Check for
Updates

Fast and Efficient Scaling for Microservices with
SurgeGuard

Anyesha Ghosh
The University of Texas at Austin
Austin, Texas, USA
aghosh @utexas.edu

Abstract— The microservice architecture is increasingly
popular for flexible, large-scale online applications. However,
existing resource management mechanisms incur high latency in
detecting Quality of Service (QoS) violations, and hence, fail to
allocate resources effectively under commonly-observed varying
load conditions. This results in over-allocation coupled with
a late response that increase both the total cost of ownership
and the magnitude of each QoS violation event. We present
SurgeGuard, a decentralized resource controller for microservice
applications specifically designed to guard application QoS during
surges in load and network latency. SurgeGuard uses the key
insight that for rapid detection and effective management of QoS
violations, the controller must be aware of any available slack
in latency and communication patterns between microservices
within a task-graph. QOur experiments show that for the
workloads in DeathStarBench, SurgeGuard on average reduces
the combined violation magnitude and duration by 61.1%
and 93.7%, respectively, compared to the well-known Parties and
Caladan algorithms, and requires 8% fewer resources than Parties.

Keywords — Cloud computing, microservices, serverless, quality-of-
service, resource management, datacenters

I. INTRODUCTION

User-facing cloud applications are increasingly moving
away from traditional monolithic services to a model compris-
ing numerous single-purpose and loosely-coupled microser-
vices [1], [6], [11], [12]. Microservices improve the modularity
of applications, isolate errors, facilitate development and de-
ployment, and can scale quickly and at fine granularity to meet
changing demand. However, microservice-based applications
raise challenges in resource management [19], [33] due to the
complex application topologies and the large, unpredictable
request rate surges seen in current deployments [9], [10].

Prior work attempts to tackle this problem using a variety of
heuristics [16], [18], [25], [29], optimization techniques [30],
and machine learning (ML) algorithms [15], [21], [26], [28],
[31], [33], but all fall short in one important aspect—they
do not effectively meet tight latency objectives in the face
of rapidly varying conditions, such as input load surges and
temporary network delays. Recent studies point to average
request rates that are 2 —3x higher during a surge with much
higher instantaneous request rates [7], [8]. Because current
controllers respond too slowly, systems resort to wasteful
approaches such as provisioning for maximum load [8] or rate
limiting requests [9], [10].

We present SurgeGuard, a resource controller for
microservice-based applications that is specifically designed

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 1EEE

Neeraja J. Yadwadkar
The University of Texas at Austin
Austin, Texas, USA
neeraja@austin.utexas.edu

Mattan Erez
The University of Texas at Austin
Austin, Texas, USA
mattan.erez@utexas.edu

Node 0 Node 1 Node n

.SurgeGuard Container

Fig. 1: Each node contains one instance of SurgeGuard managing
resources for the containers on that node.

to manage application QoS during surges in incoming load,
network latency, or other disruptions to steady-state behavior.
Unlike prior systems, SurgeGuard is able to both respond
to events with extremely low latency to minimize their
impact, and also accurately identify root-cause slowdowns to
focus resources where they are most beneficial. SurgeGuard
reflects three key insights: (1) relying on averaged metrics
and measurements inherently delays a response to surges;
(2) decisions must account for the overall task graph and
provide resources to address the root cause of slowdowns;
and (3) resource allocation should prioritize those services
that benefit the most from the additional resources.

SurgeGuard is designed to be lightweight, decentralized,
and to scale well to multiple nodes (Fig. 1). It relies only
on local state and makes decisions without relying on other
nodes in the cluster, making it robust to changes in container
placement and node memberships. SurgeGuard consists of
two complementary units. FirstResponder embodies the first
insight and provides a fast path for managing very short surges
using a kernel module that quickly identifies QoS violations
using per-packet metrics instead of relying on aggregated or
averaged metrics over time. Escalator utilizes the second and
third insights to create a slower-path user-space controller that
efficiently allocates resources for longer, yet still transient
violations. Escalator introduces a novel per-service metric
that separates an observed QoS violation into two critical
components: slowdown from the service itself and slowdown
resulting from insufficient processing down-stream from the
service. This metric is both effective and cheap to compute,
enabling Escalator to avoid over-provisioning a service that
is experiencing a surge only because of downstream effects.
Escalator can correctly identify the root cause of a surge
even when the bottleneck service does not itself exhibit any
QoS violations. Furthermore, Escalator also considers the
sensitivity of each service to an increased resource allocation

when provisioning resources in response to a surge. We
emphasize that the novelty of Escalator is specifically with
respect to handling surges rather than attaining better steady
state performance compared to prior work.

In contrast to SurgeGuard, existing resource management
approaches do not identify needed additional resources cor-
rectly or respond too slowly. Existing work can be broadly
divided into two categories: heuristic- and ML-based con-
trollers. Heuristic controllers (e.g., Parties [16], Caladan [18],
and Dirigent [35]) rely on averaged metrics and are similar
to Escalator in response time (Table I). However, these ex-
isting controllers treat each container in isolation and ignore
inter-container dependencies, often wrongly identifying the
root cause of a violation [20] and hence making ineffective
allocation decisions. We solve this issue with our new metrics.

ML-based controllers learn dependencies between contain-
ers and manage end-to-end, rather than per-container QoS
targets [19], [21], [33]. While they correctly identify the root
causes of violations and manage resources well for steady-state
QoS behavior, they suffer from significant latency overheads
that make them unable to react to rapid changes. ML-based
controllers require low-noise metrics and use a centralized
inference server to make and enforce allocation decisions. This
incurs significant inter-node communication overheads for
collecting container metrics and sending decisions, resulting
in a decision granularity on the order of seconds even when
the inference itself takes tens to hundreds of milliseconds [33].

SurgeGuard is able to effectively match the correct root-
cause identification of the ML approaches with Escalator while
exceeding the decision granularity of heuristic approaches with
FirstResponder. We summarize our major contributions below:

« We identify key limitations of prior approaches in man-
aging microservice QoS during transient surges (III).

e« We show that commonly used microservice threading
models (II-A) induce hidden dependencies that are not
handled by existing per-container management algo-
rithms. We present new metrics and algorithms that
enable correct upscaling even in the presence of these
hidden dependencies (III-B).

« We demonstrate the importance of resource sensitivity for
making effective allocations and present a low-overhead
technique to enable sensitivity-aware scaling (III-C).

« We use our insights to design SurgeGuard: a controller
specifically designed to effectively detect and mitigate
both short (IV-A) and long load surges (IV-B).

e We introduce violation volume: a new metric that ac-
counts for both the magnitude and duration of QoS
violations while evaluating controller performance (II-D).

o We evaluate SurgeGuard and show that it significantly
reduces the violation volume from large transient surges
vs. the well known Parties (61.1% avg. reduction) and
Caladan (93.7% avg. reduction) algorithms (VI).

ICaladan relies on a custom networking stack with visibility into runtime
queues; its update interval is far larger with the Linux networking stack.

Controller Controller Dependence Distributed? Update Inter-

Type H Aware? val

ML Sinan Yes No >1s [19]
PARTIES No Yes 500ms [16]

Heuristic Caladanx" No Yes 5-20us [18]
SurgeGuard Yes Yes ~0.2ms

TABLE I: Comparison of SurgeGuard with existing controllers.

II. MOTIVATION AND RELATED WORK

We briefly overview microservices, and policies used for
QoS management of monolithic and microservice applications.

A. Microservice-Based Applications

In a microservice based architecture,

applications are partitioned into short,
fine-grained components called services.
Services are deployed in individual con- So
tainers, and communicate with each other
using remote-procedure calls (RPCs). An \ 4
incoming user request triggers a sequence
of RPC calls based on the application
logic (Fig. 2). The services and the flow v v
of RPCs between them comprise the ap-
plication task-graph.
Microservice Threading or Connection
Models. Current RPC frameworks pro-
vide two major models to maintain inter-
service connections. The first model,
called connection-per-request in this paper, opens a new
connection or application thread for each new RPC between
containers, incurring the cost of creating a connection on
every request. The second, called fixed-size threadpool in this
paper, maintains a fixed size pool of opened connections for
each container. This amortizes the overhead of creating and
establishing a new connection and is hence recommended for
high request rate deployments [3]. These threading models are
independent of the inter-service communication protocol and
can be used both for synchronous (e.g., grpc sync) and
asynchronous (e.g., grpc async, message queues) commu-
nication.

