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Abstract. A third-order accurate implicit-explicit Runge-Kutta time marching nu-

merical scheme is proposed and implemented for the Landau-Lifshitz-Gilbert equa-

tion, which models magnetization dynamics in ferromagnetic materials, with arbi-
trary damping parameters. This method has three remarkable advantages: (1) only

a linear system with constant coefficients needs to be solved at each Runge-Kutta
stage, which greatly reduces the time cost and improves the efficiency; (2) the op-

timal rate convergence analysis does not impose any restriction on the magnitude

of damping parameter, which is consistent with the third-order accuracy in time for
1-D and 3-D numerical examples; (3) its unconditional stability with respect to the

damping parameter has been verified by a detailed numerical study. In comparison

with many existing methods, the proposed method indicates a better performance
on accuracy and efficiency, and thus provides a better option for micromagnetics

simulations.
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1. Introduction

The Landau-Lifshitz (LL) equation has been widely used to describe the evolution of

magnetic order (magnetization) in continuum ferromagnetic materials [28,35], which

is a vectorial and non-local nonlinear system with non-convex constraint in a point-wise

sense and possible degeneracy. A crucial issue in the LL equation is to design efficient

and high-order numerical schemes, and considerable progresses have been made in
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the past few decades, see [5,18,27,34,51] for reviews and references therein. Explicit

algorithms (e.g. [2, 8]) and semi-implicit schemes (e.g. [3, 4, 10, 17, 24, 26, 36, 49])

are very popular since they avoid a complicated nonlinear solver while preserving the

numerical stability, in comparison with the fully implicit ones (e.g. [7,25]).

One typical semi-implicit method is based on the backward differentiation formula

(BDF) temporal discretization, combined with one-sided extrapolation for nonlinear

terms [1, 13, 50]. In [13], the second-order BDF approximation is applied to obtain

an intermediate magnetization, and the right-hand-side nonlinear terms are treated in

a semi-implicit style with a second-order extrapolation applied to the explicit coeffi-

cients. A projection step is further used to preserve the unit length of magnetization

at each time step, which poses a non-convex constraint. Such a numerical algorithm,

called semi-implicit projection method (SIPM), leads to a linear system of equations

with variable coefficients and non-symmetric structure. As a result, no fast solver is

available for this numerical system. Meanwhile, an unconditionally unique solvability

of the semi-implicit scheme with large damping (SIPM with large damping) has been

proved in [12]. The improvement is based on an implicit treatment of the constant-

coefficient diffusion term, combined with a fully explicit extrapolation approximation

of the nonlinear terms, including the gyromagnetic term and the nonlinear part of the

harmonic mapping flow. A direct advantage could be observed in the fact that, the

resulting numerical scheme only requires a standard Poisson solver at each time step,

which greatly improves the computational efficiency. However, an unconditionally sta-

bility is only available for large damping parameter α > 1, while most magnetic mate-

rial models correspond to a parameter α ≪ 1. In addition, higher-order BDF methods

could be applied, while only the first-order and second-order BDF algorithms are un-

conditionally stable. As analyzed in [1], for the BDF schemes of orders 3 to 5, combined

with finite element spatial discretization, the numerical stability requires the damping

parameter to be above a positive threshold: α > αk with αk = 0.0913, 0.4041, 4.4348
for order k = 3, 4, 5 respectively. Therefore, it would be highly desirable to design an

efficient and higher accurate scheme with no requirement on the damping parameter.

For time-dependent nonlinear partial differential equations in general, implicit-

explicit (IMEX) schemes have been extensively used [10]. For the LL equation, the

second-order IMEX has been studied in [50]. Two linear systems, with variable co-

efficients and non-symmetric structure, need to be solved. Hence, IMEX2 can hardly

compete with BDF2 in terms of accuracy and efficiency. In a recent work [47], the

authors introduce an artificial linear diffusion term and treat it implicitly, while all the

remaining terms are treated explicitly. Afterwards, the second-order and the third-

order implicit-explicit Runge-Kutta (IMEX-RK2, IMEX-RK3) methods, in which the pop-

ular coefficients are derived by the work [6], were proposed for the LL equation in

a recent work [32]. Moreover, extensive numerical results have demonstrated that

the IMEX-RK2 method has a better performance over the BDF2 approach, in terms of

accuracy and efficiency. These IMEX-RK methods worked well for arbitrary damping,

and this is a very significant fact in scientific computing, since the damping parameter

may be small in most magnetic materials [11]. However, the corresponding theoretical
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analysis becomes a very difficult issue, because of the complicated structure of the RK

coefficients.

In other words, higher-order RK numerical schemes could be appropriately con-

structed, while, the theoretical analysis of any specific IMEX-RK3 scheme, including

the linearized stability estimate and optimal rate convergence analysis, is expected to

be much more challenging, due to the complicated coefficient stencil in the Runge-

Kutta stages. In this paper, we propose a third-order accurate IMEX-RK scheme, whose

coefficients come from the order conditions based on the Taylor expansion [40]. Fur-

thermore, we conduct an unconditional stability analysis which does not rely on the

value of α. More importantly, an improvement in efficiency and stability over the

above-mentioned numerical methods will be clearly demonstrated.

This paper is organized as follows. In Section 2, we first present the LL model and

give a brief introduction of the IMEX-RK schemes. The third-order IMEX-RK scheme is

constructed in Section 3 by the aid of order condition, and the stability condition of

scheme proposed is proved from a theoretical point of view. Section 4 is devoted to

the related inequalities to facilitate the theoretical analysis. The convergence analysis

and error estimate of the proposed IMEX-RK3 scheme is provided in Section 5. Accu-

racy tests are presented in Section 6 with a detailed check for the dependence on the

artificial damping parameter. Finally, some concluding remarks are made in Section 7.

2. The model and the proposed numerical method

2.1. The Landau-Lifshitz equation

The dynamics of the magnetization in a ferromagnetic material occupying a boun-

ded region Ω is governed by the Landau-Lifshitz, which reads as

mt = −m× heff − αm× (m× heff) , (2.1)

∂m

∂ν

∣
∣
∣
∣
Γ

= 0. (2.2)

In more details, consider the homogeneous Neumann boundary condition (2.2), Γ =
∂Ω and the magnetization m : Ω ⊂ R

d → S
2, d = 1, 2, 3 is a 3-D vector field with

|m| ≡ 1. Here ν is the unit outward normal vector along Γ. The first term of the

right hand side of (2.1) is the gyromagnetic term, while the second term represents the

damping term with a dimensionless damping parameter α > 0.

The effective field of a uniaxial material heff = −δF [m]/δm is computed from the

free anergy functional

F [m] =
µ0M

2
s

2

∫

Ω

(
ǫ|∇m|2 +Q

(
m2

2 +m2
3

)
− hs ·m− 2he ·m

)
dx,

corresponding to the exchange energy, the anisotropy energy, the magnetostatic energy,

and the Zeeman energy parts, respectively. Here we have

heff = ǫ∆m−Q(m2e2 +m3e3) + hs + he,
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consists of the exchange field, the anisotropy field, the stray field hs, and the external

field he. In this formula, Q = Ku/(µ0M
2
s ) and ǫ = Cex/(µ0M

2
sL

2) are the dimen-

sionless parameters with Cex the exchange constant, Ku is the anisotropy constant,

L is the diameter of ferromagnetic body, µ0 is the permeability of vacuum, and Ms

stands for the saturation magnetization, respectively. The two unit vectors are given by

e2 = (0, 1, 0)T , e3 = (0, 0, 1)T , and the stray field hs takes the form

hs = −∇
∫

Ω
∇N(x− y) ·m(y)dy,

where N(x) = −1/4π|x| is the Newtonian potential. The following notation is made

to simplify the presentation:

f = −Q(m2e2 +m3e3) + hs + he. (2.3)

Consequently, the LL equation (2.1) could be reformulated as

mt = −m× (ǫ∆m+ f)− αm×m× (ǫ∆m+ f). (2.4)

The LL equation has several equivalent forms. For instance, according to the formula

a× (b× c) = (a · c)b− (a · b)c, a, b, c ∈ R
3, (2.5)

and by the fact of |m| ≡ 1, an equivalent form could be deduced as follows:

mt = α(ǫ∆m+ f) + α
(
ǫ|∇m|2 −m · f

)
m−m× (ǫ∆m+ f). (2.6)

Some notations are needed in the numerical approximation. To ease the presen-

tation, set Ω = (0, 1)d, d = 1, 2, 3, in which d represents the dimension, and the final

time is given by T . In the 1-D case, the domain Ω is divided into N equal parts with

h = 1/N . In order to approximate the boundary condition (2.2), the ghost points are

introduced as in Fig. 1, which displays a schematic picture of 1-D spatial grids, with

xi−1/2 = (i − 1/2)h, i = 1, 2, . . . , N . The construction of the 3-D grid points is simi-

lar. For simplicity, we set hx = hy = hz = h,mi,j,k = m((i − 1/2)h, (j − 1/2)h, (k −
1/2)h), 0 ≤ i, j, k ≤ N + 1. In the temporal discretization, we denote tn = nk with

k the step-size and n ≤ [T/k]. Moreover, ∆hm represents the standard second-order

centered difference stencil as

∆hmi,j,k =
mi+1,j,k − 2mi,j,k +mi−1,j,k

h2

+
mi,j+1,k − 2mi,j,k +mi,j−1,k

h2

+
mi,j,k+1 − 2mi,j,k +mi,j,k−1

h2
.

Figure 1: The 1-D spatial grids, where x
−

1

2

and xN+ 1

2

are two ghost points.
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A second-order approximation to the Neumann boundary condition results in

m0,j,k = m1,j,k, mN,j,k = mN+1,j,k, j, k = 1, . . . , N,

mi,0,k = mi,1,k, mi,N,k = mi,N+1,k, i, k = 1, . . . , N,

mi,j,0 = mi,j,1, mi,j,N = mi,j,N+1, i, j = 1, . . . , N.

