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Abstract 

Lung cancer sequencing efforts have uncovered mutational signatures that are attributed to exposure to the cigarette smoke carcinogen 
benz o[a]p yrene. B enz o[a]p yrene metaboliz es in cells to benz o[a]p yrene diol epo xide (BPDE) and reacts with guanine nucleotides to f orm bulky 
BPDE adducts. These DNA adducts block transcription and replication, compromising cell function and survival, and are repaired in human cells 
by the nucleotide excision repair pathway. Here, we applied high-resolution genomic assays to measure BPDE-induced damage formation and 
mutagenesis in human cells. We integrated the new damage and mutagenesis data with pre vious repair, DNA meth ylation, RNA e xpression, 
DNA replication, and chromatin component measurements in the same cell lines, along with lung cancer mutagenesis data. BPDE damage 
formation is significantly enhanced by DNA methylation and in accessible chromatin regions, including transcribed and early-replicating regions. 
Binding of transcription factors is associated primarily with reduced, but also enhanced damage formation, depending on the factor. While DNA 

methylation does not appear to influence repair efficiency, this repair was significantly ele v ated in accessible c hromatin regions, whic h accu- 
mulated fe w er mutations. T hus, when damage and repair driv e mutagenesis in opposing directions, the final mutational patterns appear to be 
dictated by the efficiency of repair rather than the frequency of underlying damages. 
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Introduction 

Smoking is a well-established driver of cancer mutagenesis.
Tobacco smoke is a complex mixture of thousands of chem-
icals, at least 60 of which are carcinogenic [ 1–3 ]. These in-
clude the highly carcinogenic benzo[a]pyrene, a polyaromatic
hydrocarbon that is metabolized in cells to the reactive form
benzo[a]pyrene diol epoxide (BPDE). BPDE exerts its carcino-
genic potential by reacting primarily with the N 

2 position
of guanines to form a bulky DNA adduct (BPDE-dG) [ 1–3 ].
BPDE adducts alter the helical structure of the DNA result-
ing in major consequences to the cells: First, they block tran-
scription, resulting in a transcriptional shutdown that com-
promises cellular function and survival [ 4–6 ]. Second, they
block the replicative DNA polymerases and lead to elevated
mutagenesis [ 7–9 ]. Most affected are tissues directly exposed
to the smoke such as those of the lung, respiratory system,
head, and neck [ 3 ]. Seminal studies on the mutations of the
p53 tumor suppressor genes in the 1990’s linked BPDE ex-
posure to specific cancer-driving mutations [ 10 ]. Recent can-
cer genome sequencing efforts discovered specific mutational
signatures that are linked to smoking [ 11 ]. Treating cell lines
with BPDE re-created these mutational signatures [ 12 , 13 ] in-
dicating that BPDE is indeed a major driver of smoke-related
mutagenesis. 

In human cells, the major pathway for BPDE-dG adduct
repair is nucleotide excision repair (NER) [ 14 , 15 ]. The pro-
cess of repair is divided into three major steps: (i) Recogni-
tion of the damage, which can occur either directly (in general
repair), or by a stalled RNA polymerase in a transcription-
coupled manner (in transcription-coupled repair); (ii) Incision
3 ′ and 5 ′ of the damage, removing a nucleotide stretch of 24–
32 nt and leaving a single stranded gap; (iii) Gap-filling DNA
synthesis and ligation to restore intact double-stranded DNA.
Inactivating mutations in the key NER pathway genes result in
Xeroderma Pigmentosum, a severe genetic syndrome of high
cancer susceptibility [ 16 ]. In addition, genome-wide associa-
tion studies suggest attenuated repair resulting from polymor-
phism (and not inactivation) of excision repair genes can lead
to enhanced lung cancer risk [ 17–20 ]. 

Epigenetic factors can influence damage formation and
NER efficiency – and by that the degree of mutational bur-
den. Advances in the genome-wide mapping of DNA dam-
age and repair have boosted our understanding of the de-
terminants of damage formation and NER [ 21 ]. The major-
ity of these studies focused on ultraviolet (UV)-induced dam-
ages, primarily the cyclobutane pyrimidine dimers (CPDs [ 22–
26 ]). The major determinant of CPD damage formation is
the frequency of the target pyrimidine dimers within a se-
quence [ 26 , 27 ]. While overall chromatin accessibility does
not strongly influence damage formation [ 23 ], the rotational
setting of the nucleosomes or binding of specific transcription
factors (TFs) does modulate damage formation [ 25 ,28–33 ].
Outward-facing rotational positions in nucleosomes and ETS
binding sites exhibit higher damage levels, which is thought
to be due to the bending of the DNA into favorable angles for
dimer formation [ 24 , 25 , 28 , 29 , 32 , 34 , 35 ]. 

NER efficiency is highly heterogenic and is strongly influ-
enced by the chromatin state. Due to transcription-coupled
repair (TC-NER), actively transcribed genes are preferentially
repaired. This preferential repair is exclusive to the transcribed
strand, on which a stalled RNA polymerase recruits the repair
machinery. High-resolution mapping of the excised oligos re-
leased during excision by excision-repair sequencing (XR-seq 
[ 22 ]) revealed this preferential repair also occurs at sites of 
bi-directional transcription in promoters and enhancers. Nu- 
cleosome binding, on the other hand, prevents the access of 
repair factors to the DNA and inhibits global genome NER 

(GG-NER). As a result, the active and accessible regions of 
the genome in cells are preferentially repaired, essentially pri- 
oritizing regions necessary for cell function [ 36 ]. 

While mutational hotspots were long considered to be the 
product of phenotypic selection, the seminal study of Gerd 
Pfeifer and colleagues showed that targeted BPDE adduct sen- 
sitivity at specific p53 sites could also be an important driv- 
ing force [ 37 ]. Still, BPDE adduct formation is considerably 
less characterized compared to other NER-substrates, such 
as damages induced by UV radiation and adducts induced 
by the chemotherapy drug cisplatin [ 21 ]. Interestingly, an in 
vitro study reported that nucleosome binding decreases BPDE 

adduct formation, specifically near the dyad [ 38 ]. 
DNA methylation, which in humans occurs on the 5-methyl 

position of cytosines within CpG pairs, can enhance BPDE- 
adduct formation on the adjacent G. This was reported in 
studies of specific sequence contexts, primarily the p53 gene,
both in vitro in purified DNA [ 39–44 ] and in experiments 
in cells [ 39 , 45 ]. However, the effect of DNA methylation on 
damage formation depended on the sequence context [ 39 , 44 ],
and not all sites of elevated BPDE damage also exhibited el- 
evated mutagenesis [ 42 , 46 , 47 ]. Thus, the extent to which 
DNA methylation affects BPDE mutagenesis is unclear. 

BPDE-dG repair, measured genome-wide in human cells by 
tXR-seq [ 48 ], is higher on the transcribed strand and in acces- 
sible chromatin regions, similar to the other NER-substrate 
damages [ 22 , 36 , 49 ]. This study also revealed an enrichment 
of CpG dinucleotides within the excised reads; however, it 
could not determine whether this was due to higher damage 
or preferential repair of the CpG sites, and if this was due 
to DNA methylation [ 48 ]. A recent study mapped BPDE-dG 

adducts in cells exposed to low doses of BPDE over a 24-h pe- 
riod [ 50 ]. Under this long exposure, damage formation and re- 
pair co-occur. Thus, their individual contribution to the dam- 
age profile cannot be isolated, complicating the interpretation 
of the results. 

Here we applied the single-nucleotide resolution Damage- 
seq method [ 23 , 49 ] to map the initial BPDE-dG adduct for- 
mation and to identify sites of elevated damage sensitivity. We 
then applied single-molecule mutation sequencing (SMM-seq 
[ 51 ]) to identify the BPDE-dG-induced mutations in the same 
cells. Integrating the damage and mutagenesis data we gen- 
erated with previous repair, methylation, expression, replica- 
tion timing, and chromatin component measurements in the 
same experimental system, along with lung cancer mutagene- 
sis data, we delineate the determinants of damage and repair 
and their relative contribution to the final mutagenic outcome 
of BPDE exposure. 