The threadpool size can be provisioned using Little’s Law:

+ User request

Ss S,

Fig. 2: A simple
microservice appli-
cation task graph

ThPoolSize = DesiredReqRate x DownstreamLatency (1)

B. Resource Management for Microservices

Resource scaling techniques for microservices fall into two
categories: horizontal scaling (or autoscaling) [2], [4], [34] and
vertical scaling. As SurgeGuard is a vertical scaling controller,
we focus on vertical scaling in this paper, and discuss the
interactions of SurgeGuard with horizontal scaling in VII.
Vertical Scaling. Vertical scaling responds to QoS violations
by allocating more resources to containers on a given machine
in response to a QoS violation. Vertical scaling approaches
draw heavily from resource management controllers developed
for monolithic applications to allocate shared resources like
cores [16], [25], [30], [33], the last-level cache (LLC) [16],
[25], [30], [33], [35], frequency (power) [16], [35], memory
bandwidth [22], and IO bandwidth [32].

Parties [16] proposes a resource controller to manage al-
locations for multiple latency-critical jobs. Caladan [18] and
Shenango [29] use network queueing delay to rapidly make
upscaling decisions. CIiTE [30] uses Bayesian optimization to
find resource allocations. Dirigent [35] uses progress tracking
to reallocate resources at fine timescales. Parslo [27] uses
gradient descent to automatically calculate per-service targets
from end-to-end targets. Balm [22] extends previous work by
allocating memory bandwidth along with cores and the LLC.

The above approaches treat each container in isolation and
do not to capture inter-container dynamics and communication
patterns, resulting in ineffective upscaling decisions [20]. ML
techniques like Sinan [33] and Sage [19] use supervised
learning to determine efficient resource allocations from end-
to-end performance targets. They solve the prior issues at the
cost of a high detection and inference overhead making them
unsuitable for managing transient violations [19], [21].

C. Request Rate Surge Management

The microservice architecture is particularly appealing for
user-facing applications that encounter sudden surges in the
request rate (load) [6], [11] because it promises the ability
to quickly scale up to meet demand [2]. However, current
resource manager cannot respond fast enough to the large
surges observed in recent studies [9], [14] (the average request
rate during a surge is 2 —3x higher than the base request
rate, with the instantaneous request rate being much higher
[71, [8]). As a result, current systems resort to less-than-
ideal techniques, including provisioning for maximum load
[8], rate limiting requests [9], [10], and request batching
[9], [10]. However, these methods waste resources due to
overprovisioning [8], degrade application QoS by inducing
more retries and longer latencies [7], [9], or only work for
predictable surges [8].

Our work, SurgeGuard, uses vertical scaling to efficiently
manage resources during surges without incurring the over-
heads of these heavy approaches.

D. Violation Volume Metric

We design a new metric to report the im-
pact of a QoS violation — violation volume.
We define the violation volume as the
violation magnitude-duration product, il-
lustrated as the total area of the output
latency graph that lies above the desired
QoS target (Fig. 3). Violation volume ac-
counts for both the duration and the mag-
nitude of the QoS violations in a unified
metric, providing a more complete picture
while comparing the performance of QoS
management controllers as compared to
just using tail latency (which ignores the
violation duration) or violation frequency
(which ignores the violation magnitude).

----- Qos target

Time
Fig. 3: Violation
Volume (VV): VV
Red < VV Blue,
though red has a
higher tail latency.

III. SURGEGUARD DESIGN FEATURES

We present three key insights that explain why existing
resource controllers for microservices fall short in meeting the
desired QoS for applications and discuss how these guide the
design of the core features of SurgeGuard.

A. Fast & Efficient Detection of QoS Violations

Detecting QoS violations quickly is important, especially for
violations resulting from brief load or execution surges. During
the surge and before detection, queues build up without any
mitigation. This increases both the magnitude and duration of
missed deadline surges, requiring extra resources to process
the queued requests after mitigation is eventually applied.
Fig. 4 shows a simple example comparing the violation volume
and core allocation required to tackle a surge with a 4s duration
using an ideal controller that, on detecting a surge, allocates
the exact amount of cores needed to overcome it (instead of
increasing allocations step-by-step as in real controllers). We
observe that a detection delay of 1s (typical for ML-based
controllers) results in a violation volume that is 4.75x larger
as compared to a delay of 0.5s (typical for Parties) and 24 x
larger as compared to a delay of 0.2ms, while also needing
40 —75% more cores to manage the spike.

Prior Approaches. Existing approaches for identifying QoS
violations are slow because they use averaged metrics such
as execution time, queueing delay and performance counter
information to make allocation decisions. To achieve stable re-
sults, these metrics must be averaged over many samples [16],
[18], [33], increasing the detection latency and reducing the
sensitivity of the violation detector. Additionally, ML based
controllers need to report container metrics to a centralized
inference server, which adds a significant communication
latency to the detection time.

Design Feature #1: SurgeGuard rapidly detects QoS vio-
lations to avoid otherwise-costly queue buildup. We design
a kernel module (FirstResponder) that tracks and detects QoS
violations using per-packet progress instead of using averaged
metrics. FirstResponder hooks onto the earliest point in the
receiver-side network stack (netif_receive_skb [5] in
Linux). It intercepts each incoming packet, reads the progress
information, detects QoS violations (if any), and then forwards
the packet for further network processing. The FirstResponder
design ensures that QoS violations can be detected as early
as possible with very low overhead (~0.2us/packet). Further
details on FirstResponder are provided in IV-A.

B. Threading-Model Aware Upscaling

As shown in II-A, current RPC frameworks provide two ma-
jor models to maintain inter-service connections: connection-
per-request and fixed-size threadpool. The choice of threading/
connection models introduces hidden inter-container depen-
dencies which complicate resource management.

As an example, consider the effect of a request rate Surge
on a two-service (cl and c2) application. If cl uses a
connection-per-request model (Fig. 5(a)), the higher request
rate spawns more RPC threads in both services, increasing

10
0 —— 1slat (W=3810)
©10.0 E g 0.5s lat (VW=602)
© > —— 0.2ms lat (W=156)
g 75 g 6
® 5.0 %
SO R NE W
8 251 — 1slat — 0.2ms lat s 5 1
0.5s lat = A "
0 o
'92.5 15.0 17.5 20.0 12,5 15.0 17.5 20.0
Time(s) Time(s)

Fig. 4: Slower detection (detection delay = 1s) causes an increase
in the violation volume (VV) compared to faster detection (delay =
0.5s), requiring more resources to process the queued requests.

DUpscaled by existing algorithms
[[T] Requests waiting for free thread

| Threads before spike
New threads during spike

frontend [---- > I . > c2
1 L
(a) Effect of surge on connection-per-request
frontend [7777 > ct c2
LIl Ll

(b) Effect of surge on fixed size threadpool w/o new metrics

execMetric T queueBuildup 1

c1 c2
L 1

(c) Effect of surge on fixed size threadpool with SurgeGuard
Fig. 5: Impact of threading model: Dashed arrows denote thread-
per-request while solid arrows denote fixed-size threadpools. Existing
controllers upscale correctly in (a) but fail to upscale c2 when using
fixed size threadpools (b). The new SurgeGuard metrics correctly
upscale both c1 and c2 in response to a Surge (c).

frontend >

thread contention and hence the execution time of both cl
and c2. However, with a fixed-size threadpool (Fig. 5(b)), the
concurrency between cl and c2 is fixed, and the higher request
rate is not seen by the downstream container (c2). The extra
requests rapidly queue up in cl waiting for the threadpool to
return a free connection, thus increasing the execution time of
cl, while the execution time of c2 remains unchanged. Note
that the threadpool-induced queueing is implicit — it takes the
form of several application threads either constantly polling
for an available connection or waiting to be woken up by an
interrupt once a connection becomes available.
Prior Approaches. Existing per-container controllers work
well for the thread-per-request model (Fig. 5(a)), correctly
scaling both c1 and c2 to manage the request surge. However,
due to the hidden dependencies introduced by the fixed thread-
pool model (Fig. 5(b)) these controllers only upscale cl and
still miss the deadlines because c2 is provisioned for the initial
(lower) request rate. Controllers like Shenange [29] or Caladan
[18] that use explicit network queueing metrics (e.g. queueing
time/occupancy) also fail to detect the implicit threadpool
induced queues and cannot upscale containers correctly.
Existing ML-based controllers like Sinan [33] or Sage [19]
use complex models to infer inter-container dependencies.
However, as before, their long detection and inference time
makes them too slow for managing transient violations.

user-timeline === downscale thresh

- —@— post-store

m
.
]
E
=

c \\‘
e
=
S
o]
]
o

_____________________ -2

0 - T T T T T T T T T T

2 3 4 5 6 7 2 3 4 5 6 7

Cores allocated Cores allocated

Fig. 6: Execution time graph vs. number of allocated cores (aka.
sensitivity curve) for two services of socialNetwork, with current allo-
cations in red. In the left graph, latency is more effectively decreased
by upscaling post-store irrespective of the relative slowdown of the
two services. In the right graph, the execution time of user-timeline
is just above the downscale threshold: user-timeline holds on to 7
cores, though allocating 4 cores provides similar performance.

