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Abstract—Graph Convolutional Networks (GCNs) have been
proposed to extend machine learning techniques for graph-
related applications. A typical GCN model consists of mul-
tiple layers, each including an aggregation phase, which is
communication-intensive, and a combination phase, which is
computation-intensive. As the size of real-world graphs increases
exponentially, current customized accelerators face challenges
in efficiently performing GCN inference due to limited on-chip
buffers and other hardware resources for both data computation
and communication, which degrades performance and energy
efficiency. Additionally, scaling current monolithic designs to
address aforementioned challenges will introduce significant cost-
effectiveness issues in terms of power, area, and yield. To this
end, we propose HS-GCN, a high-performance, sustainable, and
scalable chiplet-based accelerator for GCN inference with much-
improved energy efficiency. Specifically, HS-GCN integrates mul-
tiple reconfigurable chiplets, each of which can be configured to
perform the main computations of either the aggregation phase or
the combination phase, including Sparse-dense matrix multiplica-
tion (SpMM) and General matrix-matrix multiplication (GeMM).
HS-GCN implements an active interposer with a flexible inter-
connection fabric to connect chiplets and other hardware com-
ponents for efficient data communication. Additionally, HS-GCN
introduces two system-level control algorithms that dynamically
determine the computation order and corresponding dataflow
based on the input graphs and GCN models. These selections are
used to further configure the chiplet array and interconnection
fabric for much-improved performance and energy efficiency.
Evaluation results using real-world graphs demonstrate that HS-
GCN achieves significant speedups of 26.7x, 11.2x, 3.9x, 4.7,
3.1 x, along with substantial memory access savings of 94 %, 89 %,
64%, 85%, 54%, and energy savings of 87%, 84%, 49%, 78 %,
41% on average, as compared to HyGCN, AWB-GCN, GCNAX,
I-GCN, and SGCN, respectively.

Index Terms—Graph Convolutional Networks, Hardware Ac-
celerators, Dynamic Dataflows, Chiplet-based Design.

I. INTRODUCTION

RAPH Convolutional Networks (GCNs) have been re-
Gcently introduced and applied to achieve remarkable
inference accuracy in applications using graph-structured
data [1]-[7]. A typical GCN architecture comprises mul-
tiple graph convolutional layers, and each of these layers
consists of two primary computational phases: Aggregation
and Combination [8]-[11]. During the aggregation phase,
vertices within the input graph collect features from all of
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their neighbors. In the combination phase, each vertex uses
a pre-trained weight matrix to update its aggregated features
and generates an output matrix of the current GCN layer.
The output matrix of the current GCN layer will be used
as an input feature matrix for the next GCN layer. With the
explosion of input real-world graphs, the data used for GCN
inference becomes extremely tremendous, imposing stringent
requirements on data computation and communication when
designing hardware accelerators.

Recently, several customized approaches have been pro-
posed to accelerate GCN inference for improved perfor-
mance [8]-[10], [12], [13]. Although significant achievements,
current approaches still face several key limitations when
performing GCN inference with large-scale input graphs,
which degrades performance and energy efficiency. (1) Due
to distinct functionalities, the two phases of GCN inference
are either computation-intensive or communication-intensive.
However, current monolithic approaches struggle to efficiently
execute these phases because of limitations in on-chip com-
putation resources, communication bandwidth, and buffer
capacities. [8], [10], [12]. Although scaling current mono-
lithic approaches to provide sufficient hardware resources
can achieve better performance, it also introduces significant
cost-effectiveness challenges across various aspects, includ-
ing power, area, and yield [14]-[16]. (2) Current monolithic
approaches sequentially execute the GCN phases and layers,
thereby failing to exploit and reuse intermediate data across
phases and layers. These intermediate data, typically repre-
sented as dense matrices generated by matrix-matrix multi-
plications in each phase, are often overlooked. This neglect
results in significant additional on-chip and off-chip memory
access, particularly as the size of input graphs increases,
ultimately impairing both performance and energy efficiency.

To this end, we propose HS-GCN, a high-performance,
sustainable, and scalable chiplet-based accelerator for GCN
inference. The main objective of the proposed HS-GCN is
to provide flexibility and scalability for GCN inference while
reducing data memory access and computations, leading to
significantly improved performance and energy efficiency. The
main contributions of this work are outlined as follows:

o A Chiplet-based Architecture: HS-GCN consists of
multiple chiplets, each including a unified computing
engine capable of dynamic configuration for efficient
execution of key computations in GCN inference. Given
an input graph and a specified GCN model, HS-GCN
dynamically adapts to the computational and communica-



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING

tion requirements by individually configuring each chiplet
as either an aggregation engine or a combination engine.
This adaptability enhances performance and improves
hardware utilization compared to previous approaches.

« Flexible Interconnection Fabric: HS-GCN integrates an
active interposer with a flexible interconnection network
to establish dynamic connections among chiplets and
global buffers with diverse topologies. This provides fast
and energy-efficient data transmission for both intra- and
inter-chiplet communications. Furthermore, the proposed
flexible interconnection allows HS-GCN to efficiently
support a wide range of dataflow with diverse on-chip
data reuse strategies such as spatial and temporal reuse
of the intermediate output tiles, feature tiles, and weight
matrices, along with different data reuse patterns.

o Dynamic Control Algorithms: HS-GCN introduces two
dynamic control algorithms for configuring the proposed
reconfigurable chiplets and flexible interconnection fab-
ric, based on the given GCN architecture and input
graphs. Specifically, HS-GCN first determines the optimal
GCN computation order (the sequence of aggregation
and combination phases) based on the given input graph
and the applied model, aiming to minimize the number
of main memory access throughout the entire inference
processing. Subsequently, leveraging the selected compu-
tation order, HS-GCN selects an appropriate dataflow to
maximize data reuse efficiency across chiplets.

