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Abstract. A third-order accurate implicit-explicit Runge-Kutta time marching nu-
merical scheme is proposed and implemented for the Landau-Lifshitz-Gilbert equa-
tion, which models magnetization dynamics in ferromagnetic materials, with arbi-
trary damping parameters. This method has three remarkable advantages: (1) only
a linear system with constant coefficients needs to be solved at each Runge-Kutta
stage, which greatly reduces the time cost and improves the efficiency; (2) the op-
timal rate convergence analysis does not impose any restriction on the magnitude
of damping parameter, which is consistent with the third-order accuracy in time for
1-D and 3-D numerical examples; (3) its unconditional stability with respect to the
damping parameter has been verified by a detailed numerical study. In comparison
with many existing methods, the proposed method indicates a better performance
on accuracy and efficiency, and thus provides a better option for micromagnetics
simulations.
AMS subject classifications: 35K61, 65N06, 65N12
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1. Introduction

The Landau-Lifshitz (LL) equation has been widely used to describe the evolution of
magnetic order (magnetization) in continuum ferromagnetic materials [28,35], which
is a vectorial and non-local nonlinear system with non-convex constraint in a point-wise
sense and possible degeneracy. A crucial issue in the LL equation is to design efficient
and high-order numerical schemes, and considerable progresses have been made in
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the past few decades, see [5,18,27,34,51] for reviews and references therein. Explicit
algorithms (e.g. [2, 8]) and semi-implicit schemes (e.g. [3,4, 10, 17, 24, 26, 36, 49])
are very popular since they avoid a complicated nonlinear solver while preserving the
numerical stability, in comparison with the fully implicit ones (e.g. [7,25]).

One typical semi-implicit method is based on the backward differentiation formula
(BDF) temporal discretization, combined with one-sided extrapolation for nonlinear
terms [1,13,50]. In [13], the second-order BDF approximation is applied to obtain
an intermediate magnetization, and the right-hand-side nonlinear terms are treated in
a semi-implicit style with a second-order extrapolation applied to the explicit coeffi-
cients. A projection step is further used to preserve the unit length of magnetization
at each time step, which poses a non-convex constraint. Such a numerical algorithm,
called semi-implicit projection method (SIPM), leads to a linear system of equations
with variable coefficients and non-symmetric structure. As a result, no fast solver is
available for this numerical system. Meanwhile, an unconditionally unique solvability
of the semi-implicit scheme with large damping (SIPM with large damping) has been
proved in [12]. The improvement is based on an implicit treatment of the constant-
coefficient diffusion term, combined with a fully explicit extrapolation approximation
of the nonlinear terms, including the gyromagnetic term and the nonlinear part of the
harmonic mapping flow. A direct advantage could be observed in the fact that, the
resulting numerical scheme only requires a standard Poisson solver at each time step,
which greatly improves the computational efficiency. However, an unconditionally sta-
bility is only available for large damping parameter « > 1, while most magnetic mate-
rial models correspond to a parameter « < 1. In addition, higher-order BDF methods
could be applied, while only the first-order and second-order BDF algorithms are un-
conditionally stable. As analyzed in [1], for the BDF schemes of orders 3 to 5, combined
with finite element spatial discretization, the numerical stability requires the damping
parameter to be above a positive threshold: « > «aj with ap = 0.0913,0.4041, 4.4348
for order k = 3,4, 5 respectively. Therefore, it would be highly desirable to design an
efficient and higher accurate scheme with no requirement on the damping parameter.

For time-dependent nonlinear partial differential equations in general, implicit-
explicit (IMEX) schemes have been extensively used [10]. For the LL equation, the
second-order IMEX has been studied in [50]. Two linear systems, with variable co-
efficients and non-symmetric structure, need to be solved. Hence, IMEX2 can hardly
compete with BDF2 in terms of accuracy and efficiency. In a recent work [47], the
authors introduce an artificial linear diffusion term and treat it implicitly, while all the
remaining terms are treated explicitly. Afterwards, the second-order and the third-
order implicit-explicit Runge-Kutta (IMEX-RK2, IMEX-RK3) methods, in which the pop-
ular coefficients are derived by the work [6], were proposed for the LL equation in
a recent work [32]. Moreover, extensive numerical results have demonstrated that
the IMEX-RK2 method has a better performance over the BDF2 approach, in terms of
accuracy and efficiency. These IMEX-RK methods worked well for arbitrary damping,
and this is a very significant fact in scientific computing, since the damping parameter
may be small in most magnetic materials [11]. However, the corresponding theoretical
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analysis becomes a very difficult issue, because of the complicated structure of the RK
coefficients.

In other words, higher-order RK numerical schemes could be appropriately con-
structed, while, the theoretical analysis of any specific IMEX-RK3 scheme, including
the linearized stability estimate and optimal rate convergence analysis, is expected to
be much more challenging, due to the complicated coefficient stencil in the Runge-
Kutta stages. In this paper, we propose a third-order accurate IMEX-RK scheme, whose
coefficients come from the order conditions based on the Taylor expansion [40]. Fur-
thermore, we conduct an unconditional stability analysis which does not rely on the
value of a. More importantly, an improvement in efficiency and stability over the
above-mentioned numerical methods will be clearly demonstrated.

This paper is organized as follows. In Section 2, we first present the LL. model and
give a brief introduction of the IMEX-RK schemes. The third-order IMEX-RK scheme is
constructed in Section 3 by the aid of order condition, and the stability condition of
scheme proposed is proved from a theoretical point of view. Section 4 is devoted to
the related inequalities to facilitate the theoretical analysis. The convergence analysis
and error estimate of the proposed IMEX-RK3 scheme is provided in Section 5. Accu-
racy tests are presented in Section 6 with a detailed check for the dependence on the
artificial damping parameter. Finally, some concluding remarks are made in Section 7.

2. The model and the proposed numerical method

2.1. The Landau-Lifshitz equation

The dynamics of the magnetization in a ferromagnetic material occupying a boun-
ded region (2 is governed by the Landau-Lifshitz, which reads as

my = —m X heg — am x (m X heg) , 2.1
om

—| =0. 2.2
o . 2.2)

In more details, consider the homogeneous Neumann boundary condition (2.2), I" =
09 and the magnetization m : Q@ C R? — S%2,d = 1,2,3 is a 3-D vector field with
|lm| = 1. Here v is the unit outward normal vector along I'. The first term of the
right hand side of (2.1) is the gyromagnetic term, while the second term represents the
damping term with a dimensionless damping parameter « > 0.

The effective field of a uniaxial material heg = —0F[m]/dm is computed from the
free anergy functional

2
F[m]:%/Q(dvmlz—FQ(mg—i-mg)—hs-m—2he-m)dx,

corresponding to the exchange energy, the anisotropy energy, the magnetostatic energy,
and the Zeeman energy parts, respectively. Here we have

hegr = eAm — Q(maoez + mses) + hy + he,
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consists of the exchange field, the anisotropy field, the stray field hs, and the external
field he. In this formula, Q = K,/(uoM?2) and ¢ = C.,/(uoM?2L?) are the dimen-
sionless parameters with C¢, the exchange constant, K, is the anisotropy constant,
L is the diameter of ferromagnetic body, 1 is the permeability of vacuum, and M,
stands for the saturation magnetization, respectively. The two unit vectors are given by
es = (0,1,0)7, e3 = (0,0,1)7, and the stray field hy takes the form

he= -V /Q VN (@ - ) - m(y)dy,

where N(x) = —1/4x|x| is the Newtonian potential. The following notation is made
to simplify the presentation:
f=—Q(maes + mse3) + hs + he. (2.3)

Consequently, the LL equation (2.1) could be reformulated as
m; = —m X (eAm + f) —am x m x (eAm + f). (2.4)
The LL equation has several equivalent forms. For instance, according to the formula
ax(bxc)=(a-c)b—(a-be, a,bceR3 (2.5)
and by the fact of |m| = 1, an equivalent form could be deduced as follows:
my = a(eAm+ f) +a (eVm> —m - f) m —m x (eAm + f). (2.6)

Some notations are needed in the numerical approximation. To ease the presen-
tation, set = (0,1)%,d = 1,2,3, in which d represents the dimension, and the final
time is given by T'. In the 1-D case, the domain (2 is divided into N equal parts with
h = 1/N. In order to approximate the boundary condition (2.2), the ghost points are
introduced as in Fig. 1, which displays a schematic picture of 1-D spatial grids, with
zi_1/p = (i — 1/2)h,i = 1,2,..., N. The construction of the 3-D grid points is simi-
lar. For simplicity, we set h, = hy = h, = h,m, ;;, = m((i — 1/2)h,(j — 1/2)h, (k —
1/2)h),0 < 4,5,k < N + 1. In the temporal discretization, we denote " = nk with
k the step-size and n < [T'/k]. Moreover, A,m represents the standard second-order
centered difference stencil as

Myt 5k — 255 + My ik

Apmy i =

h2
L Mgk — 2m; jp +my ik
h2
L Mgkt ~ 2mg g + My gy
h? ’
[ —— | | ] | C———
z x 23 Ty @ T
-4 i 3 N N3 1 Tvyg

Figure 1: The 1-D spatial grids, where z_1 and Ty, L are two ghost points.

