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Deep unfolding networks have gained increasing attention in the field of compressed sensing (CS) owing
to their theoretical interpretability and superior reconstruction performance. However, most existing deep
unfolding methods often face the following issues: (1) they learn directly from single-channel images, leading
to a simple feature representation that does not fully capture complex features; and (2) they treat various
image components uniformly, ignoring the characteristics of different components. To address these issues, we
propose a novel wavelet-domain deep unfolding framework named WTDUN, which operates directly on the
multi-scale wavelet sub-bands. Our method utilizes the intrinsic sparsity and multi-scale structure of wavelet
coefficients to achieve a tree-structured sampling and reconstruction, effectively capturing and highlighting
the most important features within images. Specifically, the design of tree-structured reconstruction aims to
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capture the inter-dependencies among the multi-scale sub-bands, enabling the identification of both fine and
coarse features, which can lead to a marked improvement in reconstruction quality. Furthermore, a wavelet
domain adaptive sampling method is proposed to greatly improve the sampling capability, which is realized
by assigning measurements to each wavelet sub-band based on its importance. Unlike pure deep learning
methods that treat all components uniformly, our method introduces a targeted focus on important sub-bands,
considering their energy and sparsity. This targeted strategy lets us capture key information more efficiently
while discarding less important information, resulting in a more effective and detailed reconstruction. Extensive
experimental results on various datasets validate the superior performance of our proposed method.
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1 Introduction

Compressed sensing (CS) is a promising technique for signal acquisition and reconstruction
[2, 10]. The target signal is first simultaneously sampled and compressed with linear random
transformations. Then, the original signal can be reconstructed exactly from far fewer measurements
than that required by the Nyquist sampling rate. Mathematically, a random linear measurement
y € RM can be formulated as y = Ax, where x € RV is the original signal and A € RM*N is the
sampling matrix with M < N.r = M/N is the sampling rate (or CS ratio). To obtain a reliable
reconstruction, traditional CS reconstruction methods commonly solve an optimization problem as
follows:

1
argmin —ly - x|} + Al[¥x|l, @
X

where ||y — Ax||5 denotes the data-fidelity term and ¥x is the transform coefficients of x with
respect to some transform ¥, the sparsity of ¥x is encouraged by the #;-norm or other sparsity
promoting norm with the regularization parameter A. Currently, CS has been widely applied
in various fields such as image reconstruction [8], magnetic resonance imaging (MRI) [51],
snapshot-compressed imaging [23], and communication.

Over the past decades, numerous efforts have been dedicated to image CS. There are two primary
challenges in the field of CS: signal sampling and reconstruction. The construction of the sampling
matrix A plays a crucial role in capturing the intrinsic structure of the original signal x. Traditionally,
A is often chosen as a random Gaussian, Poisson, or Toeplitz matrix to uniformly sample each
component of the image. This can ensure accurate signal reconstruction with theoretical guarantees.
However, the CS ratio is typically much lower than the Nyquist sampling rate, which usually results
in artifacts. This phenomenon may be caused by the aliasing between high- and low-frequency
information, which hinders detail and texture recovery during reconstruction. Therefore, it is
important to treat different components distinctly to acquire more essential information during the
sampling process.

Another key to achieving a superior reconstruction of x lies in the reconstruction algorithm. This
has been the focus of numerous studies aimed at improving the quality of reconstructions in the
past decades. Traditional optimization-based reconstruction methods often integrate image prior
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information [21, 42, 54, 56], such as sparsity in a specific transform domain, as a regularization
term within the objective function. Consequently, these methods are capable of solving the sparse
regularized optimization problem with precision. Although achieving satisfactory performance,
these methods still have room for improvement due to their limited adaptability to diverse signals.
Traditional CS methods usually suffer from challenges such as high computational complexity and
the need for parameter tuning.