Evaluation results demonstrate that HS-GCN achieves sig-

nificant speedups, with factors of 26.7x, 11.2x, 3.9%, 4.7x,
3.1x, while also providing substantial memory access savings
of 94%, 89%, 64%, 85%, 54%, and energy savings of 87%,
84%, 49%, 78%, 41% on average, as compared to HyGCN,
AWB-GCN, GCNAX, I-GCN, and SGCN, respectively.

II. BACKGROUND, PREVIOUS WORKS, AND MOTIVATIONS
A. GCN Background

Typically, each Graph Convolutional Network (GCN) ar-
chitecture, also called a GCN model, is composed of mul-
tiple graph convolutional layers. Each convolutional layer
includes two main computational phases: Aggregation and
Combination. The aggregation phase is generally formulated
as Sparse-dense Matrix-matrix Multiplication (SpMM), while
the combination phase is General Matrix-matrix Multipli-
cation (GeMM). During the aggregation phase, vertices of
the input graph collect feature vectors from their neighbors
and aggregate them with the local feature vector. Due to
the sparsity of the input graph, each vertex has a different
number of neighbors, leading to irregular data memory access
and varying numbers of computations. In contrast, during the
combination phase, each vertex uses a pre-trained small and
dense weight matrix to update the local feature vector [8],
[10], [17], [18], which involves regular data memory access
and a more consistent number of computations. Subsequently,
the updated feature vector of the combination phase will be
passed through an activation function, such as the Rectified
Linear Unit (ReLU), to obtain the ultimate feature vector,
which conducts an output matrix of the current GCN layer.
The output matrix then serves as the input feature matrix of
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Fig. 1. (a) The adjacency, feature, and weight matrices (A, X, and W) are
partitioned into four tiles each. (b) Perform the GCN phases sequentially,
processing all tiles within each phase. (c) Reschedule the workload to reuse
intermediate results between GCN phases.
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the next GCN layer. The main computation of each GCN layer
can be abstracted as Eq. 1, which is also shown in Fig. 1 (a).
XD — GAx B k) (1)
Note that the matrix A in Eq. 1 represents the normalized
adjacency matrix which is used to record the connection
between the source and destination vertices in the input graph.
XF* is the feature matrix in layer-k; each row of X denotes
a vertex, and each column of X represents a feature. Wk
is the well-trained weight matrix of layer-k. o(.) refers to
the non-linear activation function such as ReLU [19], [20].
In this paper, HS-GCN mainly focuses on accelerating GCN
inference with undirected input graphs.

B. Previous Works

Several customized accelerators have been proposed to ac-
celerate GCN inference and achieve significant improvements
compared to general processing units (CPUs and GPUs) [8]-
[10], [12]. Specifically, HyGCN [8] implements two separate
computing engines to independently perform the aggregation
and combination phases of each layer. These two engines are
connected in a cascade through an on-chip buffer, where the
intermediate data from the aggregation phase is forwarded
to the combination engine. AWB-GCN [12] uses a unified
computing engine that performs the combination phase first
and is designed to address workload imbalances during graph
processing. GCNAX [10] tackles resource under-utilization
and excessive data movement through a flexible on-chip
dataflow. Similarly, I-GCN [9] accelerates GCN execution
by merging vertices with shared neighbors, thereby reducing
redundant computations and memory access.

C. Motivations

Despite significant achievements, current approaches still
face several key limitations that impede further improvements
in performance and energy efficiency, particularly as the size
of real-world graphs and GCN models grows exponentially.
Limitations in scalability: Since GCN inference is both
computation- and communication-intensive, the hardware re-
source requirements for GCN inference have been increasing
exponentially over time, especially as the size of real-world
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graphs grows dramatically. Current approaches face challenges
in effectively performing GCN inference due to limited on-
chip hardware resources, such as the number of computing
units, the capacity of on-chip buffers, and on/off-chip band-
width [15], [16]. Although scaling current monolithic archi-
tectures can achieve better performance, it requires a larger
die size and further introduces cost-effectiveness challenges
in various aspects, including power, area, and yield [14], [15].
Manufacturing an entirely larger chip design with the most
advanced technology can cost almost twice as much as using
a chiplet approach. For instance, with 16 processing units, a
monolithic architecture die (7nm) consumes around 2.5 times
more area compared to a chiplet design to achieve similar
performance [15]. Therefore, shifting to chiplet-based designs
presents a promising solution to efficiently perform GCN
inference for large-scale input graphs compared to current
approaches.

Limitations in flexibility: Previous works [8], [10], [12] with
customized processing elements and interconnection fabric
sequentially perform each GCN phase and layer for the
entire inference processing, as shown in Fig. 1 (b). However,
they failed to provide the necessary flexibility to find and
support the data computation and communication requirements
induced by the optimal GCN computation order and the
corresponding dataflow. For instance, we assume that the di-
mensions of the feature matrix and weight matrix in Fig. 1 (a)
are X € RV?K and W € RE=C respectively. If K is smaller
than C, using HyGCN [8] will significantly increase the di-
mension of the inter-phase intermediate matrix from (NxC) to
(NxK), which induces extra data memory access. Additionally,
with rigid interconnection fabric, current approaches scarify
the opportunity to explore the data locality to apply diverse
dataflow. For instance, HyGCN [8] and GCNAX [10] only
focus on reusing the inter-phase intermediate result without
paying attention to the inter-layer intermediate result.

To this end, we propose HS-GCN, a high-performance,
sustainable, and scalable chiplet-based accelerator for GCN
inference. HS-GCN includes multiple reconfigurable chiplets
designed to support computations required by various GCN
computation orders. HS-GCN integrates an active interposer
with a flexible interconnection fabric, providing the flexibil-
ity and scalability needed to meet the data communication
requirements of diverse dataflow (data reuse strategies). Ad-
ditionally, HS-GCN introduces two control algorithms that
dynamically select the optimal computation order and dataflow
for the given input graph and GCN model.

