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Deep unfolding networks have gained increasing a琀琀ention in the 昀椀eld of compressed sensing (CS) owing
to their theoretical interpretability and superior reconstruction performance. However, most existing deep
unfolding methods o昀琀en face the following issues: (1) they learn directly from single-channel images, leading
to a simple feature representation that does not fully capture complex features; and (2) they treat various
image components uniformly, ignoring the characteristics of di昀昀erent components. To address these issues, we
propose a novel wavelet-domain deep unfolding framework named WTDUN, which operates directly on the
multi-scale wavelet sub-bands. Our method utilizes the intrinsic sparsity and multi-scale structure of wavelet
coe昀케cients to achieve a tree-structured sampling and reconstruction, e昀昀ectively capturing and highlighting
the most important features within images. Speci昀椀cally, the design of tree-structured reconstruction aims to
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capture the inter-dependencies among the multi-scale sub-bands, enabling the identi昀椀cation of both 昀椀ne and
coarse features, which can lead to a marked improvement in reconstruction quality. Furthermore, a wavelet
domain adaptive sampling method is proposed to greatly improve the sampling capability, which is realized
by assigning measurements to each wavelet sub-band based on its importance. Unlike pure deep learning
methods that treat all components uniformly, our method introduces a targeted focus on important sub-bands,
considering their energy and sparsity. 吀栀is targeted strategy lets us capture key information more e昀케ciently
while discarding less important information, resulting in a more e昀昀ective and detailed reconstruction. Extensive
experimental results on various datasets validate the superior performance of our proposed method.

CCS Concepts: • Computing methodologies→ Image processing; Reconstruction;
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1 Introduction
Compressed sensing (CS) is a promising technique for signal acquisition and reconstruction
[2, 10]. 吀栀e target signal is 昀椀rst simultaneously sampled and compressed with linear random
transformations.吀栀en, the original signal can be reconstructed exactly from far fewer measurements
than that required by the Nyquist sampling rate. Mathematically, a random linear measurement
~ ∈R" can be formulated as ~ = Gx , where x ∈R# is the original signal and G ∈R"×# is the
sampling matrix with "�# . A = "/# is the sampling rate (or CS ratio). To obtain a reliable
reconstruction, traditional CS reconstruction methods commonly solve an optimization problem as
follows:

argmin
x

1

2
‖~ −Gx ‖2

2
+ _‖Ψx ‖1, (1)

where ‖~ −Gx ‖2
2
denotes the data-昀椀delity term and Ψx is the transform coe昀케cients of x with

respect to some transform Ψ, the sparsity of Ψx is encouraged by the ℓ1-norm or other sparsity
promoting norm with the regularization parameter _. Currently, CS has been widely applied
in various 昀椀elds such as image reconstruction [8], magnetic resonance imaging (MRI) [51],
snapshot-compressed imaging [23], and communication.

Over the past decades, numerous e昀昀orts have been dedicated to image CS. 吀栀ere are two primary
challenges in the 昀椀eld of CS: signal sampling and reconstruction. 吀栀e construction of the sampling
matrixG plays a crucial role in capturing the intrinsic structure of the original signal x . Traditionally,
G is o昀琀en chosen as a random Gaussian, Poisson, or Toeplitz matrix to uniformly sample each
component of the image. 吀栀is can ensure accurate signal reconstruction with theoretical guarantees.
However, the CS ratio is typically much lower than the Nyquist sampling rate, which usually results
in artifacts. 吀栀is phenomenon may be caused by the aliasing between high- and low-frequency
information, which hinders detail and texture recovery during reconstruction. 吀栀erefore, it is
important to treat di昀昀erent components distinctly to acquire more essential information during the
sampling process.

Another key to achieving a superior reconstruction of x lies in the reconstruction algorithm. 吀栀is
has been the focus of numerous studies aimed at improving the quality of reconstructions in the
past decades. Traditional optimization-based reconstruction methods o昀琀en integrate image prior
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information [21, 42, 54, 56], such as sparsity in a speci昀椀c transform domain, as a regularization
term within the objective function. Consequently, these methods are capable of solving the sparse
regularized optimization problem with precision. Although achieving satisfactory performance,
these methods still have room for improvement due to their limited adaptability to diverse signals.
Traditional CS methods usually su昀昀er from challenges such as high computational complexity and
the need for parameter tuning.
Recently, pro昀椀ting from the powerful learning and fast computing abilities of deep networks,

deep learning-based CS methods have garnered considerable interest. 吀栀ey can directly learn the
inverse mapping from the CS measurement domain to the original signal domain [31, 39]. Compared
to traditional CS methods, deep learning-based CS methods dramatically reduce time complexity
and greatly improve reconstruction performance. However, most existing deep learning-based
methods are handcra昀琀ed designed and trained as a black box, with limited insights in the CS domain.
吀栀us, deep unfolding-based methods [7, 32, 37, 47, 50, 55] are proposed, which are established
by unfolding the 昀椀rst  iterations of a referenced optimization algorithm and transforming all
the steps of each iteration into learnable deep network components. Deep unfolding methods can
simultaneously maintain accuracy, interpretability, and speed by combining the advantages of
traditional optimization-based algorithms and deep networks, such as ISTA-Net [50], ADMM-CSNet
[44], and MADUN [33].

To address the above-mentioned issues, in this article, we propose a novel wavelet domain-based
deep unfolding framework. 吀栀is framework introduces wavelet tree-structured reconstruction and
wavelet domain adaptive sampling (WAS), which can treat diverse components di昀昀erently.
By utilizing the rich information within the wavelet domain, our method is adapted to capturing
intricate image features with greater e昀케ciency. 吀栀is ensures that the 昀椀nal image is not only
visually pleasing but also 昀椀delity to the structure of the original images. Speci昀椀cally, we design a
WAS method that allocates CS measurements based on the di昀昀erence of each sub-band, thereby
customizing the sampling process to the varied features of the image. For CS reconstruction, we
design a tree-structured prior to guiding our unfolding network, which can e昀昀ectively exploit the
inter-dependencies at di昀昀erent scales. It can capture key features across multiple scales, allowing
the incorporation of information from one scale to enhance details at another scale. Since block
partition breaks the global correlation of the whole image, a deblocking module is performed on
the whole image in every reconstruction stage. 吀栀is module serves to eliminate blocking artifacts
and exploit contextual information between adjacent phases. Our extensive experimental results on
diverse datasets demonstrate that our method can achieve be琀琀er performance compared with other
state-of-the-art CS methods. 吀栀e main contributions of this article are summarized as follows:

—A novel wavelet-domain deep unfolding framework for image CS is proposed, which achieves
simultaneous WAS and tree-structured reconstruction by fully exploiting the structural spar-
sity of multi-scale wavelet coe昀케cients.