Materials and methods 

Reagents 

Cell culture reagents, including Dulbecco’s modified Ea- 
gle’s medium (DMEM) (01–055-1A), RPMI 1640 medium,
and all media supplements were from Biological Indus- 
tries, Beit Haemek, Israel. BPDE (#477) was purchased from 

MRIGlobal, Kansas City, MI, USA. Reagents for DNA anal- 
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sis, included DNeasy ® Blood Tissue kit (69 504, Qiagen,
ilden, Germany), the QuantiFluor ® dsDNA System (E2670,
romega Corporation, Madison, WI, USA), and the G50 spin
olumns (GE healthcare). For immunodetection and enrich-
ent of BPDE-dG damages, nitrocellulose membrane (Cy-
iva, 10 600 003, Marlborough, MA, USA), the anti-BPDE
ntibody (Santa Cruz Biotechnology, Inc., sc-52624, Dallas,
X, USA), Dynabeads Protein G beads (#10004D), and M280
heep Anti-rabbit IgG (#11203D) from Invitrogen Waltham,
assachusetts, USA, horseradish peroxidase-conjugated anti-
ouse secondary antibody (NA931, Cytiva, Marlborough,
A, USA), Enhanced Chemiluminescence (ECL™ Prime
estern Blotting System, Cytiva, RPN2236, Marlborough,
A, USA) and SYBR™ Gold Nucleic Acid Gel Stain (Invit-

ogen, S11494, Carlsbad, CA, USA) 

iological resources 

he study was performed in the GM12878 lymphoblast cell
ine (Coriell Repository, Camden, NJ, USA) and A549 lung
denocarcinoma CCL-185 TM cell line (ATCC, Manassas, VA,
SA). 

ell culture and treatment 

M12878 cells were grown in RPMI medium supplemented
ith 15% Fetal Bovine Serum (FBS), 4 mM glutamine, 100
nits / ml penicillin, and 0.25 mg / ml streptomycin. A549 cells
ere grown in DMEM supplemented with 10% FBS, 2 mM
lutamine, 1 mM sodium pyruvate, 100 units / ml penicillin,
nd 0.25 mg / ml streptomycin. Mycoplasma was monitored
very 3–4 months. 

PDE treatment 

M12878 cells were grown to 700 000 cells / ml in a T75
ask, and A549 cells were grown to ∼80% confluence in
 150 mm dish. For damage treatment, the cells were incu-
ated with media containing 25 μM of BPDE for 2 h. Cells
ere collected immediately, followed by genomic DNA ex-
raction by DNeasy ® Blood & Tissue kit, and quantified by
he QuantiFluor ® dsDNA System following manufacturers’
rotocols. 
For in vitro treatment of genomic DNA, 3 μg of genomic
NA was incubated with 3 μM BPDE in a final volume of 30
l at 37 degrees for 2 h. Treated DNA was purified through a
50 spin column (GE) and subjected to Damage-seq. 

amage-seq 

amage-seq was performed as previously described without
iotin purification after the primer extension step [ 49 ,52 ].
riefly, genomic DNA was sheared by sonication with Biotup-
or Pico sonicator to generate fragments averaging 300 bp in
ength. For polymerase chain reaction (PCR)-amplified DNA,
fter sonication and ligation of the Ad1 adapter, 10 ng of
he ligation product were PCR-amplified with primers Pu / Pi
or 10 cycles. The PCR products were purified and subject
o BPDE treatment as described above. Damaged DNA im-
unoprecipitation was performed with Anti-BPDE Antibody
8E11, Santa-Cruz Biotechnology, sc-52624), using 2 μl per
g DNA using 10 μl each of protein G and anti-rabbit dyn-
beads. Library quality was assessed using the Agilent 4200
apeStation. Qualified libraries were pooled and sequenced
n Illumina NovaSeq 6000 or NextSeq 550 sequencers. Reads
were processed following the steps mentioned in Hu et al.
Reads containing the Ad1 adapters were discarded by cu-
tadapt (version 3.5) and were aligned to hg38 genome us-
ing bowtie1 (version 1.3.1). Then, Picard MarkDuplicate (ver-
sion 2.26.10; http:// broadinstitute.github.io/ picard ) was used
to remove read duplicates. Next, unique reads in BED format
were further filtered with Bedtools (version v2.27.1) and cus-
tom BASH scripts. Reads from replicates of the same condi-
tion were merged for further analyses. Read counts obtained
after each step of the analysis for each experimental replicate
are detailed in Supplemental Table S1 . For replicate correla-
tion plots, a 10 kb windows bed file was created using bed-
tools makewindows (version 2.31.0). Read counts over these
windows was calculated for each replicate using bedtools cov-
erage and Spearman correlation coefficients were calculated
using the corrplot R package (version 0.95). 

Immuno-dot blot assay 

DNA extraction was performed using the DNeasy Blood &
Tissue Kit. For each sample, 500 ng of DNA was applied per
well in duplicate technical replicates and transferred to a nitro-
cellulose membrane via vacuum using the Bio-Dot apparatus
(Bio-Rad, 1706 545, Rishon LeZion, Israel). The membrane
was subsequently baked at 75 ◦C for 60 min in a Bio-Rad Gel
Dryer model 583. After blocking with 5% milk, the mem-
brane was incubated with the primary anti-BPDE antibody,
diluted 1:500. Following incubation with an HRP-conjugated
secondary antibody, the damage signal was visualized using
the Enhanced Chemiluminescence. The amount of genomic
DNA loaded on the membrane was quantified using SYBR™
Gold Nucleic Acid Gel Stain, and the damage signal was nor-
malized relative to the SYBR-Gold signal using Bio-Rad’s Im-
age Lab version 6.1 software. 

In vitro mutagenesis assay 

GM12878 cells were cultured in T25 flasks with 5 ml of me-
dia containing either 0.125 μM BPDE, or Dimethyl sulfoxide
(DMSO), over a total of 12 passages. Cells were counted ev-
ery 2 days, and were split into new flasks at a concentration
of 300 000 cells / ml under the condition that they completed
at least 1.5 replication cycles. BPDE was freshly dissolved in
media to the desired concentration from a 1 mM BPDE stock
solution in DMSO for each passage. Cells were harvested ap-
proximately every 5–7 replication cycles, and DNA was ex-
tracted as previously described. DNA from GM12878 cells
prior to treatment, DMSO-treated cells, and 0.125 μM BPDE-
treated cells at the 2-week timepoint ( ∼11 replication cycles)
was sequenced using SMM-seq [ 51 ] performed by Mutagen-
tech. In short, library preparation included fragmentation of
DNA using restriction enzymes, size selection for reduced rep-
resentation, and rolling circle-based linear amplification, to
create multiple copies of a single original DNA molecule (for
both strands), then conventional sequencing library was pre-
pared and DNA was sequenced using llumina NovaSeq instru-
ment using 150 paired-end mode. 

VCF files were obtained from Mutagentech following se-
quencing, alignment to the hg38 genome and variant call-
ing using GATK [ 53 ]. Using the untreated sample sent for
sequencing, background mutations were filtered using the
bcftools isec command [ 54 ]. Filtered VCF were further an-
alyzed using the MutationalPatterns package in R [ 55 ] to cre-
ate a count table of six single base substitution (SBS) types.

http://broadinstitute.github.io/picard
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
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P -value between DMSO-treated and BPDE-treated replicates
was calculated using the chi-square statistical analysis. 

Web sites / data base referencing 

For comparative analyses, genomic data was obtained from
the TCGA ( https:// www.cancer.gov/ ccg/ research/ genome-
sequencing/ tcga ), ENCODE ( https:// www.encodeproject.
org/ ), cBioPortal ( https:// www.cbioportal.org/ ), COS-
MIC ( https://cancer .sanger .ac.uk/signatures/), Zenodo
( https:// zenodo.org/ records/ 556775#.XrfJJagzaUl ) and GEO
( https:// www.ncbi.nlm.nih.gov/ geo/ ) databases. 