1
2
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A second-order approximation to the Neumann boundary condition results in

mg;,=mi;r My r=mpyyi ik J,k=1,...,N,
m;o, =M1k, M;NEr=mM;Nt1k Gk=1...,N, 2.7)
m;jo=m;; 1, m;;N=m;;nN1, ¢Jj=1...,N.

2.2. Implicit-explicit Runge-Kutta methods

For any time-dependent nonlinear equation, the key point of implicit-explicit (IMEX)
numerical method relies on an implicit treatment of the dominant linear term and ex-
plicit treatment of the remaining terms [6]. In fact, such an implicit treatment of the
dominant linear term is necessary to ensure a numerical stability. However, the linear
diffusion term does not dominate the magnetization dynamics in the LL equation, and
thus a direct application of IMEX method is not appropriate. Motivated by this obser-
vation and the work in [47], a natural approach is to add an artificial diffusion term,
then apply RK method to the time discretization.

Following this idea, we introduce an artificial Laplacian term SAm into (2.4) and
rewrite the LL equation as

m;=-—-m X (eAm+ f) —am x m x (eAm + f) — SAm + fAm, (2.8)
——
N(t,m) L(t,m)

in which the artificial term is denoted as L(¢,m), and all the remaining terms are
included in N (t,m).

An IMEX Runge-Kutta scheme consists of applying an implicit discretization to the
linear term and an explicit computation of the nonlinear term. Its application to (2.8)
takes the form

i1 s
m = kS aNO(tm) + kS ag L9t m). 29
j=1 J=1
m"t =m” — k Z l;iN(i) (t,m)+k Z bz‘L(i) (t,m). (2.10)
=1 =1

In more details, the matrices A = (@ij), ai; = 0 for j > ¢ and A = (a;;) are s X s
matrices such that the resulting algorithm is explicit in N (¢, m) and implicit in L(¢, m).
An IMEX Runge-Kutta scheme is characterized by these two matrices and the coefficient
vectors b = (by, by, - - - ,BS)T, b= (by,ba,- - ,bS)T, with k the step-size.

For the sake of simplicity and numerical implementation efficiency at each step, it
is natural to consider diagonally implicit Runge-Kutta (DIRK) schemes [33].

The IMEX Runge-Kutta scheme can be represented by a double tableau in the usual
Butcher notation,
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cl A c| A

a b’

where the coefficients ¢ and ¢ are given by the usual relation

él' = Zdi]’, C; = Zaij. (211)

Notice that this relation may not be necessary, it is just simple to use higher order
Taylor expansion of the exact and numerical solution by the “rooted trees” theory. An
application of a DIRK scheme for L(¢, m) is a sufficient condition to ensure that N (¢, m)
is always explicitly evaluated.

3. Construction of IMEX RK3 scheme and its stability condition

3.1. Order conditions

The general technique to derive order conditions for a Runge-Kutta method is based
on the Taylor expansion of the exact and numerical solution; the relevant derivation
and more details are referred to [40]. Here we give the order conditions for IMEX
Runge-Kutta schemes, up to the third order accuracy. It is assumed that the coefficients
Gi, Ci, Gij, a;; satisfy condition (2.11). In turn, the order conditions are derived as the
follows:

First order

ZS:?» =1, Zbi =1. (3.1
i=1 ]

Second order

ZBZ@ = % Zbici = % (3.2)
Zgici = é Zbi@- = % (3.3)
Third order
Zéiaijéjé, 25@-6262 = é
i ;
Zbiaijcj = %, ZbiczcZ = %, G4
]
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Z biCNLijCj = =, Z biaijEj = =, Z biaijcj =

Z bi&ijcj = =, Z biaijéj = =, Z bi&ijéj =

~ 1 ~ 1 . 1 . 1

;bicici =3 ;bicici =3 ;bzcm =3 ;bicici =3

)

(3.5)

D= D=
A= Ol
D= D=

)

Conditions (3.1), (3.2) and (3.4) are the standard order conditions for the two tableau,
conditions (3.3) and (3.5) arise because of the coupled nature of the RK algorithms.

Remark 3.1. The order conditions will be greatly simplified if ¢; = ¢;, and b; = b;,
i.e., these two tableau only differ by the value of the coefficients matrices. Because of
this fact, the standard conditions are enough to guarantee that the combined scheme
could achieve the corresponding order. It is noteworthy that this is only true for the RK
schemes up to the third order accuracy.

3.2. Construction of IMEX RK3 scheme

In this section, we focus on the construction of a third-order IMEX Runge-Kutta
scheme, which satisfies the stability condition in our framework. For simplicity of pre-
sentation, we consider the case of ¢; = ¢; and b; = b;. The discussion of a general
method may be more complicated, while the formulation is similar.

For the convenience, we list the Butcher tableau with undetermined coefficients

010 O 0 0O 0 O 0 0 0 O
(6] 0 as9 0 0 0 dgl 0 0 0 O
3|0 asy; ass O O|ds ds 0 0 O (3.6
c1 |0 as2 as3 aaa O|aGa1 aa2 as3s 0 O
0 by b3 by 0|0 bo by by O
and the associated relation gives
C2 = ag = G21,
c3 = agz + azz = az1 + ase, 3.7)

C4 = a4 + Q43 + Qg4 = Q41 + Q42 + Q43.

Begin with the standard order condition (3.4), the unknowns also need to satisfy
these equalities to ensure that a numerical stability in our framework

by +b3+bs=1, (3.8a)

1
boco + bgeg + bycy = > (3.8b)
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~ - . 1
b3azaca + ba(Gazca + Gazcs) = & (3.80)
1
boc3 + b3cs + bych = 3 (3.8d)
1
bgcg + bgasgaco + bgasgsces + b4(a4202 + ayscs + a4404) = 6 (3.8¢e)

Accordingly, at time step ¢, the corresponding marching algorithm method becomes

mi = my,
o =1 + k (aa N (¢, 1) + axnL(t),,ms)) ,
g = my + k (az N (9, 1) + aza N (th, ms))
+ k (as2 L(ty, o) + assL(t:, m3)) ,
My = my + k (ag N (89, 1) + aso N (&, ma + ass N (t2, m3))
+ k (asa L(th, M) + assL(t2, 3) + asa L(t2, 14)) ,
My = My + k (baN(th, o) + by N (t2,73) + by N (£3, 174))
+ k (b2 L(ty, 2) + baL(ty, 173) + baL(t;,, 7M04)) .

(3.9

Remark 3.2. In the above formulation, by the aid of a fully explicit treatment for
the nonlinear parts and implicit treatment for the linear part, the resulting numerical
method only requires a standard Poisson solver at each time step. This fact will greatly
reduce the computational cost, since the FFT fast solver could be efficiently applied,
due to the constant coefficient SPD structure of the involved linear system.

In a simple case with only linear diffusion term, we denote L, = A, and take
by = a42, b3 = a43, by = a4q. The IMEX-RK3 scheme (3.9) is represented as
my = My,
e = my + k(ageLy(mhy)),
g = My + k(asaLp(m2) + assLy(mg)), (3.10)
1y = My + k(aseLp(Ma2) + asg Ly (M) + asaLy(my)),

my+1 = ﬁ14.

