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Abstract—Graph Convolutional Networks (GCNs) have been
proposed to extend machine learning techniques for graph-
related applications. A typical GCN model consists of mul-
tiple layers, each including an aggregation phase, which is
communication-intensive, and a combination phase, which is
computation-intensive. As the size of real-world graphs increases
exponentially, current customized accelerators face challenges
in efficiently performing GCN inference due to limited on-chip
buffers and other hardware resources for both data computation
and communication, which degrades performance and energy
efficiency. Additionally, scaling current monolithic designs to
address aforementioned challenges will introduce significant cost-
effectiveness issues in terms of power, area, and yield. To this
end, we propose HS-GCN, a high-performance, sustainable, and
scalable chiplet-based accelerator for GCN inference with much-
improved energy efficiency. Specifically, HS-GCN integrates mul-
tiple reconfigurable chiplets, each of which can be configured to
perform the main computations of either the aggregation phase or
the combination phase, including Sparse-dense matrix multiplica-
tion (SpMM) and General matrix-matrix multiplication (GeMM).
HS-GCN implements an active interposer with a flexible inter-
connection fabric to connect chiplets and other hardware com-
ponents for efficient data communication. Additionally, HS-GCN
introduces two system-level control algorithms that dynamically
determine the computation order and corresponding dataflow
based on the input graphs and GCN models. These selections are
used to further configure the chiplet array and interconnection
fabric for much-improved performance and energy efficiency.
Evaluation results using real-world graphs demonstrate that HS-
GCN achieves significant speedups of 26.7×, 11.2×, 3.9×, 4.7×,
3.1×, along with substantial memory access savings of 94%, 89%,
64%, 85%, 54%, and energy savings of 87%, 84%, 49%, 78%,
41% on average, as compared to HyGCN, AWB-GCN, GCNAX,
I-GCN, and SGCN, respectively.

Index Terms—Graph Convolutional Networks, Hardware Ac-
celerators, Dynamic Dataflows, Chiplet-based Design.

I. INTRODUCTION

G
RAPH Convolutional Networks (GCNs) have been re-

cently introduced and applied to achieve remarkable

inference accuracy in applications using graph-structured

data [1]–[7]. A typical GCN architecture comprises mul-

tiple graph convolutional layers, and each of these layers

consists of two primary computational phases: Aggregation

and Combination [8]–[11]. During the aggregation phase,

vertices within the input graph collect features from all of
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their neighbors. In the combination phase, each vertex uses

a pre-trained weight matrix to update its aggregated features

and generates an output matrix of the current GCN layer.

The output matrix of the current GCN layer will be used

as an input feature matrix for the next GCN layer. With the

explosion of input real-world graphs, the data used for GCN

inference becomes extremely tremendous, imposing stringent

requirements on data computation and communication when

designing hardware accelerators.

Recently, several customized approaches have been pro-

posed to accelerate GCN inference for improved perfor-

mance [8]–[10], [12], [13]. Although significant achievements,

current approaches still face several key limitations when

performing GCN inference with large-scale input graphs,

which degrades performance and energy efficiency. (1) Due

to distinct functionalities, the two phases of GCN inference

are either computation-intensive or communication-intensive.

However, current monolithic approaches struggle to efficiently

execute these phases because of limitations in on-chip com-

putation resources, communication bandwidth, and buffer

capacities. [8], [10], [12]. Although scaling current mono-

lithic approaches to provide sufficient hardware resources

can achieve better performance, it also introduces significant

cost-effectiveness challenges across various aspects, includ-

ing power, area, and yield [14]–[16]. (2) Current monolithic

approaches sequentially execute the GCN phases and layers,

thereby failing to exploit and reuse intermediate data across

phases and layers. These intermediate data, typically repre-

sented as dense matrices generated by matrix-matrix multi-

plications in each phase, are often overlooked. This neglect

results in significant additional on-chip and off-chip memory

access, particularly as the size of input graphs increases,

ultimately impairing both performance and energy efficiency.

To this end, we propose HS-GCN, a high-performance,

sustainable, and scalable chiplet-based accelerator for GCN

inference. The main objective of the proposed HS-GCN is

to provide flexibility and scalability for GCN inference while

reducing data memory access and computations, leading to

significantly improved performance and energy efficiency. The

main contributions of this work are outlined as follows:

• A Chiplet-based Architecture: HS-GCN consists of

multiple chiplets, each including a unified computing

engine capable of dynamic configuration for efficient

execution of key computations in GCN inference. Given

an input graph and a specified GCN model, HS-GCN

dynamically adapts to the computational and communica-
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tion requirements by individually configuring each chiplet

as either an aggregation engine or a combination engine.

This adaptability enhances performance and improves

hardware utilization compared to previous approaches.

• Flexible Interconnection Fabric: HS-GCN integrates an

active interposer with a flexible interconnection network

to establish dynamic connections among chiplets and

global buffers with diverse topologies. This provides fast

and energy-efficient data transmission for both intra- and

inter-chiplet communications. Furthermore, the proposed

flexible interconnection allows HS-GCN to efficiently

support a wide range of dataflow with diverse on-chip

data reuse strategies such as spatial and temporal reuse

of the intermediate output tiles, feature tiles, and weight

matrices, along with different data reuse patterns.

• Dynamic Control Algorithms: HS-GCN introduces two

dynamic control algorithms for configuring the proposed

reconfigurable chiplets and flexible interconnection fab-

ric, based on the given GCN architecture and input

graphs. Specifically, HS-GCN first determines the optimal

GCN computation order (the sequence of aggregation

and combination phases) based on the given input graph

and the applied model, aiming to minimize the number

of main memory access throughout the entire inference

processing. Subsequently, leveraging the selected compu-

tation order, HS-GCN selects an appropriate dataflow to

maximize data reuse efficiency across chiplets.

Evaluation results demonstrate that HS-GCN achieves sig-

nificant speedups, with factors of 26.7×, 11.2×, 3.9×, 4.7×,

3.1×, while also providing substantial memory access savings

of 94%, 89%, 64%, 85%, 54%, and energy savings of 87%,

84%, 49%, 78%, 41% on average, as compared to HyGCN,

AWB-GCN, GCNAX, I-GCN, and SGCN, respectively.