Design Feature #2: To rapidly and correctly manage QoS
violations, SurgeGuard uses novel threading-model aware
upscaling metrics that account for inter-container depen-
dencies. We introduce two new metrics: (1) an execution time
metric (execMetric) decoupled from the time waiting for a free
connection, and (2) a queue-buildup metric (queueBuildup)
that is attributed to downstream slowdowns.

e Execution Metric (execMetric): This excludes the time
spent waiting for a free connection from the total container
execution time:

execMetric = execTime — timeWaitingForFreeConn (2)

An increase in execMetric reflects a true slowdown in a
container, and indicates that it should be upscaled (Table II).
While this metric is sufficient to upscale containers using a
thread-per-request model, it cannot detect hidden dependen-
cies, as the time spent waiting for a free connection is not
accounted for in any container.

e Queue Buildup Metric (queueBuildup): This metric is de-
signed to account for the hidden inter-container dependencies.
execTime

Buildup = —— 3
queueSiaup execMetric ®)

A large value of queueBuildup at a container indicates that
more time is lost to the hidden dependencies (waiting to obtain
a free connection or thread), showing that the downstream
throughput is unable to keep up with upstream throughput.
Hence, on detecting an increase in queueBuildup at a container,
downstream containers should be upscaled to reduce down-
stream latency and increase downstream throughput (Table II).

Fig. 5(c) shows how these metrics allow SurgeGuard to
correctly upscale both cl and c2 in the presence of hidden
dependencies. The surge increases the thread concurrency and
hence execMetric at cl, resulting in cl being upscaled. The
threadpool-induced queueing at cl increases queueBuildup,
resulting in the downstream container (c2) being upscaled.

C. Resource-Sensitivity Aware Allocations

Per-container management approaches attempt to meet QoS
targets for each container by allocating additional resources

to the containers experiencing a violation. However, this
can be wasteful: services that marginally benefit from addi-
tional resources can be prioritized over those that can benefit
significantly and better help meet end-to-end QoS targets
(Fig. 6(left)). Additionally, when a container experiencing a
violation has a nearly flat sensitivity curve, these controllers
are extremely sensitive to the downscale threshold and are
unable to quickly reverse allocations made in response to
a transient violation: containers are allowed to hog a large
amount of extra resources for little benefit (Fig. 6(right)).
Prior Approaches. Previous approaches are designed for
monolithic applications and rely on extensive profiling to find
sensitivity curves [17]. However, the sensitivity curve of a
microservice depends on several additional factors such as re-
quest rate, application bottlenecks, allocations of other services
etc., which exponentially increases the profiling overhead and
makes existing profiling based techniques impractical.
Design Feature #3: SurgeGuard determines resource sen-
sitivities with minimal overhead and collectively considers
containers across the task-graph while making allocations.
We design a very low overhead online-profiling technique to
find the sensitivity information for containers at run time.

To do this, we create an array (execAvg) that stores the
exponential running average of the execution time of each
container for each observed allocation. These values are up-
dated every time SurgeGuard reads the updated per-container
metrics shared by the containers(red arrows in Fig. 7).

execAvg|container][#cores] = a x execAvg|container][#cores]
+ (1 — o) *x newObservedTime[container]
The sensitivity value (sens) for any number of cores can then

easily be calculated by looking up the percentage reduction in
average execution time achieved by allocating an extra core.

execAvg|[container][#cores + 1]
execAvg|container]| [#cores]

sens|container][#cores] = 1 —

We use a large value of a (a = 0.5) to weight newer
execution times quite heavily, ensuring that sensitivity values
account accurately for current conditions. We use it to prevent
containers from hogging cores by periodically revoking a core
from containers where the execAvg matrix indicates that it
will not have a significant impact on the execution time (re-
voking a core if sens[container][#cores-1]<0.02 works well).
Additionally, we use it during upscaling by preferentially
allocating cores to containers where the sens matrix shows
a high sensitivity to core allocations.

IV. SURGEGUARD ARCHITECTURE

SurgeGuard manages two resources: core allocations and
per-core frequency”. Fig. 7 shows the overall architecture of
SurgeGuard. SurgeGuard consists of two complementary units:
a kernel module (FirstResponder) that manages frequency
and a user-space controller (Escalator) that manages both
frequency and core allocations.

2SurgeGuard can be easily extended to other resources (§7), we leave them
out here to focus on the novel algorithm and design aspects of SurgeGuard.

&Conlainer 1.
<«— Container 2

Escalator @
(manages
cores and

0.’ freq)

l«— Container n [

FirstResponder
(manages freq
only)

Frequency setting
registers

x
3]
S
2]
x
=
2
@
o
[
kel
2]
x
flay

Rx side network stack

¥
Container runtime cpuset
<¢ - - - Per-container metrics < Signals for enforcing allocations
<€ --- RPC packets Kernel-userspace boundary

Fig. 7: High level block diagram of SurgeGuard, showing the
sequence of operations on receiving an RPC packet.

Packet Fields for SurgeGuard
A

Protocol and transport)
Ti 4
headers startTime (64b) upscale (2b)| Payload
X
e ~—

Used by FirstResponder ~ Used by

Escalator

pktOut.startTime= pktin.startTime

pktin _)_’::::::Z::::Z:::Z:::Z:_,_," pktOut

pktOut.upscale= max(pktIn.upscale-1,0)

Fig. 8: Additional metadata fields for SurgeGuard.

FirstResponder implements Design Feature #1, using per-
packet progress tracking to provide a fast path for detecting
and managing extremely short violations. Escalator comple-
ments FirstResponder by managing resource allocations during
longer QoS violations. Escalator implements efficient resource
allocations using Design Features #2 and #3. SurgeGuard does
not specify any particular resource-allocation policy per se,
and we use that of Parties in our evaluation. SurgeGuard re-
quires some extra metadata fields in the RPC packets (Fig. 8),
which are described in greater detail below.

Fig. 7 shows the basic operation of SurgeGuard. When
an RPC packet is received o at the receive (rx) side of
the network stack, it is first intercepted by FirstResponder.
FirstResponder reads some SurgeGuard metadata fields from
the RPC packet (described below) and calculates the per-
packet slack which it uses to determine QoS violations. It
then forwards the packet to the normal network processing
path which routes the RPC to the appropriate containers @.
If a QoS violation is detected by FirstResponder, it updates the
frequency of the desired containers . FirstResponder peri-
odically writes the updated frequencies to a shared memory
region (shFreq) to synchronize state with Escalator Q This
forms the fast path of detecting and managing QoS violations.