—A wavelet tree-structured prior (WTP) guided unfolding network is designed, which e昀昀ec-
tively exploits the inter-dependencies among wavelet sub-bands at di昀昀erent scales. 吀栀rough
an iterative optimization process guided by WTP, accurate recovery of 昀椀ner textures and
sharper edges can be achieved.

—A WAS method that signi昀椀cantly improves sampling capabilities is developed. Unlike conven-
tional methods that treat all sub-bands uniformly, our approach allows for a targeted focus
on signi昀椀cant sub-bands, considering their energy and sparsity, which can capture relevant
information e昀昀ectively while discarding less important details.

—Extensive experimental results on various datasets validate the supreme performance of our
proposed scheme.
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Organization. 吀栀e subsequent sections of this article are organized as follows. Section 2 introduces
related works of CS. Section 3 presents the network structure of our approach. Section 4 evaluates
the performance of our methods and compares it to other state-of-the-art CS methods. At last, we
conclude this article in Section 5.

2 Related Works
吀栀eprevious CSmethods can be divided into two categories: traditional optimization-basedmethods
and deep learning-based methods. In this section, we give a brief review.

2.1 Traditional Optimization-Based Methods
2.1.1 Sampling. For sampling methods, they can be divided into uniform sampling and adaptive

sampling. Uniform sampling methods typically use a random Gaussian, Poisson, or Toeplitz matrix
to sample each image block and every component in blocks equally. On the contrary, adaptive
sampling methods consider the di昀昀erences in image structure. Recently, there has been extensive
research on adaptive sampling methods, focusing on their capacity to enhance the overall perfor-
mance of algorithms. Wang et al. [38] use variance as a decision condition to split image blocks
into two categories for sampling and reconstruction. Zhu et al. [58] adaptively assign sampling
measurements based on di昀昀erent statistical features in image blocks, which signi昀椀cantly improved
the reconstruction quality. However, the above studies treat each component of image blocks
equally, which may hinder the acquisition of high-quality reconstructed images.

2.1.2 Reconstruction. In the 昀椀eld of CS reconstruction, most researchers have focused on two
directions: image domain-based methods and wavelet domain-based methods.

Methods categorized in the former group directly sample the original image blocks, which mainly
include convex optimization algorithm [6], greedy matching pursuit algorithm [24], orthogonal
matching pursuit algorithm [28], Bayesian algorithm [19], and gradient descent algorithm [49].
A昀琀erward, to further improve the reconstruction performance, some elaborate priors have been
applied to CS reconstruction, such as denoising prior, total variation prior, and group sparsity prior.
Speci昀椀cally, Li et al. [21] develop a total variation regularization constraint to improve the local
smoothness. Zhang et al. [53] present a group sparse representation to enhance image sparsity and
exploit non-local self-similarity for image recovery.
In the la琀琀er class of methods, the original image is 昀椀rst decomposed through a multi-layer

wavelet transform. Subsequently, the resulting wavelet sub-bands are sampled in blocks. Finally,
an inverse transform is applied to obtain the recovered image. 吀栀e wavelet coe昀케cients of images
are organized in a quadtree structure. Most values of the wavelet coe昀케cients cluster around zero,
while only a small part shows signi昀椀cant amplitude. Such structure leads to strong sparsity which
can greatly improve the imaging speed [4] and highly enhance reconstruction quality. For example,
MS-BCS-SPL [15] is a CS algorithm to reconstruct multi-scale measurements in the wavelet domain,
which can recover more details and sharper edges.

Although traditional optimization methods have strong theoretical bene昀椀ts, they still su昀昀er from
some issues such as excessive complexity, time-consuming, and poor real-time performance, which
limit the broad application in practice.

2.2 Deep Learning-Based Methods
2.2.1 Sampling. In contrast to traditional CS methods, some deep learning methods still use

random matrix [55] to obtain CS measurements, while others adopt convolutional [31] or fully
connected [12, 22, 40] layer to model sampling matrix. Recently, Zhou et al. [57] propose a multi-
channel model named BCS-Net using a channel-speci昀椀c sampling network to realize adaptive CS
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ratio allocation. Fan et al. [13] utilize convolutional layers to extract high-dimensional features,
which are subsequently compressed through a series of convolutional layers to acquire more
sampling information. Although satisfactory reconstruction results can be achieved, there is still
much room to improve the performance due to its lack of adaptability to the vast diversity of
signals.

2.2.2 Reconstruction. As for deep learning-based reconstruction methods, they can be roughly
categorized into deep network methods and deep unfolding methods.
Deep Network Methods. For classical deep network methods, Mousavi et al. [26] 昀椀rst exploit a

stack denoising auto-encoder to recover images from CS measurements. A昀琀erward, Lohit et al.
[22] design a convolutional neural network (CNN) based model called ReconNet to improve the
image reconstruction quality. Shi et al. [31] propose a residual CNN-based framework dubbed CSNet
to jointly train the sampling matrix and the reconstruction network. Huang et al. [17, 18] design a
reconstruction network to acquire high-quality reconstruction by exploiting the Gaussian Scale
Mixture prior. Goodfellow et al. [16] use generative adversarial networks for CS reconstruction.
Fang et al. [14] successfully improve the reconstruction quality through the analysis of image
features in the frequency domain. DDS-Net [20], a novel dynamic network, e昀케ciently customizes
denoising processes for various image noise levels. Moreover, the application of transformer in
image reconstruction has also yielded signi昀椀cant achievements [29, 46].

Deep Unfolding Methods.Deep unfolding methods realize mathematical optimization iterations by
designing deep networks. 吀栀erefore, deep unfolding methods combine the advantages of traditional
iterative optimization methods and classical deep network methods. For example, Zhang et al. [50]
extend the popular algorithm ISTA to ISTA-Net for optimizing a ℓ1-norm CS model. A昀琀erward,
Zhang et al. [55] propose a CS model called AMP-Net by unfolding the denoising process of the
approximatemessage-passing algorithm, incorporating a deblockingmodule in each stage to remove
blocking artifacts. Metzler et al. [25] design LDIT and LDAMP from the denoise-based iterative
thresholding algorithm. Yang et al. [44] propose a deep learning framework named ADMM-CSNet
by the redesign of CS-MRI.