(2.7)

2.2. Implicit-explicit Runge-Kutta methods

For any time-dependent nonlinear equation, the key point of implicit-explicit (IMEX)

numerical method relies on an implicit treatment of the dominant linear term and ex-

plicit treatment of the remaining terms [6]. In fact, such an implicit treatment of the

dominant linear term is necessary to ensure a numerical stability. However, the linear

diffusion term does not dominate the magnetization dynamics in the LL equation, and

thus a direct application of IMEX method is not appropriate. Motivated by this obser-

vation and the work in [47], a natural approach is to add an artificial diffusion term,

then apply RK method to the time discretization.

Following this idea, we introduce an artificial Laplacian term β∆m into (2.4) and

rewrite the LL equation as

mt = −m× (ǫ∆m+ f)− αm×m× (ǫ∆m+ f)− β∆m
︸ ︷︷ ︸

N(t,m)

+β∆m
︸ ︷︷ ︸

L(t,m)

, (2.8)

in which the artificial term is denoted as L(t,m), and all the remaining terms are

included in N(t,m).

An IMEX Runge-Kutta scheme consists of applying an implicit discretization to the

linear term and an explicit computation of the nonlinear term. Its application to (2.8)

takes the form

m(i) = mn − k

i−1∑

j=1

ãijN
(j)(t,m) + k

s∑

j=1

aijL
(j)(t,m), (2.9)

mn+1 = mn − k
s∑

i=1

b̃iN
(i)(t,m) + k

s∑

i=1

biL
(i)(t,m). (2.10)

In more details, the matrices Ã = (ãij), ãij = 0 for j ≥ i and A = (aij) are s × s
matrices such that the resulting algorithm is explicit in N(t,m) and implicit in L(t,m).
An IMEX Runge-Kutta scheme is characterized by these two matrices and the coefficient

vectors b̃ = (b̃1, b̃2, · · · , b̃s)
T
, b = (b1, b2, · · · , bs)T , with k the step-size.

For the sake of simplicity and numerical implementation efficiency at each step, it

is natural to consider diagonally implicit Runge-Kutta (DIRK) schemes [33].

The IMEX Runge-Kutta scheme can be represented by a double tableau in the usual

Butcher notation,
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c̃ Ã

b̃T

c A

b⊤
,

where the coefficients c̃ and c are given by the usual relation

c̃i =

i−1∑

j=1

ãij , ci =

i∑

j=1

aij. (2.11)

Notice that this relation may not be necessary, it is just simple to use higher order

Taylor expansion of the exact and numerical solution by the “rooted trees” theory. An

application of a DIRK scheme for L(t,m) is a sufficient condition to ensure that N(t,m)
is always explicitly evaluated.

3. Construction of IMEX RK3 scheme and its stability condition

3.1. Order conditions

The general technique to derive order conditions for a Runge-Kutta method is based

on the Taylor expansion of the exact and numerical solution; the relevant derivation

and more details are referred to [40]. Here we give the order conditions for IMEX

Runge-Kutta schemes, up to the third order accuracy. It is assumed that the coefficients

c̃i, ci, ãij , aij satisfy condition (2.11). In turn, the order conditions are derived as the

follows:

First order
s∑

i=1

b̃i = 1,

s∑

i=1

bi = 1. (3.1)

Second order

∑

i

b̃ic̃i =
1

2
,
∑

i

bici =
1

2
, (3.2)

∑

i

b̃ici =
1

2
,
∑

i

bic̃i =
1

2
. (3.3)

Third order
∑

ij

b̃iãij c̃j
1

6
,

∑

i

b̃ic̃ic̃i =
1

3
,

∑

ij

biaijcj =
1

6
,
∑

i

bicici =
1

3
,

(3.4)
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∑

ij

b̃iãijcj =
1

6
,
∑

ij

b̃iaij c̃j =
1

6
,
∑

ij

b̃iaijcj =
1

6
,

∑

ij

biãijcj =
1

6
,
∑

ij

biaij c̃j =
1

6
,
∑

ij

biãij c̃j =
1

6
,

(3.5)

∑

i

b̃icici =
1

3
,

∑

i

b̃ic̃ici =
1

3
,

∑

i

bic̃ic̃i =
1

3
,
∑

i

bic̃ici =
1

3
.

Conditions (3.1), (3.2) and (3.4) are the standard order conditions for the two tableau,

conditions (3.3) and (3.5) arise because of the coupled nature of the RK algorithms.

Remark 3.1. The order conditions will be greatly simplified if c̃i = ci, and b̃i = bi,
i.e., these two tableau only differ by the value of the coefficients matrices. Because of

this fact, the standard conditions are enough to guarantee that the combined scheme

could achieve the corresponding order. It is noteworthy that this is only true for the RK

schemes up to the third order accuracy.

3.2. Construction of IMEX RK3 scheme

In this section, we focus on the construction of a third-order IMEX Runge-Kutta

scheme, which satisfies the stability condition in our framework. For simplicity of pre-

sentation, we consider the case of c̃i = ci and b̃i = bi. The discussion of a general

method may be more complicated, while the formulation is similar.

For the convenience, we list the Butcher tableau with undetermined coefficients

0 0 0 0 0 0 0 0 0 0 0
c2 0 a22 0 0 0 ã21 0 0 0 0
c3 0 a32 a33 0 0 ã31 ã32 0 0 0
c4 0 a42 a43 a44 0 ã41 ã42 ã43 0 0

0 b2 b3 b4 0 0 b2 b3 b4 0

(3.6)

and the associated relation gives

c2 = a22 = ã21,

c3 = a32 + a33 = ã31 + ã32,

c4 = a42 + a43 + a44 = ã41 + ã42 + ã43.

(3.7)

Begin with the standard order condition (3.4), the unknowns also need to satisfy

these equalities to ensure that a numerical stability in our framework

b2 + b3 + b4 = 1, (3.8a)

b2c2 + b3c3 + b4c4 =
1

2
, (3.8b)
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b3ã32c2 + b4(ã42c2 + ã43c3) =
1

6
, (3.8c)

b2c
2
2 + b3c

2
3 + b4c

2
4 =

1

3
, (3.8d)

b2c
2
2 + b3a32c2 + b3a33c3 + b4(a42c2 + a43c3 + a44c4) =

1

6
. (3.8e)

Accordingly, at time step tn, the corresponding marching algorithm method becomes

m̃1 = mn,

m̃2 = m̃1 + k
(
ã21N(t0n, m̃1) + a22L(t

1
n, m̃2)

)
,

m̃3 = m̃1 + k
(
ã31N(t0n, m̃1) + ã32N(t1n, m̃2)

)

+ k
(
a32L(t

1
n, m̃2) + a33L(t

2
n, m̃3)

)
,

m̃4 = m̃1 + k
(
ã41N(t0n, m̃1) + ã42N(t1n, m̃2 + ã43N(t2n, m̃3)

)

+ k
(
a42L(t

1
n, m̃2) + a43L(t

2
n, m̃3) + a44L(t

3
n, m̃4)

)
,

mn+1 = m̃1 + k
(
b2N(t1n, m̃2) + b3N(t2n, m̃3) + b4N(t3n, m̃4)

)

+ k
(
b2L(t

1
n, m̃2) + b3L(t

2
n, m̃3) + b4L(t

3
n, m̃4)

)
.

(3.9)

Remark 3.2. In the above formulation, by the aid of a fully explicit treatment for

the nonlinear parts and implicit treatment for the linear part, the resulting numerical

method only requires a standard Poisson solver at each time step. This fact will greatly

reduce the computational cost, since the FFT fast solver could be efficiently applied,

due to the constant coefficient SPD structure of the involved linear system.

In a simple case with only linear diffusion term, we denote Lh = β∆h and take

b2 = a42, b3 = a43, b4 = a44. The IMEX-RK3 scheme (3.9) is represented as

m̃1 = mn,

m̃2 = m̃1 + k
(
a22Lh(m̃2)

)
,

m̃3 = m̃1 + k
(
a32Lh(m̃2) + a33Lh(m̃3)

)
,

m̃4 = m̃1 + k
(
a42Lh(m̃2) + a43Lh(m̃3) + a44Lh(m̃4)

)
,

mn+1 = m̃4.

(3.10)

3.3. Stability condition

To facilitate the stability analysis of the method proposed above, the numerical

system is rewritten as

m̃1 = mn, (3.11)

m̃2 −mn

k
= a22β∆hm̃2, (3.12)

m̃3 −mn

k
= a32β∆hm̃2 + a33β∆hm̃3, (3.13)
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m̃4 −mn

k
= a42β∆hm̃2 + a43β∆hm̃3 + a44β∆hm̃4, (3.14)

mn+1 = m̃4. (3.15)

In fact, the numerical stability of the Runge-Kutta algorithm could be demonstrated by

subtracting (3.11) from (3.12), (3.12) from (3.13), (3.13) from (3.14). As a conse-

quence, the following equivalent numerical system is obtained:

m̃1 = mn, (3.16)

m̃2 − m̃1

k
= a22β∆hm̃2, (3.17)

m̃3 − m̃2

k
= (a32 − a22)β∆hm̃2 + a33β∆hm̃3, (3.18)

m̃4 − m̃3

k
= (a42 − a32)β∆hm̃2 + (a43 − a33)β∆hm̃3 + a44β∆hm̃4, (3.19)

mn+1 = m̃4. (3.20)

In the first step, taking a discrete inner product with (3.17) by 2m̃2 yields

‖m̃2‖22 − ‖mn‖22 + ‖m̃2 −mn‖22 + 2a22βk‖∇hm̃2‖22 = 0 (3.21)

with an application of the summation-by-parts formula. Similarly, taking a discrete

inner product with (3.18) by 2m̃3, with (3.19) by 2m̃4, turns out to be

‖m̃3‖22 − ‖m̃2‖22 + ‖m̃3 − m̃2‖22 + 2a33βk‖∇hm̃3‖22
= 2(a22 − a32)βk〈∇hm̃2,∇hm̃3〉, (3.22)

‖m̃4‖22 − ‖m̃3‖22 + ‖m̃4 − m̃3‖22 + 2a44βk‖∇hm̃4‖22
= 2(a32 − a42)βk〈∇hm̃2,∇hm̃4〉+ 2(a33 − a43)βk〈∇hm̃3,∇hm̃4〉. (3.23)