3.3. Stability condition

To facilitate the stability analysis of the method proposed above, the numerical
system is rewritten as

mi = m,, (3.11)
Mg — My, N

=" ? = agfBApma, (3.12)
ms — my, - -

2R — ageBAT + azz AT, (3.13)

k
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Th4 —my
k
mpy+1 = ﬁ’l4. (3.15)

= agSARM + asz3SARMS + asa ALY, (3.14)

In fact, the numerical stability of the Runge-Kutta algorithm could be demonstrated by
subtracting (3.11) from (3.12), (3.12) from (3.13), (3.13) from (3.14). As a conse-
quence, the following equivalent numerical system is obtained:

L — . (3.16)
w — G99 BT, (3.17)
ms3 —m - -

% = (az2 — ag)BALM, + azzfARM3, (3.18)
my —m - - -

% = (a4 — az2)BARY + (a43 — as3)fARMs + ag4BARy, (3.19)
My = 14, (3.20)

In the first step, taking a discrete inner product with (3.17) by 2m, yields
77223 — 117213 + 7722 — 1720 I3 + 20228k | Viria2 |3 = 0 (3.21)

with an application of the summation-by-parts formula. Similarly, taking a discrete
inner product with (3.18) by 2mg, with (3.19) by 2m,, turns out to be

[/s]|5 — [[7hell5 + [[rs — Mzl + 2a33Bk|| V)3

= 2(ag2 — az2)Bk(Vyma, Vyms), (3.22)
4|3 — |ls]|3 + [|1a — 3|3 + 2a448k|| Vi3
= 2(azz — as2) Bk(Vpmg, Viymy) + 2(asz — as3) Bk(V s, Vimy). (3.23)

Subsequently, a summation of (3.21)-(3.23) gives

415 = Il + [l72 — my |3 + s — |5 + [[7ig — mhsf3
+ 2a92 Bk || Va3 + 2a338k|| Vs ||3 + 20448k ||V i3
= 2(ag — az2)Bk(Vyma, Viymg) + 2(asz — as2) BE(Vymy, Vi1g)
+ 2(ass — as3) BE(V s, Vimay). (3.24)

In turn, an application of Cauchy inequality reveals that

2(a — az2) Bk(Vpme, Vi) < |ass — ase| Bk (|Vima|3 + [Vamnsl3),  (3.25)
2(asz — as2) BE(Vpmg, Vimia) < |ass — ase| Bk (|Vime|3 + |[Vamal3),  (3.26)
2(ass — ass)Bk(Vamng, Virig) < |ass — ass| Bk ([|Varis|3 + [Varall3) . (3.27)

Going back (3.24), we arrive at

a3 — mnl3 + e — ma 3 + (s — mall3 + [l — 1msll3
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+ 20228k V|3 + 2a33Bk|| Varis||3 + 2044 Bk|| Virigl3
< lagz — az2| Bk (|Vamall3 + [[Vara|13) + lase — aza| Bk (| Vamz|3 + [|Viria|3)
+ lass — ass| Bk (Va3 + Vi) - (3.28)
Of course, a careful simplification reveals that
[774l3 = lmall3 + [l — ma |3 + [lRs — |3 + ([ — 1hslf3
+ (2a22 — |asz — aga| — |asz — as2|)Bk||Varna|3
+ (2a33 — |aza — aga| — lass — as3|) 8| Va3
+ (2041 — |asz — aza| — |aaz — azs]) Bk|| Viamall3 < 0. (3.29)
Because of the fact that m,, 41 = 74, an £>°(0, T; ¢%) N ¢%(0, T'; H}}) bound of the numer-

ical solution could be derived for the IMEX-RK3 scheme, under the stability condition

as follows:
2a99 — (|ase — age| + |asa — asa|) > 0,

2a33 — (‘agg — agg‘ + ]a43 — a33]) > 0, (330)
2a44 — (Jag2 — aza| + |agz — az3|) > 0,
which is equivalent to
2a29 > |azy — agz| + |ase — azzl,
2a33 > ’agg — a22’ + ]a43 — a33] , (3.31)
2044 > |ag2 — azz2| + a4z — asz).
We are interested in whether there is a third order IMEX Runge-Kutta method that
simultaneously satisfies (3.31) and (3.8e). It is obvious that there are infinite set of

solutions corresponding to the linear part and nonlinear part through numerical calcu-
lation. Here we provide a Butcher tableau which satisfies these conditions

0 0 0 0 0 0 0 0 0
0.62500000 [0 0.62500000 0 0 0.62500000 0 0 0
0.31347352 |0 —0.23587004 0.54934357 0 0.17055712 0.14291640 0 0

1 0 0.08500000 0.68187464 0.23312535 0 0.45000000 0.55000000 0

[0 0.08500000 0.68187464 0.23312535| 0 0.08500000 0.68187464 0.23312535
Consequently, the marching algorithm in IMEX-RK3 at time step ¢,, becomes

my = my, (3.32a)
"o = my + 0.62500000kN (1721) + 0.62500000k L (1722), (3.32b)
Tig = my + 0.17055712kN (1721) + 0.14291640k N (1722)

— 0.23587004k L(m2) + 0.54934357k L(m3), (3.320)
7y = 11 + 0.45000000kN (1722) + 0.55000000k N (1703)

+ 0.08500000k L(1m2) + 0.68187464k L(1m3)

+0.23312535k L(1704), (3.32d)
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My i1 = 11 + 0.08500000kN (1722) + 0.68187464kN (1703)
+0.23312535kN (172.4) + 0.08500000k L (172
+ 0.68187464k L(r7v3) + 0.23312535k L(1704). (3.32€)

4. Some preliminary inequalities

In this section, some preliminary inequalities are reviewed, which will be useful
in the error analysis presented in the next section. Proofs of the standard inverse
inequality and discrete Gronwall inequality can be obtained in existing textbooks and
references, see [14-16,29], here the results are just cited.

Definition 4.1 (¢? inner product, || - ||, norm). For grid functions f, and g,, that take
values on a uniform numerical grid, we define

(Frogn) =0 fr-ar

IeAy
where Ay is the set of grid point, and I is an index.

In turn, the || - ||, norm turns out to be

NI

IFnllz = ((Frs Fn))

Furthermore, the discrete H' norm is introduced as

1FnllE = 1 £nl3 + I VRS Hl3.

Definition 4.2 (Discrete | - ||, and [| - ||, norms). For grid functions f), that take values
on a uniform numerical grid, we define

1
p
il = Wl 1l = (1S 1507) " 150 < 4.

IeAy

Lemma 4.1 (Summation by Parts). For any grid functions f; and g,, with f, satisfying
the discrete boundary condition (2.2), the following identity is valid:

(=Anfngn) = (Vi Vagn)- (4.1)

Lemma 4.2 (Inverse Inequality [14-16]). For each vector-valued grid function f; € X,
we have

_1

£ nlloo < YR72 (I Fallz + IVnF ), 4.2)
_(3_3

1Fnllg <vh~ 22| Fplles V2 < g < +o00, 4.3)

in which constant ~ depends on €, as well as the form of the discrete || - |2 norm.
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Lemma 4.3 (Discrete Gronwall Inequality [291). Let {;},0, {8j},5¢ and {w;} ;5 be
sequences of real numbers such that and we have the following discrete estimate:

j—1
aj <ajp1, B;>0, w;<a;+ Zﬁz’wz’, vj > 0. (4.4)
i=0
Then it holds that -
e
wj < ajjexp {Zﬁl} , Vj>0. (4.5)
i=0

5. Convergence analysis for the proposed IMEX-RK3 scheme

A theoretical analysis of any third order accurate, IMEX-RK scheme is very challeng-
ing, which comes from its multi-stage nature and highly complex nonlinear terms in the
vector form. For the sake of simplicity, we will focus on the IMEX-RK3 scheme (3.32).
Note that a simplified nonlinear LL equation is considered, and only the damping term
is considered. The convergence analysis of the proposed method is provided in this
section.