Once the containers finish executing, the container runtimes
calculate the SurgeGuard metadata fields for any outgoing
RPCs @) as described below. The runtimes also calculate
averaged metrics and periodically communicate them with
Escalator using shared files/pipes Q Escalator uses these
metrics to update core and frequency allocations @), and
periodically synchronizes state with FirstResponder by writing
updates to shCores and shFreq @ This forms the slower and

. workqueue ~ (TTTTTmoIood

insert() pop() ! w g

_____________ £

do freq update 3:) <

= [0)

rx_stack Jetoct ¥ forward to container £ _g
o

violation @ =)
L

— main thread - - - -»secondary thread

Fig. 9: FirstResponder uses a coordinator-worker design to
shift the long latency of frequency updates off the network
stack critical path.

more precise path of detecting and managing QoS violations.
SurgeGuard is carefully designed to be completely decen-
tralized (Fig. 1). Decisions are made locally at each node
based on the preset parameters, observed incoming requests,
and locally-computed metrics. SurgeGuard does not require
any visibility into or explicit communication with SurgeGuard
modules on other nodes.
SurgeGuard Parameters. SurgeGuard uses two configurable
parameters for each container to make allocation decisions:
the expected execution time (expectedExecMetric) and the
expected elapsed time since the start of the job (expected-
TimeFromStart). These values can either be set by the user or
obtained through online profiling. Following the approaches
of Dirigent [35] and Nightcore [23], we set these values by
profiling the application at low load and setting the parameters
to twice the values measured at low load.
SurgeGuard Metadata Fields. To implement progress-
tracking and threading-model aware allocation, SurgeGuard
adds two metadata fields to each RPC packet (Fig. 8). The
startTime field denotes the starting timestamp of the job and
is used by FirstResponder for progress tracking. It is set in
the first container and propagated unchanged by the remaining
containers (Fig. 8). The upscale field is used as an upscaling
hint by Escalator to upscale downstream containers in response
to a QoS violation (II-C*Queue Buildup Metric”). A container
is considered for upscaling if pktIn.upscale>0 (Table II). This
field is set at the container where the violation is detected, and
propagated by subsequent containers (Fig. 8), decreasing by 1
at each successive container. This ensures that only a limited
number of downstream containers are upscaled in response to
an upstream QoS violation. This design allows SurgeGuard
to be completely decentralized — upscaling hints piggyback
on data packets and are automatically sent across nodes to
the appropriate containers without requiring SurgeGuard to
possess any global knowledge.

A. FirstResponder

FirstResponder implements Design Feature #1 (§3.1) and

tracks per-request slack at each container.

Per-Packet Slack Calculation. We determine slack by cal-
culating the difference between the expected and observed
progress towards the end-to-end target:

slack = expectedTimeFromStart — observedTimeFromStart (4)

observedTimeFromStart = currentTime — pkt.startTime ~ (5)

TABLE II: Upscaling candidates based on violation cause.

Detected condition Upscaling candidates
at container ¢

pkt.upscale > 0 Container ¢

queueBuildup violation | Downstream containers, set pkt.upscale

execMetric violation Container ¢

Detecting a negative slack at any container indicates that the

request progress is lagging, and an end-to-end QoS violation
is likely unless downstream containers are upscaled.
FirstResponder Implementation. We implemented FirstRe-
sponder as a per-node host-side kernel module. This allows
us to read the packet fields for the slack calculation without
requiring an additional kernel-userspace crossing, and hence
minimizes the latency and overhead of FirstResponder.

FirstResponder hooks into the receive side of the networking
stack, intercepting each incoming packet before it is routed
to its destination container. It reads the startTime field from
the packet and calculates the per-request slack. If the slack is
negative, it detects a QoS violation and upscales the frequency
of both the violating container and downstream containers
present on the same node. It operates on a per-request basis
instead of using averaged statistics, upscaling containers as
soon as a violation is detected on any request.

As FirstResponder lies on the critical path of the kernel-
side networking stack, it is carefully designed to minimize
added latency. FirstResponder uses a two thread coordinator-
worker design (Fig. 9). The main thread lies on the critical
path and detects slack violations. On detecting a violation, it
inserts a frequency update work item in the work queue of
the secondary thread. Meanwhile, the secondary thread lying
off the critical path polls its work queue for work items. It
pops each work item off of the work queue and performs
the frequency update by writing to machine-specific registers
(MSRs). The secondary thread then informs Escalator of the
update by writing the updated frequency to shFreq.
Mitigating Frequent Updates. Because FirstResponder does
not compute averages, the measured slack can be noisy
and lead to unnecessary updates. To mitigate this, once an
upscaling decision is made for a path through the task-
graph, FirstResponder does not change the frequency for that
path any further for a time window (~2x of the end-to-
end request latency worked well). This reduces the rate of
frequency modifications and reduces the overhead incurred by
the coordinator and worker threads.

B. Escalator

Escalator is a user-space controller that implements Design
Features #2 and #3 to identify threading- and sensitivity-aware
upscaling and downscaling candidates. Escalator’s contribu-
tion lies in our techniques for determining these candidates,
not in deciding which resources to allocate. In this paper,
we combine our candidate identification mechanisms with an
existing resource allocation algorithm (Parties) to provide a
complete resource management solution.

At the start of each decision cycle, Escalator reads the
per-container metrics collected by the container runtimes
(Fig. 7). It then assigns a score to each container indicating
the importance of scaling it. For this, Escalator checks three
conditions: (1) whether an pkt.upscale hint has been received
due to an upstream queueBuildup, (2) whether queueBuildup
at this container exceeds a threshold (QUEUE_TH), and (3)
whether (execMetric/expectedExecMetric) exceeds a threshold
(EXEC_TH). If any of these conditions is true, the score of
the upscaling candidates (as determined from Table II) is
incremented by 1. This ensures that containers failing more
checks have higher scores than containers failing fewer checks.

Once the upscaling candidates are identified, Escalator can
use any algorithm to decide upscaling preferences and how
many extra units of each resource should be allocated to each
candidate (we used the Parties algorithm). While upscaling
resources, we first prioritize containers with the higher scores.
Among containers with the same score, we prioritize the
containers with the highest sensitivity to cores and allocate
one core at a time to these containers.

While deallocating resources, we first deallocate resources
from containers with a score of zero, i.e., those that are not
marked as upscaling candidates by any condition. We use the
Parties algorithm to determine downscaling priorities and to
make decisions on which resource should be deallocated. If
there are no containers with a score of zero, we use sensitivity-
based revocation (Design Feature #3) to revoke cores from
containers with low sensitivity to core count.

V. EXPERIMENTAL SETUP

Experimental Setup. We conduct all our experiments on
Chameleon [24], which provides reconfigurable bare-metal
nodes in a cloud-like environment. We use a cluster of four
2-socket Intel Xeon 6242 (Cascade Lake) server nodes, each
with 64 logical cores and 224GB of memory running Ubuntu-
18.04. The client runs on a separate 6-core Intel Xeon node.
We use the open-loop workload generator wrk2 [13] as our
client, and modify it to generate input load spikes. We we
use the default intel pstate governor except when con-
trolling per-core frequencies with the userspace frequency
governor. We measure the energy using perf, subtracting
the idle energy consumption to accurately measure the energy
consumption by the application.

On each node, we use 3 logical cores for SurgeGuard,
16 cores for network processing and other OS tasks, and 52
logical cores for the workload. We initialize per-container allo-
cations to achieve the highest steady-state throughput (request
rate) using a total of 34 cores for the foreground application.
The remaining 18 cores can be allocated on demand by
the controllers for managing surges; In deployment, these
cores could be used to run background applications while the
microservice workload is in steady state.

Controllers Evaluated. We evaluate three controllers:

« Parties [16]: We implement the Parties controller in C++
following the code open-sourced by the authors.

« CaladanAlgo [18]: We implement the Caladan algorithm
as a userspace controller. Since we do not use Caladan’s
custom networking stack, and lack visibility into the net-
work queues, we use our proposed queueBuildup metric
for the queueing delay measurement of CaladanAlgo.

o SurgeGuard: Our proposed SurgeGuard.

We allow CaladanAlgo to allocate hyperthreads individually.
For the other controllers, we always allocate both the hy-
perthreads of a physical core to the same container. We set
the same per-container QoS limits for all three controllers,
following the methodology of IV “SurgeGuard Parameters”.

TABLE III: Details of the evaluated workloads. Threadpool size of
oo denotes connection-per-request model.

Workload Action Task-graph RPC Threadpool
Depth Size
CHAIN - 5 Thrift | 512
socialNetwork ReadUserTimeline 5 Thr?f‘t 512
ComposePost 8 Thrift 512
. searchHotel 11 gRPC)
hotelReservation recommendHotel 5 gRPC =)

Workloads. Benchmarks: We use realistic publically available
microservice workloads — socialNetwork and hotelReservation
from DeathStarBench [20]. We use two actions for each of
these workloads, representing a range of task-graph sizes, RPC
frameworks and threading patterns. Table III shows further
details about the chosen workloads.

CHAIN Microbenchmark: We also evaluate a microbenchmark
that comprises a chain of five services, each performing
arithmetic work (a large vector accumulate). It uses the same
threading and connection models as the Thrift-based work-
loads in DeathStarBench [20].