III. PROPOSED HS-GCN ARCHITECTURE
A. Architecture Overview

Fig. 2 depicts the overall architecture of the proposed
chiplet-based Graph Convolutional Network (GCN) acceler-
ator, named HS-GCN. HS-GCN comprises an array of recon-
figurable chiplets, a flexible interconnection fabric, a control
unit, and a global buffer (GLB). The objectives of these pro-
posed components are to provide adaptability, flexibility, and
scalability listed in Sec. II-C. Specifically, each chiplet uses
a reconfigurable unified computing engine to perform the key
computations for GCN inference, including Sparse-dense and

Silicon Interposer

Intra- and Inter-chiplet
Configuration Units

Control Unit

Control Signal Link:
—_—

Data Link:
_

Interposer Layer

Fig. 2. The overall architecture design of the proposed HS-GCN. The
chiplet array comprises N chiplets and is designed to perform the key
computations required for GCN inference, including Sparse-dense and General
Matrix-matrix Multiplications (SpMM and GeMM). All chiplets are connected
through an active interposer with a flexible interconnection network. Both the
chiplet array and the interconnection network can be dynamically reconfigured
by the control unit to fulfill the requirements of data computation and
communication. The control unit is implemented to perform the proposed
algorithms that determine the optimal computation order and the configuration
of the dataflow strategy applied to both intra- and inter-chiplet. The Global
Buffer (GLB) is used to store the input matrices from the main memory, as
well as the intermediate and final matrices from the chiplet array.

General matrix-matrix multiplications (SpMM and GeMM).
The design details of the reconfigurable chiplet are discussed
in Sec. III-B. The flexible interconnection fabric features
an active interposer [21]-[24] with reconfigurable switches
and links to establish dynamic connections among chiplets
and global buffers through diverse topologies. This provides
fast and energy-efficient data transmission for both intra-
and inter-chiplet communications. Additionally, the proposed
interconnection fabric provides dataflow flexibility by allowing
spatial and temporal reuse of all GCN matrices, including
adjacency matrix (A), feature matrix (X), weight matrix (W),
intermediate data, and final matrix (O). The details of the
flexible interconnection fabric are demonstrated in Sec. III-C.
The configurations of individual chiplets and the flexible
interconnection fabric are supervised by a unified control unit.
Given an input graph and a GCN architecture, the control unit
has two functions: (1) selecting the optimal GCN computation
order and corresponding dataflow strategy for both intra- and
inter-chiplet communication and (2) configuring the chiplet
array and the interconnection fabric based on these selections,
as discussed in Sec. III-D. The global buffer (GLB) is a multi-
bank scratchpad connected to the main memory and shared
by the chiplet array to store the input, intermediate, and final
matrices [25]-[27].

B. HS-GCN Chiplet Architecture

HS-GCN is comprised of multiple chiplets, each of which
is reconfigurable to efficiently perform SpMM and GeMM for
GCN inference. As shown in Fig. 3, each chiplet includes a
unified computing engine, an Input Sparse Buffer (ISB), an
Input Dense Buffer (IDB), a First-In-First-Out (FIFO) unit, a
Dense Row Index Unit, an Output Dense Buffer (ODB), and
a local controller. Specifically, the unified computing engine
comprises a Multiplication engine (MUL Engine) connected
to an Accumulation engine (ACC Engine) for required com-
putations. On-chip buffers are used to store different types
of input, intermediate, and output data. A local controller is
utilized to dynamically configure these hardware components
to construct the HS-GCN chiplet as a GeMM engine or an
SpMM engine, which are detailed below.
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Fig. 3. HS-GCN chiplet architecture overview: The input sparse and dense
buffers are used to store input matrices. The output buffer is used to
store the intermediate and the final results. The unified computing engine
includes a multiplication engine (MUL) and an accumulation engine (ACC)
to perform the required matrix-matrix multiplications for both the aggregation
and combination phases. The local controller is connected to the global
control unit and is used to configure local MUX-DeMUXes to fulfill the
data computation and communication requirements.

Configured as GeMM Engine: In this case, the chiplet ap-
plies the inner product (IP) to perform required general matrix-
matrix multiplications, as shown in Fig. 4 (a). Different from
functioning as a SpMM engine, in this mode, the data from
the ISB is streamed directly to the MUL engine. Concurrently,
the FIFO unit and the Dense Row Index Unit are deactivated.
This is because there is no sparsity existing in both input
matrices; the indices of data flowing to the computing engine
are already corresponding. After receiving data, the MUL and
ACC engines perform the element-wise product and partial
sum accumulation, respectively. The result of the ACC engine
is then stored in the ODB and subsequently transferred to
either the interposer interface or the IDB, based on the selected
intra-chiplet dataflow strategy, as introduced in Sec. IV-B.
Configured as SpMM Engine: The chiplet applies the row-
based product (RP) to perform sparse-dense matrix-matrix
multiplication, as shown in Fig. 4 (c). Compared to the outer
product (OP), as depicted in Fig. 4 (b), the RP exhibits better
efficiency in performing SpMM with a limited on-chip buffer.
Specifically, data from the ISB is streamed to the FIFO unit.
Concurrently the column index of the data is sent to the Dense
Row Index unit. Based on the received column index, the
Dense Row Index Unit selects the corresponding row of data
from the IDB and transfers the data to the unified computing
engine. The FIFO unit and the Dense Row Index Unit work
together to ensure that the indices of data streamed from
both the IDB and ISB to the unified computing engine match
correctly. The unified computing engine works similarly to its
functioning in GeMM mode, with the MUL and ACC engines
performing multiplications and accumulations, respectively.
The ODB is used to receive and store the result locally.
Furthermore, each chiplet integrates a set of dynamic links
controlled by MUXes and DeMUXes that allows the input
buffers to get data from other chiplets through the interposer
as well as directly from the local output buffer. For some
dataflow and computation order configurations, this enables

Given two input matrices (A and B) and one output matrix (C):
A € R"*N B € RVX and C € RM*K

for (m=0; m<M; m++) { N K K
for (k=0; k<K; k++) { M N M
for (n=0; n<N; n++) { X =
CIm][k] +=
A[m][n] * B[n][k]; A B c
m (a) Inner Product (IP) Dataflow
for (n=0; n<N; n++) { N K K
for (m=0; m<M; m++) { M N M
for (k=0; k<K; k++) { X = | 'H
c[m][k] += A B M
A[m][n] * B[n][k]; 4 C
1 (b) Outer Product (OP) Dataflow
for (m=0; m<M; m++) { N K K
for (n=0; n<N; n++) { M N M
for (k=0; k<K; k++) { X =l
c[m][k] += A B ‘ ‘ c‘
A[m][n] * B[n][k];
m (c) Row-based Product (RP) Dataflow

Fig. 4. Three approaches for matrix-matrix multiplications. (a) Inner Product
(IP), (b) Outer Product (OP), and (c) Row-based Product (RP).

direct cross-layer intra-chiplet data reuse to reduce data trans-
mission latency. The details of how this design adapts to
diverse dataflow strategies and computation orders will be
introduced in Sec. IV-B.