Recently, profiting from the powerful learning and fast computing abilities of deep networks,
deep learning-based CS methods have garnered considerable interest. They can directly learn the
inverse mapping from the CS measurement domain to the original signal domain [31, 39]. Compared
to traditional CS methods, deep learning-based CS methods dramatically reduce time complexity
and greatly improve reconstruction performance. However, most existing deep learning-based
methods are handcrafted designed and trained as a black box, with limited insights in the CS domain.
Thus, deep unfolding-based methods [7, 32, 37, 47, 50, 55] are proposed, which are established
by unfolding the first K iterations of a referenced optimization algorithm and transforming all
the steps of each iteration into learnable deep network components. Deep unfolding methods can
simultaneously maintain accuracy, interpretability, and speed by combining the advantages of
traditional optimization-based algorithms and deep networks, such as ISTA-Net [50], ADMM-CSNet
[44], and MADUN [33].

To address the above-mentioned issues, in this article, we propose a novel wavelet domain-based
deep unfolding framework. This framework introduces wavelet tree-structured reconstruction and
wavelet domain adaptive sampling (WAS), which can treat diverse components differently.
By utilizing the rich information within the wavelet domain, our method is adapted to capturing
intricate image features with greater efficiency. This ensures that the final image is not only
visually pleasing but also fidelity to the structure of the original images. Specifically, we design a
WAS method that allocates CS measurements based on the difference of each sub-band, thereby
customizing the sampling process to the varied features of the image. For CS reconstruction, we
design a tree-structured prior to guiding our unfolding network, which can effectively exploit the
inter-dependencies at different scales. It can capture key features across multiple scales, allowing
the incorporation of information from one scale to enhance details at another scale. Since block
partition breaks the global correlation of the whole image, a deblocking module is performed on
the whole image in every reconstruction stage. This module serves to eliminate blocking artifacts
and exploit contextual information between adjacent phases. Our extensive experimental results on
diverse datasets demonstrate that our method can achieve better performance compared with other
state-of-the-art CS methods. The main contributions of this article are summarized as follows:

— A novel wavelet-domain deep unfolding framework for image CS is proposed, which achieves
simultaneous WAS and tree-structured reconstruction by fully exploiting the structural spar-
sity of multi-scale wavelet coefficients.

—A wavelet tree-structured prior (WTP) guided unfolding network is designed, which effec-
tively exploits the inter-dependencies among wavelet sub-bands at different scales. Through
an iterative optimization process guided by WTP, accurate recovery of finer textures and
sharper edges can be achieved.

— A WAS method that significantly improves sampling capabilities is developed. Unlike conven-
tional methods that treat all sub-bands uniformly, our approach allows for a targeted focus
on significant sub-bands, considering their energy and sparsity, which can capture relevant
information effectively while discarding less important details.

—Extensive experimental results on various datasets validate the supreme performance of our
proposed scheme.
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Organization. The subsequent sections of this article are organized as follows. Section 2 introduces
related works of CS. Section 3 presents the network structure of our approach. Section 4 evaluates
the performance of our methods and compares it to other state-of-the-art CS methods. At last, we
conclude this article in Section 5.

2 Related Works

The previous CS methods can be divided into two categories: traditional optimization-based methods
and deep learning-based methods. In this section, we give a brief review.

2.1 Traditional Optimization-Based Methods

2.1.1  Sampling. For sampling methods, they can be divided into uniform sampling and adaptive
sampling. Uniform sampling methods typically use a random Gaussian, Poisson, or Toeplitz matrix
to sample each image block and every component in blocks equally. On the contrary, adaptive
sampling methods consider the differences in image structure. Recently, there has been extensive
research on adaptive sampling methods, focusing on their capacity to enhance the overall perfor-
mance of algorithms. Wang et al. [38] use variance as a decision condition to split image blocks
into two categories for sampling and reconstruction. Zhu et al. [58] adaptively assign sampling
measurements based on different statistical features in image blocks, which significantly improved
the reconstruction quality. However, the above studies treat each component of image blocks
equally, which may hinder the acquisition of high-quality reconstructed images.