VI. EVALUATION

We evaluate SurgeGuard on a range of surge scenarios. We

detail our results in the following subsections, finding that:

« FirstResponder successfully manages short surges, reduc-
ing the latency during surges by ~40x for 100us long
surges, and ~3x for 2ms long surges (VI-A).

« Escalator efficiently manages longer surges, reducing vi-
olation volume by an average of 19-61% while requiring
2-8% fewer cores than Parties(VI-B).

o Each Escalator mechanism contributes to reducing the
violation volume (VV): new metrics reduce it by 12.5%,
sensitivity-based allocations by 49%, and combining
them reduces the VV by 74% across workloads (VI-B).

o SurgeGuard scales well to multiple nodes, reducing vio-
lation volume by 39%, and using 16% fewer cores than
the baselines (VI-B) when using 4 nodes.

A. Managing Short Surges With FirstResponder

We demonstrate the effectiveness of FirstResponder on short
surges by comparing the performance of Escalator to the
complete SurgeGuard consisting of Escalator+FirstResponder.
Fig. 10 shows the timeline graphs for two different surge
durations: 100us and 2ms, demonstrating different aspects of
the benefit provided by FirstResponder. Escalator (and other
averaging based controllers) are unable to detect very short

=
3

— Escalator
surgeGuard

Nnenaraal Taddid M.@m‘."\/\,&ALAM\;mNJ,JN WPV CT | P ,#.AJJL.
55 6.0 65

5.0 7.0

IS
]

n
S

Output latency (ms)

Time(s)

(a) Surge Duration = 100us, Surge Freq. = 1 surge/0.5s

IS
=

—— Escalator
SurgeGuard

RRPRIVAIN| ‘\,Adn,nn.jthf«. m.\j\-MM«.J\ LJ\.MJ\»J*AJ\.-MM\J‘..
5 6 7 8 9 10 11

Time(s)

w
3

n
S

,_.
S

Output latency (ms)

(b) Surge Duration = 2ms, Surge Freq. = 1 surge/ls

Fig. 10: Timeline graphs for short request rate surges using CHAIN.
The instantaneous request rate during the surge is 20x the request
rate outside the surge. FirstResponder decreases the violation volume
of such short surges by 98% for (a) and 88% for (b) compared to
Escalator alone.

surges (Fig. 10(a)), resulting in a large increase in the output
latency. The per-packet violation detection of FirstResponder
is able to rapidly detect and increase core frequency in
response to the surge, absorbing the increase in the request
rate without incurring any increase in the output latency.

As the duration of the surge grows (Fig. 10(b)), the resulting
increase in the averaged execution time is detected by Esca-
lator, which allocates more cores to meet the latency target.
This can be seen in the latency graph — latency during the
surges is lower in Fig. 10(b) compared to Fig. 10(a) despite
having a longer surge duration (2ms vs 100us). Even in this
case, the fast detection and upscaling of FirstResponder helps
mitigate the surge impact till Escalator detects the violation
and upscales cores. SurgeGuard absorbs the surges much more
effectively compared to just Escalator.

Additionally, Fig. 10(a) and Fig. 10(b) show that the relative
benefit provided by FirstResponder decreases as the surge
duration grows. This is expected as the early detection of
FirstResponder provides a proportionally smaller head-start
with an increase in the surge duration.

B. Managing Longer Surges With Escalator

We evaluate SurgeGuard on longer request rate surges by
injecting 2s long request rate surges every 10s into the input
request rate. We vary the request rate during the surge to
1.25x, 1.5x and 1.75x of the base request rate. We measure
the overhead by measuring both the average number of cores
used and the energy consumed. As Escalator provides nearly
the entire performance benefit of SurgeGuard for these longer
surges (<0.3% performance difference between Escalator and
SurgeGuard), we do not separate the performance impact of
Escalator and FirstResponder in this subsection. We present
results using our violation volume metric; the results and
trends are similar for tail latency (P98 latency) as well.
Single Node Results. Fig. 11 shows that, on average, Surge-
Guard decreases the violation volume by 19% for 1.25x surge,
43% for 1.5x surge and 61% for 1.75x surge while requiring 2-
8% fewer cores and 2-4% less energy as compared to Parties.

The average performance of CaladanAlgo is poor, primarily
because it has a high violation volume for searchHotel and
recommendHotel. These workloads use a connection-per-
request model and do not have any explicit or implicit queues.
Hence, the value of queueBuildup remains fairly stable even
during the surge, resulting in CaladanAlgo being unable to
properly upscale resources.

SurgeGuard provides a benefit over Parties for all the
evaluated workloads. For searchHotel and recoHotel,
the benefit comes primarily from the better core allocation de-
cisions made with our sensitivity-aware allocations. CHAIN,
readUserTimeline and composePost use a limited
threadpool model and hence also derive a benefit from the
threading-model aware upscaling. We also see that the benefit
of SurgeGuard increases as the surge magnitude increases.
This is because the impact of the inefficient allocations made
by Parties and CaladanAlgo is magnified with larger surges.

SurgeGuard’s resource sensitivity-aware allocations also
helps reduce the number of cores used, as containers are not
allowed to hog cores from which they do not derive a mean-
ingful benefit. However, a reduction in usage is not guaranteed
— the freed cores can simply be taken up by other, more
core-sensitive containers to manage the increased request rate.
Because of these contradictory factors, SurgeGuard achieves
a relatively small (2-8% for cores, 2-4% for energy) reduction
in resource usage compared to the Parties baseline.

Effect Of Changing Surge Duration. Fig. 12 shows the
effect of changing the surge duration from 0.Is to S5s on
recommendHotel (which uses connection-per-request) and
readUserTimeline (uses fixed threadpool). The request
rate during the surge is set to 1.75x of the base request rate. We
see that SurgeGuard outperforms both the baseline controllers
for all the surge durations. Additionally, as the surge duration
increases, the violation volume of SurgeGuard w.r.t. both
Parties and CaladanAlgo also improves (43.4%—56.5% im-
provement over baseline from 0.1s to 5s). This is due to similar
reasons as before — the effect of the efficient core allocations
made by SurgeGuard is more prominent for larger surges.
As before, the energy used by SurgeGuard vs. the baselines
also remains fairly stable (~1) across surge durations. The
exception is recommendHotel when using CaladanAlgo
as the baseline, where SurgeGuard’s energy consumption is
2.5x of CaladanAlgo. This is because, as described before,
CaladanAlgo fails to upscale containers when the workload
uses the connection-per-request model, resulting in a much
lower energy consumption (7.4x lower than SurgeGuard for 5s
surge) but also a much higher violation volume (251x higher
than SurgeGuard for 5s surge) as compared to SurgeGuard.

Node Scaling. We evaluate the effect of increasing the number
of nodes by extending our experiments to 1, 2 and 4 nodes
(Fig. 13). We inject a 2s long surge every 10s and set the
request rate during the surge to 1.75x of the base request rate.

SurgeGuard significantly outperforms both Parties and Cal-
adanAlgo for all configurations. As the number of nodes
increases, the resource constraints also decrease and both
Parties and CaladanAlgo inefficiently allocate the increasingly

g B Parties - CaladanAlgo B SurgeGuard 15 -
5 41 3 2
g a 1.0 . - - - 1.0 ;
c w
S 2 ¢ 0.5 05 5
s S S
£0- 0.0 - L 0.0

search reco read compose chain gmean search reco read compose chain gmean

(a) Normalized violation volume (left) and cores and energy used (right) with 1.25x surge.
1]
15 1.5

5 o] 3 ?
S 9 1.0 . - ~ . +103
c . 7 5
2 2 0.5 1 F0.5 %5
5 5] =
£0- 0.0 - L 0.0

search reco read compose chain gmean search reco read compose chain gmean

(b) Normalized violation volume (left) and cores and energy used (right) with 1.5x surge.
1]
15 1.5

.
e v 1.0+ , , 1.0 ;
c w
g 21 2 0.5 05 S
5 5] =
£0- 0.0 - L 0.0

search reco read compose chain gmean search reco read compose chain gmean

(c) Normalized violation volume (left) and cores and energy used (right) with 1.75x surge.

Fig. 11: Normalized violation volume and resources for different magnitudes of the request rate surge. All results are normalized to Parties.
In the graphs on the right, the bars show the cores used while the lines show the energy used. The workload names are abbreviated: search
is searchHotel, reco is recommendHotel, read is ReadUserTimeline, compose is ComposePost.