C. The Flexible Interconnection Fabric

HS-GCN implements an active interposer featuring a flexi-
ble interconnection network that establishes dynamic connec-
tions between chiplets and global buffers. This interconnection
fabric facilitates efficient data communication for various
dataflows, maximizing data reuse. The proposed interconnec-
tion fabric comprises two key hardware components: adaptive
interposer switches (IS) and reconfigurable links. Specifically,
each IS comprises a switch controller, a dense buffer, a sparse
buffer, and pairs of MUX-DeMUXes, as shown in Fig. 5
(a). The switch controller is designed to receive control bits
from the global control unit for both intra- and inter-chiplet
communication. The intra-chiplet control bit is relayed to
the adjacent chiplet, enabling the chiplet to configure the
on-chip buffers and the unified computing engine to meet
the data computation and communication requirements, as
introduced in Sec. III-B. The inter-chiplet control bit is used
to configure MUX-DeMUXes within each IS. Depending
on the inter-chiplet control bit, each IS dynamically selects
input and output ports, activating the corresponding links to
establish necessary data paths for communication between
chiplets. Since matrices transferred among chiplets can be
either sparse or dense, each IS implements two separate local
buffers to store the sparse and dense matrices, respectively. By
configuring each IS to dynamically establish the connection
with its adjacent interposer switches, as shown in Fig. 5 (b),
the proposed interconnection fabric provides the flexibility
to fulfill the data communication pattern induced by diverse
dataflow strategies.

After the configuration of switches is completed, HS-GCN
can provide flexible interconnection patterns to manage the
data communication, as shown in Fig. 6. Specifically, as
shown in Fig. 6 (a) and (b), the flexible interconnection net-
work is configured as mesh-like topologies to support distinct
data communication patterns during the GCN’s aggregation
and combination phases, respectively. During the aggregation
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Fig. 5. (a) The detailed architecture of the proposed Interposer Switch (IS)
within the interposer layer. Blue links and black links represent the trans-
mission of control signals and data for computation. (b) The interconnection
among switches within the interposer layer.

phase, tiles of the adjacency matrix are horizontally shared
among chiplets within the same row, while during the combi-
nation phase, tiles of the weight matrix are vertically shared
among chiplets involved in the same column. This design
choice aligns with the applied tile-based mapping strategy,
which assigns different rows of chiplets to different sets of
input vertices to mitigate data conflicts during matrix-matrix
multiplication and reduce control network complexity. As
shown in Fig. 6 (c), the flexible interconnection network can
be configured as a ring topology to manage communication
between each interposer switch at the edge, primarily designed
for those computation orders that consider the reuse of inter-
layer intermediate results. To effectively manage data commu-
nication among chiplets with minimized control complexity,
all chiplets interconnect in a systolic manner. Based on the
given tile size, HS-GCN estimates the number of required on-
chip computations and data memory accesses for each chiplet
as a constant. As a result, all chiplets can simultaneously
transmit and receive tiles, thereby preventing potential data
asynchronization and conflicts during transmission. When the
computation is completed, the final result of each chiplet is
sequentially forwarded from left to right, and then to the global
buffer for writing back to the main memory. Additionally, the
flexible interconnection network can also be configured as a
modified torus to maximize inter-layer data reuse.

D. HS-GCN Control Unit

HS-GCN implements a control unit to perform the pro-
posed dynamic control algorithms (Sec. IV) and configures
the chiplet array and interposer switches. These algorithms,
as detailed in Sec. IV, aim to provide the input graphs
with an optimized GCN computation order and correspond-
ing dataflow, thereby improving performance and data reuse
efficiency. The control unit comprises three main components:
the optimizer, the central controller, and the configuration
unit. Specifically, to perform the proposed algorithms, the
optimizer retrieves several parameters from the main memory
and stores them locally in registers. These parameters include
the number of vertices, the length of the feature vector, and
the size of the weight matrix. Subsequently, the optimizer
uses local Arithmetic Logic Units (ALUs) and the aforemen-
tioned parameters to complete the computations required by
the proposed algorithms for selecting the computation order.

[is]—[s}{is] [s] [s-{is}-fis}---[s]
[is]-[is}-[s} - - ~0s] [s}-is}-fis} - - -[is]
[is]-fis}-fis} - - -fis] [s}-[s}-fis} - --fis]
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Fig. 6. Three types of reconfigurable interconnections: (a) Each Interposer
Switch (IS) only receives data from the north neighbor and transfers the data
to the south neighbor. (b) All data is transferred in a horizontal direction. (c)
Those switches within the same column are connected in a ring topology.

Additionally, the optimizer determines the appropriate tile size
from a set of choices based on the selected computation order.
The tile size indicates the size of the data chunk loaded from
the main memory to the global buffer during each epoch.
Once the computation order is selected, the central controller
is responsible for determining the corresponding dataflow
strategy for both intra- and inter-chiplet communication, aim-
ing to improve data reuse efficiency among chiplets. The
determination of the dynamic selection of dataflow strategies
is detailed in Sec. IV-A. The configuration unit comprises
a small local buffer with multiple entries. The local buffer
is implemented to store configuration control bits for each
dataflow strategy. When a specific dataflow strategy is selected,
the corresponding control bits within the local buffer are sent
from the configuration unit to the interconnection network
for the management of data communication among different
hardware components. Regarding the potential time overhead
induced by the control unit, it can be effectively overlapped
with the concurrent loading of the feature matrix from main
memory into the global buffers. This overlap is feasible be-
cause the feature matrix needs to be loaded initially, regardless
of whether the aggregation or combination phase is executed
first for a given computation order. By prudently overlapping
the control operations with the requisite data transfers, the
overall execution time impact of the control unit is mitigated.