Compared with traditional iterative optimization-based methods, deep learning-based methods
greatly reduce computational complexity and time complexity. Although the above deep learning-
based methods have achieved excellent success in the 昀椀eld of CS, there are still some issues that
texture details are not recovered well enough and no sparsity prior knowledge is combined.

To address the above-mentioned issues, we propose a novel wavelet domain-based deep unfolding
framework to simultaneously enable WAS and tree-structured reconstruction. In the sampling
process, we present a WAS method to allocate CS measurements based on the di昀昀erent importance
of multi-scale sub-bands. 吀栀e reconstruction process adopts a tree-structured prior guided model
that takes advantage of the structure sparsity in multi-scale sub-bands. 吀栀is model enables the
recovery of more structural and 昀椀ner detail components.

3 Proposed Method
3.1 Overall Architecture
As shown in Figure 1, WTDUN is an end-to-end deep unfolding model that integrates an optimiza-
tion algorithm with a deep network, and it comprises a sampling module, an initialization module,
and reconstruction stages. Traditional optimization algorithm [1, 11] solves the CS reconstruction
problem by iterating between the following two update steps:

z:−1 = ~ −Gx:−1, (2)

x: = Z: (G
) z:−1 + x:−1), (3)
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Fig. 1. Illustration of WTDUN, which consists of a sampling module, an initial module, and  reconstruction
modules. WTDUN, Wavelet Tree-Structured Sampling and Deep Unfolding Network.

Fig. 2. The detailed design of one single phase inWTDUN. TheGDM represents Equation (15). STF-1 and STF-2
denote Equations (12) and (17), respectively. GDM, gradient descent module; STF, so昀琀 threshold function.

where : is the number of iterations, G) is the transpose of sampling matrix G, and Z (·) is an ideal
image denoiser with a denoising perspective [55]:

G) z:−1 + x:−1 = x + e, (4)

where e = (G)G−O ) (x−x:−1) denotes a noise term.吀栀e clean signal can be obtained by calculating:

x: = G) z:−1 + x:−1 − (G)G − O ) (x − x:−1). (5)
By combining with the WTP, we transform Equation (5) into the :th reconstruction stage of our
network, as shown in Figure 2. Considering the di昀昀erent importance of image high- and low-
frequency components, a WAS module is constructed to enable adaptive sampling as in Figure 3.
吀栀en in subsections, each module will be elaborated separately.

3.2 WAS
3.2.1 CS Measurement Ratio Allocation. 吀栀e CS measurement ratio is usually signi昀椀cantly lower

than the Nyquist sampling rate, leading to undesirable artifacts. 吀栀is phenomenon can be a琀琀ributed
to aliasing between high- and low-frequency information, which may prevent the accurate recovery
of image details and textures during reconstruction. To mitigate the problem, we employ a Haar
wavelet to separate the image into di昀昀erent frequency components. Subsequently, CS measurements
for each component are assigned based on their importance.

)B = Ψ^ , (6)
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Fig. 3. Detailed design of each module. (1) Indicates the sampling process; (2) is the initial reconstruction
process; (3) is the deblock module, which is composed of six convolution layers, with a ReLU activation layer
between the adjacent convolution layers; (4) is the denoise module, which is composed of four convolution
layers, with a ReLU activation layer between the adjacent convolution layers; (5) is the cross-sub-band fusion
module (CAC). CAC, cross-domain a琀琀ention.

where Ψ = [71, 72, · · · , 7=] is the transform basis, B ∈ {!!; , �!8 , !�8 , ��8 }, 1 ≤ 8 ≤ ; , 8 means
the wavelet decomposition level, ) means each wavelet sub-band of image ^ . A昀琀er multi-level
wavelet decomposition, we obtain a sequence of sub-bands. Based on the property that the lowest
frequency in the wavelet domain can carry the image energy and the high-frequency sub-bands
can express the image textures and details, we design an algorithm to realize adaptive CS ratio
allocation. We use the mean to evaluate sub-band energy and the SD to measure sub-band sparsity.
In the allocation algorithm, we initially calculate the SD f and mean ` of absolute values

|) | for each wavelet sub-band. Subsequently, we introduce [ as a control parameter to adjust the
contribution off and ` when determining the allocationweight.吀栀e allocationweight, is obtained
by summing up the products of f , `, and their respective control parameters. Next, we compute the
percentages %� and %!! representing high-frequency (,� ) and low-frequency (,!!) contributions,
respectively. By utilizing the percentages %� and %!! , we can derive the corresponding quantities
of CS measurements. Subsequently, an upper bound Θ is established to prevent sample over昀氀ow. In
cases where the number of low-frequency measurements surpasses this threshold Θ, it is adjusted
to match the number of low-frequency CS measurements. Any additional CS measurements are
then allocated to other wavelet sub-bands. Given that high-frequency sub-bands in images exhibit
a tree structure following multi-level wavelet decomposition, these sub-bands at di昀昀erent scales
demonstrate similar structures. Rather than considering sparsity when assigning measurements
to high frequencies, our focus lies solely on their energy levels. Consequently, CS measurements
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are allocated among them based on their respective means at di昀昀erent levels. Finally, we set a bias
term (

=∑
8=0
180B8 = 0) to increase the 昀氀exibility of this allocation method.

3.2.2 Block-by-Block Sampling. We employ the block-by-block sampling method to indepen-
dently sample each non-overlapping image block with a 昀椀xed size of = × =. Initially, an image
^ ∈ R

�×, is divided into blocks x 9 ∈ R
=×=, 9 ∈ {1, 2, · · · , � }. Subsequently, these blocks are

decomposed into multi-scale wavelet sub-bands )B ∈ R
=B×=B . Before sampling, each sub-band

is vectorized as a vector. As illustrated in Figure 3, the sampling process of each sub-band )B at
decomposition level 8 within block x 9 can be described as follows:

~B = �s	x 9 = GB)B , (7)

where ~B ∈ R
"B× � is the CS measurements of x 9 and � ·, = � ·=2, B ∈ {!!; , �!8 , !�8 , ��8 },

1 ≤ 8 ≤ ; , 8 means the wavelet decomposition level. GB ∈ R
"B×=

2 is the multi-scale sampling
operator, which consists of two components (a multi-scale transform 	 and a multi-scale block-
based measurement process 5). 	 produces L levels a昀琀er multi-level wavelet decomposition,
therefore, 5 consists of L di昀昀erent block-based sampling operators, one for each level.