II. BACKGROUND, PREVIOUS WORKS, AND MOTIVATIONS

A. GCN Background

Typically, each Graph Convolutional Network (GCN) ar-

chitecture, also called a GCN model, is composed of mul-

tiple graph convolutional layers. Each convolutional layer

includes two main computational phases: Aggregation and

Combination. The aggregation phase is generally formulated

as Sparse-dense Matrix-matrix Multiplication (SpMM), while

the combination phase is General Matrix-matrix Multipli-

cation (GeMM). During the aggregation phase, vertices of

the input graph collect feature vectors from their neighbors

and aggregate them with the local feature vector. Due to

the sparsity of the input graph, each vertex has a different

number of neighbors, leading to irregular data memory access

and varying numbers of computations. In contrast, during the

combination phase, each vertex uses a pre-trained small and

dense weight matrix to update the local feature vector [8],

[10], [17], [18], which involves regular data memory access

and a more consistent number of computations. Subsequently,

the updated feature vector of the combination phase will be

passed through an activation function, such as the Rectified

Linear Unit (ReLU), to obtain the ultimate feature vector,

which conducts an output matrix of the current GCN layer.

The output matrix then serves as the input feature matrix of
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Fig. 1. (a) The adjacency, feature, and weight matrices (A, X, and W) are
partitioned into four tiles each. (b) Perform the GCN phases sequentially,
processing all tiles within each phase. (c) Reschedule the workload to reuse
intermediate results between GCN phases.

the next GCN layer. The main computation of each GCN layer

can be abstracted as Eq. 1, which is also shown in Fig. 1 (a).

X(k+1) = σ(AX(k)W (k)) (1)
Note that the matrix A in Eq. 1 represents the normalized

adjacency matrix which is used to record the connection

between the source and destination vertices in the input graph.

Xk is the feature matrix in layer-k; each row of X denotes

a vertex, and each column of X represents a feature. W k

is the well-trained weight matrix of layer-k. σ(.) refers to

the non-linear activation function such as ReLU [19], [20].

In this paper, HS-GCN mainly focuses on accelerating GCN

inference with undirected input graphs.

B. Previous Works

Several customized accelerators have been proposed to ac-

celerate GCN inference and achieve significant improvements

compared to general processing units (CPUs and GPUs) [8]–

[10], [12]. Specifically, HyGCN [8] implements two separate

computing engines to independently perform the aggregation

and combination phases of each layer. These two engines are

connected in a cascade through an on-chip buffer, where the

intermediate data from the aggregation phase is forwarded

to the combination engine. AWB-GCN [12] uses a unified

computing engine that performs the combination phase first

and is designed to address workload imbalances during graph

processing. GCNAX [10] tackles resource under-utilization

and excessive data movement through a flexible on-chip

dataflow. Similarly, I-GCN [9] accelerates GCN execution

by merging vertices with shared neighbors, thereby reducing

redundant computations and memory access.

C. Motivations

Despite significant achievements, current approaches still

face several key limitations that impede further improvements

in performance and energy efficiency, particularly as the size

of real-world graphs and GCN models grows exponentially.

Limitations in scalability: Since GCN inference is both

computation- and communication-intensive, the hardware re-

source requirements for GCN inference have been increasing

exponentially over time, especially as the size of real-world
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graphs grows dramatically. Current approaches face challenges

in effectively performing GCN inference due to limited on-

chip hardware resources, such as the number of computing

units, the capacity of on-chip buffers, and on/off-chip band-

width [15], [16]. Although scaling current monolithic archi-

tectures can achieve better performance, it requires a larger

die size and further introduces cost-effectiveness challenges

in various aspects, including power, area, and yield [14], [15].

Manufacturing an entirely larger chip design with the most

advanced technology can cost almost twice as much as using

a chiplet approach. For instance, with 16 processing units, a

monolithic architecture die (7nm) consumes around 2.5 times

more area compared to a chiplet design to achieve similar

performance [15]. Therefore, shifting to chiplet-based designs

presents a promising solution to efficiently perform GCN

inference for large-scale input graphs compared to current

approaches.

Limitations in flexibility: Previous works [8], [10], [12] with

customized processing elements and interconnection fabric

sequentially perform each GCN phase and layer for the

entire inference processing, as shown in Fig. 1 (b). However,

they failed to provide the necessary flexibility to find and

support the data computation and communication requirements

induced by the optimal GCN computation order and the

corresponding dataflow. For instance, we assume that the di-

mensions of the feature matrix and weight matrix in Fig. 1 (a)

are X ∈ RNxK and W ∈ RKxC , respectively. If K is smaller

than C, using HyGCN [8] will significantly increase the di-

mension of the inter-phase intermediate matrix from (NxC) to

(NxK), which induces extra data memory access. Additionally,

with rigid interconnection fabric, current approaches scarify

the opportunity to explore the data locality to apply diverse

dataflow. For instance, HyGCN [8] and GCNAX [10] only

focus on reusing the inter-phase intermediate result without

paying attention to the inter-layer intermediate result.

To this end, we propose HS-GCN, a high-performance,

sustainable, and scalable chiplet-based accelerator for GCN

inference. HS-GCN includes multiple reconfigurable chiplets

designed to support computations required by various GCN

computation orders. HS-GCN integrates an active interposer

with a flexible interconnection fabric, providing the flexibil-

ity and scalability needed to meet the data communication

requirements of diverse dataflow (data reuse strategies). Ad-

ditionally, HS-GCN introduces two control algorithms that

dynamically select the optimal computation order and dataflow

for the given input graph and GCN model.

III. PROPOSED HS-GCN ARCHITECTURE

A. Architecture Overview

Fig. 2 depicts the overall architecture of the proposed

chiplet-based Graph Convolutional Network (GCN) acceler-

ator, named HS-GCN. HS-GCN comprises an array of recon-

figurable chiplets, a flexible interconnection fabric, a control

unit, and a global buffer (GLB). The objectives of these pro-

posed components are to provide adaptability, flexibility, and

scalability listed in Sec. II-C. Specifically, each chiplet uses

a reconfigurable unified computing engine to perform the key

computations for GCN inference, including Sparse-dense and
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Fig. 2. The overall architecture design of the proposed HS-GCN. The
chiplet array comprises N chiplets and is designed to perform the key
computations required for GCN inference, including Sparse-dense and General
Matrix-matrix Multiplications (SpMM and GeMM). All chiplets are connected
through an active interposer with a flexible interconnection network. Both the
chiplet array and the interconnection network can be dynamically reconfigured
by the control unit to fulfill the requirements of data computation and
communication. The control unit is implemented to perform the proposed
algorithms that determine the optimal computation order and the configuration
of the dataflow strategy applied to both intra- and inter-chiplet. The Global
Buffer (GLB) is used to store the input matrices from the main memory, as
well as the intermediate and final matrices from the chiplet array.