2.1.2  Reconstruction. In the field of CS reconstruction, most researchers have focused on two
directions: image domain-based methods and wavelet domain-based methods.

Methods categorized in the former group directly sample the original image blocks, which mainly
include convex optimization algorithm [6], greedy matching pursuit algorithm [24], orthogonal
matching pursuit algorithm [28], Bayesian algorithm [19], and gradient descent algorithm [49].
Afterward, to further improve the reconstruction performance, some elaborate priors have been
applied to CS reconstruction, such as denoising prior, total variation prior, and group sparsity prior.
Specifically, Li et al. [21] develop a total variation regularization constraint to improve the local
smoothness. Zhang et al. [53] present a group sparse representation to enhance image sparsity and
exploit non-local self-similarity for image recovery.

In the latter class of methods, the original image is first decomposed through a multi-layer
wavelet transform. Subsequently, the resulting wavelet sub-bands are sampled in blocks. Finally,
an inverse transform is applied to obtain the recovered image. The wavelet coefficients of images
are organized in a quadtree structure. Most values of the wavelet coefficients cluster around zero,
while only a small part shows significant amplitude. Such structure leads to strong sparsity which
can greatly improve the imaging speed [4] and highly enhance reconstruction quality. For example,
MS-BCS-SPL [15] is a CS algorithm to reconstruct multi-scale measurements in the wavelet domain,
which can recover more details and sharper edges.

Although traditional optimization methods have strong theoretical benefits, they still suffer from
some issues such as excessive complexity, time-consuming, and poor real-time performance, which
limit the broad application in practice.

2.2 Deep Learning-Based Methods

2.2.1 Sampling. In contrast to traditional CS methods, some deep learning methods still use
random matrix [55] to obtain CS measurements, while others adopt convolutional [31] or fully
connected [12, 22, 40] layer to model sampling matrix. Recently, Zhou et al. [57] propose a multi-
channel model named BCS-Net using a channel-specific sampling network to realize adaptive CS
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ratio allocation. Fan et al. [13] utilize convolutional layers to extract high-dimensional features,
which are subsequently compressed through a series of convolutional layers to acquire more
sampling information. Although satisfactory reconstruction results can be achieved, there is still
much room to improve the performance due to its lack of adaptability to the vast diversity of
signals.

2.2.2  Reconstruction. As for deep learning-based reconstruction methods, they can be roughly
categorized into deep network methods and deep unfolding methods.

Deep Network Methods. For classical deep network methods, Mousavi et al. [26] first exploit a
stack denoising auto-encoder to recover images from CS measurements. Afterward, Lohit et al.
[22] design a convolutional neural network (CNN) based model called ReconNet to improve the
image reconstruction quality. Shi et al. [31] propose a residual CNN-based framework dubbed CSNet
to jointly train the sampling matrix and the reconstruction network. Huang et al. [17, 18] design a
reconstruction network to acquire high-quality reconstruction by exploiting the Gaussian Scale
Mixture prior. Goodfellow et al. [16] use generative adversarial networks for CS reconstruction.
Fang et al. [14] successfully improve the reconstruction quality through the analysis of image
features in the frequency domain. DDS-Net [20], a novel dynamic network, efficiently customizes
denoising processes for various image noise levels. Moreover, the application of transformer in
image reconstruction has also yielded significant achievements [29, 46].

Deep Unfolding Methods. Deep unfolding methods realize mathematical optimization iterations by
designing deep networks. Therefore, deep unfolding methods combine the advantages of traditional
iterative optimization methods and classical deep network methods. For example, Zhang et al. [50]
extend the popular algorithm ISTA to ISTA-Net for optimizing a £;-norm CS model. Afterward,
Zhang et al. [55] propose a CS model called AMP-Net by unfolding the denoising process of the
approximate message-passing algorithm, incorporating a deblocking module in each stage to remove
blocking artifacts. Metzler et al. [25] design LDIT and LDAMP from the denoise-based iterative
thresholding algorithm. Yang et al. [44] propose a deep learning framework named ADMM-CSNet
by the redesign of CS-MRIL.