3.3 WTP-Guided Reconstruction
吀栀e reconstruction module exploits the quad-tree representation of wavelet coe昀케cients to capture
the inter-dependencies among coe昀케cients at di昀昀erent scales in an image.吀栀is representation enables
us to identify groups of coe昀케cients that can either be zero or non-zero simultaneously, thereby
providing valuable structural insights for enhancing image reconstruction quality. Speci昀椀cally, the
WTP-guided reconstruction model can be described as follows:

argmin
)

1

2
‖~ −G) ‖2

2
+ V (‖) ‖1 + ‖M) ‖2), (8)

where M represents the set of all parent-child groups for the wavelet tree. And we adopt weighted
ℓ1- and ℓ2-norms in the second term in Equation (8) to impose the tree-structured sparsity within
wavelet sub-bands.

3.3.1 Initial Reconstruction Module. 吀栀e initial reconstruction module is illustrated by Equation
(9). 吀栀e wavelet coe昀케cients of the original image can be initially reconstructed from its multi-scale
measurements as shown in Figure 3:

)B = GB
)~B , (9)

where B ∈ {!!; , �!8 , !�8 , ��8 }, 1 < 8 < !. 吀栀ere is only one low-frequency sub-band, so !! is
not annotated with subscripts “8 .” GB) ∈ R

=2×"B represents the linear mapping matrix and it is
the pseudo-inverse matrix of GB . 吀栀en we transform )B into full-image ^0 by inverse wavelet
transform (IDWT).

3.3.2 Deep Reconstruction Module. 吀栀e deep reconstruction process is performed on the initial
reconstruction result ^0 and improves its quality. We divide the reconstruction model into  
stages. Each stage alternatively implements the projection in the wavelet domain and the full-image
deblocking in the spatial domain. With z = M) constraint, Equation (8) can be rewri琀琀en as

argmin
)

1

2
‖~ −G) ‖2

2
+ V (‖) ‖1 + ‖z‖2) +

_

2
‖z − M) ‖2

2
. (10)
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吀栀e variables z and ) are coupled together in the minimization of Equation (10), thus solving
them simultaneously is computationally intractable. 吀栀erefore, we divide the problem into two
sub-problems, namely ) -sub-problem and z-sub-problem, which are described as follows.
z-Sub-Problem. 吀栀e goal of the z-sub-problem is to generate an intermediate variable to simplify

the optimization problem. 吀栀e z-sub-problem is equivalent to solving the following optimization
problem:

z: = argmin
z

V ‖z‖2 +
_

2
‖z − M):−1‖2

2
. (11)

吀栀e mapping process for solving the corresponding optimization z-sub-problem is described as
follows, which can be solved by using a so昀琀 threshold function (STF). It is mapped into a deep
network module in our framework.

z: = max

(
‖M):−1‖2 −

V

_
, 0

)
M):−1

‖M):−1‖2
. (12)

We implement the tree-structured group sparsity prior via Equation (12). Guided by the WTP,
our unfolding network e昀昀ectively exploits the inherent structural information embedded in an
image. 吀栀e incorporation of the wavelet tree structure as a guiding principle in our model enables
us to exploit the hierarchical nature of wavelet decomposition, facilitating the capture of both
local and global features present in an image. By integrating this prior into our framework, we
are be琀琀er equipped to handle complex images characterized by diverse textures and structures.
As shown in Figure 7, it exhibits superior reconstruction performance on the complex dataset
Urban100. Moreover, our unfolding network capitalizes on the inter-dependency between sub-bands
at di昀昀erent scales, allowing for leveraging information from one scale to enhance or re昀椀ne details
at another scale. Speci昀椀cally, the STF consists of the following steps, including:

(1) We concatenate the sub-bands of di昀昀erent groups in the channel dimension and treat a channel
as a group. 吀栀en a channel-wise global embedding (CGE) is performed to F6 = ):−1,
such as CGE():−1). It is composed of channel-wise a琀琀ention, a ReLU layer, and a 1 × 1

convolutional.
(2) Based on the assumption that a group with higher energy requires a larger threshold, we

calculate a group-wise threshold in the shrinkage as follows:

):−1 = F6 ∗ ):−1. (13)

(3) Applying the group-wise so昀琀-shrinkage operation Equation (12) with the new ):−1. 吀栀e
so昀琀-shrinkage operation is e昀케ciently implemented by using a ReLU function.

) -Sub-Problem. 吀栀e ) -sub-problem in Equation (10) can be wri琀琀en as follows:

): = argmin
)

1

2
‖~ −G) ‖2

2
+
_

2
‖z: − M) ‖2

2
+ V ‖) ‖1. (14)

吀栀e ) -sub-problem in Equation (14) can be solved through the optimization algorithm of denoising
perspective:

rk = GDM():−1, z: , _) = ):−1 −G) (G):−1 −~) − _M) (M):−1 − z: ), (15)

): = argmin
)

1

2
‖) − r: ‖2

2
+ V ‖) ‖1, (16)

where GDM denotes the gradient descent module at r: , as shown in Figure 2. And 1

2
‖~ −G) ‖2

2
+

_
2
‖z: − M) ‖2

2
is a convex smooth function with Lipschitz constant. 吀栀e optimization problem in
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Equation (16) can be solved as follows:

)̂: = max(‖r: ‖2 −F8 ∗ V, 0)
r:

‖r: ‖2
, (17)

): = )̂: − (G)G − O )N: ()
:−1). (18)

We use the denoising block N: (·) to remove the noise of ):−1 to get the :th reconstruction result
): . Each denoising module consists of four 3 × 3 convolutional layers. 吀栀ere is a ReLU activation
function between adjacent convolutional layers. A channel a琀琀ention module in our network is
used to learn the corresponding weights {F8 |8 = 1, 2, ...=} of di昀昀erent image patch groups for
improving 昀氀exibility.
In each deblocking block B: (·), it consists of six convolutional layers. 吀栀e ReLU activation

function is applied between adjacent convolution layers. By combining )! and )� using the IDWT,
we can obtain the reconstruction result ^: of the :th phase, which combines the output set
[^0,^1, ...,^:−1] of the previous : − 1 phases as input to deblock module. 吀栀e deblock module
integrated inter-context information can e昀昀ectively remove block artifacts of full-image. We use
a cross-domain attention (CAC) module before the inverse wavelet for be琀琀er collaborative
reconstruction of high-frequency and low-frequency components. 吀栀e process of image deblocking
in the :th reconstruction stage can be expressed as

^:
= IDWT(CAC():! , )

:
� )), (19a)

^:
output = ^: −B: (20C (^

0,^1, ...,^: )) . (19b)
吀栀e input of B: (·) is a set of whole concatenated images rather than each image block. Figure 3
illustrates the structures of the denoise module, deblock module, and CAC [43] module.

