1974), and additional P (sodium phosphate) as required by the
221 experimental design (see below). All fertilizers were dissolved in water to facilitate their

222 spreading throughout the rooting zone. The N fertilizer was ammonium nitrate, which was
223 doubly labeled with ^{15}N (Sigma Aldrich) for measuring N fixation. We added water via pipette at
224 the top of each pot following each fertilization to even out the small water volume disparity
225 across treatments.

226 We used 15 plant species (Table S1). Eight were rhizobial tree species, six were
227 actinorhizal tree species, and one was the agricultural herb soybean (Table S1). The tree species
228 we used are generally early successional or disturbance-adapted species that grow in full or
229 partial sun. Our initial plan was to grow all species from the first experiment in the second
230 experiment in addition to new species, but some plants did not germinate or form a symbiosis or
231 survive, so we present results from eight rhizobial tree species in Barnard, five rhizobial tree
232 species at UC Davis, six actinorhizal tree species at UC Davis, and soybean at UC Davis.
233 Different species were grown for different lengths of time, though all were less than a year
234 (Table S2). Within each species, all plants were harvested within as short a time window as
235 possible, and the harvest order was randomized across treatment. We harvested plants when they
236 had grown long enough for treatment differences to appear but not so long that pot-binding or
237 cross-contamination of the uninoculated plants were likely.

238

239 *Experimental design*

240 Our study used a factorial combination of inoculation and fertilization. We inoculated
241 half the plants and left the other half uninoculated. Some (13% across both experiments)
242 uninoculated plants grew nodules, but we did not include those in our analysis. For the
243 fertilization component of the design, we used a replicated regression design, distributing our
244 experimental units across a wide gradient with some replication within each unit, which has

245 benefits of statistical power as well as applicability to models (Cottingham et al. 2005). For most
246 species there were ten fertilization treatments: nine N fertilization levels at a low P fertilization
247 level, along with a high P fertilization level at the highest N fertilization level. We had hoped to
248 assess the role of P limitation in addition to the role of N limitation, but P did not limit growth in
249 the plants grown at UC Davis (see below). For this reason, as well as the low sample size in the
250 high P treatments, we focus less on the data from the P fertilization treatment.

251 Our goal for the N fertilization levels was to span a wide range of N limitation for the
252 uninoculated plants, with multiple treatments that were N limited and multiple treatments that
253 were not N limited. The goal of having multiple treatments that were not N limited was to
254 determine whether N fixation shut off completely when soil N supply was sufficient, so we could
255 test theory about N fixation strategies (Menge et al., 2009; 2015; 2023). In the present paper it
256 was not essential to reach levels of N sufficiency, but we explain this reasoning so the following
257 adjustments in N levels make sense. For the first experiment, in 2016 at Barnard, we used nine N
258 fertilization levels ranging from 0.3 to 30 g N m⁻² y⁻¹ (individual levels of 0.3, 1.5, 3.3, 6.6, 10,
259 15, 20, 25, 30 g N m⁻² y⁻¹), with low and high P fertilization levels of 0.34 and 15 g P m⁻² y⁻¹.
260 (All area units are pot surface area.) The first year of the experiment in Barnard, in 2016,
261 suggested that the highest level of N fertilization did not saturate plant demand for N, so we
262 increased the highest N addition level. The rest of the experiment in Barnard, in 2017, used a
263 highest level of 75 g N m⁻² y⁻¹ (levels 0.3, 3.3, 6.6, 10, 15, 20, 30, 50, 75 g N m⁻² y⁻¹) along
264 with a lower P level of 0.17 g P m⁻² y⁻¹. In the second experiment, at UC Davis in 2018, we used a
265 surface mixed with sand, and, reasoning that surface would retain nutrients better, we used a
266 slightly lower high N level of 60 g N m⁻² y⁻¹ (levels 0.3, 0.9, 1.5, 3.3, 6.6, 10, 20, 40, 60 g N m⁻²
267 y⁻¹). For one species, *Morella faya*, which had low germination and initial survival, we only used

268 six levels of N fertilization (3.3, 6.6, 10, 20, 40, 60 g N m⁻² y⁻¹). We started with three replicates
269 for each treatment, except for *Morella faya*, which had two replicates per treatment. Final sample
270 sizes were smaller for some species due to mortality (4% of all plants after treatments began)
271 (Table S2).

272

273 *Biomass harvest*

274 We harvested plants and divided them into stems, leaves, roots, and nodules. Tissues that
275 had previously fallen in pots (mostly leaves) were included in our biomass estimates, as were
276 leaves previously harvested for physiological measurements (which are not shown here). We
277 dried tissues at 65°C and measured dry masses. The majority of plants we harvested did not
278 appear pot-bound, but as always with seedlings grown in pots, the artificial nature of the growing
279 medium and space should be noted.

280

281 *Nitrogen fixation*

282 We used the ¹⁵N-enriched isotope pool dilution technique to measure the percent of plant
283 N acquired from N fixation (%N_{dfa}), following the general approach of Chalk (1985) and Shearer
284 & Kohl (1986) and the details of Menge et al. (2015) and Taylor & Menge (2018). Milled tissues
285 were sent to the UC Davis Stable Isotope Facility to determine [N] and atom % ¹⁵N. Atom % ¹⁵N
286 of the uninoculated, non-nodulated plants for each species and treatment, which were enriched
287 well over background levels (up to 8 atom %), were used as the isotopic reference values for soil
288 N uptake. Using uninoculated plants of the same species as reference plants rather than using
289 separate non-fixing species overcomes many of the issues with this approach (explained in more
290 detail in Menge et al. 2015). Using enriched isotopes rather than relying on natural abundance

291 levels overcomes many of the remaining issues (Chalk et al., 1985; Soper et al., 2021). We
292 mathematically removed the effects of seed N, so $\%N_{dfa}$ is the % of newly acquired N from
293 fixation as opposed to the % of total N from fixation.

294

295 *Calculations and statistics*

296 All of our allocation metrics were functions of the dry masses of the four tissue types we
297 harvested. Aboveground biomass was calculated as the sum of leaves and stems. Belowground
298 biomass was calculated as the sum of roots and nodules. Total biomass was calculated as the sum
299 of aboveground and belowground biomass. Allocation of biomass to belowground versus
300 aboveground tissues was calculated as belowground biomass divided by total biomass.
301 Allocation to leaves versus stems was calculated as leaf biomass divided by aboveground
302 biomass. Allocation to nodules versus roots was calculated as nodule biomass divided by
303 belowground biomass.

304 To answer our questions, we used the mixed effects model function `lme` (Pinheiro et al.,
305 2022) in R (R Core Team, 2022). Given the stark differences between plants grown at Barnard
306 versus UC Davis (plants were substantially smaller and more P limited at Barnard; see Results)
307 and the different environmental conditions at the two greenhouses (see Discussion), we analyzed
308 data from each greenhouse separately. For each response variable at each greenhouse, we
309 included a random effect of species on the intercept to account for species-level differences.

310 For total biomass, our main questions were whether each symbiotic type in each
311 greenhouse was N limited and P limited. We were less interested in the relative degrees of
312 limitation or the relative amounts of total biomass across symbiotic types. Therefore, rather than
313 including symbiotic type as a term in an overall model of total biomass, we analyzed the total

314 biomass of each symbiotic type (rhizobial tree versus actinorhizal tree versus rhizobial herb)
315 separately for trees grown at UC Davis, using fixed effects for N fertilization (treated throughout
316 as a continuous variable), P fertilization, inoculation, %N_{dfa}, and interactions between N
317 fertilization and %N_{dfa}, N fertilization and inoculation, P fertilization and %N_{dfa}, and P
318 fertilization and inoculation. In a separate set of analyses, we used the rate of N fixation (N fixed
319 g C⁻¹ y⁻¹) rather than the percent of N derived from N fixation (%N_{dfa}) as the “N fixation” driver
320 variable. The qualitative results of these analyses with N fixed g C⁻¹ y⁻¹ were similar to the
321 results from the analyses with %N_{dfa} (Note S1; Tables S3, S4). We included the analyses with
322 %N_{dfa} in the main text, leaving the alternate analyses to Supporting Information, because %N_{dfa}
323 was the quantity we measured more directly.

324 Whereas we separated symbiotic types for analyses of biomass, we combined the
325 symbiotic types for analyses about allocation and included symbiotic type as a term in the
326 models. The reason was that one of our questions was how these allocation patterns differed
327 across symbiotic types. Therefore, including all symbiotic types in the same model allowed us to
328 compare the trends directly.