IV. PROPOSED DYNAMIC CONTROL ALGORITHMS

The proposed HS-GCN introduces two dynamic control
algorithms, namely a GCN computation order selection algo-
rithm and a dataflow strategy selection algorithm, to achieve
improved performance and energy efficiency for any given
GCN model and input graph. The selected computation order
is used to configure chiplet and reuse intermediate matrices
for reduced data memory access. The selected dataflow (in-
cluding data reuse strategy and data reuse pattern) is used to
configure the interconnection network for improved data reuse
efficiency between chiplets. In this section, we first provide the
details of the two proposed control algorithms, followed by a
comprehensive workflow example.

A. Dynamic GCN Computation Order Selection Algorithm

The pseudo-code of a typical GCN computation order is
shown in Fig. 7 (a), in which the dimensions of the input
adjacency (A), feature (X), and weight (W) matrices are A €
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Fig. 7. (a) Without reusing any intermediate result, (b) Reuse the intermediate
result of intra-layer, and (c) Reuse the intermediate result of inter-layer.

RWMxN) x ¢ RINXK) ‘and W € REXC) | respectively. The
< Ty, TN, Tk, Tc > is the tile size tuple which determines
the number of data loaded from the main memory to the on-
chip buffers during each epoch. Typically, current approaches
sequentially perform each GCN layer and store intermediate
results in the main memory. However, with the exponential
growth in the size of input graphs, current approaches face
several challenges. First, the intermediate result of matrix-
matrix multiplication becomes large and dense compared to
input matrices. Current computation orders without reusing
the intermediate results have to frequently access the main
memory, which induces additional memory access. Second,
for computation orders that reuse inter-layer intermediate re-
sults, careful consideration of data dependencies is necessary,
especially during two consequent GCN layers. For instance,
in a two-layer GCN architecture with the computation order
(Layer-1: A(XW) and Layer-2: (AX)W), during the computa-
tion of the second GCN layer, each vertex must wait until all
its neighbors have updated their features in the first layer to
synchronize data. Consequently, the results of the aggregation
phase in the first GCN layer cannot be immediately used by
the subsequent phase of the second GCN layer.

To address these challenges, we first conduct an extensive
design space exploration to identify GCN computation orders
that can efficiently reuse intermediate matrices throughout
GCN inference. Then, we introduce a dynamic selection
algorithm meticulously designed to choose the optimal GCN
computation order, prioritizing the reuse of intermediate re-
sults while addressing intricate data dependencies inherent in
matrix-matrix multiplication for both intra- and inter-layer.
The main objective of the proposed selection algorithm is to
minimize the data memory access and improve performance.

Since the design space of available GCN computation orders
that are capable of reusing intermediate matrices expands
exponentially when the number of GCN layers increases, we
illustrate our exploration methodology using a 2-layer GCN
architecture as an example, as shown in Fig. 7. Typically, the
reused intermediate matrices involved in GCN inference can
be classified into two types: intra-layer and inter-layer. Fig. 7

(b) and (c) provide details on reusing each type of intermediate
matrix, respectively. Fig. 8 lists all available computation
orders capable of reusing intermediate results. Due to the data
dependencies, several computation orders are excluded from
the design space and are not listed in the figure.

Algorithm 1 Dynamic GCN Computation Order Selection
Algorithm
1: Inputs: The information of input graphs (M, N, K, S_A, and
S_X). The information of applied GCN architectures (K and C).
The buffer capacity (B). The design space (S).
2: Outputs: The selected tile size and computation order (M).
3: Begin:
4: //DRAM access of each execution mode s
5: DA_{s} =0
6
7
8

: //Record the minimal number of DRAM access
: DA_min = Integer MAX_VALUE
: //Record the mode selection

9: mode = 0

10: for k in K do

11:  Th = B+D/(Tk+1) - 1

12: for s in S do

13: DA_{s} = Eq.{s}

14: DA_min = min(DA_min, DA_{s})
15: if DA_min = DA_{s} then

16: /IThe current mode is selected
17: mode = s

18: end if

19: end for

20: end for

21: return mode M

To find the optimal computation order from the design
space, the proposed computation order selection algorithm
takes multiple parameters of the input graph and the applied
GCN architecture. These parameters include the dimensions of
the input graph dataset, the applied GCN architecture, the tile
size, the buffer capacity, and the design space of available com-
putation orders. Based on a given tile size < Th;, TN, Tk, Tc
>, the selection algorithm estimates the number of data
memory accesses of each available GCN computation order
provided in the design space (Line 12-18). In terms of the
estimation function (Line 13), we formulate the data memory
access using input parameters such as input graphs and applied
models, along with the selected computation order and tile
size. Eq. 2 depicts how we estimate the data memory access
for a single chiplet implemented in HS-GCN. S4 and Sx
represent the sparsity of input adjacency and feature matrices,
respectively. We model this during our evaluation to determine
the total amount of data required to be loaded from the main
memory to the on-chip buffer during each epoch.

N=AXx Nadjacency + X x Nfeature + W x Nweight (2)

Where:
R
T% X TI;,N Nadjacency = T]\/{ X TN X SA
X = #(3) Nfeatu're = TN X TK X SX (4)
TN X TK
KxC Nweight =Tk xTc

- Tk X TC . .
After performing the proposed selection algorithm, HS-
GCN selects the optimal computation order and tile size pair
that leads to the minimum estimated number of data memory
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Fig. 8. Available GCN computation orders for reusing intermediate results
when considering the data dependency of both intra- and inter-layer.

accesses as the ultimate decision. Subsequently, the selected
computation order and the tile size will be applied during
the entire inference processing for specific input graphs and
the applied GCN architecture. The time complexity of the
selection algorithm is O(m x n), where m and n represent the
choices of available tile size and computation orders. Detailed
information is provided in Algorithm 1.