Compared with traditional iterative optimization-based methods, deep learning-based methods
greatly reduce computational complexity and time complexity. Although the above deep learning-
based methods have achieved excellent success in the field of CS, there are still some issues that
texture details are not recovered well enough and no sparsity prior knowledge is combined.

To address the above-mentioned issues, we propose a novel wavelet domain-based deep unfolding
framework to simultaneously enable WAS and tree-structured reconstruction. In the sampling
process, we present a WAS method to allocate CS measurements based on the different importance
of multi-scale sub-bands. The reconstruction process adopts a tree-structured prior guided model
that takes advantage of the structure sparsity in multi-scale sub-bands. This model enables the
recovery of more structural and finer detail components.

3 Proposed Method

3.1 Overall Architecture

As shown in Figure 1, WTDUN is an end-to-end deep unfolding model that integrates an optimiza-
tion algorithm with a deep network, and it comprises a sampling module, an initialization module,
and K reconstruction stages. Traditional optimization algorithm [1, 11] solves the CS reconstruction
problem by iterating between the following two update steps:

Zk71 —y-— Axkflj (2)

x = G (ATZF 1 4 XK1, 3)
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Fig. 1. lllustration of WTDUN, which consists of a sampling module, an initial module, and K reconstruction
modules. WTDUN, Wavelet Tree-Structured Sampling and Deep Unfolding Network.
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Fig. 2. The detailed design of one single phase in WTDUN. TheGDM represents Equation (15). STF-1and STF-2
denote Equations (12) and (17), respectively. GDM, gradient descent module; STF, soft threshold function.

where k is the number of iterations, AT is the transpose of sampling matrix A, and {(-) is an ideal
image denoiser with a denoising perspective [55]:

ATZF 1 xkl=x4e, (4)

where e = (AT A—T)(x-x*"1) denotes a noise term. The clean signal can be obtained by calculating:
x =AzZ "+x - -I(x—-x . 5

k AT k-1 k-1 (ATA I)(— k—l) ( )

By combining with the WTP, we transform Equation (5) into the kth reconstruction stage of our
network, as shown in Figure 2. Considering the different importance of image high- and low-
frequency components, a WAS module is constructed to enable adaptive sampling as in Figure 3.
Then in subsections, each module will be elaborated separately.

3.2 WAS

3.2.1  CS Measurement Ratio Allocation. The CS measurement ratio is usually significantly lower
than the Nyquist sampling rate, leading to undesirable artifacts. This phenomenon can be attributed
to aliasing between high- and low-frequency information, which may prevent the accurate recovery
of image details and textures during reconstruction. To mitigate the problem, we employ a Haar
wavelet to separate the image into different frequency components. Subsequently, CS measurements
for each component are assigned based on their importance.

0, = ¥X, 6)
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Fig. 3. Detailed design of each module. (1) Indicates the sampling process; (2) is the initial reconstruction
process; (3) is the deblock module, which is composed of six convolution layers, with a ReLU activation layer
between the adjacent convolution layers; (4) is the denoise module, which is composed of four convolution
layers, with a ReLU activation layer between the adjacent convolution layers; (5) is the cross-sub-band fusion
module (CAC). CAC, cross-domain attention.

where ¥ = [¢1, ¢, - -, ¢y] is the transform basis, s € {LL;, HL;, LH;, HH;}, 1 < i < [, i means
the wavelet decomposition level, & means each wavelet sub-band of image X. After multi-level
wavelet decomposition, we obtain a sequence of sub-bands. Based on the property that the lowest
frequency in the wavelet domain can carry the image energy and the high-frequency sub-bands
can express the image textures and details, we design an algorithm to realize adaptive CS ratio
allocation. We use the mean to evaluate sub-band energy and the SD to measure sub-band sparsity.