Subsequently, a summation of (3.21)-(3.23) gives

‖m̃4‖22 − ‖mn‖22 + ‖m̃2 −mn‖22 + ‖m̃3 − m̃2‖22 + ‖m̃4 − m̃3‖22
+ 2a22βk‖∇hm̃2‖22 + 2a33βk‖∇hm̃3‖22 + 2a44βk‖∇hm̃4‖22

= 2(a22 − a32)βk〈∇hm̃2,∇hm̃3〉+ 2(a32 − a42)βk〈∇hm̃2,∇hm̃4〉
+ 2(a33 − a43)βk〈∇hm̃3,∇hm̃4〉. (3.24)

In turn, an application of Cauchy inequality reveals that

2(a22 − a32)βk〈∇hm̃2,∇hm̃3〉 ≤ |a32 − a22| βk
(
‖∇hm̃2‖22 + ‖∇hm̃3‖22

)
, (3.25)

2(a32 − a42)βk〈∇hm̃2,∇hm̃4〉 ≤ |a42 − a32| βk
(
‖∇hm̃2‖22 + ‖∇hm̃4‖22

)
, (3.26)

2(a33 − a43)βk〈∇hm̃3,∇hm̃4〉 ≤ |a43 − a33| βk
(
‖∇hm̃3‖22 + ‖∇hm̃4‖22

)
. (3.27)

Going back (3.24), we arrive at

‖m̃4‖22 − ‖mn‖22 + ‖m̃2 −mn‖22 + ‖m̃3 − m̃2‖22 + ‖m̃4 − m̃3‖22



1050 Y. Gui, R. Du and C. Wang

+ 2a22βk‖∇hm̃2‖22 + 2a33βk‖∇hm̃3‖22 + 2a44βk‖∇hm̃4‖22
≤ |a32 − a22|βk

(
‖∇hm̃2‖22 + ‖∇hm̃3‖22

)
+ |a42 − a32| βk

(
‖∇hm̃2‖22 + ‖∇hm̃4‖22

)

+ |a43 − a33| βk
(
‖∇hm̃3‖22 + ‖∇hm̃4‖22

)
. (3.28)

Of course, a careful simplification reveals that

‖m̃4‖22 − ‖mn‖22 + ‖m̃2 −mn‖22 + ‖m̃3 − m̃2‖22 + ‖m̃4 − m̃3‖22
+ (2a22 − |a32 − a22| − |a42 − a32|)βk‖∇hm̃2‖22
+ (2a33 − |a32 − a22| − |a43 − a33|)βk‖∇hm̃3‖22
+ (2a44 − |a42 − a32| − |a43 − a33|)βk‖∇hm̃4‖22 ≤ 0. (3.29)

Because of the fact that mn+1 = m̃4, an ℓ∞(0, T ; ℓ2)∩ ℓ2(0, T ;H1
h) bound of the numer-

ical solution could be derived for the IMEX-RK3 scheme, under the stability condition

as follows:
2a22 − (|a32 − a22|+ |a42 − a32|) > 0,

2a33 − (|a32 − a22|+ |a43 − a33|) > 0,

2a44 − (|a42 − a32|+ |a43 − a33|) > 0,

(3.30)

which is equivalent to
2a22 > |a32 − a22|+ |a42 − a32| ,
2a33 > |a32 − a22|+ |a43 − a33| ,
2a44 > |a42 − a32|+ |a43 − a33| .

(3.31)

We are interested in whether there is a third order IMEX Runge-Kutta method that

simultaneously satisfies (3.31) and (3.8e). It is obvious that there are infinite set of

solutions corresponding to the linear part and nonlinear part through numerical calcu-

lation. Here we provide a Butcher tableau which satisfies these conditions

0 0 0 0 0 0 0 0 0
0.62500000 0 0.62500000 0 0 0.62500000 0 0 0
0.31347352 0 −0.23587004 0.54934357 0 0.17055712 0.14291640 0 0

1 0 0.08500000 0.68187464 0.23312535 0 0.45000000 0.55000000 0
0 0.08500000 0.68187464 0.23312535 0 0.08500000 0.68187464 0.23312535

Consequently, the marching algorithm in IMEX-RK3 at time step tn becomes

m̃1 = mn, (3.32a)

m̃2 = m̃1 + 0.62500000kN(m̃1) + 0.62500000kL(m̃2), (3.32b)

m̃3 = m̃1 + 0.17055712kN(m̃1) + 0.14291640kN(m̃2)

− 0.23587004kL(m̃2) + 0.54934357kL(m̃3), (3.32c)

m̃4 = m̃1 + 0.45000000kN(m̃2) + 0.55000000kN(m̃3)

+ 0.08500000kL(m̃2) + 0.68187464kL(m̃3)

+ 0.23312535kL(m̃4), (3.32d)
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mn+1 = m̃1 + 0.08500000kN(m̃2) + 0.68187464kN(m̃3)

+ 0.23312535kN(m̃4) + 0.08500000kL(m̃2)

+ 0.68187464kL(m̃3) + 0.23312535kL(m̃4). (3.32e)

4. Some preliminary inequalities

In this section, some preliminary inequalities are reviewed, which will be useful

in the error analysis presented in the next section. Proofs of the standard inverse

inequality and discrete Gronwall inequality can be obtained in existing textbooks and

references, see [14–16,29], here the results are just cited.

Definition 4.1 (ℓ2 inner product, ‖ · ‖2 norm). For grid functions fh and gh that take

values on a uniform numerical grid, we define

〈fh,gh〉 = hd
∑

I∈Λd

f I · gI ,

where Λd is the set of grid point, and I is an index.

In turn, the ‖ · ‖2 norm turns out to be

‖fh‖2 = (〈fh,fh〉)
1

2 .

Furthermore, the discrete H1 norm is introduced as

‖fh‖2H1 := ‖fh‖22 + ‖∇hfh‖22.

Definition 4.2 (Discrete ‖ · ‖∞ and ‖ · ‖p norms). For grid functions fh that take values

on a uniform numerical grid, we define

‖fh‖∞ = max
I∈Λd

‖f I‖∞, ‖fh‖p =

(

hd
∑

I∈Λd

|f I |p
) 1

p

, 1 ≤ p < +∞.

Lemma 4.1 (Summation by Parts). For any grid functions fh and gh, with fh satisfying

the discrete boundary condition (2.2), the following identity is valid:

〈−∆hfh,gh〉 = 〈∇hfh,∇hgh〉. (4.1)

Lemma 4.2 (Inverse Inequality [14–16]). For each vector-valued grid function fh ∈ X,

we have

‖fh‖∞ ≤ γh−
1

2

(
‖fh‖2 + ‖∇hfh‖2

)
, (4.2)

‖fh‖q ≤ γh
−( 3

2
− 3

q
)‖fh‖2, ∀2 < q ≤ +∞, (4.3)

in which constant γ depends on Ω, as well as the form of the discrete ‖ · ‖2 norm.
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Lemma 4.3 (Discrete Gronwall Inequality [29]). Let {αj}j≥0, {βj}j≥0, and {ωj}j≥0 be

sequences of real numbers such that and we have the following discrete estimate:

αj ≤ αj+1, βj ≥ 0, ωj ≤ αj +

j−1
∑

i=0

βiωi, ∀j ≥ 0. (4.4)

Then it holds that

ωj ≤ αj exp

{
j−1
∑

i=0

βi

}

, ∀j ≥ 0. (4.5)

5. Convergence analysis for the proposed IMEX-RK3 scheme

A theoretical analysis of any third order accurate, IMEX-RK scheme is very challeng-

ing, which comes from its multi-stage nature and highly complex nonlinear terms in the

vector form. For the sake of simplicity, we will focus on the IMEX-RK3 scheme (3.32).

Note that a simplified nonlinear LL equation is considered, and only the damping term

is considered. The convergence analysis of the proposed method is provided in this

section.

5.1. Convergence analysis of the IMEX-RK3 scheme (3.32) for the nonlinear
LL equation

Taking a simplified nonlinear LL equation (2.1) into consideration in this part, in

which the gyromagnetic term is skipped

mt = −αm×
(
m× (ǫ∆m+ f)

)
. (5.1)

For any vector function m with |m| ≡ 1, the nonlinear term N(m) could always be

rewritten as follows, with a notation of β = αǫ:

N(m) = −αm×
(
m× (ǫ∆m+ f)

)
− β∆m

= β(∆m+ |∇m|2m)− αm× (m× f)− β∆m

= β|∇m|2m− αm× (m× f). (5.2)

On the other hand, the notation Ah∇h stands for the second approximation to the gra-

dient operator. In fact, it is an average gradient operator defined for the gird function

m = (uh, vh, wh)
T ∈ X, as

Ah∇hmh = ∇hAhmh, Ahm = (Axuh, Ayvh, Azwh)

and

Axui,j,ℓ =
ui,j,ℓ + ui−1,j,ℓ

2
, Ayvi,j,ℓ =

vi,j,ℓ + vi,j−1,ℓ

2
, Azwi,j,ℓ =

wi,j,ℓ + wi,j,ℓ−1

2
.
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Accordingly, the discrete form of the nonlinear term is represented as

Nh(m) = β|Ah∇hm|2m− αm× (m× f). (5.3)

For the sake of convenience, all coefficients are kept with four significant figures, which

will not affect the convergence analysis. The actual numerical tests are kept with the

original eight significant figures. In turn, the IMEX-RK3 scheme could be expressed as

follows:

m̃1 = mn,

m̃2 = m̃1 + 0.6250kNh(m̃1) + 0.6250kLh(m̃2),

m̃3 = m̃1 + 0.1706kNh(m̃1) + 0.1429kNh(m̃2)

− 0.2359kLh(m̃2) + 0.5494kLh(m̃3),

m̃4 = m̃1 + 0.4500kNh(m̃2) + 0.5500kNh(m̃3)

+ 0.0850kLh(m̃2) + 0.6819kLh(m̃3) + 0.2331kLh(m̃4),

mn+1 = m̃1 + 0.0850kNh(m̃2) + 0.6819kNh(m̃3) + 0.2331kNh(m̃4)

+ 0.0850kLh(m̃2) + 0.6819kLh(m̃3) + 0.2331kLh(m̃4).