3.4 Loss Functions
In this article, we adopt the MSE as the di昀昀erence metric between the<th ground-truth ^m in the
training set and the 昀椀nal recovered result ^ 

m . 吀栀e loss function is formulated as follows:

LMSE =
1

#a#b
‖ ˜̂m − ^ 

m ‖
2

2
, (20)

where #a denotes the size of ˜̂m and #b denotes the size of the training set.
吀栀e high-frequency coe昀케cients potentially converge to zero by performing convolution opera-

tions on them. To address this issue, we develop a texture loss function that aims to prevent the
high-frequency coe昀케cients from converging to zero:

Ltexture = max(‖)̃ H‖ − ‖):H‖ + n, 0), (21)

where )̃H is the high-frequency coe昀케cients of the original image in the training set, ):H is the
reconstruction result at :th stage. n is a bias term that prevents the texture from disappearing,
which is a tensor of the same size as the high-frequency sub-bands and has values only at non-zero
elements.
吀栀e initial loss denoted as the MSE between the output result ^init of the initial reconstruction

module and the corresponding original image in the training set, de昀椀ned as

Linit =
1

#a#b
‖ ˜̂m − ^init‖

2

2
. (22)

Finally, an end-to-end loss function is designed as follows:
Ltotal = LMSE + W ∗ Ltexture + ` ∗ Linit, (23)
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where W and ` are the regularization parameters. In our experiments, W and ` are set to 0.001 and
0.01, respectively.

4 Experimental Results and Performance Evaluation
In this section, our proposed method is 昀椀rst compared with other state-of-the-art methods in terms
of both objective reconstruction quality and subjective visual quality. 吀栀en a series of ablation
experiments are implemented to further evaluate the e昀昀ects of each functional module in our
method. Finally, the model complexity is compared with other methods.

4.1 Experiment Se琀琀ings
We use 400 images from the BSD500 dataset for training and validation. In the training process, two
training sets are generated for models. (1) Training set with the size 64 × 64 is randomly extracted
from images in BSDS500. (2) Training set with the size 128× 128 is randomly extracted from images
in BSDS500. We also unfold the whole testing image in this way during the testing process. We use
the PyTorch toolbox and train our model using the Adam solver on an NVIDIA RTX 3090 GPU. All
models are trained for 200 epochs with batch size 32 and learning rate 0.0001. Before training, the
control parameter U is initialized as 1 and other trainable parameters are initialized randomly.
For testing results, we conduct extensive experiments on some widely used datasets: Set5 [30],

Set11 [5], Set14, and Urban100 [33]. To ensure fairness, we evaluate the performance with two
quality evaluation metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM).

4.2 Comparison with Other Methods
In this section, we select several typical deep learning-based CS methods for comparison with our
method, including DPA-Net [36], BCS-Net [57], OPINE-Net [52], AMP-Net [55], COAST-Net [48],
MADUN-Net [33], ISTA-Net++ [47], FHDUN-Net [9], ULAMP-Net [41], DPUNet [45], SODAS-Net
[35], and DPC-DUN [34]. Apart from some experimental results provided by the authors, the results
of the other comparison methods are retrained on the Ubuntu 16.04 system under the PyTorch
1.7 framework and use Python 3.7. Moreover, we have also compared our method with some
model-based methods on the Set11 dataset, as shown in Table 5. 吀栀e source code of comparison
methods comes from the o昀케cial code published by their authors. Tables 1–4 show the test results of
WTDUN and other methods on Set5, Set11, Set14, and Urban100. 吀栀ese tables contain the average
PSNR (dB)/SSIM where the best is marked in bold and show the reconstruction results at di昀昀erent
sampling rates of {50%, 40%, 30%, 20%, 10%}.

4.2.1 Reconstruction 儀甀ality. From Tables 1–4, it can be seen that WTDUN can achieve higher
PSNR than those deep learning-based CS methods at all sampling ratios. As for SSIM, our WTDUN
is be琀琀er than most methods. It can be seen that MADUN-Net and ISTA-Net++ perform worse at
low CS ratios of 10%. DPA-Net does not work well at all CS ratios. Compared to other methods, for
example, the gain of our method with PSNR is about 1.01–5.57 dB at 50% CS ratio and 0.20–2.22 dB
at 10% CS ratio on dataset Urban100. 吀栀e gain of our method with SSIM is about 0.0021–0.0301 at
50% CS ratio and 0.0057∼ −0.0561 at 10% CS ratio on Urban100.

4.2.2 Visual E昀昀ect. 吀栀e visual quality comparison of di昀昀erent CS methods on test images is
shown in Figures 4–7 at 10% CS ratio. It can be seen that the reconstructed images from COAST
and ISTA-Net++ have obvious blocking artifacts. 吀栀is is because these methods only focus on the
individual reconstruction of each block and do not consider the correlations between neighboring
image blocks. On the contrary, there are no obvious blocking artifacts in the reconstructed images
generated by MADUN, OPINE-Net, AMP-Net, and our method, since these models all perform
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Table 1. Average PSNR (dB)/SSIM Performance Comparisons on Set5 with Di昀昀erent CS
Sampling Rates

Method Set5 PSNR (dB)/SSIM
10% 20% 30% 40% 50%

DPA-Net [36] 30.32/0.8713 a/a 36.17/0.9495 38.05/0.9632 39.57/0.9716
AMP-Net [55] 31.95/0.9017 35.49 /0.9419 37.86/0.9606 39.70/0.9713 41.51/0.9791
COAST [48] 30.50/0.8794 34.18/0.9298 36.48/0.9515 38.33/0.9645 40.21/0.9744