Violation volume Cores Used Energy Used
1.00 {===="*7 B0 | 3 g0 Je=h_—-———-- 1.00 B2t gmmm=l
—e— read
0.75 - 0.75 r"\o_. 0.75
0.50 0.50 1 0.50
0.25 0.25 *- TR0 | 25 - reco
—e— read —e— read
0.00 T T 0.00 4 T T 0.00 T T
0 2 4 0 2 4 0 2 4
(a) Performance of SurgeGuard normalized to Parties
Violation volume Cores Used Energy Used
1004 ~® reco _____ —e— reco —e— reco !
—e— read —e— read —e— read
0.75 27 27
0.50 -
1{g=T-—-—--—-—- 1{g=a<—---=
0.25 4 ./o—o\,
0.00 o=y ; 0 . . o . ,
0 2 4 0 2 4 0 2 4

(b) Performance of SurgeGuard normalized to CaladanAlgo

Fig. 12: Effect of varying surge duration from 0.1s to 5s on Surge-
Guard, normalized to two baselines - (a) Parties and (b) CaladanAlgo.
Values <1 show improvement over baseline.

large number of cores to the application to mitigate the surge.
SurgeGuard’s efficient resource allocations hence provides an
increasing benefit of requiring fewer cores (6.5%—16.4%
improvement) and lower energy consumption (14.2%—28.3%
improvement) with increasing number of nodes. The benefit
of SurgeGuard on the violation volume has an opposite trend
— decreasing (67.2%—51.4% improvement) as the number of
nodes increases. This is because distributing the application
across a larger number of nodes makes it less likely that a
particular container hogs a substantial fraction of the cores

Violation volume Cores Used Energy Used
100 {========—=-- 100 {====—====—=- 1.00 Jgz-—————----
0.75 0.75 o\._._‘-"\ﬁ__. 0.75 —
0.50 A 0.50 1 0.50
0.25 ¢ 0 | g5 *- T80 | 025 - reco
—e— read —e— read —e— read
0.00 T - 0.00 T ~ 0.00 T T
2 4 2 4 2 4
(a) Performance of SurgeGuard normalized to Parties
Violation volume Cores Used Energy Used
2.5 2.5
1004 "® reco ____ —e— reco —e— reco
. 2.0 2.0 A
—e— read —e— read —e— read
0.75 A 1.5 1.5
0.50 10 {-==—=====———- 1.0 {=-S<---=-----
[
0.25 0.5 1 0.5 1
0,00 le—"""1 4 . 4 0.0 . .
2 4 2 4 2 a4

(b) Performance of SurgeGuard normalized to CaladanAlgo

Fig. 13: Effect of increasing number of nodes from 1 to 4 on Surge-
Guard, normalized to two baselines - (a) Parties and (b) CaladanAlgo.
Values <1 show improvement over baseline.

and prevents other containers from scaling up their allocation.

C. Per-Component Benefit Analysis

We explain how our new metrics and sensitivity based
resource revocations enable efficient core allocations over time
and complement each other to manage application QoS.
Timeline of Core Allocations. Fig. 14 shows the alloca-
tions over time for some services of readUserTimeline,
injecting a 10s long request rate surge starting at 15s. As

w
=3

—— post-storage-service
post-storage-memcached
—— user-timeline-service

N
=3

Cores Allocated
=
o

—— user-timeline-redis

—n

10 15

w—

20 25 30
Time(s)

o

(a) Timeline of core allocations for Parties

w
S

—— post-storage-service
post-storage-memcached

—— user-timeline-service

—— user-timeline-redis

N
5}

Cores Allocated
-
o

o

10 15 20 25 30
Time(s)

(b) Timeline of core allocations for CaladanAlgo

w
S

—— post-storage-service
post-storage-memcached
—— user-timeline-service

—— user-timeline-redis %
4/_\?‘_\1/__/_/‘—_\—

10 15 20 25 30
Time(s)

(c) Timeline of core allocations for SurgeGuard
Fig. 14: Core allocations over time for readUserTimeline in response
to a 1.75x request rate surge starting at 15s and ending at 25s.

N
5}

=
5}

Cores Allocated

o

mmm +metrics,sens

+metrics_only

B +sens_only

read reco read reco

Fig. 15: Performance breakdown of Escalator

readUserTimeline uses a fixed-size threadpool model,
the extra requests queue up in user-timeline-service waiting for
a free connection. As a result, both Parties and CaladanAlgo
keep allocating cores to user-timeline-service during the surge,
giving it almost 50% of the total cores in the system. While
this decreases the latency of user-timeline-service, it is unable
to manage the surge as downstream containers (post-storage-
service and post-storage-memcached) are starved of cores.

In contrast, SurgeGuard, allocates extra cores both to user-

timeline-service and to the downstream containers on detecting
the surge at t=15s, spreading out cores more evenly between
containers. We also see that SurgeGuard reverses core allo-
cations based on their sensitivity, revoking cores from the
containers between 18-20s and 23-25s. These mechanisms
allow SurgeGuard to efficiently manage large surges by detect-
ing hidden dependencies, directing resources correctly to the
containers that benefit from them, and preventing containers
from unnecessarily hogging resources.
Performance Breakdown Of Escalator Mechanisms. We
use Parties as the base resource allocator and compare the per-
formance of Parties, Parties with our new metrics, Parties with
the sensitivity-based allocations, and the complete Escalator
controller using Parties as the base allocator (i.e., including
both the new metrics and the sensitivity-based downscaling).
Fig. 15 shows the impact of these components on the violation
volume and the cores used.

First, readUserTimeline exhibits a 23.5%
tion in violation volume with the new metrics,

reduc-
but

recommendHotel does not benefit. This is because
recommendHotel uses unlimited threadpools (execMet-
ric=execTime for unlimited threadpools, so there is no impact
from the new metrics). ReadUserTimeline uses a fixed-
size threadpool — using our new metrics allows us to infer the
hidden dependencies and improve performance by allocating
resources across the task-graph (Fig. 14).

We also see that applying sensitivity-based allocations
without using our new metrics decreases both the violation
volume (by 28% and 63% for readUserTimeline and
recommendHotel) and the cores used (by 5% and 8%).
This is because sensitivity-based revocation frees cores from
insensitive containers, allowing them to be allocated to con-
tainers that derive a larger benefit. However, without using the
new metrics, the freed cores are quickly reallocated to user-
timeline-service by the Parties allocator, which limits the bene-
fits achieved by the sensitivity-based downscaling. Combining
these mechanisms together into Escalator compounds their
benefits — the sensitivity based revocations free extra cores
from insensitive containers while the new metrics account for
hidden dependencies to correctly upscale candidates across the
task graph, resulting in significantly higher performance than
when using either mechanism alone.

D. SurgeGuard Overheads

SurgeGuard requires three cores on each node: one for
Escalator, and one for each of the two threads of FirstRe-
sponder. Having dedicated cores for the two FirstResponder
threads ensures that the latency critical primary thread does
not contend with the secondary thread. We assign the two
FirstResponder threads to hyperthreads on the same physical
core to lower the latency of access to the shared workqueue. In
all the experiments, the CPU utilization of the cores allocated
to SurgeGuard remains below 3%.

The primary thread of FirstResponder adds a latency of
0.26us on the packet processing path (< 0.5% of the packet
processing time). Adding a workitem in the workqueue shared
between the primary and secondary threads requires an addi-
tional 0.44us. The secondary thread requires 2.1us to read an
item from the workqueue and update the frequency MSR —
this latency lies off the application processing path and does
not contribute to any overheads. The overheads are negligible
overall and adding FirstResponder does not change the load-
latency curve of the application at steady state.

VII. DISCUSSION

Interaction with Other Controllers. SurgeGuard is designed
to rapidly detect QoS violations and make efficient allocations.
While it is able to capture complex inter-service dynamics
to a large extent, it does not have the expressiveness of
ML /gradient-search algorithms like Sage or Sinan. We en-
vision that these heavier techniques periodically set steady-
state allocations, while SurgeGuard manages allocations in
between to tolerate surges. The heavy ML models can thus
be run less frequently. This saves system resources, cuts
communication costs, and supports a longer decision interval

(enabling more accurate and complex ML controllers) without
negatively impacting the QoS. Also, the Escalator algorithms
for selecting up/down-scaling candidates can be integrated
with existing autoscalers and controllers like Shenango [29]
that rely on optimized networking stacks.