(5.4)

Of course, this numerical system could be equivalently rewritten in the following form,

to facilitate the Runge-Kutta analysis:

m̃2 −mn

k
= 0.6250Nh(m̃1) + 0.6250β∆hm̃2, (5.5)

m̃3 − m̃2

k
= −0.4544Nh(m̃1) + 0.1429Nh(m̃2)− 0.8609β∆hm̃2

+ 0.5494β∆hm̃3, (5.6)

m̃4 − m̃3

k
= −0.1706Nh(m̃1) + 0.3071Nh(m̃2) + 0.5500Nh(m̃3)

+ 0.3209β∆hm̃2 + 0.1325β∆hm̃3 + 0.2331β∆hm̃4, (5.7)

mn+1 − m̃4

k
= −0.3650Nh(m̃2) + 0.1319Nh(m̃3) + 0.2331Nh(m̃4). (5.8)

The main theoretical result of the convergence analysis is stated below.

Theorem 5.1. Assume the exact solution Φ of (5.1) satisfies the regularity assumption:

Denote mn (n ≥ 0) as the numerical solution obtained from (5.4), or equivalently (5.5)-

(5.8), with the initial error satisfying

‖PhΦ(·, t0)−m0‖2 +
(
k‖∇h(PhΦ(·, t0)−m0)‖2

) 1

2 = O(h4).

Additionally, a linear refinement assumption that C1h ≤ k ≤ C2h is made (with C1, C2

being two positive constants) and the condition k ≤ C
′

h is also made to ensure the conver-

gence (C
′

is independent of k and h, only depends on M̃). Then the following convergence
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result holds for 1 ≤ n ≤ ⌊T/k⌋ as k, h go to zero:

‖Φ(·, tn)−mn‖2 +
(
k‖∇h(Φ(·, tn)−mn)‖2

) 1

2 ≤ C(k3 + h2), (5.9)

where the constant C > 0 is independent of k and h.

First, we construct an approximate solution Φ = Φ+h2Φ(1), so that an O(h4) spatial

truncation error is obtained. Such a higher order consistency is important in the later

analysis to bound the ‖ · ‖
W 1,∞

h
norm of the numerical solution. It is noticed that Φ(1)

is a spatially continuous function, and its construction will be obtained using a pertur-

bation expansion, which depends solely on the exact solution Φ. Moreover, a higher

O(k3+h4) consistency has to be satisfied with the given numerical scheme (5.5)-(5.8).

In more details, we introduce a higher order approximate expansion of the exact

solution, since the second order spatial accuracy, associated with the centered differ-

ence approximation, is not able to control the discrete ‖ · ‖
W 1,∞

h
norm of the numer-

ical solution, which is needed in the later convergence analysis. In turn, instead of

substituting the exact solution into the numerical algorithm, a careful construction

of an approximate profile is performed by adding an O(h2) correction term to the

exact solution to satisfy an O(h4) truncation error. Afterwards, we analyze the nu-

merical error function between the constructed profile and the numerical solution,

instead of a direct comparison between the numerical solution and exact solution.

Such an improved consistency will lead to a higher order convergence estimate in the

ℓ∞(0, T ; ℓ2) ∩ ℓ2(0, T ;H1
h) norm, which in turn yields a desired ‖ · ‖

W 1,∞
h

bound of the

numerical solution, with the help of the inverse inequality. Similar techniques has been

reported for a wide class of nonlinear PDEs, see the related works for the incompress-

ible fluid equation [22,23,41,42,44–46], various gradient equations [9,30,31,37–39],

the porous medium equation based on the energetic variational approach [19–21],

nonlinear wave equation [48], etc.

An application of the centered finite difference discretization to the exact solution

Φ gives

Φt = β|Ah∇hΦ|2Φ− αΦ × (Φ× f) + β∆hΦ+ h2g(2) +O(h4), (5.10)

which comes from the Taylor expansion in space. In more details, the function g(2) is

smooth enough and only depends on the higher order derivatives of Φ. Subsequently,

the spatial correction function Φ(1) is given by the solution of the following linear dif-

ferential equation:

∂tΦ
(1) = β∆Φ(1) + β

(

|∇Φ|2Φ(1) + 2(∇Φ · ∇Φ(1))Φ
)

− α
(

Φ× Φ(1) +Φ(1) × (Φ + f)
)

− g(2), Φ(1)(·, t = 0) ≡ 0 (5.11)

with homogeneous Neumann boundary condition. In fact, (5.11) is a linear parabolic

PDE, and the existence and uniqueness of its solution could be derived by making use
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of a standard Galerkin procedure and Sobolev estimates, following the classical tech-

niques for time-dependent parabolic equation [43]. Moreover, the solution of (5.11)

depends only on the exact profile Φ and is smooth enough. Similar to (5.10), an appli-

cation of the finite difference discretization to Φ(1) gives

∂tΦ
(1) = β

(

|Ah∇hΦ|2Φ(1) + 2(Ah∇hΦ · Ah∇hΦ
(1))Φ

)

− α
(

Φ× Φ(1) +Φ(1) × (Φ + f)
)

+ β∆hΦ
(1) − g(2) +O(h2). (5.12)

In turn, a combination of (5.10) and (5.12) leads to the following higher order consis-

tency estimate for Φ = Φ+ h2Φ(1):

Φt = β|Ah∇hΦ|2Φ− αΦ× (Φ× f) + β∆hΦ+O(h4). (5.13)

Moreover, we extend the approximate profile Φ to the numerical ghost points, accord-

ing to the extrapolation formula

Φi,j,0 = Φi,j,1, Φi,j,Nz+1
= Φi,j,Nz

, (5.14)

and the extrapolation for other boundaries can be formulated in the same manner. In

addition, we are able to prove that such an extrapolation yields a higher order O(h5)
approximation, due to the fact that

∂3
zΦ = 0, ∂zΦ

(1) = 0 at z = 0, 1.

Given the exact solution Φ, we denote Φn = Φ(·, tn). In addition, another three inter-

mediate approximate solutions need to be constructed at each time step, to facilitate

the Runge-Kutta analysis, following the same algorithm as in (5.4):

Φ̃n,(2) = Φn + 0.6250kNh(Φ
n) + 0.6250kβ∆hΦ̃

n,(2), (5.15)

Φ̃n,(3) = Φn + 0.1706kNh(Φ
n) + 0.1429kNh(Φ̃

n,(2))

− 0.2359kβ∆hΦ̃
n,(2) + 0.5494kβ∆hΦ̃

n,(3), (5.16)

Φ̃n,(4) = Φn + 0.4500kNh(Φ̃
n,(2)) + 0.5500kNh(Φ̃

n,(3))

+ 0.0850kβ∆hΦ̃
n,(2) + 0.6819kβ∆hΦ̃

n,(3)

+ 0.2331kβ∆hΦ̃
n,(4), (5.17)

in which the homogeneous discrete Neumann boundary condition (similar to (5.14))

is imposed for Φ̃n,(j), j = 2, 3, 4. Moreover, the careful Taylor expansion (related to

the IMEX-RK3 method) reveals the following consistency estimate of the constructed

solution at the next time step with ‖τn‖2 ≤ C(k3 + h4):

Φn+1 = Φn + 0.0850kNh(Φ̃
n,(2)) + 0.6819kNh(Φ̃

n,(3)) + 0.2331kNh(Φ̃
n,(4))

+ 0.0850kβ∆hΦ̃
n,(2) + 0.6819kβ∆hΦ̃

n,(3) + 0.2331kβ∆hΦ̃
n,(4) + kτn. (5.18)
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Clearly, by performing a similar transformation as in (5.5)-(5.8), the constructed

profiles Φn, Φn+1 and Φ̃n,(j), j = 2, 3, 4 satisfy the numerical system

Φ̃n,(2) −Φn

k
= 0.6250Nh(Φ

n) + 0.6250β∆hΦ̃
n,(2), (5.19)

Φ̃n,(3) − Φ̃n,(2)

k
= −0.4544Nh(Φ

n) + 0.1429Nh(Φ̃
n,(2))

− 0.8609β∆hΦ̃
n,(2) + 0.5494β∆hΦ̃

n,(3), (5.20)

Φ̃n,(4) − Φ̃n,(3)

k
= −0.1706Nh(Φ

n) + 0.3071Nh(Φ̃
n,(2))

+ 0.5500Nh(Φ̃
n,(3)) + 0.3209β∆hΦ̃

n,(2)

+ 0.1325β∆hΦ̃
n,(3) + 0.2331β∆hΦ̃

n,(4), (5.21)

Φn+1 − Φ̃n,(4)

k
= −0.3650Nh(Φ̃

n,(2)) + 0.1319Nh(Φ̃
n,(3))

+ 0.2331Nh(Φ̃
n,(4)) + τn. (5.22)

Since the constructed profiles Φ̃n,(j), j = 2, 3, 4 only rely on the approximate solution

Φn, the consistency estimate reveals that

‖Φn‖∞, ‖Φ̃n,(j)‖∞ ≤ 9

8
,

‖∇hΦ
n‖∞, ‖∇hΦ̃

n,(j)‖∞ ≤ C∗, j = 2, 3, 4.
(5.23)

Therefore, we define the numerical error functions as follows, at a point-wise level:

ek = Φk −mk, k = n, n+ 1,

ẽn,(j) = ˜Phi
n,(j) − m̃j, j = 2, 3, 4.

(5.24)

Again, instead of a direct comparison between the numerical and exact solutions, we

analyze the error between the numerical solution and the constructed approximate

solution, due to its higher order consistency. Moreover, the following nonlinear error

terms are introduced to simplify the notation:

NLEn,(1) = Nh(Φ
n)−Nh(mn),

NLEn,(j) = Nh(Φ̃
n,(j))−Nh(m̃j), j = 2, 3, 4.