5.1. Convergence analysis of the IMEX-RK3 scheme (3.32) for the nonlinear
LL equation

Taking a simplified nonlinear LL equation (2.1) into consideration in this part, in
which the gyromagnetic term is skipped

my = —am x (m x (eAm + f)). (5.1)

For any vector function m with |m| = 1, the nonlinear term N(m) could always be
rewritten as follows, with a notation of 5 = ae:
N(m)=—am x (m x (Am + f)) — BAm
= B(Am + |[Vm|*m) —am x (m x f) — BAm
= B|IVm|*m — am x (m x f). (5.2)
On the other hand, the notation AV, stands for the second approximation to the gra-

dient operator. In fact, it is an average gradient operator defined for the gird function
m = (up,vp,wy)? € X, as

ARV ymy, = VyAymy,,  Apym = (Ayup, Ayvy, Az wp)

and

Ui g0+ Ui—1,j,0
2 b

Vi Vi1

Wi je + Wije—1
2 ’ '

Agu; o = Awi e =



Third-order IMEX-RK Method for LL Equation with Arbitrary Damping 1053
Accordingly, the discrete form of the nonlinear term is represented as
Nu(m) = BlAVim*m — am x (m x f). (5.3)

For the sake of convenience, all coefficients are kept with four significant figures, which
will not affect the convergence analysis. The actual numerical tests are kept with the
original eight significant figures. In turn, the IMEX-RK3 scheme could be expressed as
follows:
mi = m,,
Ty = 1y + 0.6250kN), (171) + 0.6250k Ly, (),
s = 1y + 0.1706k Ny, (171) + 0.1429k N, (1702)
— 0.2359k Ly, (f2) + 0.5494k Ly, (3),
my = my + 0.4500k Ny (2) + 0.5500k Ny (me3)
+ 0.0850k Ly, (1z) + 0.6819k Ly, (23) + 0.2331k Ly, (1704),
My i1 = 1y + 0.0850kN}, (172) 4 0.6819k N}, (1723) + 0.2331k Ny, (1724)
+ 0.0850k Ly, (17v3) + 0.6819k Ly, (i) + 0.2331k Ly, (1724).

5.4

Of course, this numerical system could be equivalently rewritten in the following form,
to facilitate the Runge-Kutta analysis:

my — My,

= 0.6250N, (171) + 0.625080 775, (5.5)
@ = —0.4544N), (1721) + 0.1429Np, (1722) — 0.86098A 1725
+0.54948A 1723, (5.6)
@ — —0.1706 Ny, (1721) + 0.3071Np, (122) + 0.5500 N}, (1723)
+0.32008A, 1722 + 0.13258A 1703 + 0.23318A 774, (5.7)
Mol ZT () 3650, (172a) + 01319 N, (i) + 0.2331N, (72s). (5.8)

k

The main theoretical result of the convergence analysis is stated below.

Theorem 5.1. Assume the exact solution ® of (5.1) satisfies the regularity assumption:
Denote m™ (n > 0) as the numerical solution obtained from (5.4), or equivalently (5.5)-
(5.8), with the initial error satisfying

NI

[1Ph® (-, t0) — moll2 + (K[| Vi(Ph® (-, t0) — mo)ll2)? = O(h?).

Additionally, a linear refinement assumption that C1h < k < Csh is made (with Cy,C>
being two positive constants) and the condition k < C'@ is also made to ensure the conver-
gence (C' is independent of k and h, only depends on M). Then the following convergence
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result holds for 1 <n < |T/k] as k, h go to zero:

1
2

I2(tn) = m" |2 + (K[ VA(R(tn) = m™)|2)? < O(K° + h?), (5.9)

where the constant C' > 0 is independent of k and h.

First, we construct an approximate solution ® = ®+h2®(), so that an O(h*) spatial
truncation error is obtained. Such a higher order consistency is important in the later

analysis to bound the || - [|;;,1..- norm of the numerical solution. It is noticed that o)
h

is a spatially continuous function, and its construction will be obtained using a pertur-
bation expansion, which depends solely on the exact solution ®. Moreover, a higher
O(k3+ h*) consistency has to be satisfied with the given numerical scheme (5.5)-(5.8).

In more details, we introduce a higher order approximate expansion of the exact
solution, since the second order spatial accuracy, associated with the centered differ-
ence approximation, is not able to control the discrete || - Hwi,oo norm of the numer-
ical solution, which is needed in the later convergence analysis. In turn, instead of
substituting the exact solution into the numerical algorithm, a careful construction
of an approximate profile is performed by adding an O(h?) correction term to the
exact solution to satisfy an O(h*) truncation error. Afterwards, we analyze the nu-
merical error function between the constructed profile and the numerical solution,
instead of a direct comparison between the numerical solution and exact solution.
Such an improved consistency will lead to a higher order convergence estimate in the
(0,75 ¢*) N ¢2(0,T; H}) norm, which in turn yields a desired || - ||W}1,oo bound of the
numerical solution, with the help of the inverse inequality. Similar tecﬁniques has been
reported for a wide class of nonlinear PDEs, see the related works for the incompress-
ible fluid equation [22,23,41,42,44-46], various gradient equations [9,30,31,37-39],
the porous medium equation based on the energetic variational approach [19-21],
nonlinear wave equation [48], etc.

An application of the centered finite difference discretization to the exact solution
® gives

B, = BlAVLB[2P — a® x (@ x f) + BALD + h2gP + O(hY), (5.10)

which comes from the Taylor expansion in space. In more details, the function g is
smooth enough and only depends on the higher order derivatives of ®. Subsequently,
the spatial correction function ®() is given by the solution of the following linear dif-
ferential equation:

g0 = gAd®) + 3 <|v<1>|2<1><1> +2VD - vq><1>)<1>)
—a <<I> x &) 4 o) x (& + f)> —g?¥, oW, t=0)=0 (5.11)

with homogeneous Neumann boundary condition. In fact, (5.11) is a linear parabolic
PDE, and the existence and uniqueness of its solution could be derived by making use
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of a standard Galerkin procedure and Sobolev estimates, following the classical tech-
niques for time-dependent parabolic equation [43]. Moreover, the solution of (5.11)
depends only on the exact profile ¢ and is smooth enough. Similar to (5.10), an appli-
cation of the finite difference discretization to ®(!) gives

8t<I>(1) = ﬂ (’Ahvh@‘Q(I)(l) + 2(Ath<I> . AthCE(l))(I))

—a <q> x oM £ oM x (@ + f)) + 8000 — @ L Om?).  (5.12)

In turn, a combination of (5.10) and (5.12) leads to the following higher order consis-
tency estimate for ® = ® + h2d);

D, = BlALVLP)2® — a® x (B x f) + BALD + O(hY). (5.13)

Moreover, we extend the approximate profile ® to the numerical ghost points, accord-
ing to the extrapolation formula

$ d

Q0= Lijn., = LN (5.14)

and the extrapolation for other boundaries can be formulated in the same manner. In
addition, we are able to prove that such an extrapolation yields a higher order O(h?)
approximation, due to the fact that

Bo=0, 0,60 =0 at 2=0,1.

Given the exact solution ®, we denote ®" = &(-,¢"). In addition, another three inter-
mediate approximate solutions need to be constructed at each time step, to facilitate
the Runge-Kutta analysis, following the same algorithm as in (5.4):

™2 = " 4 0.6250k N}, (B") + 0.6250k5A, &™), (5.15)
3™ B) = " + 0.1706k Ny, (") + 0.1429k Ny, (™)
— 0.2359kB8A, @™ + 0.5494kBA, &™), (5.16)

e = " + 0.4500kN;, (™)) + 0.5500k Ny, (™))
+ 0.0850k8A, 8™ + 0.6819k8A, 0™
+0.2331kBA, ™9, (5.17)
in which the ho~mogeneous discrete Neumann boundary condition (similar to (5.14))
is imposed for ®™(), j = 2,3 4. Moreover, the careful Taylor expansion (related to
the IMEX-RK3 method) reveals the following consistency estimate of the constructed
solution at the next time step with |77y < C(k3 + h?):
B = B 4 0.0850k N, (™) + 0.6819kN;, (™)) 4 0.2331kN;, (™ 1)
+ 0.0850k8A, @™ 4 0.6819k8A,0™3) 4 0.2331k8A,@™W + k7. (5.18)
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Clearly, by perforrnjng a similar transformation as in (5.5)-(5.8), the constructed
profiles ", ®"**! and &™), j = 2, 3, 4 satisfy the numerical system

P2 _ pn -
— = 0.6250N;,(27) + 0.62508A, 0™, (5.19)
.3 _ §n(2) )

— = —0.4544N, (2") + 0.1429N,, (&™?)