329 For allocation of total biomass to belowground versus aboveground and allocation of
330 aboveground biomass to leaves vs stems, we used similar model structures to the one for total
331 biomass, except that we added the natural logarithm of biomass as a covariate, and as mentioned
332 in the previous paragraph, we included symbiotic type as a driver (at UC Davis only, given that
333 there was only one symbiotic type at Barnard). Specifically, for the models of allocation for the
334 UC Davis experiment, we included fixed effects of symbiotic type as well as interactions
335 between symbiotic type and N fertilization and between symbiotic type and P fertilization (at UC
336 Davis). We used biomass as a covariate because larger plants can have different biomass

allocation than smaller plants independent of nutrient effects (McCarthy & Enquist, 2007; Poorter et al., 2011), and we wanted to control for these indirect effects. For instance, if N fertilization makes plants bigger, it might cause them to invest relatively more biomass in stems compared to leaves simply because they are bigger (and bigger plants need more mechanical support to counter gravity), whereas we wanted to isolate the effect of N fertilization for a given size.

343 For allocation of belowground biomass to nodules versus roots, we only used inoculated
344 plants, so we did not include fixed effects for inoculation. The fixed main effects we used for
345 allocation to nodules versus roots were N fertilization, P fertilization, symbiotic type (for the
346 experiment in UC Davis), and the natural logarithm of biomass. We also used fixed interactions
347 between N fertilization and symbiotic type for the experiment in UC Davis. Nodule biomass
348 drives N fixation, so it did not make sense to include $\%N_{dfa}$ as a driver of nodule biomass.

Results

352 Unless otherwise specified, results come from our statistical models (Eqns. 1-10). These
353 are presented as an average plant's expected response to a driver variable in a scenario. For
354 example, to illustrate the effect of N fixation on allocation, we plug in values for the other
355 variables corresponding to a scenario, then compare the results from multiple values of N
356 fixation. "The average inoculated plant at low N" means that we plug in a value of 1 for I
357 ("inoculated") and the lowest value of N fertilization for N . We then compare the model output
358 for two separate values for $\%N_{dfa}$, such as 0% and 100%. These are not averages from inoculated
359 plants with exactly 0% N_{dfa} and exactly 100% N_{dfa} ; they are the results for hypothetical average

360 inoculated plants when we plug in 0% and 100% for $\%N_{dfa}$, as informed by all the data that were
361 used to fit the model.

362

363 *Total biomass*

364 We set up our experiments in the hope that plants would be N limited at the low N
365 fertilization levels, so we expected to find N limitation. Encouragingly, we did.

366 For the species grown at Barnard, all of which were rhizobial trees, the fixed effects from
367 the mixed model were

368 *Barnard rhizobial tree total biomass (mg) =*
369 $1247 + \mathbf{28.9} * N - 294 * I + \mathbf{20.3} * \%N_{dfa} + \mathbf{209} * P + 5.95 * N * I + 0.497 * N *$
370 $\%N_{dfa} + 46.4 * P * I + 0.282 * P * \%N_{dfa}$ Eqn. 1

371 where N is N supplied as fertilizer ($\text{g N m}^{-2} \text{ y}^{-1}$), I is inoculated (1 if inoculated, 0 if
372 uninoculated), $\%N_{dfa}$ is the fraction of the plant's N from fixation (%), and P is P supplied as
373 fertilizer ($\text{g P m}^{-2} \text{ y}^{-1}$). Coefficients aside from the intercept that are significantly different from
374 zero ($P < 0.05$) are shown in bold along with their respective variables. P values corresponding
375 to each of the coefficients in Eqns. 1-10 are shown in Table 1.

376 Nitrogen fertilization made rhizobial tree seedlings at Barnard larger – every additional g
377 $\text{N m}^{-2} \text{ y}^{-1}$ led to 28.9 mg more biomass for uninoculated seedlings and 34.9 mg more biomass for
378 inoculated seedlings ($P < 0.0001$ for both), indicating that they were N limited (blue line on Fig.
379 1a). Given this evidence for N limitation, it is not surprising that N fixation also made seedlings
380 larger: at low soil N supply, each percentage point of N_{dfa} led to 20.3 mg more biomass ($P =$
381 0.0007) (compare the three red lines on Fig. 1a). (Note that the lines in Figs. 1-4, S1-S8 were
382 calculated in the same way as described at the beginning of the Results section.) Nitrogen

383 fixation and N fertilizer did not interact ($P = 0.2562$ for the interaction coefficient 0.497),
384 meaning that N fixation led to similar increases in biomass regardless of the level of N
385 fertilization, and conversely, N fertilization led to similar increases in biomass regardless of the
386 amount of N fixation (compare red and blue lines on Fig. 1a). Figs. S1-S8 show the data for each
387 Barnard species individually.

388 P fertilization, which only occurred at the highest N level, made rhizobial tree seedlings
389 at Barnard grow larger. Each additional $\text{g P m}^{-2} \text{y}^{-1}$ led to 209 and 256 mg more biomass for
390 uninoculated and inoculated seedlings, respectively ($P < 0.0001$ for both), indicating that growth
391 was limited by P when enough N was supplied (Fig. 1a). P fertilization did not interact with
392 inoculation ($P = 0.3675$ for the coefficient 46.4) or N fixation ($P = 0.8908$ for the coefficient
393 0.282), meaning that N-fixing plants were not more or less P limited than uninoculated or non-
394 fixing plants.

395 Aside from its indirect effect through N fixation, inoculation did not affect biomass for
396 the rhizobial plants grown at Barnard. Neither the main effect of inoculation nor its interactive
397 effects with other drivers were significantly different from zero (Table 1; see also blue versus red
398 dotted line on Fig. 1a, which show the average biomasses of uninoculated plants versus
399 inoculated plants that are not fixing N, as given by our statistical model).

400 For the plants grown at UC Davis, the fixed effects from the mixed model were

401 *UC Davis rhizobial tree seedling total biomass (mg) =*

402 $254 + 222 * N - 1009 * I + 76.6 * \%N_{dfa} - 74.9 * P + 23.9 * N * I + 2.95 * N * \%N_{dfa} +$
403 $9.10 * P * I - 0.241 * P * \%N_{dfa}$ Eqn. 2

404 *UC Davis actinorhizal tree seedling total biomass (mg) =*

405 $-19.1 + 564 * N - 6408 * I + 244 * \%N_{dfa} + 83.7 * P - 207 * N * I + 6.04 * N * \%N_{dfa} - 650 * P * I + 8.78 * P * \%N_{dfa}$ Eqn. 3

407 *UC Davis soybean total biomass (mg)*

408 $= 703 + 21.1 * N + 129 * I + 8.63 * \%N_{dfa} + 4.43 * P + 2.33 * N * I + 0.295 * N * \%N_{dfa} + 16.4 * P * I - 4.40 * P * \%N_{dfa}$ Eqn. 4

410 As we observed at Barnard, N fertilization stimulated growth at UC Davis, as all symbiotic types
 411 at UC Davis were N limited ($P < 0.0003$ for uninoculated and inoculated seedlings of all
 412 symbiotic types). The magnitude at UC Davis was also much larger for the tree species types
 413 compared to Barnard. Each g N m⁻² y⁻¹ fertilizer led to 222 and 564 mg biomass for every g N
 414 m⁻² y⁻¹ added to uninoculated rhizobial (Fig. 2a) and actinorhizal (Fig. 3a) trees, respectively.
 415 Similarly, N fixation stimulated growth at low soil N supply more so for the tree seedlings at UC
 416 Davis than at Barnard: each additional % of fixation led to 76.6 and 244 additional mg of
 417 biomass at low soil N supply for the rhizobial and actinorhizal trees at UC Davis ($P < 0.0001$)
 418 (compare red line intercepts on Figs. 2a, 3a). Unlike what we observed in the Barnard plants, N
 419 fixation and N fertilization interacted in the UC Davis tree seedlings ($P < 0.0001$ and $P = 0.0005$
 420 for rhizobial and actinorhizal seedlings, respectively). Somewhat surprisingly, given that soil N
 421 and N fixation provide the same resource, the interaction was synergistic: an inoculated tree
 422 seedling with 100% N_{dfa} grew an additional 294 (rhizobial) or 604 (actinorhizal) mg with each g
 423 N m⁻² y⁻¹ of N fertilizer compared to an inoculated but non-fixing (0% N_{dfa}) seedling (compare
 424 slopes of dashed vs. dotted red lines on Figs. 2a, 3a). This synergy could stem from the
 425 exponential nature of seedling growth: an initial edge from fertilization could be compounded to
 426 a much greater biomass advantage even if the large majority of N comes from fixation. (We note

427 again that the “100% N_{dfa} ” case is the edge case of a statistical extrapolation from plants that
428 fixed less than 100% of their N.)

429 Similar to the tree species, soybean plants at UC Davis grew larger with additional N
430 (Fig. 4a). Soybean plants were smaller than tree seedlings, in part because they had less time to
431 grow, so they grew less with each additional $g\ N\ m^{-2}\ y^{-1}$ fertilizer (21.1 mg for uninoculated
432 plants) and each % of N from fixation (8.63 mg for uninoculated plants) than the tree seedlings,
433 but the effects were similarly significant ($P < 0.0001$, $P = 0.0003$, respectively; Table 1). Unlike
434 the tree seedlings at UC Davis, there was no interaction between N fertilization and % N_{dfa} for
435 soybean ($P = 0.1668$).