(5.25)

In turn, a subtraction of the numerical algorithm (5.5)-(5.8) from the consistency esti-

mate (5.19)-(5.22) leads to the following numerical error evolution system:

ẽn,(2) − en

k
= 0.6250NLEn,(1) + 0.6250β∆hẽ

n,(2), (5.26)
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ẽn,(3) − ẽn,(2)

k
= −0.4544NLEn,(1) + 0.1429NLEn,(2)

− 0.8609β∆hẽ
n,(2) + 0.5494β∆hẽ

n,(3), (5.27)

ẽn,(4) − ẽn,(3)

k
= −0.1706NLEn,(1) + 0.3071NLEn,(2)

+ 0.5500NLEn,(3) + 0.3209β∆hẽ
n,(2)

+ 0.1325β∆hẽ
n,(3) + 0.2331β∆hẽ

n,(4), (5.28)

en+1 − ẽn,(4)

k
= −0.3650NLEn,(2) + 0.1319NLEn,(3)

+ 0.2331NLEn,(4) + τn. (5.29)

In order to established the convergence analysis, it is necessary to bound the nonlinear

error term. For the sake of notation simplicity, a uniform constant C is used to represent

all controllable constants.

Lemma 5.1. Under the regularity estimate (5.23) for the constructed profiles, and the

following bound in the IMEX-RK stages:

‖m̃j‖∞ ≤ 5

4
, ‖∇hm̃j‖∞ ≤ C̃ := C∗ + 1, j = 2, 3, 4, (5.30)

an ‖ · ‖2 estimate for the nonlinear error terms is available

‖NLEn,(1)‖2 ≤ M̃
(
‖en‖2 + ‖∇he

n‖2
)
, (5.31)

‖NLEn,(j)‖2 ≤ M̃
(
‖ẽn,(j)‖2 + ‖∇hẽ

n,(j)‖2
)
, j = 2, 3, 4, (5.32)

in which M̃ only depends on α, β,C∗, C̃, and the external force term f .

Proof. For simplicity, only the nonlinear error term ‖NLEn,(1)‖2 is considered, and

the estimate of ‖NLEn,(j)‖2 could be derived in the same manner. In fact, a careful

expansion of the term NLEn,(1) indicates that

NLEn,(1) = Nh(Φ
n)−Nh(mn)

= β|Ah∇hΦ
n|2en + β

(
Ah∇h(Φ

n +mn) ·Ah∇he
n
)
mn

− αmn × (en × f)− αen × (Φn × f). (5.33)

As a result, a direct application of discrete Hölder inequality yields

∥
∥β|Ah∇hΦ

n|2en
∥
∥
2
≤ β‖∇hΦ

n‖2∞‖en‖2 ≤ Cβ(C∗)2‖en‖2, (5.34)
∥
∥β
(
Ah∇h(Φ

n +mn) ·Ah∇he
n
)
mn

∥
∥
2
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≤ β
(
‖∇hΦ

n‖∞ + ‖∇hmn‖∞
)
‖∇he

n‖2‖mn‖∞
≤ Cβ(C∗ + C̃)‖∇he

n‖2, (5.35)

‖αmn × (en × f)‖2 ≤ α‖mn‖∞‖f‖∞‖en‖2

≤ 5α

4
C0‖en‖2 ≤ CαC0‖en‖2, (5.36)

‖αen × (Φn × f)‖2 ≤ α‖Φn‖∞‖f‖∞‖en‖2

≤ 9α

8
C0‖en‖2 ≤ CαC0‖en‖2, (5.37)

in which the summation-by-parts formula (4.1) and the bound (5.30) have been ap-

plied, along with the fact that ‖ · ‖∞ bound for the external force term ‖f‖∞ ≤ C0.

A substitution of (5.34)-(5.37) into (5.33) leads to the nonlinear error estimate (5.31),

by taking M̃ = C(β((C∗)2 + C∗ + C̃) + αC0). The proof of Lemma 5.1 is finished.

Before proceeding into the formal error estimate, the following a-priori assumption

is made for the error function at the previous time step:

‖en‖2 ≤ k
11

4 + h
15

4 , ‖∇he
n‖2 ≤ k

9

4 + h
13

4 . (5.38)

As stated above, the multi-stage nature of the third order Runge-Kutta scheme, as well

as the complicated nonlinear terms, make the theoretical analysis highly challenging.

Therefore, the error estimates at each RK stage are separately discussed.

Error estimate at Runge-Kutta Stage 1. In the first stage, by taking a discrete inner

product with (5.26) by 2ẽn,(2), it follows

‖ẽn,(2)‖22 − ‖en‖22 + ‖ẽn,(2) − en‖22 +
5

4
βk
∥
∥∇hẽ

n,(2)
∥
∥2

2
=

5

4
k
〈
NLEn,(1), ẽn,(2)

〉
, (5.39)

based on an application of the summation-by-parts formula (4.1), and the discrete

homogeneous Neumann boundary condition for ẽn,(2). In terms of the inner product

term associated with the nonlinear error, the following estimates are derived:

〈
NLEn,(1), ẽn,(2)〉 ≤ ‖NLEn,(1)‖2‖ẽn,(2)

∥
∥
2

≤ M̃
(
‖en‖2 + ‖∇he

n‖2
)
‖ẽn,(2)‖2

≤ M̃

2
‖en‖22 +

β

2500
‖∇he

n‖22 +
(

M̃

2
+

625M̃2

β

)

‖ẽn,(2)‖22, (5.40)

in which the Young’s inequality has been applied in the last step. In turn, we denote

C1 = (5/4)(M̃/2 + 625M̃2/β), and see that the right-hand side of (5.39) is bounded as

5k

4

〈
NLEn,(1), ẽn,(2)

〉
≤ 5

8
M̃k‖en‖22 +

βk

2000
‖∇he

n‖22 + C1k‖ẽn,(2)‖22. (5.41)
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Its substitution into (5.39) yields

‖ẽn,(2)‖22 − ‖en‖22 + ‖ẽn,(2) − en‖22 +
5

4
βk‖∇hẽ

n,(2)‖22

≤ 5

8
M̃k‖en‖22 +

βk

2000
‖∇he

n‖22 + C1k‖ẽn,(2)‖22. (5.42)

Furthermore, under the linear refinement requirement C1h ≤ k ≤ C2h and the as-

sumption that k is sufficiently small, the rough error estimates could be obtained as

follows:

‖ẽn,(2)‖2 ≤
(
1 +C2k

1−C1k

) 1

2 (
k

9

4 + h
5

4

)
≤ 2
(
k

9

4 + h
5

4

)
, (5.43)

‖∇hẽ
n,(2)‖2 ≤ β− 1

2k−
1

2 (1 + C2k)
1

2

(
k

9

4 + h
5

4

)
≤ k

7

4 + h
3

4 , (5.44)

by taking C2 = 5M̃/8 + β/2000 due to the a-priori assumption (5.38). Likewise, the

‖ · ‖∞ bound for both the numerical error function ẽn,(2) and the numerical solution

m̃2 are available

‖ẽn,(2)‖∞ ≤ γh−
1

2

(

‖ẽn,(2)‖2 + ‖∇hẽ
n,(2)‖2

)

≤ γ

(

k
7

4

h
1

2

+ h
9

4

)

≤ 1

8
, (5.45)

‖∇hẽ
n,(2)‖∞ ≤ γh−

3

2 ‖∇hẽ
n,(2)‖2 ≤ γ

(

k
7

4

h
3

2

+ h
5

4

)

≤ 1, (5.46)

‖m̃2‖∞ ≤ ‖Φ̃n,(2)‖∞ + ‖ẽn,(2)‖∞ ≤ 9

8
+

1

8
=

5

4
, (5.47)

‖∇hm̃2‖∞ ≤ ‖∇hΦ̃
n,(2)‖∞ + ‖∇hẽ

n,(2)‖∞ ≤ C∗ + 1 = C̃. (5.48)

Error estimate at Runge-Kutta Stage 2. Similarly, taking a discrete inner product

with (5.27) by 2ẽn,(3) leads to

‖ẽn,(3)‖22 − ‖ẽn,(2)‖22 + ‖ẽn,(3) − ẽn,(2)‖22 + 1.0988βk‖∇hẽ
n,(3)‖22

= −0.9088k〈NLEn,(1), ẽn,(3)〉+ 0.2858k〈NLEn,(2), ẽn,(3)〉
+ 1.7218βk

〈
∇hẽ

n,(2),∇hẽ
n,(3)

〉
. (5.49)

A bound for the last term on the right-hand side is straightforward

〈
∇hẽ

n,(2),∇hẽ
n,(3)

〉
≤ 1

2

(
‖∇hẽ

n,(2)‖22 + ‖∇hẽ
n,(3)‖22

)
,

so that

1.7218βk〈∇hẽ
n,(2),∇hẽ

n,(3)〉 ≤ 0.8609βk
(
‖∇hẽ

n,(2)‖22 + ‖∇hẽ
n,(3)‖22

)
.

(5.50)

The nonlinear error terms, as well as the corresponding inner product, could be ana-

lyzed in a similar manner with the help of Lemma 5.1, which implies the estimates as
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follows:

〈NLEn,(1), ẽn,(3)〉 ≤ M̃

2
‖en‖22 +

5β

4544
‖∇he

n‖22

+

(

M̃

2
+

1136M̃2

5β

)

‖ẽn,(3)‖22, (5.51)

〈NLEn,(2), ẽn,(3)〉 ≤ M̃

2
‖ẽn,(2)‖22 +

5β

1429
‖∇hẽ

n,(2)‖22

+

(

M̃

2
+

1429M̃2

20β

)

‖ẽn,(3)‖22, (5.52)

under the regularity estimate (5.23) and the bound (5.31)-(5.32). Subsequently, a sub-

stitution of (5.50)-(5.52) into (5.49) yields

‖ẽn,(3)‖22 − ‖ẽn,(2)‖22 + ‖ẽn,(3) − ẽn,(2)‖22
+ 0.2379βk‖∇hẽ

n,(3)‖22 − 0.8619βk‖∇hẽ
n,(2)‖22

≤ 0.4544M̃k‖en‖22 +
βk

1000
‖∇he

n‖22 + 0.1429M̃k‖ẽn,(2)‖22 + C3k‖ẽn,(3)‖22 (5.53)

with

C3 = 0.9088

(

M̃

2
+

1136M̃2

5β

)

+ 0.2858

(

M̃

2
+

1429M̃2

20β

)

.