— 0.86098A,9™() + 0.54948A,,0™ ) (5.20)

(1) _ §m.(3) )
——————— = —0.1706N,(2") + 0.3071N}, (™)

k
+ 0.5500N3, (™)) + 0.32098A, ™3
+0.13258A,8™®) 4 0.23318A,0™W, (5.21)
(I)n-‘,-l . i)n,(él) ~ ~
- = —0.3650N3, (™ @) + 0.1319N,, (™))

+ 0.2331Np, (&™) + 7. (5.22)

Since the constructed profiles (/)| j = 2,3, 4 only rely on the approximate solution
®", the consistency estimate reveals that

. 9
|, @™o < 2,
| o, 1879 < 2 23

IVA@" |, [Va®™ Voo < C*, i =2,3,4.
Therefore, we define the numerical error functions as follows, at a point-wise level:

Qk:ik—mka k:n,n+1’
)

I (5.24)
emV) = Phi™ — i, §=2,3,4.

Again, instead of a direct comparison between the numerical and exact solutions, we
analyze the error between the numerical solution and the constructed approximate
solution, due to its higher order consistency. Moreover, the following nonlinear error
terms are introduced to simplify the notation:

NLE™Y = N,(&") — Ny (my,),

| =/ (5.25)

In turn, a subtraction of the numerical algorithm (5.5)-(5.8) from the consistency esti-
mate (5.19)-(5.22) leads to the following numerical error evolution system:

~n,(2) _ _n
© - € 0.6250NLE™D +0.62508A, &™), (5.26)
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én7(3) — én7(2)

- = —0.4544NLE™M) 4+ 0.1429NLE™®)

— 0.86098A &™) + 0.54948A ™) (5.27)

én7(4) — én7(3)

- = —0.1706 NLE™® + 0.307INLE™®

+0.5500NLE™®) 4 0.32098A,e™?

+0.13258A,e™G) +0.23318A 6™ | (5.28)
en—l—l _ én,(4)

£ - —0.3650NLE™® 4+ 0.1319NLE™®)

+0.2331INLE™™ 4 77, (5.29)
In order to established the convergence analysis, it is necessary to bound the nonlinear

error term. For the sake of notation simplicity, a uniform constant C'is used to represent
all controllable constants.

Lemma 5.1. Under the regularity estimate (5.23) for the constructed profiles, and the
following bound in the IMEX-RK stages:

[Mllee <=, Vil <C:=C*+1, j=2,34, (5.30)

47
an || - || estimate for the nonlinear error terms is available
INLE™M |y < M(Jl€" |2 + [Vre"2), (5.31)
INLE™@||, < M(Hén’(j)HZ + thén,(j)“2)7 j =234, (5.32)
in which M only depends on o, 3,C*, C, and the external force term f.

Proof. For simplicity, only the nonlinear error term || N LE™M||5 is considered, and
the estimate of | NLE™U)||y could be derived in the same manner. In fact, a careful
expansion of the term N LE™( indicates that

NLE™Y = N,(@") — Ny (my,)
= Bl AR V2" [*e" + B(ARVL(R" + my) - A Vie")m,
—amy, x (e" x f) —ae™ x (2" x f). (5.33)

As a result, a direct application of discrete Holder inequality yields

|81An V2" €|, < BIVAL" 2]1€" 2 < CB(C*)?(|e™l2, (5.34)
| B(ARVR(D™ + M) - ApVie™)ma||,
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< B(IVr2" loo + VAt ]l 00) Vi€ 211720 ]| 0

< CB(C* +C)|[Vre" |2, (5.35)
[am, x (" x flly < allmn|lsol flllle”]2
5

< 22 Colle” 2 < CaColle, (5.36)

lae™ x (2" x f)lly < afl2" ool Flloo l[€" 2

9a
< §00\|§"||2 < CaCylle" |z, (5.37)

in which the summation-by-parts formula (4.1) and the bound (5.30) have been ap-
plied, along with the fact that || - || bound for the external force term || f||o < Cp.
A substitution of (5.34)-(5.37) into (5.33) leads to the nonlinear error estimate (5.31),
by taking M = C(3((C*)? + C* + C) + aCp). The proof of Lemma 5.1 is finished. [

Before proceeding into the formal error estimate, the following a-priori assumption
is made for the error function at the previous time step:

n u 15 n 9 13
le™lle <k% +h7, ||Viye|o <ki+h7. (5.38)

As stated above, the multi-stage nature of the third order Runge-Kutta scheme, as well
as the complicated nonlinear terms, make the theoretical analysis highly challenging.
Therefore, the error estimates at each RK stage are separately discussed.

Error estimate at Runge-Kutta Stage 1. In the first stage, by taking a discrete inner
product with (5.26) by 2™ it follows

- - S - 5 .
e 5 — lle 3 + e — e"lI5 + Jpk]| Ve |5 = JH(NLEmD, &), (5.39)

based on an application of the summation-by-parts formula (4.1), and the discrete
homogeneous Neumann boundary condition for (. In terms of the inner product
term associated with the nonlinear error, the following estimates are derived:

(NLE™W &™) < INLE™W|5]le™ ||,
< M([le™]l2 + [Vre|2) €™
< e+ = || Vye" = m 5.40
<5 le™ |5 + 2500\\%& I3 + ( 5+ 5 |e™=3, (5.40)

in which the Young’s inequality has been applied in the last step. In turn, we denote
Cy = (5/4)(M /2 + 625M? /), and see that the right-hand side of (5.39) is bounded as

Pk
2000

k -
5Z<NLE"7<1>,o.«é"v<2>>s Mk e"|3 + = [Vae" |3 + Cik[e™ 3. (5.41)

| ot
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Its substitution into (5.39) yields

- - 5 -
| @3 — I3 + lle™) — I3 + Bkl Vre™ |3

k-

so0g 1 Vne” [ + Cakl[e™ 3. (5.42)

5 ~
< ngHQnH% +
Furthermore, under the linear refinement requirement C1h < k < Cyh and the as-
sumption that k is sufficiently small, the rough error estimates could be obtained as
follows:

1
X .
le™ s < <1 fgi) Tk by < 2(kE 4 d), (5.43)
IVhe™@ly < B2k72 (14 Cok)? (kT + h¥) < ki + hi, (5.44)

by taking Cy = 5M /8 + /2000 due to the a-priori assumption (5.38). Likewise, the
| - |« bound for both the numerical error function &™) and the numerical solution
mo are available

7
k1 1
1€ oo <qh75 (& Oy + Ve @) <y (7 +hT) <o (5.45)
h2 8
k4
IV4&™? |l < yh~2 (V&P 5 < 4 (—3 - hi> <1, (5.46)
h2
N 9 1 5
. < 112 @) <2 12 5
Ialloo < 197 oo + 6P oo < 2+ 2 = 7, (5.47)
IVama)lso < VAP |00 + [[V4e" P < C*+1=C. (5.48)

Error estimate at Runge-Kutta Stage 2. Similarly, taking a discrete inner product
with (5.27) by 2&™ () leads to

le™ @3 — [le™ @3 + [|le™®) — & P|3 + 1.09886k| V™3
= —0.9088k(NLE™M &Gy 4 0.2858k(NLE™?) &™)y
+ 1.7218Bk( V&™), v,em6)). (5.49)

A bound for the last term on the right-hand side is straightforward
1
(Ve vyem @) < ~(|[Vre™ P + [[VremP3),
so that (5.50)
1.72188k(V,e™ ), v,e™ )y < 0.86098k (|| VAe™ |3 + || V5,e™3)|13).