436 P fertilization had no effect on biomass at UC Davis for any symbiotic type (Figs. 2a, 3a,
437 4a). Although it was not significant, the interaction of P with N fixation makes the high P fit for
438 soybean (Fig. 4a) appear too low. The reason is that it is plotted for the average % N_{dfa} of all
439 inoculated soybean plants, whereas the highest N, high P soybean plants had low % N_{dfa} . In
440 addition to its effects through N fixation, inoculation had a countering effect on the intercept for
441 actinorhizal trees ($P = 0.0221$), but not for rhizobial trees or soybean (Table 1). Aside from its
442 effects through N fixation, inoculation did not modify the effects of N fertilization or P
443 fertilization (Table 1).

444 Given that plants were N limited in both experiments, and that both N fertilization and N
445 fixation stimulated growth, both experiments were well suited to addressing our questions about
446 allocation with regard to N supply via fertilization and N fixation. With regard to P supply,
447 though, the Barnard plants were P limited, but the UC Davis plants were not.

448

449 *Allocation of biomass to belowground versus aboveground tissues*

450 Allocation to belowground versus aboveground tissues varied widely across species and
451 treatments, ranging from ~10% to ~80% belowground for individual plants (Figs. 1-4b, S1-S8).
452 Species differences accounted for some of this variation (Figs. 1-4b, S1-S8, Table 2). In Barnard,
453 the random effect intercepts (species-level % belowground for uninoculated plants at low soil N
454 supply, low soil P supply, and low biomass) ranged from 29% belowground for *Acacia koa* to
455 66% belowground for *Leucaena leucocephala* (Table 2). In UC Davis the range was similar,
456 from 27% for *Morella faya* to 56% for *Alnus rubra* (Table 2). Across all species and treatments,
457 the means of all individual plants were 39% belowground at Barnard and 36% belowground at
458 UC Davis.

459 Given that plants in both greenhouses were N limited, we hypothesized (H1a) that N
460 fertilization and N fixation would induce plants to allocate relatively less biomass belowground,
461 which would appear as negative coefficients for the “N” and “%N_{dfa}” terms in the mixed models
462 for belowground biomass as a % of total biomass. The fixed effects from the mixed model were

463 *Barnard belowground biomass (% of total)*

$$464 = 44.8 - \mathbf{0.154} * N - 1.61 * I - \mathbf{0.104} * \%N_{dfa} - \mathbf{0.345} * P + 0.258 * \ln(Biomass) + \\ 465 0.0702 * N * I + 0.00003 * N * \%N_{dfa} - 0.218 * P * I + 0.00591 * P * \%N_{dfa} \quad \text{Eqn. 5}$$

466 *UC Davis plant belowground biomass (% of total) =*

$$467 38.1 - \mathbf{0.273} * N - 1.70 * I - \mathbf{0.203} * \%N_{dfa} + 0.261 * P + \mathbf{1.42} * \ln(Biomass) - 18.8 * \\ 468 S - 3.20 * A + \mathbf{0.116} * N * I + 0.00059 * N * \%N_{dfa} + 0.0189 * N * S + 0.0267 * N * A - \\ 469 0.115 * P * I - 0.00118 * P * \%N_{dfa} - 0.136 * P * S + 0.0677 * P * A \quad \text{Eqn. 6}$$

470 where *S* indicates soybean (1 if soybean, 0 if not) and *A* indicates actinorhizal tree (1 if
471 actinorhizal tree, 0 if not). As we had hypothesized (H1a), plants in both locations allocated less
472 biomass belowground when they had more N, either from fertilization or from N fixation. At

473 Barnard, the average uninoculated plant allocated 46% belowground at our lowest N fertilization
474 level, compared to 35% at the highest N level (Figs. 1b, blue line). The effect of N fixation was
475 similar to the effect of N fertilization. As explained at the beginning of the Results section, we
476 illustrate this by comparing the hypothetical cases of $\%N_{dfa} = 0$ versus 100% in Eqn. 5. The
477 average inoculated plant at low N at Barnard allocated 45% belowground at 0% N_{dfa} , compared
478 to 35% belowground at 100% N_{dfa} (compare red lines on Fig. 1b). N fixation did not interact
479 with soil N supply for the Barnard plants, so at high N, the average inoculated rhizobial plant
480 allocated 39% belowground if it was not fixing, compared to 29% belowground at 100% N_{dfa}
481 (compare red lines in Fig. 1b). Our hypothesis about a negligible effect of inoculation aside from
482 its effect on N fixation (H1b) was supported for the Barnard plants: neither the main effect of
483 inoculation nor its interaction effects were significant.

484 Just like the N effects on biomass, the N effects on aboveground to belowground biomass
485 allocation were similar in direction but more drastic in magnitude at UC Davis compared to
486 Barnard. At UC Davis, the average uninoculated rhizobial tree seedling allocated 49% (46% for
487 actinorhizals) belowground at the lowest N level and 32% (31% for actinorhizals) at the highest
488 N level (Figs. 2b, 3b). Fixation had at least as large an effect as N fertilization. An average
489 inoculated rhizobial tree seedling at low N allocated 49% (46% for actinorhizals) belowground if
490 it was fixing 0% of its N compared to 28% (26% for actinorhizals) if it was fixing 100% of its N
491 (compare left side of red lines, Figs. 2b, 3b). At the highest N level, an average inoculated
492 rhizobial tree seedling allocated 39% (38% for actinorhizals) belowground if it was fixing 0% of
493 its N, whereas it allocated 23% (21%) belowground when it was fixing 100% of its N (compare
494 right side of red lines, Figs. 2b, 3b). Furthermore, N fixation levels were higher at UC Davis: an
495 average of 69 % N_{dfa} for rhizobial tree seedlings at UC Davis compared to 24% at Barnard (and

496 59% for actinorhizal tree seedlings at UC Davis). Therefore, the large effects at UC Davis were
497 even stronger than they appear in the coefficients: the effects on belowground allocation were at
498 least as large per unit $\%N_{dfa}$, but their realized effects were even larger because the plants were
499 fixing more N. Unlike in the Barnard plants, there was a significant interaction term between
500 inoculation and N supply for the UC Davis plants, indicating that inoculation had an effect apart
501 from N fixation itself (Eqn. 6). Whereas an average uninoculated plant and an average inoculated
502 but non-fixing (0% N_{dfa}) plant had similar allocation to belowground tissues at low N supply,
503 their allocation belowground diverged at higher N supply (compare the blue versus dotted red
504 lines in Figs. 2b, 3b). Therefore, H1b had only partial support from the UC Davis plants.

505 Though not significant, soybean tended to allocate less biomass belowground than
506 rhizobial tree seedlings. The effects of N on allocation were similar in soybean and the other
507 plants, though. At UC Davis, the average uninoculated soybean seedling allocated 29%
508 belowground at the lowest N level and 14% at the highest N level (Fig. 4b). Fixation had at least
509 as large an effect as N fertilization. The average inoculated soybean seedling at low N allocated
510 28% belowground if it was fixing 0% of its N, compared to 8% if it was fixing 100% of its N
511 (compare left side of dashed versus dotted red lines, Fig. 4b). At the highest N level, the average
512 inoculated soybean seedling allocated 20% belowground if it was not fixing, whereas it allocated
513 3% belowground when it was fixing 100% of its N (compare right side of dashed versus dotted
514 red lines, Fig. 4b).

515

516 *Allocation of aboveground biomass to leaves versus stems*

517 The fraction of aboveground biomass allocated to leaves ranged widely, from ~10% to
518 ~90% for individual plants (Figs. 1-4c). As was the case with allocation to belowground

519 biomass, there was substantial variation across species. At Barnard, the random effect intercepts
520 ranged from 59% leaves for *Enterolobium* to 85% leaves for *Sophora* (Table 2). At UC Davis,
521 the random effects intercepts ranged from 50% leaves (*Elaeagnus*) to 78% leaves (*Morella faya*)
522 (Table 2). Across all species and treatments, the average allocation to aboveground tissue was
523 59%.