In the allocation algorithm, we initially calculate the SD ¢ and mean p of absolute values
|| for each wavelet sub-band. Subsequently, we introduce 75 as a control parameter to adjust the
contribution of ¢ and p when determining the allocation weight. The allocation weight W is obtained
by summing up the products of o, y, and their respective control parameters. Next, we compute the
percentages Py and Py, representing high-frequency (Wy) and low-frequency (Wy 1) contributions,
respectively. By utilizing the percentages Py and Prr, we can derive the corresponding quantities
of CS measurements. Subsequently, an upper bound © is established to prevent sample overflow. In
cases where the number of low-frequency measurements surpasses this threshold 0, it is adjusted
to match the number of low-frequency CS measurements. Any additional CS measurements are
then allocated to other wavelet sub-bands. Given that high-frequency sub-bands in images exhibit
a tree structure following multi-level wavelet decomposition, these sub-bands at different scales
demonstrate similar structures. Rather than considering sparsity when assigning measurements
to high frequencies, our focus lies solely on their energy levels. Consequently, CS measurements
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are allocated among them based on their respective means at different levels. Finally, we set a bias

term (3 bias; = 0) to increase the flexibility of this allocation method.
i=0

3.2.2  Block-by-Block Sampling. We employ the block-by-block sampling method to indepen-
dently sample each non-overlapping image block with a fixed size of n X n. Initially, an image
X e REXW s divided into blocks x; € R™" j € {1,2,---,]}. Subsequently, these blocks are
decomposed into multi-scale wavelet sub-bands 0; € R"s*"s. Before sampling, each sub-band
is vectorized as a vector. As illustrated in Figure 3, the sampling process of each sub-band 6 at
decomposition level i within block x; can be described as follows:

ys = O ¥x; = A0, (7)

where y; € RM>/ is the CS measurements of xjand H-W=]-n? s € {LL,HL;, LH;, HH;},
1 < i < I, i means the wavelet decomposition level. A; € RM:xn" ig the multi-scale sampling
operator, which consists of two components (a multi-scale transform ¥ and a multi-scale block-
based measurement process ¢). ¥ produces L levels after multi-level wavelet decomposition,
therefore, ¢ consists of L different block-based sampling operators, one for each level.

3.3 WTP-Guided Reconstruction

The reconstruction module exploits the quad-tree representation of wavelet coefficients to capture
the inter-dependencies among coefficients at different scales in an image. This representation enables
us to identify groups of coefficients that can either be zero or non-zero simultaneously, thereby
providing valuable structural insights for enhancing image reconstruction quality. Specifically, the
WTP-guided reconstruction model can be described as follows:

1
argmin Elly—A‘)llg + (10l + 1GOl2). ®)

where G represents the set of all parent-child groups for the wavelet tree. And we adopt weighted
£1- and £,-norms in the second term in Equation (8) to impose the tree-structured sparsity within
wavelet sub-bands.

3.3.1 Initial Reconstruction Module. The initial reconstruction module is illustrated by Equation
(9). The wavelet coefficients of the original image can be initially reconstructed from its multi-scale
measurements as shown in Figure 3:

0s = AsTys> (9)

where s € {LL;, HL;, LH;, HH;}, 1 < i < L. There is only one low-frequency sub-band, so LL is
not annotated with subscripts “i” AT € RP XM represents the linear mapping matrix and it is
the pseudo-inverse matrix of A,. Then we transform 6; into full-image X° by inverse wavelet
transform (IDWT).