General matrix-matrix multiplications (SpMM and GeMM).

The design details of the reconfigurable chiplet are discussed

in Sec. III-B. The flexible interconnection fabric features

an active interposer [21]–[24] with reconfigurable switches

and links to establish dynamic connections among chiplets

and global buffers through diverse topologies. This provides

fast and energy-efficient data transmission for both intra-

and inter-chiplet communications. Additionally, the proposed

interconnection fabric provides dataflow flexibility by allowing

spatial and temporal reuse of all GCN matrices, including

adjacency matrix (A), feature matrix (X), weight matrix (W),

intermediate data, and final matrix (O). The details of the

flexible interconnection fabric are demonstrated in Sec. III-C.

The configurations of individual chiplets and the flexible

interconnection fabric are supervised by a unified control unit.

Given an input graph and a GCN architecture, the control unit

has two functions: (1) selecting the optimal GCN computation

order and corresponding dataflow strategy for both intra- and

inter-chiplet communication and (2) configuring the chiplet

array and the interconnection fabric based on these selections,

as discussed in Sec. III-D. The global buffer (GLB) is a multi-

bank scratchpad connected to the main memory and shared

by the chiplet array to store the input, intermediate, and final

matrices [25]–[27].

B. HS-GCN Chiplet Architecture

HS-GCN is comprised of multiple chiplets, each of which

is reconfigurable to efficiently perform SpMM and GeMM for

GCN inference. As shown in Fig. 3, each chiplet includes a

unified computing engine, an Input Sparse Buffer (ISB), an

Input Dense Buffer (IDB), a First-In-First-Out (FIFO) unit, a

Dense Row Index Unit, an Output Dense Buffer (ODB), and

a local controller. Specifically, the unified computing engine

comprises a Multiplication engine (MUL Engine) connected

to an Accumulation engine (ACC Engine) for required com-

putations. On-chip buffers are used to store different types

of input, intermediate, and output data. A local controller is

utilized to dynamically configure these hardware components

to construct the HS-GCN chiplet as a GeMM engine or an

SpMM engine, which are detailed below.
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Fig. 3. HS-GCN chiplet architecture overview: The input sparse and dense
buffers are used to store input matrices. The output buffer is used to
store the intermediate and the final results. The unified computing engine
includes a multiplication engine (MUL) and an accumulation engine (ACC)
to perform the required matrix-matrix multiplications for both the aggregation
and combination phases. The local controller is connected to the global
control unit and is used to configure local MUX-DeMUXes to fulfill the
data computation and communication requirements.

Configured as GeMM Engine: In this case, the chiplet ap-

plies the inner product (IP) to perform required general matrix-

matrix multiplications, as shown in Fig. 4 (a). Different from

functioning as a SpMM engine, in this mode, the data from

the ISB is streamed directly to the MUL engine. Concurrently,

the FIFO unit and the Dense Row Index Unit are deactivated.

This is because there is no sparsity existing in both input

matrices; the indices of data flowing to the computing engine

are already corresponding. After receiving data, the MUL and

ACC engines perform the element-wise product and partial

sum accumulation, respectively. The result of the ACC engine

is then stored in the ODB and subsequently transferred to

either the interposer interface or the IDB, based on the selected

intra-chiplet dataflow strategy, as introduced in Sec. IV-B.

Configured as SpMM Engine: The chiplet applies the row-

based product (RP) to perform sparse-dense matrix-matrix

multiplication, as shown in Fig. 4 (c). Compared to the outer

product (OP), as depicted in Fig. 4 (b), the RP exhibits better

efficiency in performing SpMM with a limited on-chip buffer.

Specifically, data from the ISB is streamed to the FIFO unit.

Concurrently the column index of the data is sent to the Dense

Row Index unit. Based on the received column index, the

Dense Row Index Unit selects the corresponding row of data

from the IDB and transfers the data to the unified computing

engine. The FIFO unit and the Dense Row Index Unit work

together to ensure that the indices of data streamed from

both the IDB and ISB to the unified computing engine match

correctly. The unified computing engine works similarly to its

functioning in GeMM mode, with the MUL and ACC engines

performing multiplications and accumulations, respectively.

The ODB is used to receive and store the result locally.

Furthermore, each chiplet integrates a set of dynamic links

controlled by MUXes and DeMUXes that allows the input

buffers to get data from other chiplets through the interposer

as well as directly from the local output buffer. For some

dataflow and computation order configurations, this enables

for (m=0; m<M; m++) {

for (k=0; k<K; k++) {

for (n=0; n<N; n++) {

C[m][k] += 

A[m][n] * B[n][k];

}}}

for (n=0; n<N; n++) {

for (m=0; m<M; m++) {

for (k=0; k<K; k++) {

c[m][k] += 

A[m][n] * B[n][k];

}}}

for (m=0; m<M; m++) {

for (n=0; n<N; n++) {

for (k=0; k<K; k++) {

c[m][k] += 

A[m][n] * B[n][k];

}}}
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Fig. 4. Three approaches for matrix-matrix multiplications. (a) Inner Product
(IP), (b) Outer Product (OP), and (c) Row-based Product (RP).

direct cross-layer intra-chiplet data reuse to reduce data trans-

mission latency. The details of how this design adapts to

diverse dataflow strategies and computation orders will be

introduced in Sec. IV-B.

C. The Flexible Interconnection Fabric

HS-GCN implements an active interposer featuring a flexi-

ble interconnection network that establishes dynamic connec-

tions between chiplets and global buffers. This interconnection

fabric facilitates efficient data communication for various

dataflows, maximizing data reuse. The proposed interconnec-

tion fabric comprises two key hardware components: adaptive

interposer switches (IS) and reconfigurable links. Specifically,

each IS comprises a switch controller, a dense buffer, a sparse

buffer, and pairs of MUX-DeMUXes, as shown in Fig. 5

(a). The switch controller is designed to receive control bits

from the global control unit for both intra- and inter-chiplet

communication. The intra-chiplet control bit is relayed to

the adjacent chiplet, enabling the chiplet to configure the

on-chip buffers and the unified computing engine to meet

the data computation and communication requirements, as

introduced in Sec. III-B. The inter-chiplet control bit is used

to configure MUX-DeMUXes within each IS. Depending

on the inter-chiplet control bit, each IS dynamically selects

input and output ports, activating the corresponding links to

establish necessary data paths for communication between

chiplets. Since matrices transferred among chiplets can be

either sparse or dense, each IS implements two separate local

buffers to store the sparse and dense matrices, respectively. By

configuring each IS to dynamically establish the connection

with its adjacent interposer switches, as shown in Fig. 5 (b),

the proposed interconnection fabric provides the flexibility

to fulfill the data communication pattern induced by diverse

dataflow strategies.