524 We did not have a clear hypothesis for how N fertilization and N fixation would affect
525 allocation to stems or leaves, as H2a, b, and c were mutually exclusive alternatives. Accordingly,
526 the results were nuanced. The fixed effects from the mixed models were

527 *Barnard foliar biomass (% of aboveground)* =
528
$$74.7 + 0.0411 * N - \mathbf{3.38} * I + \mathbf{0.153} * \%N_{dfa} + 0.128 * P - \mathbf{2.64} * \ln(Biomass) +$$

529
$$0.0442 * N * I + 0.00170 * N * \%N_{dfa} - 0.140 * P * I - 0.00093 * P * \%N_{dfa}$$
 Eqn. 7

530 *UC Davis foliar biomass (% of aboveground)*
531
$$= 68.3 + 0.0497 * N + 0.703 * I + \mathbf{0.183} * \%N_{dfa} - \mathbf{0.552} * P - \mathbf{2.25} * \ln(Biomass) -$$

532
$$9.45 * S + 11.2 * A - 0.0813 * N * I - \mathbf{0.00309} * N * \%N_{dfa} + \mathbf{0.516} * N * S + 0.0438 *$$

533
$$N * A + 0.386 * P * I + 0.00148 * P * \%N_{dfa} + 0.0766 * P * S + 0.173 * P * A$$
 Eqn. 8

534 As expected, larger plants invested relatively more in stems as opposed to leaves ($P < 0.0001$ for
535 both locations for the effect of the natural log of biomass; Table 1). As we mentioned in the
536 biomass section, N fertilization and N fixation both made plants bigger, so there was an indirect
537 effect whereby N supply (via fertilization and fixation) caused plants to invest relatively more in
538 stems because it made them bigger. However, this indirect effect was countered by a direct
539 effect: for a given size, N fixation ($P < 0.0001$ for both Barnard and UC Davis) stimulated plants
540 to invest more in leaves. N fertilization had a similar effect in soybean at UC Davis. These
541 combined effects are visible (Figs. 1-4c). The fit for uninoculated plants (blue line) in Fig. 3c, for

542 instance, rises more than seems warranted by the points. This occurs because the fit is plotted for
543 an average sized actinorhizal seedling, whereas in reality the plants at low N fertilization were
544 small (and thus had higher investment in leaves than indicated by the fit) and the plants at high N
545 fertilization were large (and thus had lower investment in leaves than indicated by the fit). In UC
546 Davis, N fertilization had the opposite effect at low versus high N fixation: it caused more
547 investment in leaves at low N fertilization but had no effect at high fertilization (Figs. 2-4c).
548 Overall, there was mixed support for H2a (an increase in allocation to leaves versus stems with
549 more N) versus H2b (no change) versus H2c (decrease).

550

551 *Allocation of belowground biomass to nodules versus roots*

552 Investment in nodules also ranged widely across plants, from 0% to nearly 40% of
553 belowground biomass (Figs. 1-4d). Species varied widely; across species, the average allocation
554 to nodules in inoculated plants was 4.1% in Barnard, compared to 13.6% in UC Davis.

555 We had hypothesized that N fertilization would reduce investment in nodules (H3). As
556 the fixed effects equations show, our data supported H3:

557 *Barnard nodule biomass (% of belowground) =*
558
$$-6.49 - \mathbf{0.120} * N + \mathbf{1.68} * \ln(Biomass) + \mathbf{0.189} * P \quad \text{Eqn. 9}$$

559 *UC Davis nodule biomass (% of belowground)*
560
$$= 20.2 - \mathbf{0.243} * N + 0.0562 * \ln(Biomass) + 0.0785 * P - 8.72 * S - 5.96 * A + 0.0571 * N * S + \mathbf{0.119} * N * A \quad \text{Eqn. 10}$$

562 For the Barnard plants, an average-sized individual at our low P level allocated about 5% of its
563 belowground biomass to nodules at the lowest N level, which dropped to 0% by the high levels

564 of N fertilization (Fig. 1d). Larger plants allocated proportionately more belowground biomass to
565 nodules. Fertilization with P stimulated allocation to nodules (Table 1, Fig. 1d).

566 At UC Davis, an average-sized rhizobial tree seedling at our low P and lowest N levels
567 allocated approximately 21% of its belowground biomass to nodules (Fig. 2d), compared to
568 approximately 15% for actinorhizal tree seedlings (Fig. 3d) and 12% for soybean plants (Fig.
569 4d). At our highest N levels, allocation to nodules dropped to 6% of belowground biomass for
570 rhizobials (Fig. 2d), 7% for actinorhizal trees (Fig. 3d), and <1% for soybean (Fig. 4d). Unlike at
571 Barnard, larger plants did not allocate more to nodules, and there was no effect of P fertilization
572 (Table 1).

573

574 Discussion

575

576 Despite wide variation in allocation of biomass to different organs across our species, and
577 despite variable growing conditions in the two experiments, we found a number of consistent
578 patterns. As we had hypothesized (H1a), and as many others had found with non-fixing species
579 (Brenchley, 1916; Chapin, 1980; Ingestad & Ågren, 1991; Poorter & Nagel, 2000; McCarthy &
580 Enquist, 2007; Poorter et al., 2011), fertilizing uninoculated seedlings with N led to relatively
581 less allocation of biomass to belowground tissues. The rest of our hypothesis H1 was also
582 correct: N fixation also led to relatively less allocation of biomass belowground, with a similar
583 overall effect size as N fertilization (as observed by Ingestad, 1980; Sellstedt, 1986; Sellstedt &
584 Huss-Danell, 1986), and inoculation had negligible effects aside from allowing N fixation. We
585 had multiple competing hypotheses for allocation of aboveground biomass to leaves versus stems
586 (H2a, b, and c). Accordingly, our results for leaves versus stems were variable. The clearest trend

587 was that N fixation led to more allocation to leaves at low soil N supply, but the more nuanced
588 results differed across our two experiments. As we had hypothesized (H3), and as many (e.g.,
589 Ingestad, 1980; Markham & Zekveld, 2007; Menge et al., 2015; Taylor & Menge, 2018; Dovrat
590 et al., 2018; 2020; McCulloch & Porder, 2021) but not all (Arnone & Gordon, 1990; Binkley et
591 al., 1994) other studies had observed, fertilization decreased allocation to root nodules.

592 One major advantage of our work compared to past work studying the effects of N
593 fixation on biomass allocation is our ability to compare across different groups of N-fixing
594 species. Our study examined 15 species overall, including 12 species from three different plant
595 types (rhizobial trees, actinorhizal trees, and a rhizobial herb) in the second experiment. Except
596 for a few nuances, rhizobial and actinorhizal trees had similar average patterns of biomass
597 allocation, though there was substantial variability within each group. Therefore, the differences
598 observed in the actinorhizal tree *Alnus* (Ingestad 1980; Sellstedt 1986; Sellstedt & Huss-Danell
599 1986; Arnone & Gordon 1990; Markham & Zekveld 2007) versus three Mediterranean shrubs
600 (Dovrat et al. 2020) versus the tropical rhizobial tree *Pentaclethra macroloba* (Taylor & Menge
601 2021) seem not to hold generally across their plant types. We speculate that their common
602 ecological role as woody N-fixing plants helps explain their similar average patterns of
603 allocation, and we also note that within-family variation was high, as is common for many traits
604 (Anderegg et al., 2018). Soybean was different than the tree species: it allocated proportionately
605 more aboveground and less to nodules, and it consistently allocated more to leaves rather than
606 stems with increasing N fertilization. The fact that herbs and trees have different allocation
607 patterns is not that surprising, particularly with respect to leaves versus stems. However, there
608 are additional reasons beyond being an herb that soybean might differ. As an agricultural species,

609 soybean has been selected for fruit production in typically nutrient-rich (fertilized) habitats,
610 which likely means it has been selected for more allocation aboveground.

611 We designed our study to tease apart the roles of inoculation versus N fixation, given past
612 findings that the symbiotic association with bacteria can have effects beyond supplying N. For
613 example, Wolf et al. (2017) found that inoculation with symbiotic bacteria led to higher
614 concentrations of N in plant tissues beyond what could be explained by the amount of N they
615 fixed, and Dovrat et al. (2020) found that inoculating N-sufficient plants caused them to allocate
616 relatively less biomass belowground. The mechanisms underlying such effects are unclear,
617 though it is known that the symbiotic interaction involves a series of chemical signals, both
618 during the onset of the symbiotic interaction and once the bacteria are inside the plant (Franchise
619 et al., 2009; Garg & Neetanjani, 2009). This signaling has myriad effects on plant cellular
620 function and gene expression (Franchise et al., 2009; Garg & Geetanjali, 2009), so it seems
621 plausible that it could affect biomass allocation. However, in the present study, unlike these other
622 studies, the effects of inoculation acted primarily through N fixation. With some nuances,
623 allocation was similar for inoculated-but-not-fixing versus uninoculated plants, after correcting
624 for size (compare dotted red and solid blue lines in Figs. 1-4b,c). As we explained at the
625 beginning of the Results section, these conclusions come from statistical fits across the full range
626 of N fixation rather than from isolated inoculated-but-not-fixing individuals. Our conclusion
627 from this finding is that any effects of inoculation beyond N fixation, such as those observed by
628 Wolf et al. (2017) and Dovrat et al. (2020), are inconsistent across species, conditions, or
629 response variables.