ISTA-Net++ [47] 29.61/0.8563 33.33/0.9173 35.62/0.9427 37.40/0.9575 38.94/0.9678
MADUN [33] 31.11/0.8910 34.80/0.9363 37.25/0.9561 39.29/0.9693 41.18/0.9784
ULAMP [41] 30.78/0.8774 31.94/0.8868 36.39/0.9599 38.20/0.9693 40.97/0.9827
DPUNet [45] 31.80/0.9079 35.38/0.9458 37.54/0.9618 39.44/0.9716 41.10/0.9783
Ours (64 × 64) 32.14/0.9123 35.39/0.9443 37.82/0.9622 39.94/0.9734 42.09 /0.9824
Ours (128 × 128) 32.23/0.9132 35.56/0.9461 38.04/0.9637 40.14/0.9746 42.18/0.9827

吀栀e best and second-best results are highlighted in bold and italics, respectively.
aIndicates the case where the result at the corresponding sampling rate is missing in the original paper.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 2. Average PSNR (dB)/SSIM Performance Comparisons on Set11 with Di昀昀erent CS
Sampling Rates

Method Set11 PSNR (dB)/SSIM
10% 20% 30% 40% 50%

DPA-Net [36] 26.99/0.8354 a/a a/a 35.04/0.9565 36.73/0.9670
BCS-Net [57] 29.36/0.8650 32.87/0.9254 35.40/0.9527 36.52/0.9640 39.58/0.9734
COAST [48] 28.69/0.8618 32.54/0.9251 35.04/0.9501 37.13/0.9648 38.94/0.9744

ISTA-Net++ [47] 27.62/0.8358 31.66/0.9127 34.23/0.9427 36.28/0.9593 37.94/0.9693
MADUN [33] 29.29/0.8768 33.30/0.9355 36.00/0.9576 38.09/0.9700 39.86/0.9774
FHDUN [9] 29.53/0.8859 a/a 36.12/0.9589 38.04/0.9696 a/a
DPUNet [45] 29.30/0.8815 33.17/0.9357 35.75/0.9581 37.90/0.9705 39.69/0.9782

SODAS-Net [35] 28.89/0.8669 32.20/0.9243 35.55/0.9543 37.74/0.9680 39.60/0.9769
DPC-DUN [34] 29.40/0.8798 33.10/0.9334 35.88/0.9570 37.98/0.9694 39.84/0.9778
Ours (64 × 64) 29.53/0.8867 33.58/0.9371 36.27 /0.9585 38.26/0.9698 40.22/0.9784
Ours (128 × 128) 29.64/0.8877 33.81/0.9399 36.41/0.9597 38.45/0.9708 40.38/0.9789

吀栀e best and second-best results are highlighted in bold and italics, respectively.
aIndicates the case where the result at the corresponding sampling rate is missing in the original paper.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

denoising and deblocking operations on the full image at each reconstruction stage. Compared
with COAST, ISTA-Net++, MADUN, OPINE-Net, and AMP-Net algorithms, images recovered by
our WTDUN have richer texture details and sharper edges than other methods as shown in Figures
5 and 7. 吀栀erefore, our WTDUN has a stronger ability to reconstruct high-quality images compared
to other state-of-the-art methods.

4.3 Ablation Study
To evaluate the contribution of each component in our WTDUN, we design several variants of the
proposed model in which some functional modules are selectively discarded or replaced. Tables 6
and 7 show comparative experimental results on Set11 and Urban100 at 20% and 50% CS ratios,
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Table 3. Average PSNR (dB)/SSIM Performance Comparisons on Set14 with Di昀昀erent CS
Sampling Rates

Method Set14 PSNR (dB)/SSIM
10% 20% 30% 40% 50%

AMP-Net [55] 28.69 /0.8171 31.95/0.8933 34.27/0.9293 36.26/0.9505 38.10/0.9647
COAST [48] 27.41/0.7799 30.71/0.8672 33.10/0.9106 35.12/0.9369 36.93/0.9549

ISTA-Net++ [47] 26.75/0.7549 30.09/0.8518 32.40/0.8999 34.26/0.9287 35.90/0.9477
MADUN [33] 27.97/0.7914 31.50/0.8790 34.05/0.9194 36.05/0.9439 37.96/0.9592
DPUNet [45] 28.49/0.8226 31.61/0.8963 33.95/0.9308 35.93/0.9505 37.66/0.9628
Ours (64 × 64) 28.61/0.8216 31.89/0.8908 34.36/0.9280 36.27 /0.9486 38.31/0.9644
Ours (128 × 128) 28.71/0.8235 32.10/0.8944 34.57/0.9308 36.53/0.9507 38.49/0.9653

吀栀e best and second-best results are highlighted in bold and italics, respectively.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 4. Average PSNR (dB)/SSIM Performance Comparisons on Urban100 with Di昀昀erent CS
Sampling Rates

Method Urban100 PSNR (dB)/SSIM
10% 20% 30% 40% 50%

DPA-Net [36] 24.55/0.7841 a/a 29.47/0.9034 31.09/0.9311 32.08/0.9447
OPINE-Net [52] 26.56/0.8345 30.07/0.9088 32.64/0.9419 34.66/0.9600 36.64/0.9727
AMP-Net [55] 25.96/0.8133 29.50/0.8974 32.07/0.9352 34.22/0.9569 36.16/0.9706
COAST [48] 25.94/0.8038 29.70/0.8940 32.20/0.9317 34.21/0.9528 35.99/0.9665

ISTA-Net++ [47] 24.78/0.7607 28.55/0.8687 31.08/0.9152 33.10/0.9402 34.86/0.9560
DPUNet [45] 26.10/0.8226 29.71/0.9027 32.23/0.9378 34.30/0.9573 36.10/0.9693

SODAS-Net [35] 26.23/0.8084 29.51/0.8950 33.15/0.9412 35.28/0.9599 37.14/0.9721
Ours (64 × 64) 26.58/0.8358 30.58/0.9109 33.18/0.9431 35.26/0.9610 37.39 /0.9738
Ours (128 × 128) 26.77/0.8402 30.82/0.9142 33.44/0.9459 35.60/0.9629 37.65/0.9748

吀栀e best and second-best results are highlighted in bold and italics, respectively.
aIndicates the case where the result at the corresponding sampling rate is missing in the original paper.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

which include 昀椀ve functional modules. Tables 8 and 9 show the comparison of performing wavelet
decomposition at di昀昀erent levels. Table 10 demonstrates the e昀昀ect of di昀昀erent reconstruction phase
numbers : on Urban100 and Set11 at 10% CS ratio. 吀栀ese Tables 1–4 show the e昀昀ect of di昀昀erent
patch sizes of image blocks on reconstruction quality on these datasets: Set5, Set11, Set14, and
Urban100.