After the configuration of switches is completed, HS-GCN

can provide flexible interconnection patterns to manage the

data communication, as shown in Fig. 6. Specifically, as

shown in Fig. 6 (a) and (b), the flexible interconnection net-

work is configured as mesh-like topologies to support distinct

data communication patterns during the GCN’s aggregation

and combination phases, respectively. During the aggregation
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Fig. 5. (a) The detailed architecture of the proposed Interposer Switch (IS)
within the interposer layer. Blue links and black links represent the trans-
mission of control signals and data for computation. (b) The interconnection
among switches within the interposer layer.

phase, tiles of the adjacency matrix are horizontally shared

among chiplets within the same row, while during the combi-

nation phase, tiles of the weight matrix are vertically shared

among chiplets involved in the same column. This design

choice aligns with the applied tile-based mapping strategy,

which assigns different rows of chiplets to different sets of

input vertices to mitigate data conflicts during matrix-matrix

multiplication and reduce control network complexity. As

shown in Fig. 6 (c), the flexible interconnection network can

be configured as a ring topology to manage communication

between each interposer switch at the edge, primarily designed

for those computation orders that consider the reuse of inter-

layer intermediate results. To effectively manage data commu-

nication among chiplets with minimized control complexity,

all chiplets interconnect in a systolic manner. Based on the

given tile size, HS-GCN estimates the number of required on-

chip computations and data memory accesses for each chiplet

as a constant. As a result, all chiplets can simultaneously

transmit and receive tiles, thereby preventing potential data

asynchronization and conflicts during transmission. When the

computation is completed, the final result of each chiplet is

sequentially forwarded from left to right, and then to the global

buffer for writing back to the main memory. Additionally, the

flexible interconnection network can also be configured as a

modified torus to maximize inter-layer data reuse.

D. HS-GCN Control Unit

HS-GCN implements a control unit to perform the pro-

posed dynamic control algorithms (Sec. IV) and configures

the chiplet array and interposer switches. These algorithms,

as detailed in Sec. IV, aim to provide the input graphs

with an optimized GCN computation order and correspond-

ing dataflow, thereby improving performance and data reuse

efficiency. The control unit comprises three main components:

the optimizer, the central controller, and the configuration

unit. Specifically, to perform the proposed algorithms, the

optimizer retrieves several parameters from the main memory

and stores them locally in registers. These parameters include

the number of vertices, the length of the feature vector, and

the size of the weight matrix. Subsequently, the optimizer

uses local Arithmetic Logic Units (ALUs) and the aforemen-

tioned parameters to complete the computations required by

the proposed algorithms for selecting the computation order.
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Fig. 6. Three types of reconfigurable interconnections: (a) Each Interposer
Switch (IS) only receives data from the north neighbor and transfers the data
to the south neighbor. (b) All data is transferred in a horizontal direction. (c)
Those switches within the same column are connected in a ring topology.

Additionally, the optimizer determines the appropriate tile size

from a set of choices based on the selected computation order.

The tile size indicates the size of the data chunk loaded from

the main memory to the global buffer during each epoch.

Once the computation order is selected, the central controller

is responsible for determining the corresponding dataflow

strategy for both intra- and inter-chiplet communication, aim-

ing to improve data reuse efficiency among chiplets. The

determination of the dynamic selection of dataflow strategies

is detailed in Sec. IV-A. The configuration unit comprises

a small local buffer with multiple entries. The local buffer

is implemented to store configuration control bits for each

dataflow strategy. When a specific dataflow strategy is selected,

the corresponding control bits within the local buffer are sent

from the configuration unit to the interconnection network

for the management of data communication among different

hardware components. Regarding the potential time overhead

induced by the control unit, it can be effectively overlapped

with the concurrent loading of the feature matrix from main

memory into the global buffers. This overlap is feasible be-

cause the feature matrix needs to be loaded initially, regardless

of whether the aggregation or combination phase is executed

first for a given computation order. By prudently overlapping

the control operations with the requisite data transfers, the

overall execution time impact of the control unit is mitigated.

IV. PROPOSED DYNAMIC CONTROL ALGORITHMS

The proposed HS-GCN introduces two dynamic control

algorithms, namely a GCN computation order selection algo-

rithm and a dataflow strategy selection algorithm, to achieve

improved performance and energy efficiency for any given

GCN model and input graph. The selected computation order

is used to configure chiplet and reuse intermediate matrices

for reduced data memory access. The selected dataflow (in-

cluding data reuse strategy and data reuse pattern) is used to

configure the interconnection network for improved data reuse

efficiency between chiplets. In this section, we first provide the

details of the two proposed control algorithms, followed by a

comprehensive workflow example.

A. Dynamic GCN Computation Order Selection Algorithm

The pseudo-code of a typical GCN computation order is

shown in Fig. 7 (a), in which the dimensions of the input

adjacency (A), feature (X), and weight (W) matrices are A ∈
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for (m; m<M; m+=TM) {

for (k; k<K; k+=TK) {

for (n; n<N; n+=TN)

{//Layer-1's Aggregation}

}

for (c; c<C; c+=TC) {

for (k; k<K; k+=TK)

{//Layer-1's Combination}

}}

for (m; m<M; m+=TM) {

for (k; k<K; k+=TK) {

for (n; n<N; n+=TN) {

//Layer-1's Aggregation

}}}

for (m=0; m<M; m+=TM) {

for (c=0; c<C; c+=TC) {

for (k=0; k<K; k+=TK) {

//Layer-1's Combination

}}}

(a)

(b)

(c)for (m; m<M; m+=TM) {

for (k; k<K1; k+=TK) {

for (n; n<N; n+=TN) {

{//Layer-1's Aggregation}

}

for (c; c<C1; c+=TC) {

for (k; k<K1; k+=TK) 

{//Layer-1's Combination}

}

for (c; c<C2; c+=TC) {

for (k; k<K2; k+=TK) 

{//Layer-2's Combination}

}}

for (m; m<M; m+=TM) {

for (c; c<C2; c+=TC) {

for (n; n<N; n+=TN) 

{//Layer-2's Aggregation}

}}

Fig. 7. (a) Without reusing any intermediate result, (b) Reuse the intermediate
result of intra-layer, and (c) Reuse the intermediate result of inter-layer.