Furthermore, its combination with (5.42) indicates that

‖ẽn,(3)‖22 − ‖en‖22 + ‖ẽn,(3) − ẽn,(2)‖22 + ‖ẽn,(2) − en‖22
+ 0.3881βk‖∇hẽ

n,(2)‖22 + 0.2379βk‖∇hẽ
n,(3)‖22

≤
(

0.4544 +
5

8

)

M̃k‖en‖22 +
3βk

2000
‖∇he

n‖22

+
(
0.1429M̃ + C1

)
k‖ẽn,(2)‖22 + C3k‖ẽn,(3)‖22. (5.54)

Applying the a-priori estimate (5.38) and (5.43) yields

‖ẽn,(3)‖2 ≤
(
1 + C4k

1− C3k

) 1

2 (
k

9

4 + h
13

4

)
≤ 2
(
k

9

4 + h
13

4

)
, (5.55)

‖∇hẽ
n,(3)‖2 ≤

√
5β− 1

2 k−
1

2 (1 +C4k)
1

2

(
k

9

4 + h
13

4

)
≤ k

7

4 + h
11

4 , (5.56)

by taking

C4 = C1 + 1.2223M̃ +
3β

2000
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and under the linear refinement requirement C1h ≤ k ≤ C2h. In turn, the ‖ · ‖∞ bound

for both the numerical error function ẽn,(3) and the numerical solution m̃3 are revealed

‖ẽn,(3)‖∞ ≤ γh−
1

2

(

‖ẽn,(3)‖2 + ‖∇hẽ
n,(3)‖2

)

≤ γ

(

k
7

4

h
1

2

+ h
9

4

)

≤ 1

8
, (5.57)

‖∇hẽ
n,(3)‖∞ ≤ γh−

3

2 ‖∇hẽ
n,(3)‖2 ≤ 1, (5.58)

‖m̃3‖∞ ≤ ‖Φ̃n,(3)‖∞ + ‖ẽn,(3)‖∞ ≤ 9

8
+

1

8
=

5

4
, (5.59)

‖∇hm̃3‖∞ ≤ ‖∇hΦ̃
n,(3)‖∞ + ‖∇hẽ

n,(3)‖∞ ≤ C∗ + 1 = C̃. (5.60)

Error estimate at Runge-Kutta Stage 3. Taking a discrete inner product with (5.28)

by 2ẽn,(4) yields

‖ẽn,(4)‖22 − ‖ẽn,(3)‖22 + ‖ẽn,(4) − ẽn,(3)‖22 + 0.4662βk‖∇hẽ
n,(4)‖22

= −0.3412k〈NLEn,(1), ẽn,(4)〉+ 0.6142k〈NLEn,(2), ẽn,(4)〉
+ 1.1k〈NLEn,(3), ẽn,(4)〉 − 0.6418βk〈∇hẽ

n,(2),∇hẽ
n,(4)〉

− 0.265βk〈∇hẽ
n,(3),∇hẽ

n,(4)〉. (5.61)

As described above, the nonlinear inner product for gradient terms on the right-hand

side could be controlled in the same way as in (5.50)

〈∇hẽ
n,(2),∇hẽ

n,(4)〉 ≤ 1

2

(
‖∇hẽ

n,(2)‖22 + ‖∇hẽ
n,(4)‖22

)
,

so that

0.6418βk〈∇hẽ
n,(2),∇hẽ

n,(4)〉 ≤ 0.3209βk
(
‖∇hẽ

n,(2)‖22 + ‖∇hẽ
n,(4)‖22

)
,

(5.62)

〈∇hẽ
n,(3),∇hẽ

n,(4)〉 ≤ 1

2

(
‖∇hẽ

n,(3)‖22 + ‖∇hẽ
n,(4)‖22

)
,

so that

0.265βk〈∇hẽ
n,(3),∇hẽ

n,(4)〉 ≤ 0.1325βk
(
‖∇hẽ

n,(3)‖22 + ‖∇hẽ
n,(4)‖22

)
,

(5.63)

and

〈NLEn,(1), ẽn,(4)〉 ≤ M̃

2
‖en‖22 +

5β

1706
‖∇he

n‖22

+

(

M̃

2
+

853M̃2

10β

)

‖ẽn,(4)‖22, (5.64a)

〈NLEn,(2), ẽn,(4)〉 ≤ M̃

2
‖ẽn,(2)‖22 +

5β

3071
‖∇hẽ

n,(2)‖22

+

(

M̃

2
+

3071M̃2

20β

)

‖ẽn,(4)‖22, (5.64b)
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〈NLEn,(3), ẽn,(4)〉 ≤ M̃

2
‖ẽn,(3)‖22 +

β

1100
‖∇hẽ

n,(3)‖22

+

(

M̃

2
+

275M̃2

β

)

‖ẽn,(4)‖22 (5.64c)

with the help of the a-priori bound (5.38) and the regularity estimate (5.23). As a con-

sequence, a substitution of (5.62)-(5.64) into (5.61) leads to

‖ẽn,(4)‖22 − ‖ẽn,(3)‖22 + ‖ẽn,(4) − ẽn,(3)‖22 + 0.0128βk‖∇hẽ
n,(4)‖22

− 0.3219βk‖∇hẽ
n,(2)‖22 − 0.1335βk‖∇hẽ

n,(3)‖22
≤ 0.1706M̃k‖en‖22 + 0.001βk‖∇he

n‖22 + 0.3071M̃k‖ẽn,(2)‖22
+ 0.55M̃k‖ẽn,(3)‖22 + C5k‖ẽn,(4)‖22 (5.65)

with

C5 = 0.3412

(

M̃

2
+

853M̃2

10β

)

+ 0.6142

(

M̃

2
+

3071M̃2

20β

)

+ 1.1

(

M̃

2
+

275M̃2

β

)

.

In turn, its combination with (5.54) gives

‖ẽn,(4)‖22 − ‖en‖22 + ‖ẽn,(2) − en‖22 + ‖ẽn,(3) − ẽn,(2)‖22 + ‖ẽn,(4) − ẽn,(3)‖22
+ 0.0662βk‖∇hẽ

n,(2)‖22 + 0.1044βk‖∇hẽ
n,(3)‖22 + 0.0128βk‖∇hẽ

n,(4)‖22
≤ 1.25M̃k‖en‖22 + 0.0025βk‖∇he

n‖22 + (0.45M̃ + C1)k‖ẽn,(2)‖22
+ (0.55M̃ + C3)k‖ẽn,(3)‖22 + C5k‖ẽn,(4)‖22. (5.66)

Similarly, with the help of the a-priori estimates (5.38), and the bound derived in the

first and second RK stages, we arrive at the following rough error estimates at stage 3:

‖ẽn,(4)‖2 ≤
(
1 + C6k

1− C5k

) 1

2 (
k

9

4 + h
13

4

)
≤ 2
(
k

9

4 + h
13

4

)
, (5.67)

‖∇hẽ
n,(4)‖2 ≤ 9β− 1

2k−
1

2 (1 + C6k)
1

2

(
k

9

4 + h
13

4

)
≤ k

7

4 + h
11

4 , (5.68)

by taking

C6 = C1 + C3 + 2.25M̃ + 0.0025β.

In turn, by the aid of inverse inequalities, the ‖ · ‖∞ bound for both the numerical error

function ẽn,(4) and the numerical solution m̃4 could be derived as follows:

‖ẽn,(4)‖∞ ≤ γh−
1

2

(

‖ẽn,(4)‖2 + ‖∇hẽ
n,(4)‖2

)

≤ γ

(

k
7

4

h
1

2

+ h
9

4

)

≤ 1

8
, (5.69)

‖∇hẽ
n,(4)‖∞ ≤ γh−

3

2 ‖∇hẽ
n,(4)‖2 ≤ 1, (5.70)

‖m̃4‖∞ ≤ ‖Φ̃n,(4)‖∞ + ‖ẽn,(4)‖∞ ≤ 9

8
+

1

8
=

5

4
, (5.71)

‖∇hm̃4‖∞ ≤ ‖∇hΦ̃
n,(4)‖∞ + ‖∇hẽ

n,(4)‖∞ ≤ C∗ + 1 = C̃. (5.72)
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Error estimate at Runge-Kutta Stage 4. Similar to the previous analysis, taking a dis-

crete inner product with (5.29) by 2en+1 results in

‖en+1‖22 − ‖ẽn,(4)‖22 + ‖en+1 − ẽn,(4)‖22 − 2k〈τn,en+1〉
= −0.73k〈NLEn,(2),en+1〉+ 0.2638k〈NLEn,(3),en+1〉

+ 0.4662k〈NLEn,(4),en+1〉. (5.73)

A bound for the local truncation error inner product term is obvious

〈τn,en+1〉 ≤ 1

2

(
‖τn‖22 + ‖en+1‖22

)
. (5.74)

Likewise, the estimates for the nonlinear error terms could be similarly performed

〈NLEn,(2),en+1〉 ≤ M̃

2
‖ẽn,(2)‖22 +

β

730
‖∇hẽ

n,(2)‖22

+

(

M̃

2
+

365M̃2

2β

)

‖en+1‖22,

〈NLEn,(3),en+1〉 ≤ M̃

2
‖ẽn,(3)‖22 +

5β

1319
‖∇hẽ

n,(3)‖22

+

(

M̃

2
+

1319M̃2

20β

)

‖en+1‖22,

〈NLEn,(4),en+1〉 ≤ M̃

2
‖ẽn,(4)‖22 +

5β

2331
‖∇hẽ

n,(4)‖22

+

(

M̃

2
+

2331M̃2

20β

)

‖en+1‖22.

(5.75)

Subsequently, a substitution of (5.74)-(5.75) into (5.73) yields

‖en+1‖22 − ‖ẽn,(4)‖22 + ‖en+1 − ẽn,(4)‖22 − 0.001βk‖∇hẽ
n,(2)‖22

− 0.001βk‖∇hẽ
n,(3)‖22 − 0.001βk‖∇hẽ

n,(4)‖22
≤ 0.365M̃k‖ẽn,(2)‖22 + 0.1319M̃k‖ẽn,(3)‖22 + 0.2331M̃k‖ẽn,(4)‖22

+ C7k‖en+1‖22 + k
(
‖τn‖22 + ‖en+1‖22

)
(5.76)

with

C7 = 0.73

(

M̃

2
+

365M̃2

2β

)

+ 0.2638

(

M̃

2
+

1319M̃2

20β

)

+ 0.4662

(

M̃

2
+

2331M̃2

20β

)

.