The nonlinear error terms, as well as the corresponding inner product, could be ana-
lyzed in a similar manner with the help of Lemma 5.1, which implies the estimates as
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follows:
M
nv(l) ~n7(3) - n n
M 1136M?%\ , _,
* (7 * 53 ) le ’(3)”%7 (5.51)
n(2) gn(3) _n,(2) 56 1, (2) (12
(NLEM®,6n®) < T en @ + 2 [v,em |3
M 1429M?%\ .
* (7 208 ) le™ @3, (5.52)

under the regularity estimate (5.23) and the bound (5.31)-(5.32). Subsequently, a sub-
stitution of (5.50)-(5.52) into (5.49) yields

e D — &P + & - )
+0.23798K(| V&™) |5 — 0.86198Kk(| V&™) |3

< 0.4544Mk||e™||5 + - bk Ve |13 + 0.1429M k[ &™) |2 + Csk|je™ @3 (5.53)

1000

with

M 1136M?2 M 142902
C5 = 0.9088 | — 0.2858 [ — .
3 < >t 55 ) + < >t 208 )

Furthermore, its combination with (5.42) indicates that

[& P15 — lle" 5 + e — &3 + &n® — en|3
+0.38818k|| V5, &™ @2 + 0.23798k||V,e™®) |12
38k
2000
+ (0.1429M + Cy ) k| e™@3 + C3k|e™®|3. (5.54)

5 ~
< (045444 3) d1Kl" I + S IVhe

Applying the a-priori estimate (5.38) and (5.43) yields

1

) 1

16m @), < <1 +g4’]z>2 (k% + 1) <2(kf +1%), (5.55)
— L3

IVRe™ @y < VBE2E7E (14 Cak)? (kT +h7T) <k

1

+h7, (5.56)

N
=

by taking
36

1.2223M
Cy=0C1+ 3SM 4+ —— 2000
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and under the linear refinement requirement C1h < k < Cyh. In turn, the || - || bound
for both the numerical error function €™(®) and the numerical solution 5 are revealed

7
k1 1
e @los < A07% (8™ @ 2 + Ve @]l5) <5 (—1‘ T h%> <i 65D
h2 8’
V2™ ®) || < yh73||Vpe™®) |, < 1, (5.58)
~ 9 )
~ - < (I)n,(B) ~n,(3) - _ = 5.5
Iriglloo < 187 o + &Pl < 2 + 5 =2, (5.59)
Va3 < VA" oo + |[Vae" P < C* +1=C. (5.60)

Error estimate at Runge-Kutta Stage 3. Taking a discrete inner product with (5.28)
by 2™ yields
le™ @3 — [le™ @3 + (e @ — e P|3 + 0.46626k | Vre™ |3
= —0.3412k(NLE™W en @) 1 0.6142k(NLE™® &)
+ 1.1L(NLE™®) em®W) — 0.64188k (V&™) v e M)
—0.2658k(V &™) v,e™Wy, (5.61)

As described above, the nonlinear inner product for gradient terms on the right-hand
side could be controlled in the same way as in (5.50)

(Ve vypem W) < (V4?3 + [V,4emW3),
so that (5.62)
0.64183k(V;,e™ @ v,emW) < 0.32098k (|| Vie™ D3 + | Vie™W|3),

DO | —

(Vie™®) v,em@) < §(HVhé"’(3)H§ + | Vie™W3),
so that (5.63)
0.2658k(V,e™®), v,,em @) < 013258k (|| V5,e™® |3 + | V,e™ W) 3),

and

. M
(NLE™W, emW) < —|le" |3 + - O Ve

1706

M M?
(- 4 893 ) @2, (5.642)

_l’_

2 103

n ~n M ~n
(NLE™®), emW) < = O+ 2 v, e )3

3071

M 3071M?2
- ~n7(4) 2
+ ( 5+ 205 ) e™ ™z, (5.64b)
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- M, . B -
I En,(3) n,(4)y « n,(3)12 4 _~ \V4 n,(3))12

M 275M?
+<—+ & )Hém<4>ug (5.640)

2 B

with the help of the a-priori bound (5.38) and the regularity estimate (5.23). As a con-
sequence, a substitution of (5.62)-(5.64) into (5.61) leads to

le™ @5 — [[&®3 + (e — &P +0.01288k |V, &™) 3
— 0.32198k||V,&™P|2 — 0.13358k||V,e™®) |12
< 0.1706M k||e™||3 + 0.0018k||Vxe™ |2 + 0.3071M k|| &™) |2

+0.55Mk||e™®)||2 + Csk||e™™)|2 (5.65)
with
M 853M? M 3071M? M 275M?
=0.3412 | — 6142 | — 1.1 — .
Cs=0.3 <2+105>+06 <2+ 203 >+ <2+ 3

In turn, its combination with (5.54) gives
&m0 3 — lle™[5 + le™® — e™[l3 + &-®) — &™@ |3 + e —e™@|3
+ 0.066208k||V,e™ @ |2 + 0.10448K|| V™3 |12 4 0.01288k ||V & Y| |3
< 1.25Mk||€"™(|3 + 0.00258k|Vre™||3 + (0.45M + Cy)kl[e™?)|3
+ (0.55M + C3)k||e™®)||2 + Csk||le™W 2. (5.66)

Similarly, with the help of the a-priori estimates (5.38), and the bound derived in the
first and second RK stages, we arrive at the following rough error estimates at stage 3:

1

2

e @], < G*gﬁ) (kT +h%) <2(ki+hv), (5.67)
— U5

Ve @]y <982k 2 (1 + Cgk)

NI

(k7 +h%) <ki+hi, (5.68)

by taking )
Co = Cy + Cs + 2.25M + 0.00258.

In turn, by the aid of inverse inequalities, the || - ||« bound for both the numerical error
function &™® and the numerical solution 7, could be derived as follows:

7
~Nn -5 ~n ~n ka = 1
ueMWMSVh%Qw*%h+MMe“masv<g;+ﬁ>sg, (5.69)

2

IVhe™ @ || < vh 2| Ve @, < 1, (5.70)

- = - 9 5
I72alle < 18" Ol + 18" Olloo < £+ £ = 7, (5.71)

1
~ 88
IV imillso < VAW | + [Vae" P < C*+1=C. (5.72)
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Error estimate at Runge-Kutta Stage 4. Similar to the previous analysis, taking a dis-
crete inner product with (5.29) by 2e"*! results in

le™ 15 — &M )5 + et — e W5 — 2k(r", ")
= —0.73k(NLE™® ety 1+ 0.2638k(NLE™®) "+
+ 0.4662k(NLE™®) e+l (5.73)

A bound for the local truncation error inner product term is obvious

(r", e ) < S (1715 + lle™13)- (5.74)

l\?l»—\

Likewise, the estimates for the nonlinear error terms could be similarly performed

n n M n
(NLE™®), ") < —[[e™® I3+ 2 v,em )3

730
M 365M?\ | .10

D |v,em )3

M
NLEn,(3) n+1 < = ~n,(3) 2

M 1319M?\ | 10

NLEn,(4) n+1 ~n (4 ) 2
vren® vty < Ljeniop 4 g eninp

M 2331M
+ (— + 7) le™ 3.

(5.75)

2 2083

Subsequently, a substitution of (5.74)-(5.75) into (5.73) yields

le™ 15 — le™ @3 + [le™ ! — &5 — 0.0018k(V,e™ |3
- o.oowkuvh 32— 0.0018k|| V™D |13
< 0.365M k[|e™® |3 + 0.1319M k||e™®) |13 + 0.2331M k|| &™) ||3
+ Crklle™ M3+ k(I3 + e 3) (5.76)

with

M 365M? M 1319M?2 M 2331M?2
Cr;=0.73 <—+ >+0.2638 <—+7> +0.4662 <—+7 .