R(M×N), X ∈ R(N×K), and W ∈ R(K×C), respectively. The

< TM , TN , TK , TC > is the tile size tuple which determines

the number of data loaded from the main memory to the on-

chip buffers during each epoch. Typically, current approaches

sequentially perform each GCN layer and store intermediate

results in the main memory. However, with the exponential

growth in the size of input graphs, current approaches face

several challenges. First, the intermediate result of matrix-

matrix multiplication becomes large and dense compared to

input matrices. Current computation orders without reusing

the intermediate results have to frequently access the main

memory, which induces additional memory access. Second,

for computation orders that reuse inter-layer intermediate re-

sults, careful consideration of data dependencies is necessary,

especially during two consequent GCN layers. For instance,

in a two-layer GCN architecture with the computation order

(Layer-1: A(XW) and Layer-2: (AX)W), during the computa-

tion of the second GCN layer, each vertex must wait until all

its neighbors have updated their features in the first layer to

synchronize data. Consequently, the results of the aggregation

phase in the first GCN layer cannot be immediately used by

the subsequent phase of the second GCN layer.

To address these challenges, we first conduct an extensive

design space exploration to identify GCN computation orders

that can efficiently reuse intermediate matrices throughout

GCN inference. Then, we introduce a dynamic selection

algorithm meticulously designed to choose the optimal GCN

computation order, prioritizing the reuse of intermediate re-

sults while addressing intricate data dependencies inherent in

matrix-matrix multiplication for both intra- and inter-layer.

The main objective of the proposed selection algorithm is to

minimize the data memory access and improve performance.

Since the design space of available GCN computation orders

that are capable of reusing intermediate matrices expands

exponentially when the number of GCN layers increases, we

illustrate our exploration methodology using a 2-layer GCN

architecture as an example, as shown in Fig. 7. Typically, the

reused intermediate matrices involved in GCN inference can

be classified into two types: intra-layer and inter-layer. Fig. 7

(b) and (c) provide details on reusing each type of intermediate

matrix, respectively. Fig. 8 lists all available computation

orders capable of reusing intermediate results. Due to the data

dependencies, several computation orders are excluded from

the design space and are not listed in the figure.

Algorithm 1 Dynamic GCN Computation Order Selection

Algorithm

1: Inputs: The information of input graphs (M, N, K, S A, and
S X). The information of applied GCN architectures (K and C).
The buffer capacity (B). The design space (S).

2: Outputs: The selected tile size and computation order (M).
3: Begin:
4: //DRAM access of each execution mode s
5: DA {s} =0
6: //Record the minimal number of DRAM access
7: DA min = Integer.MAX VALUE
8: //Record the mode selection
9: mode = 0

10: for k in K do
11: TM = (B+1)/(TK+1) - 1
12: for s in S do
13: DA {s} = Eq.{s}
14: DA min = min(DA min, DA {s})
15: if DA min ≡ DA {s} then
16: //The current mode is selected
17: mode = s
18: end if
19: end for
20: end for
21: return mode M

To find the optimal computation order from the design

space, the proposed computation order selection algorithm

takes multiple parameters of the input graph and the applied

GCN architecture. These parameters include the dimensions of

the input graph dataset, the applied GCN architecture, the tile

size, the buffer capacity, and the design space of available com-

putation orders. Based on a given tile size < TM , TN , TK , TC

>, the selection algorithm estimates the number of data

memory accesses of each available GCN computation order

provided in the design space (Line 12-18). In terms of the

estimation function (Line 13), we formulate the data memory

access using input parameters such as input graphs and applied

models, along with the selected computation order and tile

size. Eq. 2 depicts how we estimate the data memory access

for a single chiplet implemented in HS-GCN. SA and SX

represent the sparsity of input adjacency and feature matrices,

respectively. We model this during our evaluation to determine

the total amount of data required to be loaded from the main

memory to the on-chip buffer during each epoch.

N = A×Nadjacency +X ×Nfeature +W ×Nweight (2)

Where:

A =
M ×N

TM × TN

X =
N ×K

TN × TK

W =
K × C

TK × TC

(3)

Nadjacency = TM × TN × SA

Nfeature = TN × TK × SX

Nweight = TK × TC

(4)

After performing the proposed selection algorithm, HS-

GCN selects the optimal computation order and tile size pair

that leads to the minimum estimated number of data memory
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Fig. 8. Available GCN computation orders for reusing intermediate results
when considering the data dependency of both intra- and inter-layer.

accesses as the ultimate decision. Subsequently, the selected

computation order and the tile size will be applied during

the entire inference processing for specific input graphs and

the applied GCN architecture. The time complexity of the

selection algorithm is O(m×n), where m and n represent the

choices of available tile size and computation orders. Detailed

information is provided in Algorithm 1.

B. Dynamic Dataflow Selection Algorithm

HS-GCN introduces a dynamic dataflow selection algorithm

to configure the interconnection network for improved data

reuse efficiency among chiplets. Specifically, based on the

selected GCN computation order introduced in Sec. IV-A,

HS-GCN initially determines whether the intermediate matrix

should be reused within a chiplet or among chiplets. With

three input matrices (adjacency, feature, and weight matrices),

if the decision is to reuse the intermediate matrix within

a chiplet, one of the input matrices can be shared among

chiplets. Conversely, if the decision is to reuse the intermediate

matrix between chiplets, one of the input matrices can stay

locally in each chiplet for reuse. Therefore, for a 2-layer GCN

architecture, there are a total of 8 (2×2×2) candidates within

the design space of the dataflow algorithm. The first 2 indicates

the number of GCN layers involved in the applied model,

the second 2 determines whether the intermediate matrix

would be reused among chiplets, and the third 2 indicates

if the other two matrices except the intermediate matrix are

reused during GCN processing. Given the design space, the

proposed algorithm takes several parameters, including the

GCN computation order, the tile size, and the number of

chiplets, to estimate the number of data memory access for

each available dataflow, as detailed in Algorithm 2.