B. Dynamic Dataflow Selection Algorithm

HS-GCN introduces a dynamic dataflow selection algorithm
to configure the interconnection network for improved data
reuse efficiency among chiplets. Specifically, based on the
selected GCN computation order introduced in Sec. IV-A,
HS-GCN initially determines whether the intermediate matrix
should be reused within a chiplet or among chiplets. With
three input matrices (adjacency, feature, and weight matrices),
if the decision is to reuse the intermediate matrix within
a chiplet, one of the input matrices can be shared among
chiplets. Conversely, if the decision is to reuse the intermediate
matrix between chiplets, one of the input matrices can stay
locally in each chiplet for reuse. Therefore, for a 2-layer GCN
architecture, there are a total of 8 (2 x 2 x 2) candidates within
the design space of the dataflow algorithm. The first 2 indicates
the number of GCN layers involved in the applied model,
the second 2 determines whether the intermediate matrix
would be reused among chiplets, and the third 2 indicates
if the other two matrices except the intermediate matrix are
reused during GCN processing. Given the design space, the
proposed algorithm takes several parameters, including the
GCN computation order, the tile size, and the number of
chiplets, to estimate the number of data memory access for
each available dataflow, as detailed in Algorithm 2.

For the estimation function used in Algorithm 2, when
provided with two input matrices and one output matrix, one
of these three matrices remains locally within each chiplet
for potential reuse, while the other two are transmitted to
neighboring chiplets for sharing. Consequently, we formulate
the data movement aspect of the estimation to assess the
traffic between neighboring chiplets when sharing data, as
shown in Algorithm 3. After the optimal dataflow is selected
to maximize data movement efficiency, HS-GCN uses the
chosen dataflow to configure both the interconnection network
and the chiplet array to establish the data communication
path. Additionally, HS-GCN applies a mapping strategy that
assigns different vertices to chiplets located on different rows

Algorithm 2 Dynamic Dataflow Selection Algorithm

1: Inputs: The dimension of accelerators (RxC). The determined
tile size (Tary I'vy Ty Tc). The computation order (mode M).
Available dataflow set (S)

2: Outputs: The selected dataflow decision (D).

3: Begin:

4: //Record the data movement

5: DM_min =0

6

7

8

: //Data movement of each scheduling selection
: DM_{s} =0
: //Record the minimal number of DRAM access
9: DM_min = Integer MAX_VALUE
10: //Record the final decision
11: decision = 0
12: for s in S do
13:  DM_{s} = count_ DM(Tns, Tn, Tk, Tc, R, C, s)
14:  if DM_min = DM_{s} then

15: /The current scheduling is selected
16: decision = s

17:  end if

18: end for

19: return decision D

Algorithm 3 Data Movement Counting Function (count_DM)

1: Inputs: The dimension of accelerators (RxC). The determined
tile size (Tar, T'ny Tk, T). The current dataflow selection (s)

: Outputs: The number of data movement DM.

Begin:

: //Assume the adjacency matrix is currently reused

DM_reuse =Ty X Tv X R x C

DM_dl =Ty x Tk X (R+1) x C

DM_d2 =Tn x Tk x R x (C+1)

: DM_total = DM_reuse + DM_d1 + DM_d2

: return DM_total

and assigns different features of the same vertex to chiplets
located on different columns. This mapping approach serves a
dual purpose: it helps avoid conflicts during data transmission
and concurrently ensures data synchronization during matrix-
matrix multiplication.

C. Workflow Example

For clarity, let’s illustrate the proposed architecture using
an example comprised of nxn chiplets. We provide a detailed
description of the workflow of the proposed approach, as
shown in Fig. 9, where n is 4 in the figure. The three input
matrices are as follows: A € RM*N) X ¢ RWXK) apd
W e RE*C) This implies that there are N vertices in the
input graph, with each vertex’s feature vector having a length
of K. The tile size is < Ths,Tn,Tx,Tc > after performing
the proposed algorithm introduced in Sec. IV-A. Additionally,
as introduced in Sec. IV-A, we adopt the last computation
order (No. 5) as the computation order for this example. Once
the computation order and dataflow have been determined, the
features of vertices are fetched from the main memory to the
GLB and subsequently to the designated chiplet, where they
are stored locally before performing the computations (Step
#0). The details of the workflow are as follows:

Step #1: All chiplets read their designated tiles of the weight
matrix (W) from the GLB through the interconnection and
store the data inside the local buffer, as shown in Fig. 9 (b). In
this specific example, as the dimension of the tile size matches
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Fig. 9. Example Workflow: Introducing the proposed architecture design with three small-scale GCN input matrices (A, X, and W) and a nxn chiplet array,

where n is 4 in this figure. The workflow mainly includes 5 steps in total.

that of the weight matrix, it is possible to store the entire
weight matrix in each chiplet. In actual GCN architectures,
the dimensions of the weight matrix are typically small as
well [8], [10].

Step #2: Following the loading of the weight matrix, each
chiplet activates its local unified computing engine, utilizing
the stored tiles of feature and weight matrices to perform
computations for the combination phase. The resulting updated
tiles of features, which are intermediate results, are retained
locally within the output dense buffer, as shown in Fig. 9 (c).

Step #3: In this step, the architecture encompasses two
primary operations. Firstly, the data, which consists of inter-
mediate results stored within the output dense buffer of each
chiplet, is forwarded to the local input dense buffer to serve as
input for subsequent computations through the reconfigurable
DeMUX. Secondly, tiles of the adjacency matrix from the
GLB are sent to the chiplet array in a systolic manner through
the interconnection and stored inside the input sparse buffer.
The aforementioned operations are executed concurrently, as
shown in Fig. 9 (d).