4.3.1 Validating the Capability of WAS. In this subsection, we validate the capability of the
WAS method. CS measurements allocation method is used to adaptively allocate CS measurements
according to the target sampling ratio. To test the e昀昀ect of WAS, we train our network in se琀琀ings
with and without WAS on Urban100 and Set11, as shown in Tables 6 and 7. Compared to the case
without WAS, the average PSNR scores of WTDUN can be improved by about 1.5–2.5 dB at 20%
and 50% CS ratios. 吀栀e average SSIM scores of our WTDUN can be improved by about 0.01–0.05 at
20% and 50% CS ratios with WAS. Ablation results demonstrate that WAS can e昀昀ectively improve
image reconstruction quality.
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Fig. 4. Visual quality comparisons between our proposed method and recently state-of-the-art CS methods
on Set5 at 10% CS ratio. The best and second-best results are highlighted in bold and italics, respectively.

4.3.2 Validating the Capability of WTP. In this subsection, we validate the capability of the
wavelet tree-structured reconstruction model. 吀栀e WTP is used to fully exploit the correlation
within multi-scale sub-bands. To test the e昀昀ect of WTP, we trained our model in se琀琀ings with
and without WTP. As shown in Tables 6 and 7, the PSNR scores of our WTDUN with WTP are
improved by about 0.08–0.2 dB. It can be seen that our model can obtain higher PSNR/SSIM when
the WTP is integrated into our framework.

4.3.3 Validating the Capability of Deblocking,Memory Context (MC), and CAC. In this sub-
section, we validate the capability of the Deblock module, MC module and CAC module. 吀栀e
comparison results are presented in Tables 6 and 7. Of the three mentioned modules, the deblock
module brings the largest improvement in PSNR/SSIM, with a gain of about 1–2.5 dB for PSNR and
0.02–0.1 for SSIM. 吀栀e gain for MC and CAC is almost the same, about 0.2 dB for PSNR and 0.01 for
SSIM.

4.3.4 Validating the Influence Image Patch Size. In this subsection, we validate the in昀氀uence of
di昀昀erent image patch sizes. Tables 1–4 show that the reconstruction performance can be improved
with the increase of the block size. Larger patch size can help our model capture more contextual
information, which is vital for reconstruction methods. 吀栀e contextual information enables the
method to more e昀昀ectively estimate and 昀椀ll in missing or corrupted areas of the image, resulting in
a more accurate and visually coherent reconstruction.
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Fig. 5. Visual quality comparisons between our WTDUN and recently state-of-the-art CS methods on Set11
at 10% CS ratio. The best and second-best results are highlighted in bold and italics, respectively.

Fig. 6. Visual quality comparisons between our WTDUN and recently state-of-the-art CS methods on Set14
at 10% CS ratio. The best and second-best results are highlighted in bold and italics, respectively.

4.3.5 Validating the Capability of Wavelet Decomposition at Di昀昀erent Levels. In this subsection,
we validate the capability of wavelet decomposition at di昀昀erent levels on Set11 and Urban100.
Tables 8 and 9 show that the best reconstruction results can be obtained at two-level wavelet
decomposition. Multi-level wavelet decomposition can increase image sparsity, which can lead to
be琀琀er reconstruction quality. 吀栀erefore, the PSNR/SSIM of the two-level and three-level wavelet
decomposition are be琀琀er than the one-level wavelet decomposition. Since we use 64 × 64 image
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Fig. 7. Visual quality comparisons between the proposed WTDUN and recently state-of-the-art CS methods
on Urban100 at 10% CS ratio. To be琀琀er illustrate the di昀昀erence, we show the residual heatmap between the
reconstructed image patch and the GT patch. The best and second-best results are highlighted in bold and
italics, respectively.

Table 5. Average PSNR/SSIM Comparisons with Other Multi-Scale Sampling Methods on Set11
Dataset

Method Sampling Rate
10% 20% 30% 40% 50%

BCS-SPL-DWT [27] 23.31/0.7056 27.68/0.8057 28.41/0.8614 30.32/0.8977 32.13/0.9241
MS-BCS-SPL [15] 27.00/0.8293 30.21/0.8893 32.51/0.9398 34.01/0.9428 35.33/0.9489
MS-DCSNet [3] 28.58/0.8648 32.20/0.9215 34.63/0.9478 36.65/0.9627 38.68/0.9740
Ours (64 × 64) 29.53/0.8867 33.58/0.9371 36.27 /0.9585 38.26/0.9698 40.22/0.9784
Ours (128 × 128) 29.64/0.8877 33.81/0.9399 36.41/0.9597 38.45/0.9708 40.38/0.9789

吀栀e best and second-best results are highlighted in bold and italics, respectively.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

blocks as input to our model, we can get some 8× 8 wavelet sub-bands a昀琀er three-level decomposi-
tion. Because the wavelet sub-bands of size 8× 8 are too small for deep networks, the useful feature
cannot be e昀昀ectively extracted, resulting in poor reconstruction quality. 吀栀us, the PSNR/SSIM of
the two-level wavelet decomposition is be琀琀er than that of the three-level wavelet decomposition.

4.3.6 Validating the Capability of Di昀昀erent Reconstruction Stage  . To investigate the selection
of  = 9 as the optimal value for our CS model, we conduct a series of comparative experiments.
吀栀ese experiments show that when  goes beyond 9, the improvement in PSNR/SSIM becomes
marginal. To balance the performance and complexity,  = 9 is selected as the number of iterations
in our CS reconstruction model, as depicted in Figure 8 and Table 10.
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Table 6. The E昀昀ect of WAS Method, WTP, Deblock, Memory Context (MC) Module, and
CAC on Reconstruction 儀甀ality

Cases Modules PSNR/SSIM
WAS WTP Deblock MC CAC 20% 50%

(a) Ø Ø Ø Ø 28.59/0.8649 35.61/0.9600
(b) Ø Ø Ø Ø 30.45/0.9010 37.38/0.9710
(c) Ø Ø Ø Ø 28.05/0.8588 34.43/0.9552
(d) Ø Ø Ø Ø 30.30/0.8995 37.12/0.9703
(e) Ø Ø Ø Ø 30.31/0.9010 36.97/0.9699