XR-seq data analysis 

Genome-wide maps of NER for BPDE in the GM12878 cell
line were obtained from GEO (accession number GSE97675).
The sequencing reads were extracted, processed, and mapped
to the human genome following the steps outlined in [ 49 ]. To
avoid biases in the normalization of repair to damage, the read
length in XR-seq was reduced to 3 nt, based on the identi-
fied guanine-enriched sites, by taking the −1 and +1 flanking
nucleotides. 

Comparative data analysis 

Read counts for each genomic feature were obtained using
bedtools coverage. Average profiles for each element were gen-
erated using the bedtools intersect command and the Biocon-
ductor package genomation (version 1.36.0). The curation of
the different genomic features is detailed below. 
Curation of active and accessible chromatin regions:

Coordinates of DNase I hypersensitivity sites (Narrow
peak format) for GM12878 (ENCSR000EMT) and A549
(ENCSR000ELW) cell lines were downloaded from EN-
CODE. Overlapping sites were merged, retaining only the
longer regions using the bedtools (version 2.31.0) cluster com-
mand. Additionally, DNase hypersensitivity sites (DHS) over-
lapping with genes were removed using the bedtools intersect
command, resulting in a total of 14 841 sites for GM12878
and 34 995 sites for A549. 

DHS in normal lung tissue were identified using data
from 17 lung tissue samples obtained from ENCODE
( Supplementary Table S2 ). The DHS summits were recalcu-
lated by merging the peaks across all samples and then de-
termining the summit of each peak as the point of maximum
signal coverage. 

Chromatin state annotations from ChromHMM
for GM12878, A549 and lung tissue were retrieved
from ENCODE (ENCSR988QYW, ENCSR283FYU and
ENCFF361HLB, respectively). 
Curation of methylated DNA data: Whole genome bisulfite

sequencing (WGBS) data for CpG methylation in GM12878
(ENCSR890UQO) and A549 (ENCSR481JIW) cell lines
were retrieved from ENCODE. Only CpG sites with a read
depth > 5 and with < 15% variance in methylation scores
between replicates were retained for analysis, resulting in
17 326 394 sites for GM12878 and for 31 610 739 sites for
A549. 

CpG island coordinates were obtained from the UCSC Ta-
ble Browser for the hg38 genome assembly, comprising 31 448
sites. For each CpG island, the average methylation score (cal-
culated from all CpGs within the island), the standard devia-
tion (SD), and the coverage (the fraction of CpGs within the
island that have methylation information) were determined.
To classify CpG islands as methylated or unmethylated, only 
CpG islands with a methylation score SD ≤10 and a coverage 
fraction ≥5 were considered. Methylated CpG islands were 
defined as those with an average methylation score > 50, while 
unmethylated CpG islands had an average score of 50 or less.

WGBS data from lung tissue were obtained from ENCODE 

(ENCFF992DYS and ENCFF453HAD datasets). Only CpG 

sites with a read depth > 5 in both datasets and with < 10% 

variance in methylation scores between them were retained 
for analysis, resulting in 30 403 746 CpG sites. To compare 
mutation rates between methylated and unmethylated CpG 

sites, methylated sites were defined as those with an average 
score of ≥70%, while unmethylated sites were defined as those 
with an average score of ≤30%. For each group, the fraction 
of overlapping C > A mutations was calculated as the number 
of mutations within the group divided by the proportion of 
that group out of all CpG sites. 
Curation of active TF-binding sites: Active TF-binding sites 

for the GM12878 cell line were curated from binding site calls 
based on 286 non-redundant TF motif clusters previously re- 
ported in Vierstra et al. [ 56 ] using reference genome assembly 
hg38, encompassing 2179 total motifs for 702 distinct human 
TF proteins. The called sites were intersected with genome- 
wide DNA accessibility data (DNase-seq) from GM12878 
cells, downloaded from ENCODE [ENCSR000EMT] and 
processed as described above. For each TF motif cluster, the 
binding site calls in accessible DNA were ranked by their motif 
scores using MOtif Occurrence Detection Suite [ 57 ], and the 
top 50% of sites with the highest scores were used for further 
analysis. 
Curation of early and late replicating regions: Constitu- 

tive replication origins across multiple cell lines were obtained 
from Guilbaud et al. [ 58 ]. Intervals of 10 kb centered on the 
origin midpoints were created to define the regions of interest.
In cases where neighboring origins were < 10 kb apart, only 
the longer origins were kept, leaving 15 637 unique origins.
Early and late constitutive replicating regions were obtained 
from [ 59 ]. 
Gene annotations: The annotation file for 28 712 protein- 

coding genes was retrieved from the UCSC Table Browser 
(RefSeq, assembly hg38). In cases of multiple gene variants,
the longest transcript was retained. Genes that overlapped or 
were located within 6 kb upstream of neighboring genes were 
removed using the bedtools overlap and bedtools closest com- 
mands. Exon and intron annotation files for these genes were 
retrieved by uploading the list of genes to the UCSC Table 
Browser. To avoid biases from splicing junctions, 100 bases 
were removed from each end of the introns, and 10 bases were 
removed from each end of the exons. 

Analysis of BPDE-dG signal at TF-binding sites 

Active TF-binding sites were curated as described above. TF 
motif clusters with < 5000 binding site calls were filtered out,
as the low number of sites, when intersected with the BPDE 

Damage-seq data, resulted in too few BPDE-dG lesions to 
identify statistically significant trends. After this filtering step,
181 motif clusters covering 618 human TFs were selected 
for further analysis. For each TF motif cluster, the binding 
sites were extended 15 bp downstream and upstream of the 
motif center. For each position in these binding site regions,
we counted the number of BPDE-dG adducts at that posi- 
tion, on each strand of the motif, and compared these counts 

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.encodeproject.org/
https://www.cbioportal.org/
https://cancer.sanger.ac.uk/signatures/
https://zenodo.org/records/556775#.XrfJJagzaUl
https://www.ncbi.nlm.nih.gov/geo/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
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o the expected number of BPDE-dG adducts according to a
ackground model of BPDE-dG formation in accessible DNA.
riefly, we modeled the formation of BPDE-dG adducts as a
tochastic Poisson process that consists of discrete, indepen-
ent rare events where event frequency is dependent on se-
uence context around a central guanine. 
We compared BPDE-dG formation rates in trimers versus

entamers and selected a pentamer-based Poisson model after
bserving significant variation in BPDE-dG formation among
entamers sharing the same central trimer ( Supplementary 
ig. S1 ). BPDE-dG formation rates for all 256 NNGNN
entamers were calculated by intersecting GM12878 BPDE-
G damage-seq data with GM12878 accessible regions using
EDTools (v2.31.0) and dividing total damages by the num-
er of occurrences for each pentamer. We calculated the ex-
ected number of BPDE-dG adducts over n occurrences of
iven pentamer, p as r p n p = E[ X p ] = λp , where r p is the rate
f BPDE-dG formation for pentamer p. By considering the
PDE-dG formation rate of each pentamer as its own inde-
endent Poisson distribution, we leveraged the property for
ums of Poisson-distributed random variables [ 60 ] to esti-
ate the cumulative amount of damage separately for both
trands at each position in the TF-binding site region. The
redicted BPDE-dG signal for each strand was then scaled
y multiplying the BPDE-dG estimates by the average ratio
f observed to predicted BPDE-dG signal in the immediate
anking regions around the TF motif, computed separately
or each side of the motif. After scaling, a P -value for the ob-
erved BPDE-dG signal at each position in the TF-binding site
egion was calculated using the Poisson distribution imple-
entation from the scipy.stats module (v1.14.0) in Python. To
ontrol for the batch effects observed in GM12878 Damage-
eq data ( Supplemental Fig. S2 ), the BPDE-dG predictions for
ellular DNA and naked DNA (nDNA) conditions were mod-
led separately for combined replicates 1 and 2, and com-
ined replicates 3 and 4 ( Supplemental Table S3 ), and the
rends were further analyzed for consistency, as described
elow. 