630 In both experiments and across all symbiotic types, plants that fixed more N allocated
631 substantially less belowground (compare the three red lines in Figs. 1-4b). Despite this similar

632 overall trend, we found some stark differences in allocation between the plants in our two
633 experiments, largely due to differences in the amount of N fixed. In the Barnard greenhouse,
634 where the average plant fixed only 24% of its N, allocation belowground was nearly identical for
635 the average inoculated versus the average uninoculated plant (compare solid red and blue lines in
636 Fig. 1b). By contrast, in the UC Davis greenhouse, where the average tree seedling fixed more of
637 its N (69% for rhizobial trees, 59% for actinorhizal trees), the average inoculated plant allocated
638 much less biomass belowground than the average uninoculated plant, even after correcting for
639 plant size (compare red and blue points and lines in Fib. 2-3b). Soybean, which we only grew in
640 UC Davis, was more similar to the rhizobial trees in Barnard, with an average of 29% N_{dfa} and
641 similar allocation patterns for the average inoculated versus uninoculated plants. We suspect that
642 the differences in N fixation in the two greenhouses stem from different resource availability.
643 Some of the important environmental conditions that determine rates of N fixation are the
644 availability of resources such as light (Myster, 2006; Taylor & Menge, 2018; Schmidt et al.,
645 2023) or phosphorus (Crews et al., 1993; Batterman et al., 2013b; Zheng et al., 2019), both of
646 which likely differed between the experiments. Phosphorus limited plant growth at the highest N
647 level in Barnard (Fig. 1a) but not in UC Davis (Figs. 2-4a), and we suspect that light availability
648 was higher at UC Davis as well due to its geographical location as well as the fewer number of
649 light-blocking buildings nearby. Greater limitation by phosphorus and light would be consistent
650 with lower allocation to nodules across the range of soil N supply in Barnard (Fig. 1d compared
651 to 2-4d).

652 A key implication of our work is that knowing whether a species is capable of N fixation
653 is not sufficient to determine its biomass allocation; N fixation activity is much more important.
654 This is unfortunate. There are increasingly comprehensive lists of which taxa are capable of

655 forming symbioses (Huss-Danell, 1997; Sprent, 2009; Werner et al., 2014; Afkhami et al., 2018),
656 whereas it is far harder to determine N fixation activity (Soper et al., 2021). Our evolving
657 understanding suggests that, although there are differences in N fixation rates across different
658 taxa (Wurzburger & Hedin, 2016), there are also differences across environmental conditions
659 (Crews et al., 1993; Myster, 2006; Batterman et al., 2013b; Menge et al., 2015; Taylor & Menge,
660 2018; Zheng et al., 2019; Schmidt et al., 2023), suggesting that identical plants in different
661 conditions might fix N, and thus allocate biomass, differently. In addition to our Barnard versus
662 UC Davis comparison, we also saw this trend within each experiment: much of the variation in
663 biomass allocation within a species and treatment corresponded to variation in N fixation
664 activity.

665 Our results have potential implications for competition and for carbon storage at
666 community and ecosystem scales. Fifteen species grown under a variety of conditions suggested
667 that N fixation leads to relatively less allocation belowground, and in N-poor conditions,
668 relatively more allocation to leaves than stems. At the community level, these results indicate
669 that N fixation, analogous to high soil N supply (Dybinski et al., 2011), intensifies aboveground
670 competition for light. At the ecosystem scale, these patterns suggest that N fixation leads to more
671 allocation to tissues with shorter lifespans and faster decomposition. This is consistent with the
672 well-known effects of N fixation (or being an N-fixer) on tissue N content (Fyllas et al., 2009;
673 Adams et al., 2016; Wolf et al., 2017, Bytnerowicz et al., 2023), which can also enhance
674 decomposition rates, particularly for low lignin litter (Melillo et al., 1982; Cusack et al., 2009;
675 Perakis et al., 2012). However, there are a number of caveats for these extrapolations. The
676 present study focused on seedlings grown in pots, whereas much light competition and carbon
677 storage are driven by mature trees in the field (Pan et al., 2011), which might have different

allocation. Although we selected fifteen species from both major N-fixing symbiotic types (rhizobial and actinorhizal) and across multiple biomes, these species are still a small fraction of the N-fixing species in the world (Werner et al., 2014; Afkhami et al., 2018). Finally, although we focused mostly on the average trends in our data, it is also noteworthy that the variation around the trends was substantial, indicating that many other factors affect biomass allocation.

683

Literature Cited

685

686 Adams MA, Turnbull TL, Sprent JI, Buchmann N. 2016. Legumes are different: Leaf
687 nitrogen, photosynthesis, and water use efficiency. *Proceedings of the National Academy of
688 Sciences* 113: 4098-103.

689 Afkhami ME, Mahler DL, Burns JH, Weber MG, Wojciechowski MF, Sprent J, Strauss
690 SY. 2018. Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across
691 legume genera. *Ecology* **99**: 502.

692 **Anderegg, LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J. 2018.**
693 Within-species patterns challenge our understanding of the leaf economics spectrum. *Ecology*
694 *Letters* **21**: 734-744.

695 Arnone III JA, Gordon JC. 1990. Effect of nodulation, nitrogen fixation and CO₂ enrichment
696 on the physiology, growth and dry mass allocation of seedlings of *Alnus rubra* Bong. *New*
697 *Phytologist* **116**: 55-66.

698 **Batterman SA, Wurzburger N, Hedin LO. 2013.** Nitrogen and phosphorus interact to control
699 tropical symbiotic N₂ fixation: a test in *Inga punctata*. *Journal of Ecology* **101**: 1400-1408.
700 **Bazzaz FA, Grace J. 1997.** Plant Resource Allocation. Academic Press, San Diego, CA, USA.

701 **Binkley D, Cromack Jr K, Baker DD. 1994.** Nitrogen fixation by red alder: biology, rates, and
702 controls. Pages 57-72 in Hibbs D, DeBell D, Tarrant R, editors. *The Biology and Management of*
703 *Red Alder*. Oregon State University Press, Corvallis, Oregon, USA.

704 **Bloom AJ, Chapin III FS, Mooney HA. 1985.** Resource limitation in plants-an economic
705 analogy. *Annual Review of Ecology and Systematics* 16: 363-392.

706 **Brenchley WE. 1916.** The effect of the concentration of the nutrient solution on the growth of
707 barley and wheat in water cultures. *Annals of Botany* 30: 77-91.

708 **Bytnerowicz TA, Funk JL, Menge DNL, Perakis SS, Wolf AA. 2023.** Leaf nitrogen affects
709 photosynthesis and water use efficiency similarly in nitrogen-fixing and non-fixing trees. *Journal*
710 *of Ecology* 111: 2457-2471.

711 **Carreras Pereira KA, Wolf AA, Kou-Giesbrecht S, Akana PR, Funk JL, Menge DNL.**
712 **2023.** Allometric relationships for eight species of 4-5 year old nitrogen-fixing and non-fixing
713 trees. *PLoS ONE* 18: e0289679.

714 **Chalk PM. 1985.** Estimation of N₂ fixation by isotope dilution: An appraisal of techniques
715 involving ¹⁵N enrichment and their application. *Soil Biology and Biochemistry* 17: 389-410.

716 **Chapin III FS. 1980.** The mineral nutrition of wild plants. *Annual Review of Ecology and*
717 *Systematics* 11: 233-260.

718 **Cottingham KL, Lennon JT, Brown BL. 2005.** Knowing when to draw the line: designing
719 more informative ecological experiments. *Frontiers of Ecology and the Environment* 3: 145-152.

720 **Crews TE. 1993.** Phosphorus regulation of nitrogen fixation in a traditional Mexican
721 agroecosystem. *Biogeochemistry* 21: 141-166.

722 **Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, Lidet Team. 2009.** Controls on
723 long-term root and leaf litter decomposition in neotropical forests. *Global Change Biology* **15**:
724 1339-1355.

725 **Dovrat G, Bakhshian H, Masci T, Sheffer E. 2020.** The nitrogen economic spectrum of
726 legume stoichiometry and fixation strategy. *New Phytologist* **227**: 365-375.

727 **Dovrat G, Masci T, Bakhshian H, Gati EM, Golan S, Sheffer E. 2018.** Drought-adapted
728 plants dramatically downregulate dinitrogen fixation: Evidences from Mediterranean legume
729 shrubs. *Journal of Ecology* **106**: 1534-1544.

730 **Dybinski R, Farrior C, Wolf A, Reich PB, Pacala SW. 2011.** Evolutionarily stable strategy
731 carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an
732 analytically tractable, individual-based model and quantitative comparisons to data. *The
733 American Naturalist* **177**: 153-166.

734 **Frache C, Lindström K, Elmerich C. 2009.** Nitrogen-fixing bacteria associated with
735 leguminous and non-leguminous plants. *Plant and Soil* **321**: 35-59.

736 **Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB,
737 Dankers R, Falloon PD, Ito A. 2014.** Carbon residence time dominates uncertainty in terrestrial
738 vegetation responses to future climate and atmospheric CO₂. *Proceedings of the National
739 Academy of Sciences* **111**: 3280-3285.

740 **Fyllas NM, Patiño S, Baker TR, Bielefeld Nardoto G, Martinelli LA, Quesada CA, Paiva R,
741 Schwarz M, Horna V, Mercado LM, Santos A. 2009.** Basin-wide variations in foliar
742 properties of Amazonian forest: phylogeny, soils and climate. *Biogeosciences* **6**: 2677-2708.