For the estimation function used in Algorithm 2, when

provided with two input matrices and one output matrix, one

of these three matrices remains locally within each chiplet

for potential reuse, while the other two are transmitted to

neighboring chiplets for sharing. Consequently, we formulate

the data movement aspect of the estimation to assess the

traffic between neighboring chiplets when sharing data, as

shown in Algorithm 3. After the optimal dataflow is selected

to maximize data movement efficiency, HS-GCN uses the

chosen dataflow to configure both the interconnection network

and the chiplet array to establish the data communication

path. Additionally, HS-GCN applies a mapping strategy that

assigns different vertices to chiplets located on different rows

Algorithm 2 Dynamic Dataflow Selection Algorithm

1: Inputs: The dimension of accelerators (R×C). The determined
tile size (TM , TN , TK , TC ). The computation order (mode M).
Available dataflow set (S)

2: Outputs: The selected dataflow decision (D).
3: Begin:
4: //Record the data movement
5: DM min = 0
6: //Data movement of each scheduling selection
7: DM {s} =0
8: //Record the minimal number of DRAM access
9: DM min = Integer.MAX VALUE

10: //Record the final decision
11: decision = 0
12: for s in S do
13: DM {s} = count DM(TM , TN , TK , TC , R, C, s)
14: if DM min ≡ DM {s} then
15: //The current scheduling is selected
16: decision = s
17: end if
18: end for
19: return decision D

Algorithm 3 Data Movement Counting Function (count DM)

1: Inputs: The dimension of accelerators (R×C). The determined
tile size (TM , TN , TK , TC ). The current dataflow selection (s)

2: Outputs: The number of data movement DM.
3: Begin:
4: //Assume the adjacency matrix is currently reused
5: DM reuse = TM × TN × R × C
6: DM d1 = TM × TK × (R+1) × C
7: DM d2 = TN × TK × R × (C+1)
8: DM total = DM reuse + DM d1 + DM d2
9: return DM total

and assigns different features of the same vertex to chiplets

located on different columns. This mapping approach serves a

dual purpose: it helps avoid conflicts during data transmission

and concurrently ensures data synchronization during matrix-

matrix multiplication.

C. Workflow Example

For clarity, let’s illustrate the proposed architecture using

an example comprised of n×n chiplets. We provide a detailed

description of the workflow of the proposed approach, as

shown in Fig. 9, where n is 4 in the figure. The three input

matrices are as follows: A ∈ R(M×N), X ∈ R(N×K), and

W ∈ R(K×C). This implies that there are N vertices in the

input graph, with each vertex’s feature vector having a length

of K. The tile size is < TM , TN , TK , TC > after performing

the proposed algorithm introduced in Sec. IV-A. Additionally,

as introduced in Sec. IV-A, we adopt the last computation

order (No. 5) as the computation order for this example. Once

the computation order and dataflow have been determined, the

features of vertices are fetched from the main memory to the

GLB and subsequently to the designated chiplet, where they

are stored locally before performing the computations (Step

#0). The details of the workflow are as follows:

Step #1: All chiplets read their designated tiles of the weight

matrix (W) from the GLB through the interconnection and

store the data inside the local buffer, as shown in Fig. 9 (b). In

this specific example, as the dimension of the tile size matches
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Fig. 9. Example Workflow: Introducing the proposed architecture design with three small-scale GCN input matrices (A, X, and W) and a n×n chiplet array,
where n is 4 in this figure. The workflow mainly includes 5 steps in total.

that of the weight matrix, it is possible to store the entire

weight matrix in each chiplet. In actual GCN architectures,

the dimensions of the weight matrix are typically small as

well [8], [10].

Step #2: Following the loading of the weight matrix, each

chiplet activates its local unified computing engine, utilizing

the stored tiles of feature and weight matrices to perform

computations for the combination phase. The resulting updated

tiles of features, which are intermediate results, are retained

locally within the output dense buffer, as shown in Fig. 9 (c).

Step #3: In this step, the architecture encompasses two

primary operations. Firstly, the data, which consists of inter-

mediate results stored within the output dense buffer of each

chiplet, is forwarded to the local input dense buffer to serve as

input for subsequent computations through the reconfigurable

DeMUX. Secondly, tiles of the adjacency matrix from the

GLB are sent to the chiplet array in a systolic manner through

the interconnection and stored inside the input sparse buffer.

The aforementioned operations are executed concurrently, as

shown in Fig. 9 (d).

Step #4: During this step, the architecture also involves

two primary operations. Firstly, after the adjacency matrix is

loaded, each chiplet utilizes the stored tiles of intermediate

results and the adjacency matrix to perform computations for

the aggregation phase through the unified computing engine, as

illustrated in Fig. 9 (e). Subsequently, the chiplet will transmit

the adjacency matrix to its neighboring chiplet within the

same row. This communication is facilitated through those

interposer switches (IS) located in the interposer layer as

introduced in Sec. III-C. The aggregation phase for the current

tiles concludes once the intermediate results have traversed all

the chiplets within the same row.

Step #5: Once completing the required computations, the

(a)
(b)

Component Size

MUL. Engine 16 x 1 multipliers

ACC. Engine 15 adders

Input Sparse Buffer 128 KB

Input Dense Buffer 4 KB

Output Dense 

Buffer

256 KB

Local Control Unit -

Component Size

Chiplet Array 4 x 4 

Switches Array 4 x 4

Global Buffer 
(GLB)

1 MB

Optimizer 10 MAC units

8 registers

Central Controller -

Bandwidth 256 GB/s

Chiplet Layout Characteristics
Overall Layout Characteristics

Fig. 10. (a) Layout characteristics of each chiplet. (b) Layout characteristics
of the overall architecture.

intermediate results contained within the output dense buffer

of each chiplet are streamed out to the GLB through the

DeMUX and subsequently to the main memory, as shown in

Fig.9 (f). Concurrently, the architecture initiates the loading of

the next batch of tiles of matrix X into the respective chiplets

for further computations. Additionally, these two types of data

are transmitted through two distinct topologies to avoid data

conflicts, as explained in Sec. III-C.