eneration of the TF-binding site BPDE-dG heat 
ap 

-values for the observed Damage-seq signal in BPDE treated
M12878 cells (replicates 1 and 2) were calculated per po-
ition for both motif and motif-complement strands of each
F motif cluster. Correction for multiple hypothesis testing
as performed using the Benjamini–Hochberg procedure im-
lemented in the statsmodel.stats.multitest (v0.14.2) Python
odule, and a false discovery rate (FDR) cutoff of 0.01
as used for significance. The same process was applied for
F motif clusters in the Damage-seq from GM12878 DNA
reated in vitro (replicates 1 and 2) and P -values were cor-
ected for a final FDR cutoff of 0.1. Positions within the
F motif cluster region that demonstrated either a signifi-
ant enrichment or reduction of BDPE-dG signal (corrected
 -value < .01) that was also observed at the same position
n the nDNA condition (corrected P -value < .1) were con-
idered false positives and omitted. For further confidence
n our results, we then repeated the above process in paral-
el for cellular and in vitro treated DNA conditions in repli-
ates 3 and 4, and we retained only positions in TF-binding
ite regions with concordance between the two replicate
ubgroups. 
To best describe the magnitude of the differential BPDE-
dG levels in the presence of active TF binding, we then de-
termined for each significant position the BPDE-dG Z-score
difference between the cellular DNA and nDNA conditions
for both strands of each TF motif cluster. We then generated
a heatmap of the �Z-scores to summarize the magnitude and
directionality of the putative effects of TF binding on BPDE-
dG formation (Fig. 3 C). 

Mutation data analysis 

Whole genome sequencing (WGS) data of mutational profiles
in lung cancer (TCGA-LUAD and TCGA-LUCS) was down-
loaded from the TCGA database. Smoking status and clin-
ical information were obtained from cBioPortal [ 61 ]. VCF
files were filtered to retain only SBSs, and further restricted
to C > A transversions, which are strongly associated with
BPDE exposure. All filtered mutations from the selected sam-
ples were merged and used for downstream analyses. Only
data from patients (63 individuals) with a confirmed history
of smoking were included (a total of 4015 719 mutations).
To eliminate sequence context bias, mutation counts were
normalized to the occurrence of their respective target trin-
ucleotides using custom scripts. 

Creation of damage, repair, and mutagenesis 
trinucleotide context profiles 

Mutagenesis data was obtained by merging the two BPDE-
treated samples and filtering for C > A and G > T mutations.
Trinucleotide context was extracted using the MutationalPat-
terns package. A BED file containing regions sequenced by
SMM-seq (according to AluI restriction enzymes) were ob-
tained from Mutagenetech. Sequencing was done in 150 bp
paired-end mode, so regions were trimmed to include only
150 nt at the start and end of the region. Coordinates were
lifted over from the hg19 genome to the hg38 genome using
CrossMap [ 62 ], and chrY and chrM reads were filtered out.
BED files containing damage and repair data from Damage-
seq and XR-seq experiments (previously described) were in-
tersected with the bed file containing regions sequenced by
SMM-seq using the bedtools intersect command. Bedtools get-
fasta command was used to get the sequence of these intervals
for further analysis. Data was filtered for 3 nt-long reads con-
taining G > T or C > A in the second position and plotted
for relative frequencies of each trinucleotide in the pyrimi-
dine context (C > A only). The SBS4 mutational signature in
numerical form was downloaded from the COSMIC website
( https://cancer .sanger .ac.uk/signatures/sbs/sbs4/). Entries con-
taining C > A mutations were filtered and the relative fre-
quency of those was calculated and plotted. Cosine similarity
was calculated using the lsa package in R and heatmap created
using corrplot package. 

To assess the reduction of BPDE-induced mutations around
DHS, the number of overlapping SMM-seq-detected C > A
mutations within a 3 kb interval of the DHS midpoint was
calculated using the bedtools intersect command. To evalu-
ate statistical significance, the same analysis was repeated on
1000 iterations of randomly selected cytosines (Cs) from the
same regions sequenced by SMM-seq. P -values were calcu-
lated based on the number of iterations (out of 1000) where
the number of overlapping mutations in the random set was
equal to or smaller than the number of overlapping BPDE-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://cancer.sanger.ac.uk/signatures/sbs/sbs4/
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Machine learning models for damage and repair 

The genome was divided into 500 bp non-overlapping win-
dows using bedtools makewindows. Features of gene pres-
ence, CpG islands, transposons, promoters, and enhancers
were converted into binary values (0 or 1), representing their
absence or presence within each 500 bp window. For quanti-
tative features, including sequence context, CpG methylation,
BPDE damage, DNase I hypersensitivity, and RNA expression,
counts over windows were calculated. Nucleotide composi-
tion of each genomic window was calculated by bedtools nuc.
Gene coordinates were obtained from Ensembl’s hg38 genome
assembly. Gene features were then mapped to the genomic
windows using bedtools coverage -S retaining information on
whether a window overlapped with a gene and its location
relative to the transcription start sites (TSS). Gene-associated
windows were flagged as ‘1 ′ , while non-gene-associated win-
dows were marked as ‘0’. Promoter regions were defined as 3
kb upstream of the TSS. These regions were compared to the
genomic windows using bedtools coverage, and binary pro-
moter features were created (presence = ‘1’, absence = ‘0’).
Transposon data were downloaded from the UCSC Repeat-
Masker tracks and merged with the genomic windows us-
ing bedtools coverage. Transposon presence was flagged as
‘1’, and absence as ‘0’ for each window. Enhancer coordi-
nates were downloaded from Zenodo and overlap with the
genomic windows was established by bedtools intersect. Win-
dows overlapping enhancers were marked as ‘1’ and absence
as ‘0’. 

DNase sequencing data from two replicates were merged
to create a unified dataset. The coverage values were com-
puted using bedtools coverage, quantifying DNase signal
within each window. For constitutive replication timing data
from [ 59 ], two BED files representing early and late repli-
cating regions were interesected with the genomic win-
dows using ‘bedtools intersect’. Genomic windows were cat-
egorized as ‘1’ for early replication, ‘2’ for late replica-
tion, and ‘0’ for regions without timing information. RNA-
seq data was obtained from [ 6 ]. Replicate BAM files were
merged and counts over windows calculated with bedtools
coverage -S, since expression on the coding strand is ex-
pected to influence repair on the non-coding / transcribed
strand. BPDE Damage-seq (from this study) and XR-
seq [ 48 ] coverage values were computed using bedtools
coverage -S. 

Damage and repair data were classified into three cate-
gories: Class 0 (No damage / repair), Class 1 (Low, 1–10 count
coverage), Class 2 (High damage / repair, > 10 count coverage).
Balanced sampling was applied to ensure that each category
had an equal representation, with 100 000 windows drawn
from each class using awk. 

For model generation, continuous features, including CpG
methylation, DNase hypersensitivity were scaled using Stan-
dardScaler from scikit-learn to ensure comparability across
different scales. The damage and repair datasets were di-
vided into training and testing sets with an 80–20 split.
Stratified sampling was applied to ensure a balanced rep-
resentation across damage and repair classes. The lazypre-
dict library ( https:// github.com/ shankarpandala/ lazypredict )
was used to evaluate various machine learning models. Grid-
SearchCV was employed to fine-tune hyperparameters, opti-
mizing model performance based on accuracy, precision, re-
call, and F1 scores. 
The XGBoost classifier [ 63 ] was trained on the prepro- 
cessed dataset, and its performance was evaluated using accu- 
racy, precision, recall, F1 score, and receiver operating charac- 
teristic (ROC) area under the curve (AUC). Performance was 
assessed on both the training and testing sets to ensure gener- 
alization. 

Statistical analyses 

All experiments were performed in at least two biological 
replicates. Statistical analyses were performed using R. The 
statistical tests used for each analysis are detailed in the figure 
legends. 

