












At the start of each decision cycle, Escalator reads the

per-container metrics collected by the container runtimes

(Fig. 7). It then assigns a score to each container indicating

the importance of scaling it. For this, Escalator checks three

conditions: (1) whether an pkt.upscale hint has been received

due to an upstream queueBuildup, (2) whether queueBuildup

at this container exceeds a threshold (QUEUE_TH), and (3)

whether (execMetric/expectedExecMetric) exceeds a threshold

(EXEC_TH). If any of these conditions is true, the score of

the upscaling candidates (as determined from Table II) is

incremented by 1. This ensures that containers failing more

checks have higher scores than containers failing fewer checks.

Once the upscaling candidates are identified, Escalator can

use any algorithm to decide upscaling preferences and how

many extra units of each resource should be allocated to each

candidate (we used the Parties algorithm). While upscaling

resources, we first prioritize containers with the higher scores.

Among containers with the same score, we prioritize the

containers with the highest sensitivity to cores and allocate

one core at a time to these containers.

While deallocating resources, we first deallocate resources

from containers with a score of zero, i.e., those that are not

marked as upscaling candidates by any condition. We use the

Parties algorithm to determine downscaling priorities and to

make decisions on which resource should be deallocated. If

there are no containers with a score of zero, we use sensitivity-

based revocation (Design Feature #3) to revoke cores from

containers with low sensitivity to core count.

V. EXPERIMENTAL SETUP

Experimental Setup. We conduct all our experiments on

Chameleon [24], which provides reconfigurable bare-metal

nodes in a cloud-like environment. We use a cluster of four

2-socket Intel Xeon 6242 (Cascade Lake) server nodes, each

with 64 logical cores and 224GB of memory running Ubuntu-

18.04. The client runs on a separate 6-core Intel Xeon node.

We use the open-loop workload generator wrk2 [13] as our

client, and modify it to generate input load spikes. We we

use the default intel_pstate governor except when con-

trolling per-core frequencies with the userspace frequency

governor. We measure the energy using perf, subtracting

the idle energy consumption to accurately measure the energy

consumption by the application.

On each node, we use 3 logical cores for SurgeGuard,

16 cores for network processing and other OS tasks, and 52

logical cores for the workload. We initialize per-container allo-

cations to achieve the highest steady-state throughput (request

rate) using a total of 34 cores for the foreground application.

The remaining 18 cores can be allocated on demand by

the controllers for managing surges; In deployment, these

cores could be used to run background applications while the

microservice workload is in steady state.

Controllers Evaluated. We evaluate three controllers:

• Parties [16]: We implement the Parties controller in C++

following the code open-sourced by the authors.

• CaladanAlgo [18]: We implement the Caladan algorithm

as a userspace controller. Since we do not use Caladan’s

custom networking stack, and lack visibility into the net-

work queues, we use our proposed queueBuildup metric

for the queueing delay measurement of CaladanAlgo.

• SurgeGuard: Our proposed SurgeGuard.

We allow CaladanAlgo to allocate hyperthreads individually.

For the other controllers, we always allocate both the hy-

perthreads of a physical core to the same container. We set

the same per-container QoS limits for all three controllers,

following the methodology of IV “SurgeGuard Parameters”.

TABLE III: Details of the evaluated workloads. Threadpool size of
∞ denotes connection-per-request model.

Workload Action Task-graph RPC Threadpool

Depth Size

CHAIN - 5 Thrift 512

socialNetwork
ReadUserTimeline 5 Thrift 512

ComposePost 8 Thrift 512

hotelReservation
searchHotel 11 gRPC ∞

recommendHotel 5 gRPC ∞

Workloads. Benchmarks: We use realistic publically available

microservice workloads – socialNetwork and hotelReservation

from DeathStarBench [20]. We use two actions for each of

these workloads, representing a range of task-graph sizes, RPC

frameworks and threading patterns. Table III shows further

details about the chosen workloads.