2 28 2 2083 2 203

Its combination with (5.66) leads to

le™ 3 — lle™ 13 + lle™® — e + [le™®) — &3 + Jle" ! — e |3
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+ 0.06528k(| V5, e™ @12 +0.10348k|| V&™) |12 + 0.01183K|| V& @ ||2
< 1.25MFk||e" |3 + 0.00258k| Ve (|5 + (0.815M + Cy)k[e™||3
+ (0.6819M + C3)k||e™®||2 + (0.2331M + Cs)k[e™ @2
+ Crk|l e ™3 + k(I3 + lle™HI3)- (5.77)

Meanwhile, an application of triangular inequality indicates that

le™ |2 < [ @1y + [le™ ™ — & W]y,
so that (5.78)
Crklle™™ |3 < 2C7k([[em W3 + |le™™ — emW]]3),

and 1
207]{:”271—}—1 _ én,(4)H% < §||§n+1 _ én,(4)H%’

provided that C7k < 1/4, which is always valid under the linear refinement require-
ment, C1h < k < Csh, and the assumption that k& and h are sufficiently small. There-
fore, a substitution of (5.78) into (5.77) results in

le™ M3 — lle”[13 + lle™® — e |3 + [le™® — e @3 + [lem® — e @3

1
+ 5 et — & W3 + 006525k Vae™ |3

+0.10348k(| V&3 |2 + 0.01188k|| V&™) 2
< 1.25MFk|e"|5 + 0.00258k || Ve |3 + Cskle™®)|3 + Coklle™®|3
+ Crok &3 + k(7[5 + lle"*3) (5.79)
with Cg = 0.815M + C4, Cy = 0.6819M + C3, and Cyg = 207 + 0.2331M + Cs.
However, the standard ¢2 error estimate (5.79) does not allow one to apply discrete
Gronwall inequality, due to the H} norms of the error function involved on the right-
hand side. To overcome this difficulty, we apply the gradient operation on both sides
of (5.29), with the linear refinement requirement k < C'h, and see that
Ve 2 < |[Vhe™W]|a + k|| Vil + 0.365k(V, NLE™ ||,
+0.1319%||V, NLE™® || + 0.2331k||V, NLE™™ 5
< | VRe™ Dy + C||77|2 + 0.365C | NLE™)||
+0.1319C" |[NLE™®)||y 4+ 0.2331C" | NLE™®)]|,
< 9@y + 'l + €31 (0.365(1e™ |5 + [ V4™ P]1,))
+ ' (0.1319(]1e™ P + V™)

+0.2331(||]e™@ 5 + \\Vhé"’(4)]]2)>. (5.80)
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Meanwhile, the following result could be derived at the previous time step:
IVae™ |3 < 207|777 Y3 + 0.73C" M (||e" M| + | Ve @)|3)
+0.2638C" M ([e" M3 + | v,e B 3)
+0.4662C" M ||e" 4|2
+2(0.2331C" M + 1) | V,e" B3| 2. (5.81)

In turn, a substitution of (5.81) into (5.79) yields
lem 3 — lle” I3 + 8™ — ™3 + [|e™®) — &3 + [|ent) — e @3
+ 3 llet — &3+ 0.06525K] V&)
+0.10348k(| V&3 |2 + 0.01188k||V,e™W)|3
< 1.2507kle"|[3 + 0.00258%k (1 ]|e" @[3 + |- 3 + 5 en 1) 2
+ VA YB + 5| Ve O3 4+ 4 758" 1D 3)

+ Csklle™ |3 + Cok||&™®)||3 + Croklle™ |3
+ ke I3 + Crak (7113 + 77 13), (5.82)

le™ 13— lle”[3 + le™® — e 3 + [[&® — &) )3 + e — & ®)|3
+ 5l — &3 1 0.06525K] V&™) [ + 010345k V") 3
+0.01188k|[ V4 &™ ™ |5 + k(\lvhe"“HQ — [IVre”[I3)
< 12507kl 3 + 0.00258k (11 [|e" @[3 + pa&" M3 + 4 &n )
+ VA HYE 45| V"B 4+ 47,8 3)
+ k(1 VRe™ O3 + 12 Vae™ P + 73l Ve D |3)

+ Crokl|€™P|3 + Ci3k)|e™®) |13 + Craklje™ ™3
+ k| e™™3 + Csk (17713 + 17" H13) (5.83)

with 41 = 0.73C" M, 75 = 0.2638C" M and ~v3 = 2 + 0.4662C" M. Therefore, with the
help of the triangular inequalities

10l < [+ 1)~
&7y < ez + &) - €7z + [e® = &, (5.84
& s < fle"la+ 672 — el + &) = &P + &) - D,

we get the following estimate:

e 3 — |le™ 13 + k(|| Vae™ 3 — [Vae™|[3) + (0.06528 — y1)k||V;,e™ )3



1066 Y. Gui, R. Du and C. Wang

+ (0.10348 — 72)k|| V™13 + (0.01188 — 43)k|| V&™) 2
< Ck(lle" M3 + lle™ 13 + lle™ ™ 13) + Cisk (I3 + 17" 13)
+0.00258k (71| Vre" @3 + 72| Ve |3 + 5| Ve B 3). (5.85)

Finally, an application of discrete Gronwall inequality [29] leads to the desired error
estimate at the next time step

1
€™ 2 + (k|| Vae" o) 2 < C(k* + h?), (5.86)

which comes from the fact that 6525 > (255 + 10000)~v1, 10345 > (255 + 10000)~2,
1183 > (258 + 10000)~3, where 41 = 0.73C" M, v5 = 0.2638C" M, ~y3 = 2 + 0.4662C" M.
In particular, the local truncation error estimate, |77, ||[7" !||> < C(k® + h*), was
used in the derivation. As a result, we see that the a-priori assumption (5.38) has also
been validated at the next time step t"*!, provided that k and h are sufficiently small.

By a mathematical induction argument, the higher order error estimate (5.86) is
valid for any time step. Of course, the convergence estimate (5.9) becomes a direct
consequence of the following identity:

" —m" =" — 2o, (5.87)
which comes from the constructed profile ®" = ®"+h2d(1)-"_ The proof of Theorem 5.1

is complete. O

6. Numerical results

In this section, we perform 1D and 3D numerical experiments to verify the theoret-
ical analysis in Section 5. For simplicity, we set e = 1, f = 0 in (2.8), and o = 0.01,
B = 3 in the next accuracy test. The 1-D exact solution is taken to be

m, = (cos(X)sint,sin(X)sint, cos t)T with X =221 —z)2.
The 3-D exact solution is chosen to be
m, = (cos(XY Z)sint,sin(XY Z)sint, cos t)T,

where
X=2’1-2)? Y=9*1-vy)?2 Z=21-2>~%

Clearly the homogeneous Neumann boundary condition (2.2) is satisfied and a forcing
term

fe=0m,—alAm,— « |V7ne|2 +m,. x Am,

is included into the nonlinear part N (t,m).
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6.1. Accuracy test of IMEX-RK3

In the 1-D computation, we fix k£ = 0.0001 x h?/3 and record the error in terms of h
in Table 1, fix k = (1e — 03)/(1le + 04) and record the error in terms of h in Table 2.

In the 3-D computation, we also fix & = 0.001 x h?/3 and record the error in terms
of k in Table 3, fix £k = 1/10000 and record the error in terms of 4 in Table 4. In Fig. 2,
we plot the convergence rates of the L>°, L? and H' error for the LL equation, the
expected convergence rates are observed.

Table 1: Temporal accuracy check in the 1-D case (k = 0.0001 x h2/3).

k [mn — mellc | lmn —me|l2 | [|mn — me|m
0.1/3302 | 1.8064e — 04 1.8228¢ — 04 2.4995¢ — 03
0.1/3659 | 1.3617e — 04 1.3515e¢ — 04 1.8393e — 03
0.1/4000 | 1.0275¢ — 04 1.0401e — 04 1.4117e — 03
0.1/4327 | 8.1831le — 05 8.2470e — 05 1.1171e — 03

order 2.9492 2.9336 2.9782

Table 2: Spatial accuracy check in the 1-D case (k = (1e — 03)/(1e + 04)).

h | llmn = melloo | [lmn —mell2 | [[ma —me|lm
1/160 | 2.8966e —10 | 8.5153¢ — 11 | 4.4271e — 08
1/240 | 1.2934e—10 | 3.7953¢ —11 | 1.9679¢ — 08
1/320 | 7.2876e—11 | 2.1370e—11 | 1.1070e — 08
1/400 | 4.6676e—11 | 1.3683¢—11 | 7.0848¢ — 09
order 1.9922 1.9953 1.9998

Table 3: Temporal accuracy check in the 3-D case (k = 0.001 x h?/3).

k [mn — melloo | [mn —mell2 | |[mp — me|m
1/1587 3.5857e — 04 2.4600e — 04 4.4100e — 04
1/2080 1.5051e — 04 1.0164e — 04 2.0036e — 04
1/2520 8.1408e — 05 5.7072e¢ — 05 1.0807e — 04
1/2924 5.4348e — 05 3.7012¢ — 05 6.5389¢ — 05
order 3.1103 3.1020 3.1180

Table 4: Spatial accuracy check in the 3-D case (k = le — 04).

h [mn —melloc | |lmn —mel2 | [|mn —me|m
1/4 8.1432¢ — 05 5.7082¢ — 05 9.3202e — 05
1/5 5.4354e — 05 3.7020e — 05 6.1874e¢ — 05
1/6 3.6180e — 05 2.6471e — 05 4.0970e — 05
1/7 2.7160e — 05 1.8529¢ — 05 3.0914e — 05

order 1.9861 1.9881 1.9987




1068

l[mn, — me||

[lmn — me|]

-5.5

3.1103
3.1020
3.1180
> slope: 3.0000

-7.7

-76

k

7.3

[my — me||

[l — me|

Y. Gui, R. Du and C. Wang

95t

- - - -auxiliary line slope: 2.0000

-1.8

-1.7

-1.6 -15 -1.4 -1.3 -1.2

h

Figure 2: Temporal and spatial accuracy orders in the 1-D and 3-D domains computations. Top row: 1-D;
Bottom row: 3-D.