Results 

Single nucleotide resolution mapping of BPDE-dG 

adducts reveals enrichment of damage at sites of 
CpG methylation 

We applied the high-sensitivity Damage-seq method [ 49 ,52 ] 
on genomic DNA isolated from GM12878 lymphoblast and 
human A549 lung cancer cell lines treated with 25 μM BPDE 

for 2 h (Fig. 1 A). These cell lines are ENCODE cell lines and 
were chosen due to the abundance of publicly available ge- 
nomic data generated from them [ 64 ]. For brevity, and since 
previous XR-seq BPDE repair maps were generated only for 
GM12878 [ 48 ], the main figures present data from this cell 
line. In Damage-seq, single-stranded fragments of damaged 
DNA were isolated from cells using an anti-BPDE-dG anti- 
body, and the damage site was identified at single nucleotide 
resolution as the site where a DNA polymerase was blocked in 
vitro . Thus, in the ensuing sequencing reads, the DNA adduct 
was expected to be in the −1 position relative to the read start 
[ 49 ]. Indeed, in both GM12878 and A549 cells, and across 
all experimental replicates, we observe a strong enrichment of 
Gs at the −1 position (Fig. 1 B and Supplementary Fig. S3 A–
C) relative to an input DNA control. Analysis of the se- 
quence context of these BPDE-dG adduct sites indicates en- 
richment of C in the position 5 ′ to the damaged G (Fig. 1 C 

and Supplemental Fig. S3 D), regardless of the nucleotide at 
the 3 ′ position. This enrichment is consistent with higher dam- 
age formation at methylated CpGs. We stratified the genome 
into quartiles of DNA methylation levels based on bisulfite se- 
quencing data (ENCODE [ 64 ]) from the same cell lines. Dam- 
age counts correlated with the methylation state of the CpGs 
in the genome (Fig. 1 D and Supplementary Fig. S3 E). Since 
this could be an indirect correlation, driven by different cellu- 
lar or chromatin states of the methylated DNA in the genome,
we repeated our experiments with DNA isolated from cells 
and treated with 3 μM of BPDE for 2 h in vitro . This in vitro
dose yielded similar damage levels to those observed in cells 
( Supplementary Fig. S3 F). A similar enrichment of BPDE-dG 

adducts in methylated regions was observed in in vitro treated 
DNA. To test whether this enrichment was directly due to 
DNA methylation, we amplified sonicated genomic DNA by 
10 rounds of PCR to dilute DNA methylation, and then per- 
formed the in vitro BPDE treatment. After amplification, the 
enrichment of damage in methylated genomic regions was lost 
(Fig. 1 F and Supplementary Fig. S3 E and G). 

The previous study of BPDE dG repair reported enrichment 
of CpG sequences in the XR-seq sequencing reads. In XR-seq,
the excised oligos containing the damages are isolated by im- 

https://github.com/shankarpandala/lazypredict
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
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A B C

D E F G

Figure 1. Mapping BPDE-dG adducts at single nucleotide resolution. ( A ) Schematic of the Damage-seq technique performed in GM12878 and A549 cell 
lines in this study. ( B ) Nucleotide composition at the read start and the two positions immediately upstream of it in input GM12878 DNA (left) or 
Damage seq (right) from the combined replicates of GM12878 cells treated with 25 μM BPDE. Enrichment of G indicates successful single-nucleotide 
resolution mapping of the damages. ( C ) Analysis of the sequences flanking the damaged dG (marked by ‘*’) in GM12878 Damage-seq data reveals 
enrichment of C upstream of the damage position. To control for differences in sequence context in the genome, the Damage-seq frequencies are 
normalized to the sequence contexts of the same number of randomly selected Gs. ( D ) The percent of BPDE-dG damage read counts falling into each of 
the methylation state quartiles based on bisulfite sequencing data from BPDE-treated GM12878 cells. ( E ) Same as panel (D), e x cept Damage-seq was 
performed on naked GM12878 DNA treated with 3 μM BPDE in vitro. ( F ) Same as panel (E), except genomic DNA was first sonicated, ligated to 
adapters, and subjected to 10 cycles of whole genome amplification by PCR prior to in vitro damage. ( G ) Analysis of repair of BPDE-dG adducts 
measured by XR-seq in GM12878 cells, after normalization to the underlying damage frequencies, o v er the different methylation states. ** P < .01, 
Kruskal Walis test with Benjamini–Hochberg correction. 
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unoprecipitation and sequenced. Since the half-life of these
xcised oligos in the cells is relatively short ( ∼30 min), XR-seq
rovides a snapshot of repair efficiency. This previous study
onducted XR-seq at an early timepoint (1 h) after damage
nduction; thus, it represents sites of preferential initial repair.
owever, sites of elevated repair could reflect higher damage

evels rather than higher repair efficiency. To test whether the
epair was independently affected by the DNA methylation
tatus of the damage, we normalized the XR-seq count data
rom GM12878 cells by the underlying damage levels. Repair
evels did not differ significantly between the different methy-
ation states in the genome, indicating DNA methylation sen-
itizes the genome to damage but did not significantly affect
epair efficiency (Fig. 1 G). 

referential BPDE damage formation and repair in 

ctive and accessible chromatin regions 

o investigate the effect of different chromatin states on the
ormation of BPDE-dG adducts, we used chromatin state an-
otations generated by the chromHMM model based on his-
one modification data collected in the GM12878 and A549
ells [ 64 ]. Damage formation in cells treated with BPDE is
igher in transcriptionally active and accessible chromatin
tates, and lower in repressed and heterochromatic chromatin
Fig. 2 A and Supplementary Fig. S4 A). This enriched dam-
ge formation was not observed in nDNA from cells treated
n vitro , indicating it is the result of chromatin accessibility
n cells rather than features of the DNA itself (Fig. 2 B and
upplementary Fig. S4 B). BPDE-dG repair was also reported
to be higher in active chromatin. To assess whether this is at-
tributed to the higher damage levels, we normalize repair in
GM12878 cells to the underlying damage levels. Normalized
repair was still significantly enriched in active and accessible
chromatin states (Fig. 2 C). 

To specifically investigate the role of chromatin accessibil-
ity, we profiled cellular damage levels at DHS sites in the same
cell lines (Fig. 2 D and Supplementary Fig. S4 C). Damages are
highly enriched at DHS peaks, and a periodic profile of dam-
ages is observed flanking the peak suggesting effects of adja-
cent nucleosomes. However, this enrichment is lost in in vitro
treated DNA (Fig. 2 E and Supplementary Fig. S4 D). Repair
normalized to the underlying damage was still highly enriched
at DHS sites (Fig. 2 F). Taken together, these results indicate
both damage and repair are elevated in active and accessible
chromatin regions. 

Given the strong effect of both DNA methylation and chro-
matin status on damage formation, we investigated damage
and repair in CpG islands. CpG islands are genomic regions
of high CpG density, but the majority of CpG islands are un-
methylated and within accessible chromatin [ 65 , 66 ]. Dam-
age formation in BPDE treated cells was higher in these re-
gions than in in vitro treated DNA, and was further reduced
if DNA methylation was first diluted by PCR (Fig. 2 G and
Supplementary Fig. S4 E). Thus, both chromatin accessibil-
ity and DNA methylation contribute independently to the
damage levels in these regions. When separating the CpG is-
lands into methylated and unmethylated based on bisulfite se-
quencing data in the same cells, damage levels are higher in
methylated CpG islands compared to unmethylated islands in

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
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Figure 2. Preferential formation of BPDE-dG adducts in functionally active and accessible chromatin. ( A ) BPDE-dG Damage-seq read counts frequencies 
from GM12878 cells treated with 25 μM BPDE for 2 h over different chromatin states identified by the chromHMM algorithm. To control for sequence 
context effects, read counts were normalized to the underlying G nucleotide frequencies and by the total read depth. ( B ) As in panel (A), except 
GM12878, genomic DNA was treated with 3 μM BPDE for 2 h in vitro . ( C ) As in panel (A), e x cept sho wn are the repair counts measured b y XR-seq after 
normalizing to the underlying damage content. ( D ) Average density profile of BPDE-dG damage counts from GM12878 cells in the 3 kb flanking the 
midpoint of DHS peaks. Counts were normalized to the total read depth. ( E ) As in panel (D), except plotted is Damage-seq data from in vitro treated 
genomic DNA. ( F ) As in panel (D), e x cept plotted is the repair signal obtained by XR-seq after normalization to the underlying damage. ( G ) BPDE-dG 

Damage-seq read count frequencies (per kb) normalized to total read depth over CpG islands. Compared are BPDE-dG Damage-seq results from 

GM12878 treated cell (cells), in vitro treated naked DNA (nDNA), and in vitro treated PCR-amplified DNA (PCR). ( H ) Same as panel (G), except CpG 

islands were divided into methylated and unmethylated. Boxes represent the range between 25th and 75th percentile, the line represents the median 
and the diamond the mean. Outliers were discarded for the presentation. *** P < .001, based on Wilco x on signed-rank test with Bonferroni correction. 
n.s., not significant. 
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DNA from cells or DNA treated in vitro , but this difference
is lost when the methylation is diluted by PCR (Fig. 2 H and
Supplementary Fig. S4 F). 