CHAIN Microbenchmark: We also evaluate a microbenchmark

that comprises a chain of five services, each performing

arithmetic work (a large vector accumulate). It uses the same

threading and connection models as the Thrift-based work-

loads in DeathStarBench [20].

VI. EVALUATION

We evaluate SurgeGuard on a range of surge scenarios. We

detail our results in the following subsections, finding that:

• FirstResponder successfully manages short surges, reduc-

ing the latency during surges by ∼40x for 100us long

surges, and ∼3x for 2ms long surges (VI-A).

• Escalator efficiently manages longer surges, reducing vi-

olation volume by an average of 19-61% while requiring

2-8% fewer cores than Parties(VI-B).

• Each Escalator mechanism contributes to reducing the

violation volume (VV): new metrics reduce it by 12.5%,

sensitivity-based allocations by 49%, and combining

them reduces the VV by 74% across workloads (VI-B).

• SurgeGuard scales well to multiple nodes, reducing vio-

lation volume by 39%, and using 16% fewer cores than

the baselines (VI-B) when using 4 nodes.

A. Managing Short Surges With FirstResponder

We demonstrate the effectiveness of FirstResponder on short

surges by comparing the performance of Escalator to the

complete SurgeGuard consisting of Escalator+FirstResponder.

Fig. 10 shows the timeline graphs for two different surge

durations: 100us and 2ms, demonstrating different aspects of

the benefit provided by FirstResponder. Escalator (and other

averaging based controllers) are unable to detect very short









(enabling more accurate and complex ML controllers) without

negatively impacting the QoS. Also, the Escalator algorithms

for selecting up/down-scaling candidates can be integrated

with existing autoscalers and controllers like Shenango [29]

that rely on optimized networking stacks.

Interaction with Autoscaling Algorithms. Similar to the

benefits SurgeGuard provides to ML-based controllers, we

expect the ability of SurgeGuard to better tolerate surges to

also benefit horizontal-scaling controllers, by managing QoS

and preventing request buildup while the autoscaler launches

a new container. Autoscaling algorithms can also benefit from

our insights and new metrics to identify scaling candidates.

Extending SurgeGuard to Other Resources. SurgeGuard

can be easily extended to manage resources beyond cores and

frequency. As FirstResponder is designed to respond to very

short spikes, it can manage any resources that can be quickly

upscaled and have an immediate impact on the execution time

(e.g. memory bandwidth for bandwidth constrained services).

On the other hand, Escalator’s candidate selection can be used

to manage any resource by combining it with any existing

resource allocation algorithm.

VIII. CONCLUSION

We identify a number of issues with existing microservice

resource management schemes and use our insights to design

SurgeGuard. SurgeGuard is designed to be fast, lightweight,

and to require minimal workload changes and profiling infor-

mation. We evaluate SurgeGuard using the Parties algorithm as

a base; however, our solutions are widely applicable and can be

used by a wide range of resource controllers and autoscaling

algorithms in the future for managing QoS during surges.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 We identify several key limitations of prior ap-

proaches in managing microservice QoS during tran-

sient surges. We present new metrics and techniques

that enable task-graph and sensitivity aware upscal-

ing for complex task graphs which contain hidden

inter-service dependencies.

C2 We use our insights to design SurgeGuard: a con-

troller specifically designed to effectively detect and

mitigate both short and long load surges using dif-

ferent response paths.

C3 We introduce violation volume: a new metric that

accounts for both the magnitude and duration of QoS

violations while evaluating controller performance.

C4 We evaluate SurgeGuard on applications from Death-

starBench and our CHAIN microbenchmark and

show that it reduces the violation volume from large

transient surges vs. the well known Parties (61.1%

avg. reduction) and Caladan (93.7% avg. reduction)

algorithms.