V. EVALUATION METHODOLOGIES

A. Evaluation Setup

Hardware simulator. We build a cycle-accurate simulator

in C++ language to evaluate the hardware behavior and the

performance of the proposed design. Specifically, the simulator

precisely counts the exact number of memory read and write

operations, which is used to estimate the energy consumption

of the memory access according to [28]. To measure the area

consumption, we implement all the proposed hardware logic,

including the chiplet design, the interposer switch design,

and other hardware components through the Synopsys Design

Compiler with the TSMC 45nm library for the synthesis. We

set the clock frequency at 1 GHz. We use Cacti 6.0 [29] and
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Fig. 11. The normalized data memory access of the proposed design (HS-GCN) compared to prior accelerators. (a) Cora (CR), (b) CiteSeer (CS), (c) PubMed
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DSENT [30] to estimate the area, power, and access latency

of all types of buffers and links.

Architecture Configuration. Fig. 10 (a) and Fig. 10 (b) list

the layout characteristics of each chiplet design and the overall

architecture. Specifically, the proposed design implements an

N×N chiplet array with K×K interposer switches, where

both N and K equal 4 during our evaluation. Additionally, in

Sec. VI-D, we conduct a scalability analysis of the proposed

design to illustrate the relationship between the execution time

and the dimensions of the unified chiplet array. Each Chiplet

is equipped with 16×1 multipliers cascaded 15 adders in a

binary tree architecture to perform the necessary matrix-matrix

multiplication required for GCN inference. For the optimizer,

it includes 8 registers to receive and store the parameters of the

input application, and 10 MAC units to perform the required

computations required by the proposed algorithms. The sizes

of all on-chip buffers are designed with sufficient capacity to

store the data required for computations. For instance, the GLB

serves as a bridge facilitating data communication between

the main memory and the chiplet array. As connecting to the

first column of the array, the GLB is sized at 1MB to ensure

sufficient capacity for the data volume being transferred.

Baselines. We compare the proposed design to five previ-

ous customized accelerators (HyGCN [8], AWB-GCN [12],

GCNAX [10], I-GCN [9], and SGCN [13]) using the same

simulator platform to ensure a fair comparison. Given that

the proposed design features a 4 x 4 chiplet array, with each

chiplet comprising 16 multipliers, the total number of multi-

pliers amounts to 256. Consequently, all baseline accelerators

have been scaled to incorporate an equivalent number of com-

putation units as the proposed design. A previous study [8] has

shown that utilizing single-precision floating-point numbers

(4 Bytes per data) is sufficient to preserve GCN inference

accuracy. As a result, both computing units and links have a

width of 32 bits for data computation and communication in

the majority of accelerators. However, GCNAX differs in its

regard, as it utilizes 64-bit wide computing units and links

due to its operation with double precision (8 Bytes per data).

For a fair comparison, the main memory bandwidth for all

accelerators is scaled to 256GB/s. Since the aforementioned

customized accelerators outperform general-purpose CPUs and

GPUs, we did not include comparisons against those general

processing units.

Evaluation Datasets. In this paper, we leverage commonly

used datasets from previous literature [3], [31]–[35] to conduct

the further experimental evaluation. These datasets include

TABLE I
DETAILS OF GCN DATASETS USED FOR EVALUATION

Datasets Vertices Edges Sparsity Feature Length

Cora (CR) 2708 10556 0.018% 1433-16-7

CiteSeer (CS) 3327 9104 0.11% 3703-16-6

PubMed (PM) 1917 88648 0.028% 500-16-3

Nell (NL) 65755 266144 0.0073% 61278-64-186

Reddit (RD) 232965 114615892 0.21% 602-64-41

Cora (CR), CiteSeer (CS), PubMed (PM), Nell (NL), and

Reddit (RD). Cora, CiteSeer, and PubMed are well-known

datasets for paper citation networks, node classification, and

text summarization [1], [33]. The Reddit dataset represents

an undirected graph of social networks, comprising posts

gathered from the Reddit discussion forum. The Nell dataset,

on the other hand, is a knowledge graph obtained from the

Never-Ending Language Learning project. Table V-A provides

detailed information about each dataset used in this study,

including its structure and data density. Additionally, the last

column of the table provides information about the change in

the feature vector’s length during the entire GCN inference

process. Obviously, except for the NELL dataset, the length

of feature vectors in most graph datasets decreases.

VI. EVALUATION AND ANALYSIS

A. Data Memory Access

Fig. 11 shows the normalized data memory access of the

proposed design compared to previous works. The proposed

design outperforms the previous approaches for the following

reasons: Firstly, HS-GCN selects the optimal GCN computa-

tion order while considering the data reuse of intermediate re-

sults for diverse input graphs. Consequently, HS-GCN overlaps

the execution of consecutive phases, ensuring that the large

and dense intermediate results can be immediately utilized

by the subsequent GCN phase and layer without the need to

store and load them to and from the main memory repeatedly,

thereby reducing the total data memory accesses. Secondly,

HS-GCN offers a flexible dataflow along with a reconfigurable

interconnection network that allows the chiplet to retrieve the

necessary data from its neighboring chiplet instead of the main

memory. This improvement enhances the overall data reuse

efficiency. With all data being normalized to the proposed

design, as shown in Fig. 11, the proposed architecture provides

a memory access reduction by a factor of 16.9×, 9.2×, 2.8×,

6.9×, 2.2×, which imply a memory access reduction by 94%,

89%, 64%, 85%, 54% compared to HyGCN, AWB-GCN,

GCNAX, I-GCN, and SGCN, respectively.



IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 10

25

5

1

0

N
o

r
m

a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

(a) (b) (c) (d) (e) (f)

Cora (CR) CiteSeer (CS) PubMed (PM) Reddit (RD) Nell (NL) Average (Avg.)

HyGCN AWB_GCN GCNAX I-GCN SGCN HS-GCN

4
.5

1
.2

2
.6

1
.1

2
8
.5

2
6
.8

3
.2 3
.5

2
.1

1
0
.4

7
.5

4
.8

3
.7

2
.7

4
7
.8

9
.2

5
.5

8
.6

3
.3

4
2
.1

8
.1

4
.6

5
.0

2
.3

2
6
.7

1
1
.2

3
.9 4
.7

3
.1

1
3
.8

Fig. 12. The normalized execution time (cycles) of the proposed design (HS-GCN) compared to prior accelerators. (a) Cora (CR), (b) CiteSeer (CS), (c)
PubMed (PM), (d) Nell (NL), (e) Reddit (RD), and (f) Average (Avg.) (lower is better).