3.3.2 Deep Reconstruction Module. The deep reconstruction process is performed on the initial
reconstruction result X° and improves its quality. We divide the reconstruction model into K
stages. Each stage alternatively implements the projection in the wavelet domain and the full-image
deblocking in the spatial domain. With z = G constraint, Equation (8) can be rewritten as

1 A
argmin Elly—Aellg + (101 +[lzll2) + EIIZ—G9||§~ (10)
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The variables z and 6 are coupled together in the minimization of Equation (10), thus solving
them simultaneously is computationally intractable. Therefore, we divide the problem into two
sub-problems, namely 0-sub-problem and z-sub-problem, which are described as follows.

z-Sub-Problem. The goal of the z-sub-problem is to generate an intermediate variable to simplify
the optimization problem. The z-sub-problem is equivalent to solving the following optimization
problem:

. A _
ZF = argmin f|z||; + E||z - GoF 3. (11)
z

The mapping process for solving the corresponding optimization z-sub-problem is described as
follows, which can be solved by using a soft threshold function (STF). It is mapped into a deep
network module in our framework.

k—
B ) GO~ ! (12)

k k-1
Z- =max |||GO* |l = 7,0 ———.
( GO

T
We implement the tree-structured group sparsity prior via Equation (12). Guided by the WTP,
our unfolding network effectively exploits the inherent structural information embedded in an
image. The incorporation of the wavelet tree structure as a guiding principle in our model enables
us to exploit the hierarchical nature of wavelet decomposition, facilitating the capture of both
local and global features present in an image. By integrating this prior into our framework, we
are better equipped to handle complex images characterized by diverse textures and structures.
As shown in Figure 7, it exhibits superior reconstruction performance on the complex dataset
Urban100. Moreover, our unfolding network capitalizes on the inter-dependency between sub-bands
at different scales, allowing for leveraging information from one scale to enhance or refine details
at another scale. Specifically, the STF consists of the following steps, including:

(1) We concatenate the sub-bands of different groups in the channel dimension and treat a channel
as a group. Then a channel-wise global embedding (CGE) is performed to wg = 6571,
such as CGE(Hk_l). It is composed of channel-wise attention, a ReLU layer, and a 1 X 1
convolutional.

(2) Based on the assumption that a group with higher energy requires a larger threshold, we
calculate a group-wise threshold in the shrinkage as follows:

0% 1 = wg x 0571, (13)

(3) Applying the group-wise soft-shrinkage operation Equation (12) with the new 6%!. The
soft-shrinkage operation is efficiently implemented by using a ReLU function.

6-Sub-Problem. The 0-sub-problem in Equation (10) can be written as follows:
o1 A
0% = argmin I}y ~ AOI} + 512 ~ GOIE + ol (14)

The 0-sub-problem in Equation (14) can be solved through the optimization algorithm of denoising
perspective:

rk = GDM(6%7 1,25, 1) = 651 — AT(A6F ! —y) — AGT (GO - 2F), (15)

.1
6" = argmin 16 —r¥|l; + A6l (16)

where GDM denotes the gradient descent module at #¥, as shown in Figure 2. And %Hy - A0||5 +
’%sz - G9||§ is a convex smooth function with Lipschitz constant. The optimization problem in
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Equation (16) can be solved as follows:
k

6 = max(|lr*, — wi .0 17)
[LeaIP;
0k =6 — (ATA- DN (6F7Y). (18)

We use the denoising block 9 () to remove the noise of 8¥~! to get the kth reconstruction result
6. Each denoising module consists of four 3 x 3 convolutional layers. There is a ReLU activation
function between adjacent convolutional layers. A channel attention module in our network is
used to learn the corresponding weights {w;|i = 1,2,...n} of different image patch groups for
improving flexibility.

In each deblocking block By (-), it consists of six convolutional layers. The ReLU activation
function is applied between adjacent convolution layers. By combining 6; and 0y using the IDWT,
we can obtain the reconstruction result X* of the kth phase, which combines the output set
[X°, X', ..., X*71] of the previous k — 1 phases as input to deblock module. The deblock module
integrated inter-context information can effectively remove block artifacts of full-image. We use
a cross-domain attention (CAC) module before the inverse wavelet for better collaborative
reconstruction of high-frequency and low-frequency components. The process of image deblocking
in the kth reconstruction stage can be expressed as

X* = IDWT(CAC(6F, 6%)), (19a)

Xhutpur = X = Br(cat(X°, X', .. X1)). (19b)

The input of By (-) is a set of whole concatenated images rather than each image block. Figure 3
illustrates the structures of the denoise module, deblock module, and CAC [43] module.