WTDUN Ø Ø Ø Ø Ø 30.58/0.9109 37.39/0.9738

吀栀e sampling ratio of CS measurement is 20% and 50% on the Urban100 dataset. 吀栀e best results are
highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 7. The E昀昀ect of WAS Method, WTP, Deblock, MC Module, and CAC on
Reconstruction 儀甀ality

Cases Modules PSNR/SSIM
WAS WTP Deblock MC CAC 20% 50%

(a) Ø Ø Ø Ø 31.63/0.9080 38.02/0.9675
(b) Ø Ø Ø Ø 33.46/0.9302 40.21/0.9766
(c) Ø Ø Ø Ø 31.67/0.9051 38.06/0.9681
(d) Ø Ø Ø Ø 33.41/0.9305 39.98/0.9758
(e) Ø Ø Ø Ø 33.43/0.9311 39.91/0.9759

WTDUN Ø Ø Ø Ø Ø 33.58/0.9371 40.22/0.9784

吀栀e sampling ratio of CS is 20% and 50% on the Set11 dataset. 吀栀e best results are highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 8. The E昀昀ect of Multi-Level Wavelet Transform on
Reconstruction 儀甀ality

Method PSNR (dB)/SSIM
10% 30% 50%

Ours-level1 29.50/0.8791 35.26/0.9581 40.00/0.9762
Ours-level2 29.53/0.8867 36.27/0.9585 40.22/0.9784
Ours-level3 29.41/0.8808 36.18/0.9578 40.05/0.9781

吀栀e sampling ratio of CS is 10%, 30%, and 50% on the Set11 dataset. 吀栀e
best results are highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

4.4 Model Complexity
In this section, we compare the model complexity of di昀昀erent CS approaches in terms of parameter
capacity and time complexity. 吀栀e average running time is used to evaluate the actual reconstruc-
tion e昀케ciency. Note that the average running time and the number of parameters are tested by
reconstructing nine test images of size 256 × 256.
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Table 9. The E昀昀ect of Multi-Level Wavelet Transform on
Reconstruction 儀甀ality

Method PSNR (dB)/SSIM
10% 30% 50%

Ours-level1 26.52/0.8265 31.83/0.9390 37.01/0.9702
Ours-level2 26.58/0.8358 33.18/0.9431 37.39/0.9738
Ours-level3 26.42/0.8297 33.17/0.9430 37.26/0.9732

吀栀e sampling ratio of CS is 10%, 30%, and 50% on the Urban100 dataset.
吀栀e best results are highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Fig. 8. The PSNR/SSIM curve with the increase of iterative stage  .

4.4.1 Parameter Capacity. Table 11 shows the number of sampling matrix parameters for ISTA-
Net, ISTA-Net++, OPINE-Net, AMP-Net, COAST, MADUN, DPUNet, and our method. For a normal
task, ourmethod can achieve be琀琀er reconstruction quality and faster reconstruction speed compared
to MADUN with a similar number of parameters. Even though our method samples with larger
patches (64 × 64), the number of parameters we use only increases by about 0.4 Mb parameters
rather than nearly four times parameters compared to small-size patches (33 × 33).

4.4.2 Time Complexity. As shown in Table 11, the average running time of deep learning
methods on GPU is less than 0.2 seconds. 吀栀e reconstruction process of traditional CS methods is
implemented iteratively until convergence or the maximum iteration step is reached. As a result,
the reconstruction speed of traditional methods is lower than deep learning methods and deep
unfolding methods. Moreover, GPUs have advantages over CPUs in terms of computational power
and parallel computing capability. 吀栀is can greatly reduce the running time of deep learning-based
CS and deep unfolding approaches.
All CS models shown in Table 11 have di昀昀erent time complexities. Owing to the superior

computing power of GPUs, the slight di昀昀erence in the running time of these methods is not
signi昀椀cant. Since there is only a small di昀昀erence in the running time of models, image reconstruction
quality is more important for deep learning-based methods. In summary, our method achieves a
be琀琀er accuracy-complexity tradeo昀昀 than other state-of-the-art methods.
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Table 10. PSNR/SSIM of Models with Di昀昀erent Reconstruction Numbers : on
Urban100 at the CS Ratio of 10%

Method PSNR (dB)/SSIM
: = 1 : = 3 : = 6 : = 9

ISTA [50] 22.03/0.6502 23.07/0.7001 23.48/0.7176 23.56/0.7230
ISTA++ [47] 17.45/0.3585 21.87/0.6322 23.29/0.7072 24.14/0.7421
AMP-Net [55] 25.03/0.7842 25.63/0.8042 25.96/0.8133 26.05/0.8156

Ours 24.85/0.7897 26.03/0.8230 26.36/0.8309 26.58/0.8358

吀栀e best results are highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 11. Model Complexity Comparison between
WTDUN and Other CS Methods

Methods Parameters
PN (Mb) PM (Mb) Time (s)

ISTA-Net [50] 1.05 2.57 0.083
OPINE-Net [52] 2.13 4.18 0.099
AMP-Net [55] 2.13 5.40 0.072
COAST [48] - 8.56 0.093

ISTA-Net++ [47] 2.13 5.80 0.082
MADUN [33] 2.13 23.04 0.177
DPUNet [45] - 12.1 0.071

Ours 2.50 19.72 0.170

PN and PM are the number of the learnable matrix param-
eters and total parameters, respectively. Running time is
computed at 50% CS ratio.

5 Conclusions
We propose a novel wavelet domain framework named WTDUN for image CS, which enables
simultaneous sampling based on sub-band characteristics and reconstruction guided by WTP.
To achieve be琀琀er CS sampling, we have designed an algorithm that allocates CS measurements
based on the importance of each sub-band. Additionally, we have developed a wavelet domain
sampling method to achieve adaptive sampling, thereby e昀昀ectively enhancing the acquisition
capability of sampling information. For CS reconstruction, we propose a tree-structured prior
guided unfolding network. 吀栀is innovative method e昀昀ectively maintains a similar structure among
wavelet sub-bands within a group by fully exploiting their inherent sparsity. By leveraging the
advantages of tree-structured sparsity, our method signi昀椀cantly enhances the quality of image
reconstruction compared to other state-of-the-art CS methods. Furthermore, as we increase the
number of reconstruction modules, we observe further improvements in the reconstructed results.
Our future work will focus on extending our model to exploit structural di昀昀erences between blocks
and facilitate e昀昀ective interaction among di昀昀erent stages of reconstruction.
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