Transcription factor binding modulates damage 

formation of BPDE-dG adducts 

Within the profiles of damage and repair at DNase hypersen-
sitive sites we observed a local dip in signal within the peak
midpoint (Fig. 2 D and F). We hypothesized this dip could be
due to TF binding at these sites. We therefore profiled damage
and repair at active TF-binding sites. These sites were based
on 286 non-redundant TF motif clusters previously reported
in Vierstra et al. [ 56 ], encompassing 2179 total motifs for 702
distinct human TF proteins. Active TF motif sites were defined
based on overlap with a DNase hypersensitive site in the same
cell line (see the ‘Materials and methods’ section). To specif-
ically isolate the effect of TF binding, the Damage-seq signal
from cells was normalized to damage levels in vitro . Aggre-
gating the binding sites of all 702 TFs, both BPDE-dG damage
and repair were depleted at the center of TF-binding sites (Fig.
3 A and B and Supplementary Fig. S5 ). 

Investigating the effect of binding of specific TFs on damage
formation is highly sensitive to the underlying sequence con-
text ( Supplementary Fig. S1 ). We therefore used a pentamer-
based Poisson model to calculate multiple-test corrected P -
values for the damage counts at each position across the
motif, for both the forward and reverse strands. Z-score 
differences ( �Z) between the damage signals in cells ver- 
sus in vitro were calculated for each position (Fig. 3 C and 
Supplementary Table S3 ). Depending on the TF and the posi- 
tion within the binding sites, we found both enrichment and 
depletion of BPDE-dG signals, suggesting that TF binding can 
both inhibit and stimulate damage formation. Generally, there 
appears to be more TF inhibition than induction of BDPE- 
dG adduct formation, with CTCF , NRF1, NFY , and ETS mo- 
tif clusters exhibiting the widest inhibitory effects. This re- 
duced damage formation is especially pronounced for CTCF,
for which the G-rich motif strand shows a large depletion of 
BPDE-dG signal compared to what is expected based on DNA 

sequence alone (Fig. 3 D). 

Effects of transcription and replication timing on 

BPDE-dG damage and repair 

Both active transcription and DNA replication are DNA- 
templated processes that are inhibited by BPDE damage for- 
mation, but could also directly influence genome sensitivity. To 
isolate the effect of active transcription on BPDE damage for- 
mation, we normalized the damage levels from cells by those 
in in vitro -treated DNA. Damages are enriched at the TSS of 
protein-coding genes (Fig. 4 A and Supplementary Fig. S6 A),
likely due to enhanced chromatin accessibility. There does not 
appear to be a major difference in damage levels between the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
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Figure 3. Modulation of BPDE-dG damage formation at TF-binding sites. ( A ) Average read density profiles over active TF-binding sites of BPDE-dG 

Damage-seq in GM12878 cells normalized by Damage-seq from in vitro treated nDNA. TF-binding sites were selected from accessible DNA regions of 
the human genome, and did not o v erlap an y coding regions. ( B ) Similar to panel (A), but sho wing the a v erage density of BPDE-dG repair (XR-seq signal) 
normalized to the underlying damage levels. ( C ) Heat map depicting differential BPDE-dG levels in the presence of active TF binding. The BPDE-dG 

Z-score difference between Damage-seq signals from cellular versus in vitro -treated DNA conditions was determined for each position and for both 
strands of each TF motif cluster. At each position, the �Z-score with the largest magnitude (either the motif or the motif-complement strand) is the cell 
value, and each row is a specific TF motif cluster. The bar plots on each side of the heatmap illustrate the number of distinct TFs mapped to each motif 
cluster (left) and the number of binding sites attributed to each motif cluster (right). See the ‘Materials and methods’ section for details. ( D ) Example of 
the full BPDE-dG analysis for the CTCF motif cluster, represented in the top row of the heatmap. The top panel shows the observed BPDE-dG signal for 
the motif and motif-complement strands. The predicted BPDE-dG signal ±4 SDs were calculated with a pentamer Poisson model and are represented 
by the shaded gray region. The middle panel shows the log 10 transformation of the corrected P -values (i.e. q-values). Marker colors correspond to strand 
and arrow directions indicate either enrichment (up) or depletion (down) of the BPDE-dG signal. Gray markers are positions that are insignificant or 
considered a f alse-positiv e after comparison with the nDNA condition. The bottom panel shows a sequence logo of the position weight matrix for the 
CTCF motif cluster sequences (i.e. the putative CTCF binding sites) used in the analysis. 

t  

t  

n  

o  

t  

t  

r  

a  

a
 

i  

B  

h  

S  

i  

e
 

i  

[  

a  

r  

a  

a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/53/4/gkaf048/8008527 by guest on 01 Septem

ber 2025
ranscribed and non-transcribes strands. While in GM12878
here is a small preference for the transcribed strand, this is
ot observed in A549 cells ( Supplementary Fig. S6 B). As previ-
usly reported, repair of BPDE adducts, even after normaliza-
ion of damage levels, is significantly enriched ( P < .0001) on
he transcribed strand of genes due to transcription-coupled
epair (Fig. 4 B). Thus, active transcription does not strongly
ffect damage formation but enhances the removal of dam-
ges from the transcribed strands. 
We previously reported that NER of UV-induced CPDs

s more efficient in gene exons compared to introns [ 27 ].
oth the formation and repair of BPDE-dG adducts is en-
anced in exons compared to introns (Fig. 4 C and D, and
upplementary Fig. S6 C). This enhanced damage and repair
s consistent with the elevated accessibility observed in gene
xons (Fig. 4 E). 
Smoking-associated mutagenesis, specifically the BPDE-

nduced signature SBS4, is higher in late-replicating regions
 59 ]. To investigate the effect of replication timing on dam-
ge formation and repair, we used constitutive early and late
eplicating regions identified by Yaakov et. al. in both normal
nd cancer cell types [ 59 ]. Both BPDE-dG damage formation
nd NER were elevated in early compared to late replicating
regions (Fig. 4 F and G, and Supplementary Fig. S6 D). Fur-
thermore, both damage and repair exhibit a local peak in av-
erage density surrounding a set of constitutive early replicat-
ing origins identified by Guilbaud et al. [ 58 ] (Fig. 4 H and I,
and Supplementary Fig. S6 E). Early replicating regions and
the early firing constitutive origins of replication are also
characterized by more accessible chromatin (Fig. 4 J and K),
which could contribute to both damage-sensitivity and repair
efficiency. 