Step #4: During this step, the architecture also involves
two primary operations. Firstly, after the adjacency matrix is
loaded, each chiplet utilizes the stored tiles of intermediate
results and the adjacency matrix to perform computations for
the aggregation phase through the unified computing engine, as
illustrated in Fig. 9 (e). Subsequently, the chiplet will transmit
the adjacency matrix to its neighboring chiplet within the
same row. This communication is facilitated through those
interposer switches (IS) located in the interposer layer as
introduced in Sec. III-C. The aggregation phase for the current
tiles concludes once the intermediate results have traversed all
the chiplets within the same row.

Step #5: Once completing the required computations, the

(b) Overall Layout Characteristics

(a) Chiplet Layout Characteristics

c - si Component Size
mponen iz
ompone! d Chiplet Array 4x4
MUL. Engine 16 x 1 multipliers
Switches Array 4x4
ACC. Engine 15 adders
Global Buffer 1MB
Input Sparse Buffer 128 KB (GLB)
Input Dense Buffer 4 KB Optimizer 10 MAC units
Output Dense 256 KB 8 registers
Buffer Central Controller
Local Control Unit
idth 256 GB/s

Fig. 10. (a) Layout characteristics of each chiplet. (b) Layout characteristics
of the overall architecture.

intermediate results contained within the output dense buffer
of each chiplet are streamed out to the GLB through the
DeMUX and subsequently to the main memory, as shown in
Fig.9 (f). Concurrently, the architecture initiates the loading of
the next batch of tiles of matrix X into the respective chiplets
for further computations. Additionally, these two types of data
are transmitted through two distinct topologies to avoid data
conflicts, as explained in Sec. III-C.

V. EVALUATION METHODOLOGIES
A. Evaluation Setup

Hardware simulator. We build a cycle-accurate simulator
in C++ language to evaluate the hardware behavior and the
performance of the proposed design. Specifically, the simulator
precisely counts the exact number of memory read and write
operations, which is used to estimate the energy consumption
of the memory access according to [28]. To measure the area
consumption, we implement all the proposed hardware logic,
including the chiplet design, the interposer switch design,
and other hardware components through the Synopsys Design
Compiler with the TSMC 45nm library for the synthesis. We
set the clock frequency at 1 GHz. We use Cacti 6.0 [29] and
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DSENT [30] to estimate the area, power, and access latency
of all types of buffers and links.

Architecture Configuration. Fig. 10 (a) and Fig. 10 (b) list
the layout characteristics of each chiplet design and the overall
architecture. Specifically, the proposed design implements an
NxN chiplet array with KxK interposer switches, where
both N and K equal 4 during our evaluation. Additionally, in
Sec. VI-D, we conduct a scalability analysis of the proposed
design to illustrate the relationship between the execution time
and the dimensions of the unified chiplet array. Each Chiplet
is equipped with 16x1 multipliers cascaded 15 adders in a
binary tree architecture to perform the necessary matrix-matrix
multiplication required for GCN inference. For the optimizer,
it includes 8 registers to receive and store the parameters of the
input application, and 10 MAC units to perform the required
computations required by the proposed algorithms. The sizes
of all on-chip buffers are designed with sufficient capacity to
store the data required for computations. For instance, the GLB
serves as a bridge facilitating data communication between
the main memory and the chiplet array. As connecting to the
first column of the array, the GLB is sized at IMB to ensure
sufficient capacity for the data volume being transferred.

Baselines. We compare the proposed design to five previ-
ous customized accelerators (HyGCN [8], AWB-GCN [12],
GCNAX [10], I-GCN [9], and SGCN [13]) using the same
simulator platform to ensure a fair comparison. Given that
the proposed design features a 4 x 4 chiplet array, with each
chiplet comprising 16 multipliers, the total number of multi-
pliers amounts to 256. Consequently, all baseline accelerators
have been scaled to incorporate an equivalent number of com-
putation units as the proposed design. A previous study [8] has
shown that utilizing single-precision floating-point numbers
(4 Bytes per data) is sufficient to preserve GCN inference
accuracy. As a result, both computing units and links have a
width of 32 bits for data computation and communication in
the majority of accelerators. However, GCNAX differs in its
regard, as it utilizes 64-bit wide computing units and links
due to its operation with double precision (8 Bytes per data).
For a fair comparison, the main memory bandwidth for all
accelerators is scaled to 256GB/s. Since the aforementioned
customized accelerators outperform general-purpose CPUs and
GPUs, we did not include comparisons against those general
processing units.

Evaluation Datasets. In this paper, we leverage commonly
used datasets from previous literature [3], [31]-[35] to conduct
the further experimental evaluation. These datasets include

TABLE I
DETAILS OF GCN DATASETS USED FOR EVALUATION

Datasets Vertices Edges Sparsity | Feature Length
Cora (CR) 2708 10556 0.018% 1433-16-7
CiteSeer (CS) 3327 9104 0.11% 3703-16-6
PubMed (PM) 1917 88648 0.028% 500-16-3

Nell (NL) 65755 266144 0.0073% | 61278-64-186
Reddit (RD) 232965 | 114615892 0.21% 602-64-41

Cora (CR), CiteSeer (CS), PubMed (PM), Nell (NL), and
Reddit (RD). Cora, CiteSeer, and PubMed are well-known
datasets for paper citation networks, node classification, and
text summarization [1], [33]. The Reddit dataset represents
an undirected graph of social networks, comprising posts
gathered from the Reddit discussion forum. The Nell dataset,
on the other hand, is a knowledge graph obtained from the
Never-Ending Language Learning project. Table V-A provides
detailed information about each dataset used in this study,
including its structure and data density. Additionally, the last
column of the table provides information about the change in
the feature vector’s length during the entire GCN inference
process. Obviously, except for the NELL dataset, the length
of feature vectors in most graph datasets decreases.