B. Computational Artifacts

A1 https://doi.org/10.5281/zenodo.12591422, see apps

and controllers

A2 https://doi.org/10.5281/zenodo.12591422, see

wrk2_spike

Artifact ID Contributions Related

Supported Paper Elements

A1 C1, C2, C4 Table 1

Figures 9-14

A2 C3 Figures 9-14

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This artifact includes the code for SurgeGuard along with

the applications for our experiments. The application code

is present under apps. We take the DeathstarBench source

code from https://github.com/delimitrou/DeathStarBench and

modify it to report metrics to SurgeGuard using shared files,

and implement the protobuf changes shown in Figure 7 in

the paper. Additionally, we create a microbenchmark (CHAIN)

which creates a chain of 5 services, each of which does some

arithmetic work. It uses the Thrift protocol and the threading

models used by DeathStarBench.

The code for SurgeGuard distills contributions C1 and C2,

and can be found in controllers. We also provide the code

which we use to evaluate the Parties and Caladan algorithms

in the same folder as well.

Expected Results

Overall, SurgeGuard should provide a lower violation vol-

ume for any given spike pattern as compared to the baselines

– Parties and CaladanAlgo. It should also have the same or

lower core usage as compared to Parties in all cases, and have

a lower core usage than Caladan for all workloads other than

hotelReservation. The performance benefit of SurgeGuard over

the baselines should increase with longer and larger spikes.

This shows that our insights and the resulting SurgeGuard

design is able to more effectively manage spikes (due to the

lower violation volume) and achieve efficient core allocations

(due to the lower core usage).

Expected Reproduction Time (in Minutes)

Building the applications and setting up the configuration

files for the experiments takes around 1 hour. Executing

each experiment takes 2 minutes. We repeat the experiments

multiple times for spike configuration, and also gather data

for multiple spike configurations, resulting in the experiments

taking a few hours to complete in total. The analysis step is

currently performed manually, and takes around 1 hour.

Artifact Setup (incl. Inputs)

Hardware: Hardware: Our experiments used a cluster of

four 2-socket Intel Xeon 6242 (Cascade Lake) server nodes

each with 64 logical cores and 224GB of memory running

Ubuntu-18.04. For the controllers that manage frequency, we

disable the intel_pstate and acpi_cpufreq frequency

governors and use the userspace frequency governor to

have precise control over core frequencies. For the rest, we use

the default intel_pstate governor. The initial frequencies

of the cores are set to 1.6GHz.

Software: All the software dependencies required by

the application are specified in the respective Dockerfiles,

which automatically install the required dependencies.

Other than that, the dependencies are gcc-9.4,

docker-v21.0+, docker-compose-v1.13+,

python-v3.8+, asyncio-v3.4, aiohttp-v3.9,

libssl-dev, zlib1g-dev, luarocks-v2.4.2

and luasocket-v3.1.0. Note that these versions are

just the ones we used for our experiments, the applications

and controllers work well with other versions of these

packages as well. Except for docker, these packages are

downloaded using apt or pip. Docker can be downloaded

from https://docs.docker.com/desktop/install/ubuntu/ or from

https://download.docker.com/linux/ubuntu/dists/focal/pool/

stable/amd64/.

Datasets / Inputs: The datasets used by the applications are

taken from DeathstarBench and are summarized below:

• socialNetwork - socfb-Reed98 (used for our

experiments, taken from Facebook Networks

https://networkrepository.com/socfb-Reed98.php) and



ego-twitter (subset of the Twitter social network

graph)

• mediaMicroservices - tmdb, (taken from the IMDB

database)

• hotelReservation - dataset created by the authors of

DeathstarBench

For socialNetwork, we initialize the databases by generating

and storing 30 posts (length and contents of each post are

randomly generated) for each user.

Installation and Deployment: All requirements for installa-

tion and deployment have been specified in ”Software”. The

instructions for building and deploying the applications and

running the experiments are provided in apps/README and

controllers/README.

Artifact Execution

Briefly, the order of operations for running the experiments

is as follows: (1) The applications are built using docker

build and deployed using the docker-compose.yml

files in their respective directories. (2) The initial core

allocations and the per-service parameters are speci-

fied in a config file (see controllers/README for

a description of the contents of the config file, and

controllers/sample_config for a sample config file.