Interaction with Autoscaling Algorithms. Similar to the
benefits SurgeGuard provides to ML-based controllers, we
expect the ability of SurgeGuard to better tolerate surges to
also benefit horizontal-scaling controllers, by managing QoS
and preventing request buildup while the autoscaler launches
a new container. Autoscaling algorithms can also benefit from
our insights and new metrics to identify scaling candidates.
Extending SurgeGuard to Other Resources. SurgeGuard
can be easily extended to manage resources beyond cores and
frequency. As FirstResponder is designed to respond to very
short spikes, it can manage any resources that can be quickly
upscaled and have an immediate impact on the execution time
(e.g. memory bandwidth for bandwidth constrained services).
On the other hand, Escalator’s candidate selection can be used
to manage any resource by combining it with any existing
resource allocation algorithm.

VIII. CONCLUSION

We identify a number of issues with existing microservice
resource management schemes and use our insights to design
SurgeGuard. SurgeGuard is designed to be fast, lightweight,
and to require minimal workload changes and profiling infor-
mation. We evaluate SurgeGuard using the Parties algorithm as
a base; however, our solutions are widely applicable and can be
used by a wide range of resource controllers and autoscaling
algorithms in the future for managing QoS during surges.

IX. ACKNOWLEDGEMENTS

We thank our reviewers for their insightful feedback. We
also acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing
computational resources that have contributed to the research
results reported within this paper. Results presented in this
paper were obtained using the Chameleon testbed supported
by the National Science Foundation. Additionally, this work
is supported in part by the NSF grant #2212579.

REFERENCES

[1] Amazon microservices. [Online]. Available: https://aws.amazon.com/
microservices/

[2] Aws autoscaling. [Online]. Available: https://aws.amazon.com/
autoscaling/

[3] “grpc best practices.” [Online]. Available: https://grpc.io/docs/guides/
performance/

[4] Kubernetes. [Online]. Available: https://kubernetes.io/

[5] Linux network receive function. [Online]. Available: https://docs.kernel.
org/networking/kapi.html#c.netif_receive_skb

[6] Netflix microservices. [Online]. Available: https://netflixtechblog.com/
the-netflix-cosmos-platform-35c14d9351ad

[7]1 Spike management at aws. [Online]. Available:
https://aws.amazon.com/blogs/database/running-spiky-workloads-
and-optimizing-costs-by-more-than-90-using-amazon-dynamodb-on-
demand-capacity-mode/

[8] Spike management at facebook. [Online]. Avail-
able: https://engineering.fb.com/2018/02/12/production-engineering/
how-production-engineers-support- global-events-on-facebook/

[9]

(10]

(11]

[12]

(13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Spike management at netflix. [Online]. Avail-
able: https://netflixtechblog.com/migrating-critical-traffic-at-scale- with-
no-downtime-part- 1-balc7alc7835

Spike management at twitter. [Online]. Avail-
able: https://blog.twitter.com/engineering/en_us/topics/infrastructure/
2022/stability-and-scalability-for-search

“Twitter microservices.” [Online]. Available: https:
//blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_
twitter_public_api_2020

Uber microservices architecture. [Online]. Available: https://www.uber.
com/blog/crisp-critical-path-analysis-for-microservice-architectures
wrk2. [Online]. Available: https://github.com/giltene/wrk2

S. Boucher, A. Kalia, D. G. Andersen, and M. Kaminsky, “Putting
the” micro” back in microservice,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), 2018, pp. 645-650.

R. Chen, J. Wu, H. Shi, Y. Li, X. Liu, and G. Wang, “Drlpart: A
deep reinforcement learning framework for optimally efficient and robust
resource partitioning on commodity servers,” in Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed
Computing, 2021, pp. 175-188.

S. Chen, C. Delimitrou, and J. F. Martinez, ‘“Parties: Qos-aware resource
partitioning for multiple interactive services,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 107-120.
N. El-Sayed, A. Mukkara, P-A. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “Kpart: A hybrid cache partitioning-sharing technique for
commodity multicores,” in 2018 IEEE international symposium on high
performance computer architecture (HPCA). 1EEE, 2018, pp. 104-117.
J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan: Mitigating
interference at microsecond timescales,” in [4th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), 2020, pp.
281-297.

Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou, “Sage: practical
and scalable ml-driven performance debugging in microservices,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
135-151.

Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 3-18.

Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the twenty-fourth international conference on architectural support for
programming languages and operating systems, 2019, pp. 19-33.

D. Gureya, V. Vlassov, and J. Barreto, “Balm: Qos-aware memory band-
width partitioning for multi-socket cloud nodes,” in Proceedings of the
33rd ACM Symposium on Parallelism in Algorithms and Architectures,
2021, pp. 435-438.

Z. Jia and E. Witchel, “Nightcore: efficient and scalable serverless com-
puting for latency-sensitive, interactive microservices,” in Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2021, pp. 152-166.
K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proceedings of the 2020 USENIX Annual
Technical Conference (USENIX ATC ’20). USENIX Association, July
2020.

D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of the
42nd Annual International Symposium on Computer Architecture, 2015,
pp- 450-462.

D. Masouros, S. Xydis, and D. Soudris, “Rusty: Runtime interference-
aware predictive monitoring for modern multi-tenant systems,” [EEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
184-198, 2020.

A. Mirhosseini, S. Elnikety, and T. F. Wenisch, “Parslo: A gradient
descent-based approach for near-optimal partial slo allotment in mi-
croservices,” in Proceedings of the ACM Symposium on Cloud Com-
puting, 2021, pp. 442-457.

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander, “Twig: Multi-
agent task management for colocated latency-critical cloud services,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2020, pp. 167-179.

A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high {CPU} efficiency for latency-sensitive dat-
acenter workloads,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), 2019, pp. 361-378.

T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 1EEE, 2020, pp. 193-206.

S. Wang, Y.-H. Zhu, S.-P. Chen, T.-Z. Wu, W.-J. Li, X.-S. Zhan, H.-
Y. Ding, W.-S. Shi, and Y.-G. Bao, “A case for adaptive resource
management in alibaba datacenter using neural networks,” Journal of
Computer Science and Technology, vol. 35, no. 1, pp. 209-220, 2020.

Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and N. S.
Kim, “Don’t forget the i/o when allocating your llc,” in 2021 ACM/IEEE
48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2021, pp. 112-125.

Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: MI-
based and qos-aware resource management for cloud microservices,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021, pp.
167-181.

Z. Zhou, C. Zhang, L. Ma, J. Gu, H. Qian, Q. Wen, L. Sun, P. Li,
and Z. Tang, “Ahpa: adaptive horizontal pod autoscaling systems on
alibaba cloud container service for kubernetes,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 37, no. 13, 2023, pp.
15621-15629.

H. Zhu and M. Erez, “Dirigent: Enforcing qos for latency-critical
tasks on shared multicore systems,” in Proceedings of the twenty-
first international conference on architectural support for programming
languages and operating systems, 2016, pp. 33-47.

Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions

C1 We identify several key limitations of prior ap-
proaches in managing microservice QoS during tran-
sient surges. We present new metrics and techniques
that enable task-graph and sensitivity aware upscal-
ing for complex task graphs which contain hidden
inter-service dependencies.

Cs We use our insights to design SurgeGuard: a con-
troller specifically designed to effectively detect and
mitigate both short and long load surges using dif-
ferent response paths.

Cs We introduce violation volume: a new metric that
accounts for both the magnitude and duration of QoS
violations while evaluating controller performance.

Cy We evaluate SurgeGuard on applications from Death-
starBench and our CHAIN microbenchmark and
show that it reduces the violation volume from large
transient surges vs. the well known Parties (61.1%
avg. reduction) and Caladan (93.7% avg. reduction)
algorithms.

B. Computational Artifacts

Ay https://doi.org/10.5281/zenodo.12591422, see apps
and controllers

Ao https://doi.org/10.5281/zenodo.12591422, see
wrk2_spike
Artifact ID Contributions Related
Supported Paper Elements
A1 C1,027C4 Table 1
Figures 9-14
Ay Cs Figures 9-14

II. ARTIFACT IDENTIFICATION
A. Computational Artifact Aq
Relation To Contributions

This artifact includes the code for SurgeGuard along with
the applications for our experiments. The application code
is present under apps. We take the DeathstarBench source
code from https://github.com/delimitrou/DeathStarBench and
modify it to report metrics to SurgeGuard using shared files,
and implement the protobuf changes shown in Figure 7 in
the paper. Additionally, we create a microbenchmark (CHAIN)
which creates a chain of 5 services, each of which does some
arithmetic work. It uses the Thrift protocol and the threading
models used by DeathStarBench.