VI. EVALUATION AND ANALYSIS
A. Data Memory Access

Fig. 11 shows the normalized data memory access of the
proposed design compared to previous works. The proposed
design outperforms the previous approaches for the following
reasons: Firstly, HS-GCN selects the optimal GCN computa-
tion order while considering the data reuse of intermediate re-
sults for diverse input graphs. Consequently, HS-GCN overlaps
the execution of consecutive phases, ensuring that the large
and dense intermediate results can be immediately utilized
by the subsequent GCN phase and layer without the need to
store and load them to and from the main memory repeatedly,
thereby reducing the total data memory accesses. Secondly,
HS-GCN offers a flexible dataflow along with a reconfigurable
interconnection network that allows the chiplet to retrieve the
necessary data from its neighboring chiplet instead of the main
memory. This improvement enhances the overall data reuse
efficiency. With all data being normalized to the proposed
design, as shown in Fig. 11, the proposed architecture provides
a memory access reduction by a factor of 16.9x, 9.2x, 2.8x,
6.9x, 2.2, which imply a memory access reduction by 94%,
89%, 64%, 85%, 54% compared to HyGCN, AWB-GCN,
GCNAX, I-GCN, and SGCN, respectively.
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B. Execution Time

Fig. 12 illustrates the normalized execution time of the
proposed HS-GCN compared to previous works. HS-GCN
achieves an execution time speedup of a factor of 26.7x,
11.2x, 39x%x, 47x, 3.1x on average of real-world GCN
datasets, compared to HyGCN, AWB-GCN, GCNAX, I-GCN,
and SGCN, respectively. In contrast to existing approaches,
HS-GCN uses a novel control algorithm coupled with a
flexible interconnection fabric to enhance data reuse efficiency,
thereby reducing memory access, which is a key performance
bottleneck. For example, when processing the NELL (NL)
dataset, which has large and dense intermediate data across
phases and layers, HS-GCN effectively reuses these data
within the chiplet array. This approach eliminates the need
for frequent data transfers between memory and computation
units, thereby improving overall performance. The time over-
head associated with executing the control algorithm and per-
forming the configuration setup can be effectively overlapped.
Since all types of computation orders require the feature matrix
at the beginning of inference, the system concurrently loads
the feature matrix of input graphs from the main memory to
the global buffer while the control unit executes the algorithms
and configures the chiplet array and the interconnection fabric.

C. Energy Consumption

All accelerators estimate the related energy consumption
according to [29], and all values are normalized based on
the proposed HS-GCN design. As shown in Fig. 13, HS-
GCN achieves 13.0x, 7.0x, 2.1x, 5.2%, 1.8 x energy savings,
which imply 87%, 84%, 49%, 78%, 41% energy reduction
on average compared to HyGCN, AWB-GCN, GCNAX, I-
GCN, and SGCN, respectively. Since memory access plays
a major bottleneck for energy consumption, HS-GCN uses
the proposed control algorithms in conjunction with the in-
terconnection fabric as the primary approach to significantly
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Fig. 14. The energy efficiency of HS-GCN compared to previous works across
various input graph datasets, including Cora (CR), CiteSeer (CS), PubMed
(PM), Reddit (RD), Nell (NL), and the average (Avg.). All evaluation results
are normalized to the performance of HyGCN (higher is better).
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various graph datasets. All evaluation results are normalized based on using
a single chiplet with optimal computation order and dataflow.

reduce memory access, as detailed in Sec. VI-A. Specifically,
HS-GCN first optimizes the GCN computation order to min-
imize overall memory access. Subsequently, based on the se-
lected computation order, HS-GCN determines an appropriate
dataflow to maximize data reuse efficiency, further reducing
memory access. To accommodate the diverse matrix-matrix
multiplication resulting from different computation orders,
HS-GCN integrates a reconfigurable chiplet design to meet
data computation requirements efficiently.
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each chiplet and the proposed design (HS-GCN).

D. Scalability Analysis

Fig. 15 illustrates the impact on execution time when
scaling HS-GCN across various datasets, ranging from 1 to
32 chiplets. Regarding the scaling process, using 8 chiplets as
an example, we estimate the execution time for both (2 x 4)
and (4 x 2) arrays, as these two configurations exhibit differing
performances. Subsequently, we calculate the average value of
two distinct results to determine the overall execution time. As
the number of chiplets increases, the overall execution time
is significantly reduced across all evaluated datasets due to
the availability of sufficient hardware resources to fulfill the
computation and communication requirements during DGCN
inference. To mitigate the latency of data communication
between chiplets as their number increases, HS-GCN uses
the proposed algorithm to predetermine the tile size and
ensure that the data chunks transferred between adjacent
chiplets remain consistent. Consequently, even as the number
of chiplets increases, the latency for each chiplet to fetch data
from its neighbors remains relatively uniform. As substantial
computing resources are provided for input graphs, the primary
bottleneck shifts to the bandwidth between the main memory
and the global buffer, as indicated by the Roofline model.
Therefore, this shows that increasing on-chip resources is
unable to provide a proportional reduction in execution time.

E. Area and Power Analysis

Fig. 16 (a) and (b) provide a comprehensive breakdown of
the area consumption for both the chiplet and the proposed HS-
GCN. For each chiplet, on-chip buffers occupy the majority
of the area, accounting for approximately 82% of the total.
Since the proposed HS-GCN is a chiplet-based architecture,
the area consumption of the chiplet array can be overlapped
by part of the interposer layer. Fig. 16 (c) and Fig. 16 (d) show
a detailed power breakdown for both the chiplet and the HS-
GCN. Notably, the chiplet array and the interposer switches are
the primary hardware components that consume the majority
of power, accounting for approximately 90% of the total.

VII. CONCLUSION

This paper proposes HS-GCN, a chiplet-based GCN ac-
celerator designed to address the critical limitations of cur-
rent approaches, including scalability and flexibility. HS-GCN

comprises multiple chiplets designed to efficiently perform the
primary computations involved in GCN inference. Further-
more, HS-GCN integrates an active interposer with a flexible
interconnection fabric to accommodate diverse dataflows and
their associated communication patterns. In addition, HS-GCN
introduces algorithms to determine optimal GCN computation
orders and dataflows, enabling the reuse of intermediate ma-
trices and the dynamic configuration of both the chiplet array
and the interconnection fabric.
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