(3) The controller code is initialized to reflect the number of

available cores on the system (4) The workload generator (A2)

and the controller are run in parallel to send HTTP requests

into the deployed application following the desired spike

patterns while simultaneously managing allocations using the

controller.

For our experiments, we allocate 52 cores/node for the

application, and reserve the remaining cores for running

the controllers, network processing and other OS tasks. We

initialize the work-load to use 2/3rd of the remaining cores

(the remaining cores would be allocated to background tasks,

and revoked on demand, in real deployments). The initial per-

container core allocations can be set arbitrarily – we set them

by searching for the allocations that can support the highest

request rate using these cores. We set the base request rate in

our experiments to be slightly less than the knee of the load

latency curve achieved using our initial allocations.

The user needs to specify the per-service parameters (de-

siredExecMetric and desiredTimeFromStart, see section 4 in

the paper) in the config files. To do this, we run the workload

at low load for 1-2 mins and periodically collect/calculate

the desired parameters from each service. For example, to

calculate desiredExecMetric, we periodically read the per-

service execMetric values from each container. After collecting

the values for 1-2 mins, we set the final desired parameter

values to 2x of the average parameter values obtained at low

load. We then write these values into the config files. Note that

this is not the only way of setting the per-container targets,

they can be set by the user through other types of profiling

and the multiplication factor between the desired parameter

values and the profiled values can be changed to set tighter or

looser bounds.

Artifact Analysis (incl. Outputs)

The analysis step is simple, comprising of collecting the

violation volume and tail latencies from all the experiment

runs, and averaging them appropriately to obtain comparisons

between the evaluated controllers. The controllers report the

average core usage during the experiments, which we average

as well. For each spike pattern, we collect 17 data-points for

each controller. While averaging these data-points, we exclude

the best and worst data-points to remove extreme outliers, and

average the remaining 15 data-points to report the final value.

B. Computational Artifact A2

Relation To Contributions

This artifact includes our open-loop workload generator,

which is a modified version of the wrk2 workload generator

present at https://github.com/giltene/wrk2. We modify it to

generate input load spikes for our experiments (C4) and to

calculate and report the violation volume metric(C3).

Expected Results

Running the workload generator provides a histogram of

the request latencies during the experiment and the violation

volume.

Expected Reproduction Time (in Minutes)

There is no inherent time limit imposed by the workload

generator. For our experiments, we chose to warm up the

system for 30s and collect data over the next 60s.

Artifact Setup (incl. Inputs)

Hardware: No specific hardware requirements.

Software: Our changes do not require any additional soft-

ware packages as compared to the basic wrk2 workload

generator. wrk2 uses lua to generate HTTP requests – we

used luarocks-v2.4.2 and luasocket-v3.1.0.

Datasets / Inputs: Our changes introduce new input param-

eters for specifying the magnitude and duration of the spikes

and the end-to-end QoS limit. They are described in more

detail in wrk2_spike/README.md.

Installation and Deployment: The workload generator sim-

ply needs to be compiled and run as detailed below, it does

not have any other installation/deployment steps.

Artifact Execution

The workload generator is compiled using

wrk2_spike/Makefile. Once the application (A1)

is deployed, the workload generator is used to send HTTP

requests to the deployed application and collect per-request

latency information throughput the experiment.

We ran all experiments with the options -threads 16

-connections 256, as we noticed that setting fewer

threads or open connections led to the workload generator

becoming a performance bottleneck in some cases. The other

important parameters are set as follows:

• -rate: The request rate at steady state, set to be slightly

below the knee of the load-latency curve.



• -spikerate: The request rate during the spike, set to 1.25x,

1.5x, and 1.75x of the base request rate (Figure 10).

• -spikelen: The duration of the spike, set to 0.1s-5s (Fig-

ures 10, 11).

• -qos: The target QoS limit, used for calculating the

violation volume

Artifact Analysis (incl. Outputs)

The output of the workload generator is a histogram of

the request latencies and the violation volume during the

experiment. Further analysis of the output is not a part of

this artifact, it must be done by the user based on their

requirements.
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