The code for SurgeGuard distills contributions C7 and Co,
and can be found in controllers. We also provide the code
which we use to evaluate the Parties and Caladan algorithms
in the same folder as well.

Expected Results

Overall, SurgeGuard should provide a lower violation vol-
ume for any given spike pattern as compared to the baselines
— Parties and CaladanAlgo. It should also have the same or
lower core usage as compared to Parties in all cases, and have
a lower core usage than Caladan for all workloads other than
hotelReservation. The performance benefit of SurgeGuard over
the baselines should increase with longer and larger spikes.
This shows that our insights and the resulting SurgeGuard
design is able to more effectively manage spikes (due to the
lower violation volume) and achieve efficient core allocations
(due to the lower core usage).

Expected Reproduction Time (in Minutes)

Building the applications and setting up the configuration
files for the experiments takes around 1 hour. Executing
each experiment takes 2 minutes. We repeat the experiments
multiple times for spike configuration, and also gather data
for multiple spike configurations, resulting in the experiments
taking a few hours to complete in total. The analysis step is
currently performed manually, and takes around 1 hour.

Artifact Setup (incl. Inputs)

Hardware: Hardware: Our experiments used a cluster of
four 2-socket Intel Xeon 6242 (Cascade Lake) server nodes
each with 64 logical cores and 224GB of memory running
Ubuntu-18.04. For the controllers that manage frequency, we
disable the intel_pstate and acpi_cpufreq frequency
governors and use the userspace frequency governor to
have precise control over core frequencies. For the rest, we use
the default intel_pstate governor. The initial frequencies
of the cores are set to 1.6GHz.

Software: All the software dependencies required by
the application are specified in the respective Dockerfiles,
which automatically install the required dependencies.
Other than that, the dependencies are gcc-9.4,
docker-v21.0+, docker-compose-vl1.13+,
python-v3.8+, asyncio-v3.4, aiohttp-v3.9,
libssl-dev, zliblg-dev, luarocks-v2.4.2
and luasocket-v3.1.0. Note that these versions are
just the ones we used for our experiments, the applications
and controllers work well with other versions of these
packages as well. Except for docker, these packages are
downloaded using apt or pip. Docker can be downloaded
from https://docs.docker.com/desktop/install/ubuntu/ or from
https://download.docker.com/linux/ubuntu/dists/focal/pool/
stable/amd64/.

Datasets / Inputs: The datasets used by the applications are
taken from DeathstarBench and are summarized below:

e socialNetwork - socfb-Reed98 (used for our
experiments, taken from Facebook Networks
https://networkrepository.com/soctfb-Reed98.php) and

ego—twitter (subset of the Twitter social network

graph)

o mediaMicroservices - tmdb, (taken from the IMDB
database)

o hotelReservation - dataset created by the authors of
DeathstarBench

For socialNetwork, we initialize the databases by generating
and storing 30 posts (length and contents of each post are
randomly generated) for each user.

Installation and Deployment: All requirements for installa-
tion and deployment have been specified in ’Software”. The
instructions for building and deploying the applications and
running the experiments are provided in apps/README and
controllers/README.

Artifact Execution

Briefly, the order of operations for running the experiments
is as follows: (1) The applications are built using docker
build and deployed using the docker-compose.yml
files in their respective directories. (2) The initial core
allocations and the per-service parameters are speci-
fied in a config file (see controllers/README for
a description of the contents of the config file, and
controllers/sample_config for a sample config file.
(3) The controller code is initialized to reflect the number of
available cores on the system (4) The workload generator (As)
and the controller are run in parallel to send HTTP requests
into the deployed application following the desired spike
patterns while simultaneously managing allocations using the
controller.

For our experiments, we allocate 52 cores/node for the
application, and reserve the remaining cores for running
the controllers, network processing and other OS tasks. We
initialize the work-load to use 2/3rd of the remaining cores
(the remaining cores would be allocated to background tasks,
and revoked on demand, in real deployments). The initial per-
container core allocations can be set arbitrarily — we set them
by searching for the allocations that can support the highest
request rate using these cores. We set the base request rate in
our experiments to be slightly less than the knee of the load
latency curve achieved using our initial allocations.

The user needs to specify the per-service parameters (de-
siredExecMetric and desiredTimeFromStart, see section 4 in
the paper) in the config files. To do this, we run the workload
at low load for 1-2 mins and periodically collect/calculate
the desired parameters from each service. For example, to
calculate desiredExecMetric, we periodically read the per-
service execMetric values from each container. After collecting
the values for 1-2 mins, we set the final desired parameter
values to 2x of the average parameter values obtained at low
load. We then write these values into the config files. Note that
this is not the only way of setting the per-container targets,
they can be set by the user through other types of profiling
and the multiplication factor between the desired parameter
values and the profiled values can be changed to set tighter or
looser bounds.

Artifact Analysis (incl. Outputs)

The analysis step is simple, comprising of collecting the
violation volume and tail latencies from all the experiment
runs, and averaging them appropriately to obtain comparisons
between the evaluated controllers. The controllers report the
average core usage during the experiments, which we average
as well. For each spike pattern, we collect 17 data-points for
each controller. While averaging these data-points, we exclude
the best and worst data-points to remove extreme outliers, and
average the remaining 15 data-points to report the final value.

B. Computational Artifact A
Relation To Contributions

This artifact includes our open-loop workload generator,
which is a modified version of the wrk2 workload generator
present at https://github.com/giltene/wrk2. We modify it to
generate input load spikes for our experiments (Cy4) and to
calculate and report the violation volume metric(C's).

Expected Results

Running the workload generator provides a histogram of
the request latencies during the experiment and the violation
volume.

Expected Reproduction Time (in Minutes)

There is no inherent time limit imposed by the workload
generator. For our experiments, we chose to warm up the
system for 30s and collect data over the next 60s.

Artifact Setup (incl. Inputs)

Hardware: No specific hardware requirements.

Software: Our changes do not require any additional soft-
ware packages as compared to the basic wrk2 workload
generator. wrk?2 uses lua to generate HTTP requests — we
used luarocks-v2.4.2 and luasocket-v3.1.0.

Datasets / Inputs: Our changes introduce new input param-
eters for specifying the magnitude and duration of the spikes
and the end-to-end QoS limit. They are described in more
detail in wrk2_spike/README .md.

Installation and Deployment: The workload generator sim-
ply needs to be compiled and run as detailed below, it does
not have any other installation/deployment steps.

Artifact Execution

The workload generator is compiled using
wrk2_spike/Makefile. Once the application (A;)
is deployed, the workload generator is used to send HTTP
requests to the deployed application and collect per-request
latency information throughput the experiment.

We ran all experiments with the options —threads 16
—-connections 256, as we noticed that setting fewer
threads or open connections led to the workload generator
becoming a performance bottleneck in some cases. The other
important parameters are set as follows:

o -rate: The request rate at steady state, set to be slightly
below the knee of the load-latency curve.

o -spikerate: The request rate during the spike, set to 1.25x,
1.5x, and 1.75x of the base request rate (Figure 10).

o -spikelen: The duration of the spike, set to 0.1s-5s (Fig-
ures 10, 11).

e -qos: The target QoS limit, used for calculating the
violation volume

Artifact Analysis (incl. Outputs)

The output of the workload generator is a histogram of
the request latencies and the violation volume during the
experiment. Further analysis of the output is not a part of
this artifact, it must be done by the user based on their
requirements.

	Introduction
	Motivation and Related Work
	Microservice-Based Applications
	Resource Management for Microservices
	Request Rate Surge Management
	Violation Volume Metric

	SurgeGuard Design Features
	Fast & Efficient Detection of QoS Violations
	Threading-Model Aware Upscaling
	Resource-Sensitivity Aware Allocations

	SurgeGuard Architecture
	FirstResponder
	Escalator

	Experimental Setup
	Evaluation
	Managing Short Surges With FirstResponder
	Managing Longer Surges With Escalator
	Per-Component Benefit Analysis
	SurgeGuard Overheads

	Discussion
	Conclusion
	Acknowledgements
	References
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1
	Computational Artifact A2