6.2. Dependence on the damping parameter

The GSPM method [49] is unconditionally stable with constant coefficients and
SPD structure, while its primary disadvantage is associated with its first-order accu-
racy in time. The SIPM [13,50] is indeed a second-order-in-time method, while the
non-symmetric structure and variable coefficients have led to more expensive compu-
tational costs. In addition, the two above-mentioned methods have focused on small
damping parameter, nevertheless, large damping parameter has also been considered in
the numerical design for real micromagnetics in general. Afterwards, the SIPM scheme
(with large damping) in [12] has greatly improved the computational efficiency, since
only three Poisson solvers are needed at each time step. Meanwhile, this numerical
approach only works if o > 1, while most magnetic materials correspond to a < 1.
On the other hand, for the BDF schemes of orders 3 to 5 [1], coupled with higher-
order finite element spatial discretization, a positive lower bound on the damping « is
needed to ensure a numerical stability. In more details, the damping parameter sat-
isfies @ > oy with a; = 0.0913,0.4041, 4.4348 for orders k = 3, 4,5, respectively, for
the BDF-k method analyzed in [1]. Therefore, it is worthwhile to design an efficient
and higher order accurate numerical scheme that is unconstrained by the damping
parameter a.
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Table 5: Comparison between the GSPM, BDF3, SIPM, SIPM with large damping and the IMEX-RK3
proposed scheme.

Property or number Scope of @« | Symmetry | Accuracy in time
GSPM not arbitrary Yes O(k)
BDF3 a > 0.0913 No O(k3)
SIPM arbitrary No O(k?)
SIPM with large damping a>1 Yes O(k?)
IMEX-RK3 proposed arbitrary Yes O(k3)

Table 6: 1-D numerical errors of the IMEX-RK3 scheme.

3 i a = 0.001 a=0.1
L L? H! L L? H!
0.1/3302{1.8127e — 04|1.8294e — 04|2.4964e — 03|1.7463e — 04|1.7719¢ — 04|2.5257e — 03
110.1/3659(1.3680e — 04|1.3565¢ — 04|1.8368¢ — 03|1.3054¢ — 04]1.3129¢ — 04|1.8604¢ — 03
0.1/4000{1.0323e — 04[1.0439¢ — 04|1.4099¢ — 03]9.8705¢ — 05|1.0104e — 04|1.4273e — 03
order 2.9311 2.9253 2.9796 2.9715 2.9289 2.9762
0.1/3302[1.8127¢ — 04|1.8294¢ — 04|2.4964¢ — 03|1.7463e — 04|1.7719¢ — 04|2.5257¢ — 03
310.1/3659|1.3680e — 04|1.3565e — 04|1.8368e — 03|1.3054e — 04|1.3129¢ — 04 (1.8604e — 03
0.1/4000{1.0323e — 04|1.0439¢ — 04|1.4099¢ — 03|9.8705¢ — 05|1.0104e — 04|1.4273e — 03
order 2.9311 2.9253 2.9796 2.9715 2.9289 2.9762
0.1/3302{1.8127e — 04|1.8294e — 04|2.4964e — 03|1.7463e — 04|1.7719¢ — 04|2.5257e — 03
510.1/3659|1.3680e — 04|1.3565¢ — 04|1.8368¢ — 03|1.3054e — 04|1.3129¢ — 04|1.8604e — 03
0.1/4000{1.0323e — 04|1.0439¢ — 04|1.4099¢ — 03|9.8705¢ — 05|1.0104e — 04|1.4273e — 03
order 2.9311 2.9253 2.9796 2.9715 2.9289 2.9762
Table 7: 3-D numerical errors of the IMEX-RK3 scheme.
3 & a= 02.001 : «Q :20.1 i
L L H L L H
1/2080|1.5087e — 04 |1.0163e — 04]2.0010e — 04 |1.5183e — 04|1.0209¢ — 04 |2.0010e — 04
1]1/2520(8.1578¢ — 05(5.7080e — 05|1.0798¢ — 04|8.3704e — 05|5.7304e — 05|1.0842¢ — 04
1/2924|5.3962¢ — 05|3.6999¢ — 05|6.5334e — 05]5.2238¢ — 05|3.6101e — 05|6.5537¢ — 05
order 3.0275 2.9688 3.2830 3.1313 3.0501 3.2733
1/2080|1.5087¢ — 04|1.0163e — 04|2.0010e — 04|1.5183e — 04 |1.0209¢ — 04|2.0010e — 04
311/2520|8.1578¢ — 05|5.7080e — 05 | 1.0798e — 04|8.3704e — 05|5.7304e — 05{1.0842¢ — 04
1/292415.3962e — 05 |3.6999¢ — 05|6.5334e — 05(5.2238e — 05|3.6101e — 05|6.5537e — 05
order 3.0275 2.9688 3.2830 3.1313 3.0501 3.2733
1/2080|1.5087e — 04 |1.0163e — 04{2.0010e — 04 |1.5183e — 04|1.0209¢ — 04 |2.0010e — 04
511/2520|8.1578¢ — 05|5.7080e — 05 |1.0798e — 04|8.3704e — 05|5.7304e — 05{1.0842¢ — 04
1/2924|5.3962¢ — 05|3.6999¢ — 05|6.5334e — 05]5.2238¢ — 05|3.6101e — 05|6.5537¢ — 05
order 3.0275 2.9688 3.2830 3.1313 3.0501 3.2733
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To investigate the dependence on the damping parameter for the proposed IMEX-
RK3 scheme, two different damping parameters, o = 0.01,0.1, are taken, and k =
0.0001 x h?/? is fixed. The results of 1-D and 3-D corresponding examples are presented
in Tables 6 and 7. It is observed that the choice of « is arbitrary, and the third-order
accuracy is preserved in the temporal discretization. Based upon these results, it is
clear that the proposed IMEX-RK3 method works well for general artificial damping
parameters. More comparison results and details are displayed in Table 5. In fact, we
set 3> 1if a < 1, and § = « if @« > 1, then apply the IMEX-RK numerical scheme. As
a result, the proposed numerical method works for a general damping parameter.

7. Conclusions

In this paper, we propose a third-order implicit-explicit Runge-Kutta (IMEX-RK3)
numerical method to solve the Landau-Lifshitz equation. By introducing an artificial
damping term, IMEX-RK method can achieve higher-order accuracy in time, with the
order conditions satisfied. In the framework, we construct the third-order implicit-
explicit Runge-Kutta scheme, and the stability condition is imposed. Moreover, in spite
of the multi-stage nature and its complicated nonlinear terms, a rigorous optimal rate
convergence analysis of this IMEX-RK3 method is provided. It is worth mentioning that
the convergence analysis is valid for all damping parameter « > 0. In addition, its nu-
merical accuracy and the insensitive dependence on the artificial damping parameter
« have been verified in both the 1-D and 3-D computations. Numerical results have
demonstrated that the IMEX-RK3 method works well for a general damping parameter,
regardless of the small damping parameters in real micromagnetics simulations or the
large damping parameters in theoretical works. In summary, the proposed numerical
scheme not only preserves higher order accuracy and higher computational efficiency,
but also its stability is not restricted by the magnitude of damping parameters, in com-
parison with many existing numerical methods.
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