743 **Garg N, Geetanjani. 2009.** Symbiotic nitrogen fixation in legume nodules: Process and
744 signalling: A review. *Agronomy for Sustainable Development* **27**: 59-68.

745 **Gutschick VP.** 1981. Evolved strategies in nitrogen acquisition by plants. *American Naturalist*
746 **118:** 607-637.

747 **Hedin LO, Brookshire EJ, Menge DNL, Barron AR.** 2009. The nitrogen paradox in tropical
748 forest ecosystems. *Annual Review of Ecology, Evolution, and Systematics* **40:** 613-635.

749 **Hermans C, Hammond JP, White PJ, Verbruggen N.** 2006. How do plants respond to
750 nutrient shortage by biomass allocation? *Trends in Plant Science* **11:** 610-617.

751 **Huss-Danell K.** 1997. Tansley Review No. 93. Actinorhizal symbioses and their N₂ fixation.
752 *New Phytologist* **136:** 375-405.

753 **Ingestad T.** 1980. Growth, nutrition, and nitrogen fixation in grey alder at varied rate of nitrogen
754 addition. *Physiologia Plantarum* **50:** 353-364.

755 **Ingestad T, Agren GI.** 1991. The influence of plant nutrition on biomass allocation. *Ecological*
756 *Applications* **1:** 168-174.

757 **Iwasa Y.** 2000. Dynamic optimization of plant growth. *Evolutionary Ecology Research* **2:** 437-
758 455.

759 **LeBauer DS, Treseder KK.** 2008. Nitrogen limitation of net primary productivity in terrestrial
760 ecosystems is globally distributed. *Ecology* **89:** 371-379.

761 **Markham JH, Zekveld C.** 2007. Nitrogen fixation makes biomass allocation to roots
762 independent of soil nitrogen supply. *Botany* **85:** 787-793.

763 **Maximov NA, Yapp RH.** 1929. The plant in relation to water: A study of the physiological
764 basis of drought resistance. Allen and Unwin, London, UK.

765 **McCarthy MC, Enquist BJ.** 2007. Consistency between an allometric approach and optimal
766 partitioning theory in global patterns of plant biomass allocation. *Functional Ecology* **21:** 713-
767 720.

768 **McCulloch LA, Porder S. 2021.** Light fuels while nitrogen suppresses symbiotic nitrogen
769 fixation hotspots in neotropical canopy gap seedlings. *New Phytologist* **231**: 1734-1745.

770 **Melillo JM, Aber JD, Muratore JF. 1982.** Nitrogen and lignin control of hardwood leaf litter
771 decomposition dynamics. *Ecology* **63**: 621-626.

772 **Menge DNL, Batterman SA, Liao W, Taylor BN, Lichstein JW, Ángeles-Perez G. 2017.**
773 Nitrogen-fixing tree abundance in higher-latitude North America is not constrained by diversity.
774 *Ecology Letters* **20**: 842-851.

775 **Menge DNL, Levin SA, Hedin LO. 2009.** Facultative versus obligate nitrogen fixation
776 strategies and their ecosystem consequences. *American Naturalist* **174**: 465-477.

777 **Menge DNL, Wolf AA, Funk JL. 2015.** Diversity of nitrogen fixation strategies in
778 Mediterranean legumes. *Nature Plants* **1**: 1-5.

779 **Menge DNL, Wolf AA, Funk JL, Perakis SS, Akana PR, Arkebauer R, Bytnerowicz TA,**
780 **Carreras Pereira KA, Huddell AM, Kou-Giesbrecht S, Ortiz SK. 2023.** Tree symbioses
781 sustain nitrogen fixation despite excess nitrogen supply. *Ecological Monographs* **93**: e1562.

782 **Myster RW. 2006.** Light and nutrient effects on growth and allocation of *Inga vera*
783 (Leguminosae), a successional tree of Puerto Rico. *Canadian Journal of Forest Research* **36**:
784 1121-1128.

785 **Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A,**
786 **Lewis SL, Canadell JG, Ciais P. 2011.** A large and persistent carbon sink in the world's forests.
787 *Science* **333**: 988-993.

788 **Peoples MB, Giller KE, Jensen ES, Herridge DF. 2021.** Quantifying country-for to-global
789 scale nitrogen fixation for grain legumes: I. Reliance of nitrogen fixation of soybean, groundnut,
790 and pulses. *Plant and Soil* **469**: 1-14.

791 **Perakis SS, Matkis JJ, Hibbs DE. 2012.** Interactions of tissue and fertilizer nitrogen on
792 decomposition dynamics of lignin-rich conifer litter. *Ecosphere* **3**: 1-12.

793 **Pinheiro J, Bates D, R Core Team. 2022.** nlme: Linear and Nonlinear Mixed Effects Models. R
794 package version 3.1-157, <<https://CRAN.R-project.org/package=nlme>>.

795 **Poorter H, Nagel O. 2000.** The role of biomass allocation in the growth response of plants to
796 different levels of light, CO₂, nutrients and water: a quantitative review. *Functional Plant
797 Biology* **27**: 595-607.

798 **Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012.** Biomass allocation to
799 leaves, stems and roots: meta-analyses of interspecific variation and environmental control. *New
800 Phytologist* **193**: 30-50.

801 **R Core Team. 2022.** R: A language and environment for statistical computing. R Foundation for
802 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

803 **Reynolds HL, Pacala SW. 1993.** An analytical treatment of root-to-shoot ratio and plant
804 competition for soil nutrient and light. *American Naturalist* **141**: 51-70.

805 **Ross CW. 1974.** Plant Physiology Laboratory Manual. Wadsworth Publishing Company, San
806 Francisco, CA, USA.

807 **Schmidt CB, Funk JL, Wolf AA, Akana PR, Palmer MI, Menge DNL. 2023.** Nitrogen
808 fixation responds to soil nitrogen availability at low but not high light in two understory species.
809 *Journal of Ecology* **111**: 916-926.

810 **Sellstedt A. 1986.** Nitrogen and carbon utilization in *Alnus incana* fixing N₂ or supplied with
811 NO₃⁻ at the same rate. *Journal of Experimental Botany* **37**: 786-797.

812 **Sellstedt A, Huss-Danell K. 1986.** Biomass production and nitrogen utilization by *Alnus incana*
813 when grown on N₂ or NH₄⁺ made available at the same rate. *Planta* **167**: 387-394.

814 **Shearer G, Kohl DH. 1986.** N₂-fixation in field settings: estimations based on natural ¹⁵N
815 abundance. *Functional Plant Biology* **13**: 699-756.

816 **Shirley HL. 1929.** The influence of light intensity and light quality upon the growth of plants.
817 *American Journal of Botany* **16**: 354-390.

818 **Soper FM, Taylor BN, Winbourne JB, Wong MY, Dynarski KA, Reis CRG, Peoples MB, Cleveland CC, Reed SC, Menge DNL, Perakis SS. 2021.** A roadmap for sampling and scaling
819 biological nitrogen fixation in terrestrial ecosystems. *Methods in Ecology and Evolution* **12**:
820 1122-1137.

822 **Sprent JI. 2009.** Legume Nodulation: a Global Perspective. Wiley Blackwell, West Sussex, UK.

823 **Taylor BN, Menge DNL. 2018.** Light regulates tropical symbiotic nitrogen fixation more
824 strongly than soil nitrogen. *Nature Plants* **4**: 655-661.

825 **Taylor BN, Menge DNL. 2021.** Light, nitrogen supply, and neighboring plants dictate costs and
826 benefits of nitrogen fixation for seedlings of a tropical nitrogen-fixing tree. *New Phytologist* **231**:
827 1758-1769.

828 **Thornley JH. 1972.** A balanced quantitative model for root: shoot ratios in vegetative plants.
829 *Annals of Botany* **36**: 431-441.

830 **Tjepkema JD, Winship LJ.** Energy requirement for nitrogen fixation in actinorhizal and
831 legume root nodules. *Science* **209**: 279-281.

832 **Uni D, Klein T, Masci T, Winters G, Sheffer E. 2024.** Strong regulation of nitrogen supply and
833 demand in a key desert legume tree. *Environmental and Experimental Botany*
834 doi:10.1016/j.envexpbot.2024.105823.

835 **Werner GD, Cornwell WK, Sprent JI, Kattge J, Kiers ET. 2014.** A single evolutionary
836 innovation drives the deep evolution of symbiotic N₂-fixation in angiosperms. *Nature
837 Communications* **5**: 4087.

838 **Wilson JB. 1988.** A review of evidence on the control of shoot: root ratio, in relation to models.
839 *Annals of Botany* **61**: 433-449.

840 **Wurzburger N, Hedin LO. 2016.** Taxonomic identity determines N₂ fixation by canopy trees
841 across lowland tropical forests. *Ecology Letters* **19**: 62-70.

842 **Wolf AA, Funk JL, Menge DNL. 2017.** The symbionts made me do it: legumes are not
843 hardwired for high nitrogen concentrations but incorporate more nitrogen when inoculated. *New
844 Phytologist* **213**: 690-699.