Its combination with (5.66) leads to

‖en+1‖22 − ‖en‖22 + ‖ẽn,(2) − en‖22 + ‖ẽn,(3) − ẽn,(2)‖22 + ‖en+1 − ẽn,(4)‖22
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+ 0.0652βk‖∇hẽ
n,(2)‖22 + 0.1034βk‖∇hẽ

n,(3)‖22 + 0.0118βk‖∇hẽ
n,(4)‖22

≤ 1.25M̃k‖en‖22 + 0.0025βk‖∇he
n‖22 + (0.815M̃ + C1)k‖ẽn,(2)‖22

+ (0.6819M̃ +C3)k‖ẽn,(3)‖22 + (0.2331M̃ + C5)k‖ẽn,(4)‖22
+ C7k‖en+1‖22 + k

(
‖τn‖22 + ‖en+1‖22

)
. (5.77)

Meanwhile, an application of triangular inequality indicates that

‖en+1‖2 ≤ ‖ẽn,(4)‖2 + ‖en+1 − ẽn,(4)‖2,
so that

C7k‖en+1‖22 ≤ 2C7k
(
‖ẽn,(4)‖22 + ‖en+1 − ẽn,(4)‖22

)
,

(5.78)

and

2C7k‖en+1 − ẽn,(4)‖22 ≤
1

2
‖en+1 − ẽn,(4)‖22,

provided that C7k ≤ 1/4, which is always valid under the linear refinement require-

ment, C1h ≤ k ≤ C2h, and the assumption that k and h are sufficiently small. There-

fore, a substitution of (5.78) into (5.77) results in

‖en+1‖22 − ‖en‖22 + ‖ẽn,(2) − en‖22 + ‖ẽn,(3) − ẽn,(2)‖22 + ‖ẽn,(4) − ẽn,(3)‖22
+

1

2
‖en+1 − ẽn,(4)‖22 + 0.0652βk‖∇hẽ

n,(2)‖22
+ 0.1034βk‖∇hẽ

n,(3)‖22 + 0.0118βk‖∇hẽ
n,(4)‖22

≤ 1.25M̃k‖en‖22 + 0.0025βk‖∇he
n‖22 + C8k‖ẽn,(2)‖22 + C9k‖ẽn,(3)‖22

+ C10k‖ẽn,(4)‖22 + k
(
‖τn‖22 + ‖en+1‖22

)
(5.79)

with C8 = 0.815M̃ + C1, C9 = 0.6819M̃ +C3, and C10 = 2C7 + 0.2331M̃ + C5.

However, the standard ℓ2 error estimate (5.79) does not allow one to apply discrete

Gronwall inequality, due to the H1
h norms of the error function involved on the right-

hand side. To overcome this difficulty, we apply the gradient operation on both sides

of (5.29), with the linear refinement requirement k ≤ C
′

h, and see that

‖∇he
n+1‖2 ≤ ‖∇hẽ

n,(4)‖2 + k‖∇hτ
n‖2 + 0.365k‖∇hNLEn,(2)‖2

+ 0.1319k‖∇hNLEn,(3)‖2 + 0.2331k‖∇hNLEn,(4)‖2
≤ ‖∇hẽ

n,(4)‖2 + C
′‖τn‖2 + 0.365C

′‖NLEn,(2)‖2
+ 0.1319C

′‖NLEn,(3)‖2 + 0.2331C
′‖NLEn,(4)‖2

≤ ‖∇hẽ
n,(4)‖2 + C

′‖τn‖2 +C
′

M̃
(

0.365(‖ẽn,(2)‖2 + ‖∇hẽ
n,(2)‖2)

)

+ C
′

M̃
(

0.1319(‖ẽn,(3)‖2 + ‖∇hẽ
n,(3)‖2)

+ 0.2331(‖ẽn,(4)‖2 + ‖∇hẽ
n,(4)‖2)

)

. (5.80)



Third-order IMEX-RK Method for LL Equation with Arbitrary Damping 1065

Meanwhile, the following result could be derived at the previous time step:

‖∇he
n‖22 ≤ 2C

′‖τn−1‖22 + 0.73C
′

M̃
(
‖ẽn−1,(2)‖22 + ‖∇hẽ

n−1,(2)‖22
)

+ 0.2638C
′

M̃
(
‖ẽn−1,(3)‖22 + ‖∇hẽ

n−1,(3)‖22
)

+ 0.4662C
′

M̃‖ẽn−1,(4)‖22
+ 2
(
0.2331C

′

M̃ + 1
)
‖∇hẽ

n−1,(4)‖22. (5.81)

In turn, a substitution of (5.81) into (5.79) yields

‖en+1‖22 − ‖en‖22 + ‖ẽn,(2) − en‖22 + ‖ẽn,(3) − ẽn,(2)‖22 + ‖ẽn,(4) − ẽn,(3)‖22
+

1

2
‖en+1 − ẽn,(4)‖22 + 0.0652βk‖∇hẽ

n,(2)‖22
+ 0.1034βk‖∇hẽ

n,(3)‖22 + 0.0118βk‖∇hẽ
n,(4)‖22

≤ 1.25M̃k‖en‖22 + 0.0025βk
(

γ1‖ẽn−1,(2)‖22 + γ2‖ẽn−1,(3)‖22 + γ3‖ẽn−1,(4)‖22

+ γ1‖∇hẽ
n−1,(2)‖22 + γ2‖∇hẽ

n−1,(3)‖22 + γ3‖∇hẽ
n−1,(4)‖22

)

+ C8k‖ẽn,(2)‖22 + C9k‖ẽn,(3)‖22 +C10k‖ẽn,(4)‖22
+ k‖en+1‖22 + C11k

(
‖τn‖22 + ‖τn−1‖22

)
, (5.82)

‖en+1‖22 − ‖en‖22 + ‖ẽn,(2) − en‖22 + ‖ẽn,(3) − ẽn,(2)‖22 + ‖ẽn,(4) − ẽn,(3)‖22
+

1

2
‖en+1 − ẽn,(4)‖22 + 0.0652βk‖∇hẽ

n,(2)‖22 + 0.1034βk‖∇hẽ
n,(3)‖22

+ 0.0118βk‖∇hẽ
n,(4)‖22 + k

(
‖∇he

n+1‖22 − ‖∇he
n‖22
)

≤ 1.25M̃k‖en‖22 + 0.0025βk
(

γ1‖ẽn−1,(2)‖22 + γ2‖ẽn−1,(3)‖22 + γ3‖ẽn−1,(4)‖22

+ γ1‖∇hẽ
n−1,(2)‖22 + γ2‖∇hẽ

n−1,(3)‖22 + γ3‖∇hẽ
n−1,(4)‖22

)

+ k
(
γ1‖∇hẽ

n,(2)‖22 + γ2‖∇hẽ
n,(3)‖22 + γ3‖∇hẽ

n,(4)‖22
)

+ C12k‖ẽn,(2)‖22 + C13k‖ẽn,(3)‖22 + C14k‖ẽn,(4)‖22
+ k‖en+1‖22 + C15k

(
‖τn‖22 + ‖τn−1‖22

)
(5.83)

with γ1 = 0.73C
′

M̃ , γ2 = 0.2638C
′

M̃ and γ3 = 2 + 0.4662C
′

M̃ . Therefore, with the

help of the triangular inequalities

‖ẽn,(2)‖2 ≤ ‖en‖2 + ‖ẽn,(2) − en‖2,
‖ẽn,(3)‖2 ≤ ‖en‖2 + ‖ẽn,(2) − en‖2 + ‖ẽn,(3) − ẽn,(2)‖2,
‖ẽn,(4)‖2 ≤ ‖en‖2 + ‖ẽn,(2) − en‖2 + ‖ẽn,(3) − ẽn,(2)‖2 + ‖ẽn,(4) − ẽn,(3)‖2,

(5.84)

we get the following estimate:

‖en+1‖22 − ‖en‖22 + k
(
‖∇he

n+1‖22 − ‖∇he
n‖22
)
+ (0.0652β − γ1)k‖∇hẽ

n,(2)‖22
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+ (0.1034β − γ2)k‖∇hẽ
n,(3)‖22 + (0.0118β − γ3)k‖∇hẽ

n,(4)‖22
≤ Ck

(
‖en−1‖22 + ‖en‖22 + ‖en+1‖22

)
+ C15k

(
‖τn‖22 + ‖τn−1‖22

)

+ 0.0025βk
(
γ1‖∇hẽ

n−1,(2)‖22 + γ2|∇hẽ
n−1,(3)‖22 + γ3‖∇hẽ

n−1,(4)‖22
)
. (5.85)

Finally, an application of discrete Gronwall inequality [29] leads to the desired error

estimate at the next time step

‖en+1‖2 +
(
k‖∇he

n+1‖2
) 1

2 ≤ C(k3 + h4), (5.86)

which comes from the fact that 652β > (25β + 10000)γ1, 1034β > (25β + 10000)γ2,
118β > (25β + 10000)γ3, where γ1 = 0.73C

′

M̃, γ2 = 0.2638C
′

M̃, γ3 = 2 + 0.4662C
′

M̃ .

In particular, the local truncation error estimate, ‖τn‖2, ‖τn−1‖2 ≤ C(k3 + h4), was

used in the derivation. As a result, we see that the a-priori assumption (5.38) has also

been validated at the next time step tn+1, provided that k and h are sufficiently small.

By a mathematical induction argument, the higher order error estimate (5.86) is

valid for any time step. Of course, the convergence estimate (5.9) becomes a direct

consequence of the following identity:

Φn −mn = en − h2Φ(1), (5.87)

which comes from the constructed profile Φn = Φn+h2Φ(1),n. The proof of Theorem 5.1

is complete.

6. Numerical results

In this section, we perform 1D and 3D numerical experiments to verify the theoret-

ical analysis in Section 5. For simplicity, we set ǫ = 1, f = 0 in (2.8), and α = 0.01,

β = 3 in the next accuracy test. The 1-D exact solution is taken to be

me =
(
cos(X) sin t, sin(X) sin t, cos t

)T
with X = x2(1− x)2.