A machine learning model identifies DNA 

accessibility as the strongest predictor of damage 

and repair 

Our results identify multiple genomic features influencing
both BPDE-dG damage formation and repair efficiency. To
estimate the relative importance and predictive power of the
different features, we divided damage and repair data over ge-
nomic windows of 500 nt for each DNA strand into three cat-
egories (no damage / repair, medium levels of damage / repair,
and high levels of damage / repair) and tested four classifica-
tion models to compare their predictive abilities on 100 000
windows for each category: Support vector machine [ 67 ],

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
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Figure 4. Effects of transcription and replication on BPDE-dG damage and repair. ( A ) Average read density profiles over genes of BPDE-dG Damage-seq 
in GM12878 cells normalized by Damage-seq from in vitro treated naked DNA (nDNA). Data are plotted separately for the transcribed (TS) and 
non-transcribed (NTS). TSS, transcription start site. ( B ) Similar to panel (A), e x cept plotted is the a v erage density of BPDE-dG repair normalized to the 
underlying damage le v els. ( C ) Damage-seq read frequencies from GM12878 treated cells normalized by Damage-seq from in vitro treated DNA (nDNA) 
calculated o v er both strands of e x ons and introns. ( D ) Similar to panel (C), e x cept plotted is repair normalized by the underlying damage levels. ( E ) Similar 
to panel (D), e x cept plotted is the DNase-hypersensitivity read count reflecting chromatin accessibility. ( F ) BPDE-dG Damage-seq frequencies in 
GM12878 cells normalized by Damage-seq from in vitro treated DNA (nDNA) in early versus late replicating regions. ( G ) Similar to panel (F), except 
plotted are repair rates normalized by the underlying damage levels. ( H ) Average read density profiles surrounding constitutive early-firing origins of 
BPDE-dG Damage-seq in GM12878 cells normalized by Damage-seq from in vitro treated DNA (nDNA). ( I ) Similar to panel (H), except plotted is repair 
normaliz ed b y the underlying damage le v els. ( J ) Similar to panel (F), e x cept plotted is the DNase-h ypersensitivity read count reflecting chromatin 
accessibility. ( K ) Similar to panel (H), e x cept plotted is the a v erage DNase-h ypersensitivity read density reflecting chromatin accessibility. B o x es 
represent range between 25th and 75th percentile, the line represents the median and the diamond the mean. Outliers were discarded for the 
presentation. *** P < .0001, *** P < .001 based on Wilco x on signed-rank test with Bonferroni correction. 
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ogistic regression [ 68 ], Random Forest [ 69 ], and XGBoost
 63 ] classifier. The features included both the cell-specific fea-
ures of DNase hypersensitivity, RNA expression, and CpG
ethylation, as well as shared characteristics such as ge-
omic sequence composition, constitutive replication timing,
nd gene, promoter, enhancer, and transposon locations. The
odels were evaluated based on standard performance met-
ics such as accuracy, precision, and recall ( Supplementary 
able S4 ). Of the classification models tested, the XGBoost
lassifier outperformed the others, achieving the highest pre-
ictive accuracy. As a result, XGBoost [ 63 ] was selected for
urther analysis (Fig. 5 ). Based on the model’s feature impor-
ance scores, DNase hypersensitivity is the strongest predic-
or of BPDE-dG damage formation in GM12878 cells, fol-
owed by sequence context, CpG methylation and gene ex-
ression (Fig. 5 A and B). In A549, where there are gener-
lly higher levels of DNA methylation, this feature is more
rominent than gene expression ( Supplementary Fig. S7 ).
n the analysis of repair (Fig. 5 C and D), damage levels
enerated in this study were integrated as a genomic fea-
ure. Once more, DNase hypersensitivity had the highest fea-
ure importance score, followed by the damage sensitivity of
he regions. Thus, damageability strongly influences the re-
air profiles and must be taken into account in analyzing
epair. 
BPDE-induced mutagenesis reflects the sequence 

preferences of damage formation but its rate is 
determined primarily by repair efficiency 

Replication across BPDE-dG adducts results in the misincor-
poration of A nucleotides and in G > T or C > A transver-
sion mutations. To directly measure mutagenesis under the
same experimental system used for damage and repair map-
ping, we treated GM12878 cells with a low dose of BPDE
(0.125 μM) for two weeks ( ∼11 population doublings) and
then submitted the genomic DNA from treated and control
(DMSO-treated) cells to single-molecule mutation sequenc-
ing (SMM-seq [ 51 ]; Supplementary Fig. S8 A). SMM-seq is
an error-corrected sequencing approach that sensitively iden-
tifies subclonal mutations within a population of cells, cover-
ing ∼20% of the human genome. BPDE treatment resulted
in over a three-fold increase in mutation accumulation af-
ter two weeks of treatment, with ∼700 mutations in each
of the two experimental replicates. Of these, ∼57% were
C > A SBSs characteristic of BPDE exposure (Fig. 6 A, and
Supplementary Fig. S8 B and C). 

Trinucleotide sequence context analysis of all possible base
substitutions in BPDE treated cells found the pattern had the
highest cosine similarity to the COSMIC SBS4 mutational sig-
nature, which is associated with tobacco smoking (Fig. 6 B).
C > A mutations were enriched in the CCA, CCC, CCT and

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkaf048#supplementary-data
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Figure 6. Genomic analysis of BPDE-induced mutagenesis. ( A ) Summary of the SBS mutation counts obtained in SMM-seq of GM12878 cells treated 
o v er tw o w eeks with 0.125 μM BPDE or DMSO v ehicle control. ( B ) Cosine similarit y score bet ween the SBS trinucleotide profile of the SMM-seq dat a 
from BPDE-treated cells and the different COSMIC SBS signatures. ( C ) Trinucleotide sequence context frequencies of the C > A mutations identified in 
SMM-seq of BPDE-treated cells. ( D ) The trinucleotide sequence context frequencies that compose the C > A substitutions in the COSMIC SBS4 
signature. ( E ) The reverse complement of the trinucleotide frequencies of BPDE-dG damages in GM12878 treated cells. ( F ) The reverse complement of 
the trinucleotide frequencies of Gs identified in the XR-seq reads, reflecting sites of BPDE-dG repair in GM12878 cells. ( G ) Pairwise cosine similarities 
were calculated for the trinucleotide frequencies for C > A mutations or G nucleotide damage and repair. ( H ) Only 32 / 828 of the SMM-seq C > A 
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G nucleotides within the SMM seq regions. ( I ) Frequency of C > A mutations in lung cancer samples, compared between methylated versus 
unmethylated CpGs. ( J ) Frequency of C > A mutations in lung cancer samples, normalized to the underlying trinucleotide sequence composition, over 
the different chromHMM states identified in normal lung samples, shows significant depletion in accessible and active chromatin states. ( K ) Frequency 
of G > T lung cancer mutations (reflecting the mutated base in the template strand), normalized by the underlying trinucleotide frequency, compared 
between the transcribed and non-transcribed strands of genes. ( L ) Similar to panel (J), except compared are DHS peak regions and randomly selected 
non-accessible regions. ( M ) Comparison of the trinucleotide-normalized C > A mutation counts from lung cancers in exons and introns of genes. ( N ) 
Similar to panel (J), e x cept compared are constitutive early and late replicating regions. Boxes represent range between 25th and 75th percentile, the 
line represents the median and the diamond the mean. Outliers were discarded for the presentation. **** P < .0001, *** P < .001 based on Wilco x on 
signed-rank test with Bonferroni correction. 
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CC sequences (Fig. 6 C). Very similar trinucleotide mutation
atterns are observed in SBS4 signature (Fig. 6 D), with a co-
ine similarity score of 0.972. Analysis of the reverse comple-
ent of the sequence context of the damaged dG in the XR-seq
nd Damage-seq data from GM12878 also gave similar pro-
les of C > A mutations, with high cosine similarity scores
0.909 and 0.901, respectively, Figs. 6 E–G). 
Damage and repair have very similar sequence composition.
owever, our genome-wide analyses indicate they are differ-
ntly affected by genomic features. We expected that regions
n the genome with high damage sensitivity, and / or low repair
fficiency would harbor higher rates of mutations. However,
n regions where both damage and repair were high, i.e. ac-
essible chromatin, gene exons, and early-replicating regions,
t was unclear which would exert the stronger influence on
utagenesis. 
SMM-seq only produced a total of 828 C > A mutations,

imiting our ability to compare different genomic regions with
igh confidence. Only 32 mutations occurred within 3 kb of
 DNase hypersensitivity midpoint in GM12878. By compar-
ng the data to 1000 iterations of randomly selected C nu-
leotides from the SMM-seq sequenced regions, we found that
hese mutations were significantly depleted in accessible re-
ions (Fig. 6 H). 
We therefore analyzed the distribution of C > A mutations

dentified in WGS of lung cancer samples from smokers by
he Cancer Genome Atlas project (TCGA). Higher C > A mu-
ation rates were observed at methylated CpGs compared to
nmethylated CpGs, consistent with higher damage formation
ut similar repair efficiencies at these sites (Fig. 6 I). Compar-
ng mutagenesis across the different chromatin states of lung
ancer tissues, active and accessible chromatin regions display
ignificantly lower mutation rates (Fig. 6 J). The lower muta-
ion rates on the transcribed strand of genes (Fig. 6 K) are at-
ributed to transcription-coupled repair. To study the effect of
hromatin accessibility on lung cancer mutagenesis, we used
Nase hypersensitivity measurements from normal lung sam-
les. A small but statistically significant difference was ob-
erved, with fewer mutations mapped to accessible regions
ompared to non-accessible regions (Fig. 6 L). Similarly, mu-
agenesis was lower in gene exons compared to introns (Fig.
 M), and early compared to late replicating regions (Fig. 6 N).
hus, in the accessible regions, which exhibited higher damage
ormation but also higher repair efficiency, lower mutagenesis
ates are observed. 