845 **Zheng M, Zhou Z, Luo Y, Zhao P, Mo J. 2019.** Global pattern and controls of biological
846 nitrogen fixation under nutrient enrichment: A meta-analysis. *Global Change Biology* **25**: 3018-
847 3030.

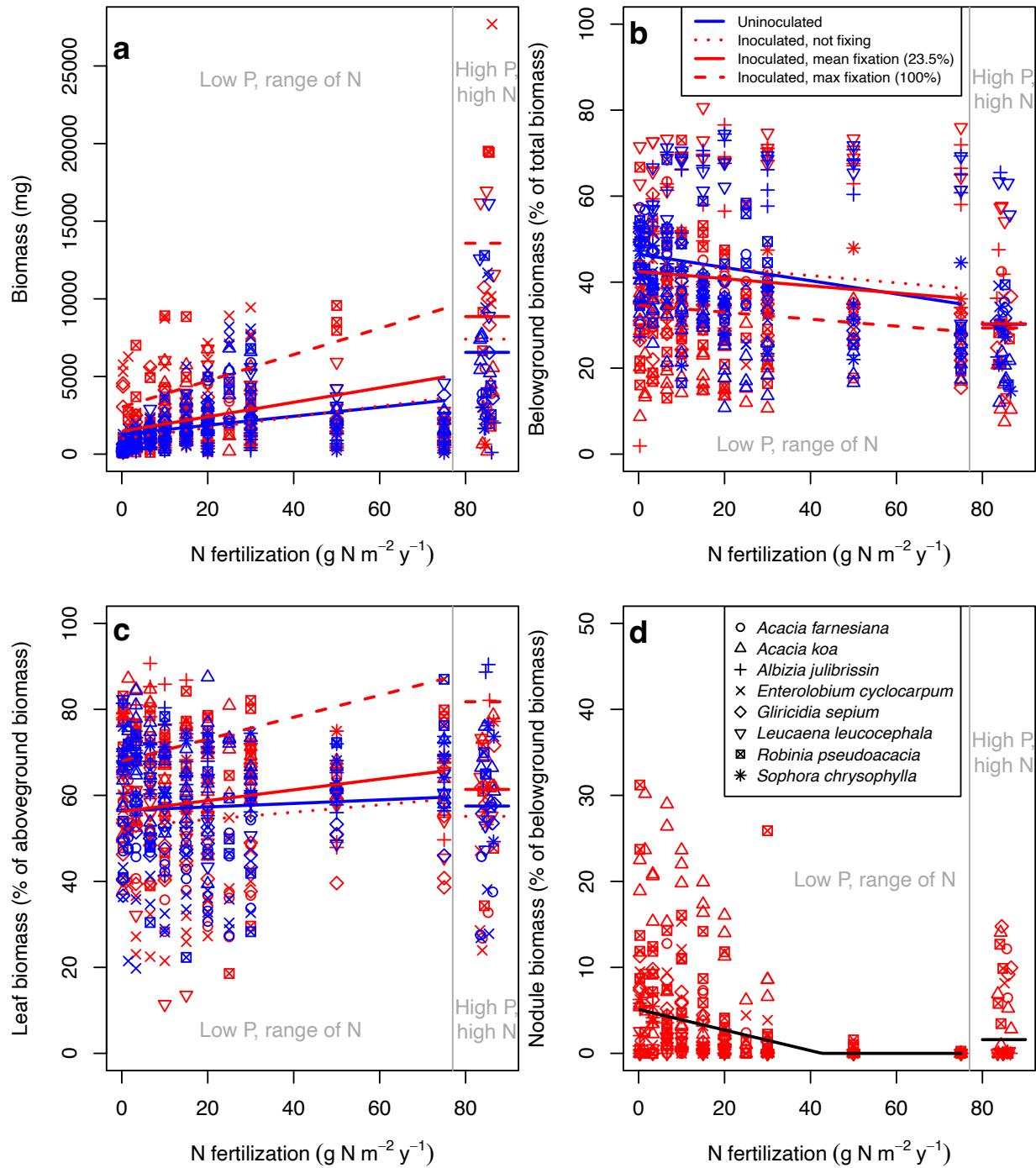
848 **Tables**

849

850 Table 1. Significance (*P* values) of fixed effect coefficients for statistical models shown in equations in the results text

Response variable	β_N^*	β_I	β_{Ndfa}	β_P	β_A	β_S	$\beta_{\ln(B)}$	$\beta_{N \times I}$	$\beta_{N \times Ndfa}$	$\beta_{N \times A}$	$\beta_{N \times S}$	$\beta_{P \times I}$
Barnard rhizobial tree total biomass (mg)	<.0001	-.3524	.0007	<.0001				.5382	.2562			.3675
UC Davis rhizobial tree total biomass (mg)	<.0001	-.4806	<.0001	-.5156				-.6476	<.0001			-.9726
UC Davis actinorhizal tree total biomass (mg)	<.0001	-.0221	<.0001	.7550				-.0647	.0005			-.3095
UC Davis soybean total biomass (mg)	<.0001	.2621	.0003	.7206				.5705	.1668			.4393
Barnard belowground biomass (% of total)	<.0001	-.2912	-.0004	-.0319				.6313	.1326	.9895		-.3804
UC Davis belowground biomass (% of total)	<.0001	-.2507	<.0001	.1004	-.5905	-.1020	.0007	.0276	.4508	.4903	.7675	-.6748
Barnard foliar biomass (% of aboveground)	.2204	-.0309	<.0001	.4359			<.0001	.3546	.4387			-.5832
UC Davis foliar biomass (% of aboveground)	.3659	.7126	<.0001	-.0072	.0927	-.4011	<.0001	-.2320	-.0024	.3818	<.0001	.2767
Barnard nodule biomass (% of belowground)	<.0001			.0196			<.0001					
UC Davis nodule biomass (% of belowground)	<.0001				.5898	-.1123	-.1859	.8672		.0066	.4276	

851 **P* values are shown as negative when the effect is negative. *P* values are shown in bold when they are < 0.05 and in italics when they852 are between 0.05 and 0.1. The coefficient names correspond to driver variables *N* (N supplied as fertilizer), *I* (inoculation), *Ndfa* (the