The 3-D exact solution is chosen to be

me =
(
cos(XY Z) sin t, sin(XY Z) sin t, cos t

)T
,

where

X = x2(1− x)2, Y = y2(1− y)2, Z = z2(1− z)2.

Clearly the homogeneous Neumann boundary condition (2.2) is satisfied and a forcing

term

fe = ∂tme − α∆me − α |∇me|2 +me ×∆me

is included into the nonlinear part N(t,m).
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6.1. Accuracy test of IMEX-RK3

In the 1-D computation, we fix k = 0.0001× h2/3 and record the error in terms of h
in Table 1, fix k = (1e− 03)/(1e + 04) and record the error in terms of h in Table 2.

In the 3-D computation, we also fix k = 0.001 × h2/3 and record the error in terms

of k in Table 3, fix k = 1/10000 and record the error in terms of h in Table 4. In Fig. 2,

we plot the convergence rates of the L∞, L2 and H1 error for the LL equation, the

expected convergence rates are observed.

Table 1: Temporal accuracy check in the 1-D case (k = 0.0001 × h2/3).

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

0.1/3302 1.8064e− 04 1.8228e− 04 2.4995e− 03

0.1/3659 1.3617e− 04 1.3515e− 04 1.8393e− 03

0.1/4000 1.0275e− 04 1.0401e− 04 1.4117e− 03

0.1/4327 8.1831e− 05 8.2470e− 05 1.1171e− 03

order 2.9492 2.9336 2.9782

Table 2: Spatial accuracy check in the 1-D case (k = (1e− 03)/(1e + 04)).

h ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/160 2.8966e− 10 8.5153e− 11 4.4271e− 08

1/240 1.2934e− 10 3.7953e− 11 1.9679e− 08

1/320 7.2876e− 11 2.1370e− 11 1.1070e− 08

1/400 4.6676e− 11 1.3683e− 11 7.0848e− 09

order 1.9922 1.9953 1.9998

Table 3: Temporal accuracy check in the 3-D case (k = 0.001 × h2/3).

k ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/1587 3.5857e− 04 2.4600e− 04 4.4100e− 04

1/2080 1.5051e− 04 1.0164e− 04 2.0036e− 04

1/2520 8.1408e− 05 5.7072e− 05 1.0807e− 04

1/2924 5.4348e− 05 3.7012e− 05 6.5389e− 05

order 3.1103 3.1020 3.1180

Table 4: Spatial accuracy check in the 3-D case (k = 1e− 04).

h ‖mh −me‖∞ ‖mh −me‖2 ‖mh −me‖H1

1/4 8.1432e− 05 5.7082e− 05 9.3202e− 05

1/5 5.4354e− 05 3.7020e− 05 6.1874e− 05

1/6 3.6180e− 05 2.6471e− 05 4.0970e− 05

1/7 2.7160e− 05 1.8529e− 05 3.0914e− 05

order 1.9861 1.9881 1.9987
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Figure 2: Temporal and spatial accuracy orders in the 1-D and 3-D domains computations. Top row: 1-D;
Bottom row: 3-D.

6.2. Dependence on the damping parameter

The GSPM method [49] is unconditionally stable with constant coefficients and

SPD structure, while its primary disadvantage is associated with its first-order accu-

racy in time. The SIPM [13, 50] is indeed a second-order-in-time method, while the

non-symmetric structure and variable coefficients have led to more expensive compu-

tational costs. In addition, the two above-mentioned methods have focused on small

damping parameter, nevertheless, large damping parameter has also been considered in

the numerical design for real micromagnetics in general. Afterwards, the SIPM scheme

(with large damping) in [12] has greatly improved the computational efficiency, since

only three Poisson solvers are needed at each time step. Meanwhile, this numerical

approach only works if α > 1, while most magnetic materials correspond to α ≪ 1.

On the other hand, for the BDF schemes of orders 3 to 5 [1], coupled with higher-

order finite element spatial discretization, a positive lower bound on the damping α is

needed to ensure a numerical stability. In more details, the damping parameter sat-

isfies α > αk with αk = 0.0913, 0.4041, 4.4348 for orders k = 3, 4, 5, respectively, for

the BDF-k method analyzed in [1]. Therefore, it is worthwhile to design an efficient

and higher order accurate numerical scheme that is unconstrained by the damping

parameter α.
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Table 5: Comparison between the GSPM, BDF3, SIPM, SIPM with large damping and the IMEX-RK3
proposed scheme.

Property or number Scope of α Symmetry Accuracy in time

GSPM not arbitrary Yes O(k)

BDF3 α > 0.0913 No O(k3)

SIPM arbitrary No O(k2)

SIPM with large damping α > 1 Yes O(k2)

IMEX-RK3 proposed arbitrary Yes O(k3)

Table 6: 1-D numerical errors of the IMEX-RK3 scheme.

β k
α = 0.001 α = 0.1

L∞ L2 H1 L∞ L2 H1

0.1/3302 1.8127e− 04 1.8294e− 04 2.4964e− 03 1.7463e− 04 1.7719e− 04 2.5257e− 03

1 0.1/3659 1.3680e− 04 1.3565e− 04 1.8368e− 03 1.3054e− 04 1.3129e− 04 1.8604e− 03

0.1/4000 1.0323e− 04 1.0439e− 04 1.4099e− 03 9.8705e− 05 1.0104e− 04 1.4273e− 03

order 2.9311 2.9253 2.9796 2.9715 2.9289 2.9762

0.1/3302 1.8127e− 04 1.8294e− 04 2.4964e− 03 1.7463e− 04 1.7719e− 04 2.5257e− 03

3 0.1/3659 1.3680e− 04 1.3565e− 04 1.8368e− 03 1.3054e− 04 1.3129e− 04 1.8604e− 03

0.1/4000 1.0323e− 04 1.0439e− 04 1.4099e− 03 9.8705e− 05 1.0104e− 04 1.4273e− 03

order 2.9311 2.9253 2.9796 2.9715 2.9289 2.9762

0.1/3302 1.8127e− 04 1.8294e− 04 2.4964e− 03 1.7463e− 04 1.7719e− 04 2.5257e− 03

5 0.1/3659 1.3680e− 04 1.3565e− 04 1.8368e− 03 1.3054e− 04 1.3129e− 04 1.8604e− 03

0.1/4000 1.0323e− 04 1.0439e− 04 1.4099e− 03 9.8705e− 05 1.0104e− 04 1.4273e− 03

order 2.9311 2.9253 2.9796 2.9715 2.9289 2.9762

Table 7: 3-D numerical errors of the IMEX-RK3 scheme.

β k
α = 0.001 α = 0.1

L∞ L2 H1 L∞ L2 H1

1/2080 1.5087e− 04 1.0163e− 04 2.0010e− 04 1.5183e− 04 1.0209e− 04 2.0010e− 04

1 1/2520 8.1578e− 05 5.7080e− 05 1.0798e− 04 8.3704e− 05 5.7304e− 05 1.0842e− 04

1/2924 5.3962e− 05 3.6999e− 05 6.5334e− 05 5.2238e− 05 3.6101e− 05 6.5537e− 05

order 3.0275 2.9688 3.2830 3.1313 3.0501 3.2733

1/2080 1.5087e− 04 1.0163e− 04 2.0010e− 04 1.5183e− 04 1.0209e− 04 2.0010e− 04

3 1/2520 8.1578e− 05 5.7080e− 05 1.0798e− 04 8.3704e− 05 5.7304e− 05 1.0842e− 04

1/2924 5.3962e− 05 3.6999e− 05 6.5334e− 05 5.2238e− 05 3.6101e− 05 6.5537e− 05

order 3.0275 2.9688 3.2830 3.1313 3.0501 3.2733

1/2080 1.5087e− 04 1.0163e− 04 2.0010e− 04 1.5183e− 04 1.0209e− 04 2.0010e− 04

5 1/2520 8.1578e− 05 5.7080e− 05 1.0798e− 04 8.3704e− 05 5.7304e− 05 1.0842e− 04

1/2924 5.3962e− 05 3.6999e− 05 6.5334e− 05 5.2238e− 05 3.6101e− 05 6.5537e− 05

order 3.0275 2.9688 3.2830 3.1313 3.0501 3.2733
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To investigate the dependence on the damping parameter for the proposed IMEX-

RK3 scheme, two different damping parameters, α = 0.01, 0.1, are taken, and k =
0.0001×h2/3 is fixed. The results of 1-D and 3-D corresponding examples are presented

in Tables 6 and 7. It is observed that the choice of α is arbitrary, and the third-order

accuracy is preserved in the temporal discretization. Based upon these results, it is

clear that the proposed IMEX-RK3 method works well for general artificial damping

parameters. More comparison results and details are displayed in Table 5. In fact, we

set β > 1 if α ≪ 1, and β = α if α ≥ 1, then apply the IMEX-RK numerical scheme. As

a result, the proposed numerical method works for a general damping parameter.

7. Conclusions

In this paper, we propose a third-order implicit-explicit Runge-Kutta (IMEX-RK3)

numerical method to solve the Landau-Lifshitz equation. By introducing an artificial

damping term, IMEX-RK method can achieve higher-order accuracy in time, with the

order conditions satisfied. In the framework, we construct the third-order implicit-

explicit Runge-Kutta scheme, and the stability condition is imposed. Moreover, in spite

of the multi-stage nature and its complicated nonlinear terms, a rigorous optimal rate

convergence analysis of this IMEX-RK3 method is provided. It is worth mentioning that

the convergence analysis is valid for all damping parameter α > 0. In addition, its nu-

merical accuracy and the insensitive dependence on the artificial damping parameter

α have been verified in both the 1-D and 3-D computations. Numerical results have

demonstrated that the IMEX-RK3 method works well for a general damping parameter,

regardless of the small damping parameters in real micromagnetics simulations or the

large damping parameters in theoretical works. In summary, the proposed numerical

scheme not only preserves higher order accuracy and higher computational efficiency,

but also its stability is not restricted by the magnitude of damping parameters, in com-

parison with many existing numerical methods.
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