Average (Avg.)Nell (NL)Reddit (RD)PubMed (PM)CiteSeer (CS)25

5

1

0

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 

C
o

n
s

u
m

p
ti

o
n

(a) (b) (c) (d) (e) (f)

Cora (CR)

HyGCN AWB_GCN GCNAX I-GCN SGCN HS-GCN

2
1
.0

1
4
.3

1
.8

1
0
.1 1
6
.7

3
.8

1
0
.2

2
.3

8
.8

2
.7

1
0
.4

7
.5

4
.0 5
.2

8
.1

2
6
.1

7
.8

3
.3

5
.5

2
0
.2

2
3
.5

6
.1

2
.8 4

.3

1
8
.2

1
3
.0

7
.0

2
.1

5
.2

Fig. 13. The normalized energy consumption of the proposed design (HS-GCN) compared to prior accelerators. (a) Cora (CR), (b) CiteSeer (CS), (c) PubMed
(PM), (d) Nell (NL), (e) Reddit (RD), and (f) Average (Avg.) (lower is better).

B. Execution Time

Fig. 12 illustrates the normalized execution time of the

proposed HS-GCN compared to previous works. HS-GCN

achieves an execution time speedup of a factor of 26.7×,

11.2×, 3.9×, 4.7×, 3.1× on average of real-world GCN

datasets, compared to HyGCN, AWB-GCN, GCNAX, I-GCN,

and SGCN, respectively. In contrast to existing approaches,

HS-GCN uses a novel control algorithm coupled with a

flexible interconnection fabric to enhance data reuse efficiency,

thereby reducing memory access, which is a key performance

bottleneck. For example, when processing the NELL (NL)

dataset, which has large and dense intermediate data across

phases and layers, HS-GCN effectively reuses these data

within the chiplet array. This approach eliminates the need

for frequent data transfers between memory and computation

units, thereby improving overall performance. The time over-

head associated with executing the control algorithm and per-

forming the configuration setup can be effectively overlapped.

Since all types of computation orders require the feature matrix

at the beginning of inference, the system concurrently loads

the feature matrix of input graphs from the main memory to

the global buffer while the control unit executes the algorithms

and configures the chiplet array and the interconnection fabric.

C. Energy Consumption

All accelerators estimate the related energy consumption

according to [29], and all values are normalized based on

the proposed HS-GCN design. As shown in Fig. 13, HS-

GCN achieves 13.0×, 7.0×, 2.1×, 5.2×, 1.8× energy savings,

which imply 87%, 84%, 49%, 78%, 41% energy reduction

on average compared to HyGCN, AWB-GCN, GCNAX, I-

GCN, and SGCN, respectively. Since memory access plays

a major bottleneck for energy consumption, HS-GCN uses

the proposed control algorithms in conjunction with the in-

terconnection fabric as the primary approach to significantly
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Fig. 14. The energy efficiency of HS-GCN compared to previous works across
various input graph datasets, including Cora (CR), CiteSeer (CS), PubMed
(PM), Reddit (RD), Nell (NL), and the average (Avg.). All evaluation results
are normalized to the performance of HyGCN (higher is better).
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Fig. 15. The scalability analysis of the proposed design (HS-GCN) with
various graph datasets. All evaluation results are normalized based on using
a single chiplet with optimal computation order and dataflow.

reduce memory access, as detailed in Sec. VI-A. Specifically,

HS-GCN first optimizes the GCN computation order to min-

imize overall memory access. Subsequently, based on the se-

lected computation order, HS-GCN determines an appropriate

dataflow to maximize data reuse efficiency, further reducing

memory access. To accommodate the diverse matrix-matrix

multiplication resulting from different computation orders,

HS-GCN integrates a reconfigurable chiplet design to meet

data computation requirements efficiently.
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Fig. 16. (a) and (b) represent the area breakdown for each chiplet and the
proposed design (HS-GCN). (c) and (d) illustrate the power breakdown for
each chiplet and the proposed design (HS-GCN).

D. Scalability Analysis

Fig. 15 illustrates the impact on execution time when

scaling HS-GCN across various datasets, ranging from 1 to

32 chiplets. Regarding the scaling process, using 8 chiplets as

an example, we estimate the execution time for both (2 × 4)

and (4×2) arrays, as these two configurations exhibit differing

performances. Subsequently, we calculate the average value of

two distinct results to determine the overall execution time. As

the number of chiplets increases, the overall execution time

is significantly reduced across all evaluated datasets due to

the availability of sufficient hardware resources to fulfill the

computation and communication requirements during DGCN

inference. To mitigate the latency of data communication

between chiplets as their number increases, HS-GCN uses

the proposed algorithm to predetermine the tile size and

ensure that the data chunks transferred between adjacent

chiplets remain consistent. Consequently, even as the number

of chiplets increases, the latency for each chiplet to fetch data

from its neighbors remains relatively uniform. As substantial

computing resources are provided for input graphs, the primary

bottleneck shifts to the bandwidth between the main memory

and the global buffer, as indicated by the Roofline model.

Therefore, this shows that increasing on-chip resources is

unable to provide a proportional reduction in execution time.

E. Area and Power Analysis

Fig. 16 (a) and (b) provide a comprehensive breakdown of

the area consumption for both the chiplet and the proposed HS-

GCN. For each chiplet, on-chip buffers occupy the majority

of the area, accounting for approximately 82% of the total.

Since the proposed HS-GCN is a chiplet-based architecture,

the area consumption of the chiplet array can be overlapped

by part of the interposer layer. Fig. 16 (c) and Fig. 16 (d) show

a detailed power breakdown for both the chiplet and the HS-

GCN. Notably, the chiplet array and the interposer switches are

the primary hardware components that consume the majority

of power, accounting for approximately 90% of the total.

VII. CONCLUSION

This paper proposes HS-GCN, a chiplet-based GCN ac-

celerator designed to address the critical limitations of cur-

rent approaches, including scalability and flexibility. HS-GCN

comprises multiple chiplets designed to efficiently perform the

primary computations involved in GCN inference. Further-

more, HS-GCN integrates an active interposer with a flexible

interconnection fabric to accommodate diverse dataflows and

their associated communication patterns. In addition, HS-GCN

introduces algorithms to determine optimal GCN computation

orders and dataflows, enabling the reuse of intermediate ma-

trices and the dynamic configuration of both the chiplet array

and the interconnection fabric.
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