iscussion 

PDE-dG adducts belong to the category of bulky, helix
istorting, DNA damages. This category also include UV-
nduced CPD and (6-4) pyrimidine-pyrimidone photoproduct
(6-4)PP], and adducts induced by the chemotherapy drug Cis-
iamminedichloroplatinum (cisplatin) [ 70 ]. Genome-wide
apping of these damages by CPD-seq and Damage-seq in-
icates that while the rotational setting of the nucleosomes
ffects damage formation, different chromatin states of chro-
atin accessibility showed overall similar damage levels [ 23 ,
1 ]. With BPDE damage, however, chromatin accessibility
ignificantly enhanced damage formation. DNA methylation
oderately sensitized cytosine-containing dimers (TC or CC)
o CPD damage formation after UV-B irradiation (and not af-
er UV-C), and did not appear to strongly influence cisplatin
dduct formation. Thus, compared to the previously studied
NER substrates, the analysis of the effects of BPDE damages
on mutagenesis is significantly more complex. 

Using a genomic approach, comparing data sets from multi-
ple sources rather than performing experiments to map chro-
matin components, damage, and repair simultaneously could
theoretically introduce inter-lab variability and miss certain
effects. By performing the experiments in the same cell lines
and under the same growth conditions as the external data
sources, we aimed to minimize such variabilities. 

Here, we present the first study where BPDE-induced DNA
damages, DNA repair, chromatin and genomic features, and
damage-induced mutagenesis were measured and compared
in the same experimental system of GM12878 cells (Fig. 7 ). 

BPDE induces conformationally distinct adducts, which
may exhibit different damage formation and repair rates. The
most common adduct formed by the ( ±)-anti-BPDE exposure
used in this study is the (+)-trans-N 

2 -BPDE-dG [ 72 , 73 ]. It is
also the preferential adduct recognized by the antibody used in
both Damage-seq and XR-seq protocols [ 74 , 75 ], and there-
fore our results likely represent primarily the damageability
and repair of this conformation. 

Methylated CpGs accumulate higher damage levels (Fig. 1 ).
This is likely due to increased intercalative binding of BPDE
to sites of methylated CpGs [ 76 ] and enhanced reactivity of
the guanine due to the base-paired 5meC placing the N 

2 posi-
tion in a favorable orientation for a nucleophilic attack [ 73 ]. A
previous report using damaged plasmids indicated that DNA
methylation could both enhance or repress excision repair ef-
ficiency, depending on the sequence context [ 77 ]. However, we
did not find an effect of the methylation status on excision re-
pair efficiency in XR-seq data from the genome. Our analysis
of cancer mutagenesis finds higher C > A mutations in methy-
lated CpGs (Fig. 6 ). It is important to note that for the cancer
mutagenesis analyses, we used DNA methylation data from
normal tissues, as DNA methylation patterns could alter dur-
ing cancer development. In fact, there are reports that BPDE
exposure alters DNA methylation patterns in cells [ 78–83 ].
Future studies could investigate these complex interactions in
experimental models of tumor development. 

Accessible chromatin regions are more sensitive to BPDE
damage formation, but also more efficiently repaired. These
include regulatory regions in the genome, gene exons and early
replicating regions. Both our SMM-seq results and cancer mu-
tagenesis data indicate that accessible regions accumulate less
mutations. This lower mutation frequency could be directly
due to the effects of chromatin accessibility, but could also be
due to selective pressure at important functional regions, espe-
cially exons. Still, this observation suggests that repair, rather
than damageability, could be a stronger determinant of the fi-
nal mutagenic patterns. While cells have a limited ability to
control their exposure to damaging agents, they can activate
checkpoint mechanisms to extend the time available for repair
in order to restrict their mutagenic outcomes. BPDE damages
were reported to stabilize nucleosomes in vitro [ 84 ]. It will
thus be interesting to investigate whether there are accessory
mechanisms that specifically facilitate the repair of nucleoso-
mal templates carrying BPDE. 

To our knowledge, this is the first study of the effect of
TF binding on BPDE damage formation. For the majority
of TFs investigated, including CTCF and ETS-family TFs,
binding reduced damage formation across multiple positions
within their binding sites. This is markedly different from
what was previously observed for UV-induced damage, which
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Figure 7. A model of the differential contribution of BPDE-dG damage and repair to mutagenesis across the human genome. Damage sensitivity and 
repair efficiency both influence the final mutagenic pattern. At methylated CpGs, elevated damage sensitivity drives higher mutagenesis. At accessible 
genomic regions, ele v ated repair appears to be a stronger determinant than higher damage sensitivity in the final mutagenic profile. This model applies 
only to passenger mutations that are not subject to selective pressure. 
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was highly enriched at specific positions within sites of active
TF binding, especially for CTCF and ETS proteins [ 23 , 24 , 34 ,
35 , 85 ]. This trend is consistent with the hypothesis that BPDE
has reduced access to DNA that is actively bound by TFs. In-
terestingly, a minority of TFs exhibited enhanced damage for-
mation at certain positions within the binding sites, highlight-
ing that the effect of TF binding on damage formation is not
uniform across TF families. Furthermore, the effect may not
even be uniform in different positions within the binding site
of a specific TF. This was reported for UV damage formation
in the CTCF motif [ 85 ], and is also observed in the YY1 and
HD 12 clusters (Fig. 3 C), where BPDE-dG damage is elevated
at one position, but repressed at another. Thus, analysis of
the effect of TF binding on damage formation requires care-
ful analysis on an individual TF and position basis to avoid
convoluting the inhibition versus the stimulation of damage
formation. 

Repair profiles at TF-binding sites indicate sites of local-
ized decrease in repair, which is consistent with previous re-
ports for other NER-substrates [ 86–88 ]. However, these re-
sults should be interpreted with care, as the effect of BPDE-
dG damage on TF binding has not yet been determined. While
two in vitro studies reported that BPDE modification can in-
crease the binding of SP1, E2F1 and E2F4 to DNA [ 89 , 90 ],
it remains to be investigated whether this holds true in cells,
whether the binding is strong enough to have an effect on
DNA repair, and whether other TFs also interact with their
target sites after BPDE adducts have formed. Future studies
will need to investigate this question in order to allow for a
comprehensive modeling of the fate of BPDE damages at TF-
binding sites. 

An intriguing question is the effect of the three-dimensional
organization of chromatin on damage and repair. Two studies
have reported higher UV damage and lower repair rates in
the periphery of the nucleus [ 91 , 92 ]. It will be interesting in
future studies to test the effect of nuclear architecture on BPDE
damage and repair. 

BPDE-dG damage and repair presented a similar tri-
nucleotide distribution to the mutagenic signature produced
in cell lines and in cancer samples. This similarity indicates
that the sequence context of both repair and mutations is 
dictated primarily by preferences in BPDE-dG damage for- 
mation. However, our results indicate the frequency of these 
mutations across the genome could be influenced by re- 
pair efficiency. While cancer sequencing efforts have been 
focused on functional, actionable, mutations, this new ap- 
proach of analysis of the passenger mutations could provide 
information on the cancer cell state. Analysis of NER ca- 
pacity in peripheral blood indicates it differs between indi- 
viduals, and thus could have an additive effect on lung can- 
cer risk in smokers [ 93 ]. This insight is important in analyz- 
ing the SBS4 mutational signature in cancer samples. While 
the existence of this signature indicates exposure to cigarette 
smoke, its prevalence and genomic distribution could reflect 
repair efficiency and thus be used a therapeutic and prognostic 
biomarker. 
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