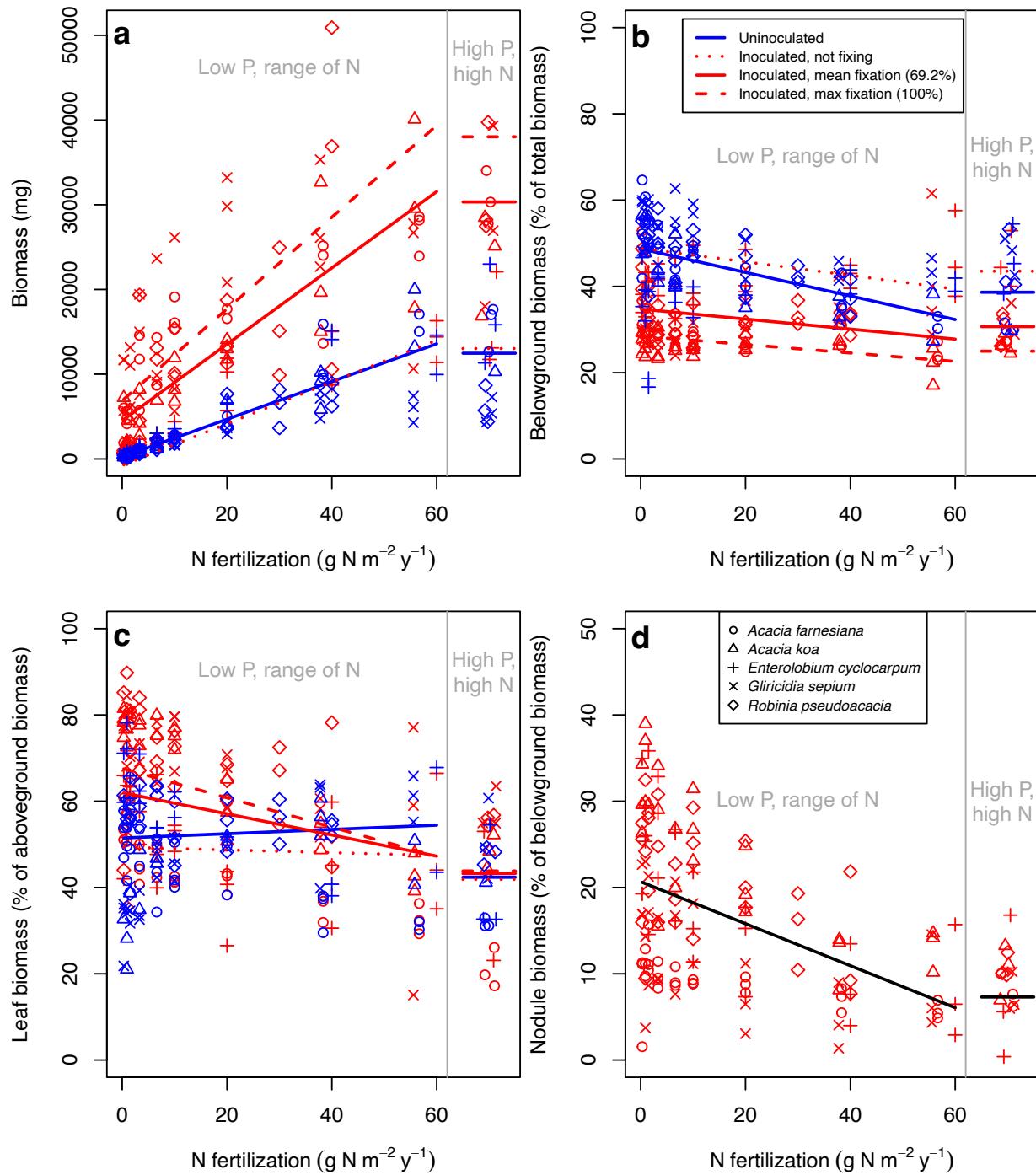

853 fraction of the plant's N from fixation), P (P supplied as fertilizer), A (actinorhizal tree as opposed to rhizobial tree), S (soybean as
854 opposed to rhizobial tree), $\ln(B)$ (the natural logarithm of biomass), and interactions between some pairs of these variables.

855 Table 2. Random intercepts for statistical models. Five species were grown in both greenhouses,
 856 whereas ten were only grown in one (Barnard or UC Davis).

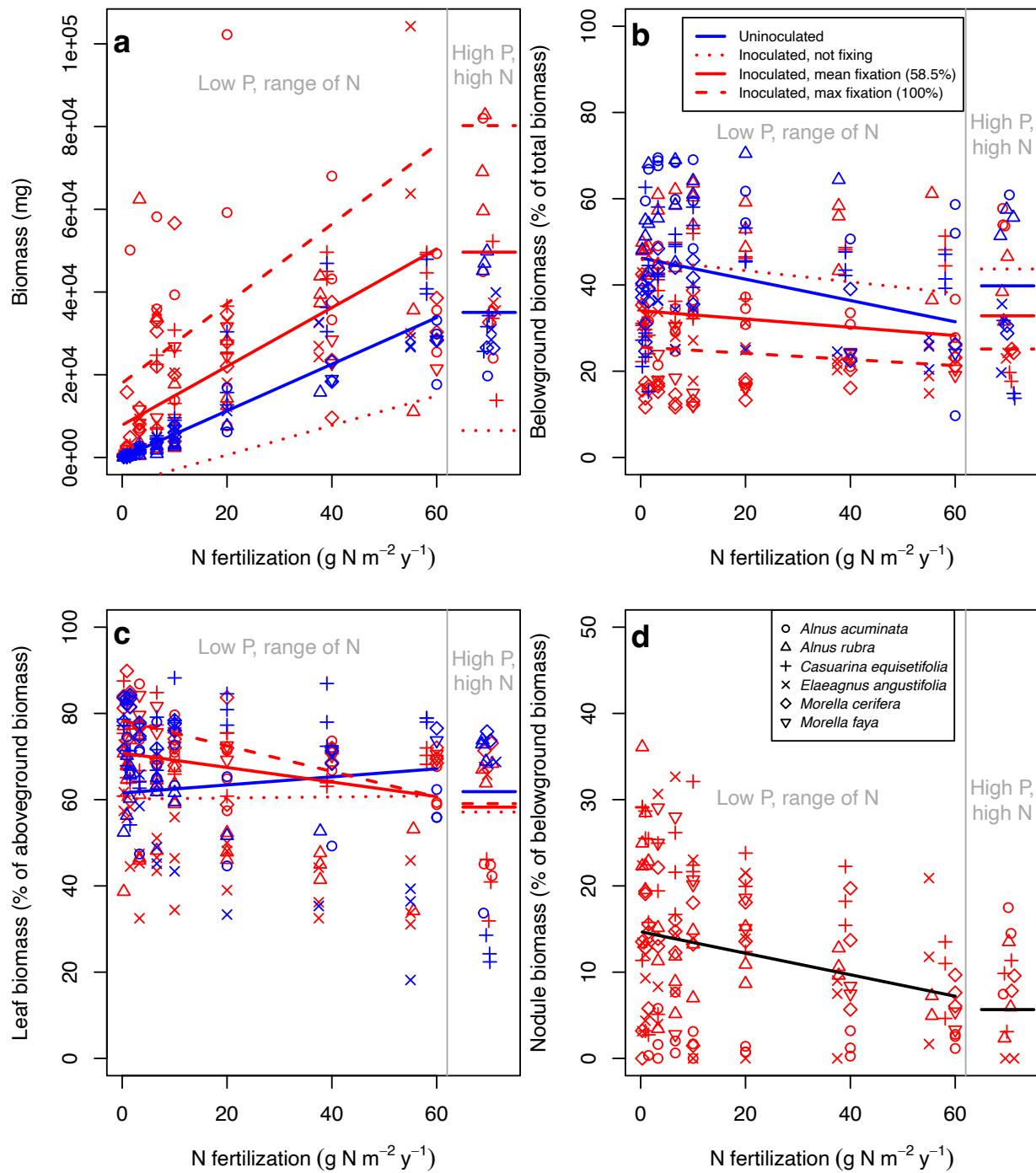
Species*	Barnard			UC Davis		
	Belowground (% of total)	Foliar (% of aboveground)	Nodule (% of belowground)	Belowground (% of total)	Foliar (% of aboveground)	Nodule belowgr
<i>Acacia farnesiana</i> ^R	44.1	63.7	-8.52	37.7	57.8	
<i>Acacia koa</i> ^R	29.4	83.3	-1.67	34.2	69.7	
<i>Albizia julibrissin</i> ^R	60.4	83.8	-6.61			
<i>Alnus acuminata</i> ^A				46.8	70.1	
<i>Alnus rubra</i> ^A				55.8	59.2	
<i>Casuarina equisetifolia</i> ^A				41.7	76.4	
<i>Elaeagnus angustifolia</i> ^A				27.9	49.6	
<i>Enterolobium</i>	38.9	58.5	-9.40	34.5	70.7	
<i>cyclocarpum</i> ^R						
<i>Gliricidia sepium</i> ^R	39.4	67.4	-5.97	43.0	69.6	
<i>Glycine max</i> (soybean) ^H				38.1	68.3	
<i>Leucaena leucocephala</i> ^R	66.0	76.5	-9.00			
<i>Morella cerifera</i> ^A				29.9	77.0	
<i>Morella faya</i> ^A				26.5	77.6	
<i>Robinia pseudoacacia</i> ^R	39.9	79.6	-4.49	41.0	73.8	
<i>Sophora chrysophylla</i> ^R	40.0	84.5	-6.28			

857 *Superscript codes: R is rhizobial tree, A is actinorhizal tree, H is rhizobial herb.

858 **Figures**



859


860 Figure 1. Biomass and biomass allocation across an N fertilization gradient for Barnard species.
 861 (a) Total biomass, (b) the fraction of biomass allocated belowground, (c) the fraction of
 862 aboveground biomass allocated to leaves, and (d) the fraction of belowground biomass allocated

863 to nodules, each as a function of N fertilization. High P fertilization points, which have the same
864 N fertilization level as the highest N fertilization points to the left of the gray line, are shown to
865 the right of the gray line. Allocation to nodules is only shown for inoculated plants, as any
866 uninoculated plants that grew nodules were excluded from the analysis. Legends shown in (b)
867 and (d) apply to all panels. As the legend shows, different species are shown as different
868 symbols. Blue symbols are uninoculated; red symbols are inoculated. Each symbol is one
869 individual plant. Lines and large symbols are the fixed effects from the mixed effects model,
870 evaluated at the average plant biomass for each group (uninoculated versus inoculated, low
871 versus high P) and at low (lines) or high (large pluses or xs) P. For uninoculated fits, both “ I ”
872 and “ $\%N_{dfa}$ ” are set to 0. For inoculated fits, “ I ” is set to 1, and three fits are shown,
873 corresponding to three values of N fixation: 0 $\%N_{dfa}$, the mean $\%N_{dfa}$ within each greenhouse,
874 and 100% N_{dfa} . Blue and red colors on lines correspond to the points. The fit in (d) is shown in
875 black instead of red to make it easier to see.

876

879 Figure 2. Biomass and biomass allocation for rhizobial tree seedlings across an N fertilization
 880 gradient for UC Davis species. Details as in Fig. 1.

882

883 Figure 3. Biomass and biomass allocation for actinorhizal tree seedlings across an N fertilization
 884 gradient for UC Davis species. Details as in Fig. 1.

885

886

887 Figure 4. Biomass and biomass allocation for soybean plants grown across an N fertilization
 888 gradient at UC Davis. Details as in Fig. 1.