3.4 Loss Functions

In this article, we adopt the MSE as the difference metric between the mth ground-truth Xy, in the
training set and the final recovered result XX. The loss function is formulated as follows:

1 Xm — XX I13, (20)

1
L =
MSE = N
where N, denotes the size of X, and Nj, denotes the size of the training set.
The high-frequency coefficients potentially converge to zero by performing convolution opera-
tions on them. To address this issue, we develop a texture loss function that aims to prevent the
high-frequency coefficients from converging to zero:

Liexture = max(|| 0]l — ||0F]| + €, 0), (21)

where 6y is the high-frequency coefficients of the original image in the training set, 9{_‘[ is the
reconstruction result at kth stage. € is a bias term that prevents the texture from disappearing,
which is a tensor of the same size as the high-frequency sub-bands and has values only at non-zero
elements.
The initial loss denoted as the MSE between the output result Xy of the initial reconstruction
module and the corresponding original image in the training set, defined as
Lt = V%o = X (22)

Finally, an end-to-end loss function is designed as follows:

Liotal = Lyvse + Y * Liexture + H* Linit, (23)
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where y and p are the regularization parameters. In our experiments, y and p are set to 0.001 and
0.01, respectively.

4 Experimental Results and Performance Evaluation

In this section, our proposed method is first compared with other state-of-the-art methods in terms
of both objective reconstruction quality and subjective visual quality. Then a series of ablation
experiments are implemented to further evaluate the effects of each functional module in our
method. Finally, the model complexity is compared with other methods.

4.1 Experiment Settings

We use 400 images from the BSD500 dataset for training and validation. In the training process, two
training sets are generated for models. (1) Training set with the size 64 X 64 is randomly extracted
from images in BSDS500. (2) Training set with the size 128 X 128 is randomly extracted from images
in BSDS500. We also unfold the whole testing image in this way during the testing process. We use
the PyTorch toolbox and train our model using the Adam solver on an NVIDIA RTX 3090 GPU. All
models are trained for 200 epochs with batch size 32 and learning rate 0.0001. Before training, the
control parameter « is initialized as 1 and other trainable parameters are initialized randomly.

For testing results, we conduct extensive experiments on some widely used datasets: Set5 [30],
Set11 [5], Set14, and Urban100 [33]. To ensure fairness, we evaluate the performance with two
quality evaluation metrics: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM).

4.2 Comparison with Other Methods

In this section, we select several typical deep learning-based CS methods for comparison with our
method, including DPA-Net [36], BCS-Net [57], OPINE-Net [52], AMP-Net [55], COAST-Net [48],
MADUN-Net [33], ISTA-Net++ [47], FHDUN-Net [9], ULAMP-Net [41], DPUNet [45], SODAS-Net
[35], and DPC-DUN [34]. Apart from some experimental results provided by the authors, the results
of the other comparison methods are retrained on the Ubuntu 16.04 system under the PyTorch
1.7 framework and use Python 3.7. Moreover, we have also compared our method with some
model-based methods on the Set11 dataset, as shown in Table 5. The source code of comparison
methods comes from the official code published by their authors. Tables 1-4 show the test results of
WTDUN and other methods on Set5, Set11, Set14, and Urban100. These tables contain the average
PSNR (dB)/SSIM where the best is marked in bold and show the reconstruction results at different
sampling rates of {50%, 40%, 30%, 20%, 10%}.

4.2.1 Reconstruction Quality. From Tables 1-4, it can be seen that WTDUN can achieve higher
PSNR than those deep learning-based CS methods at all sampling ratios. As for SSIM, our WTDUN
is better than most methods. It can be seen that MADUN-Net and ISTA-Net++ perform worse at
low CS ratios of 10%. DPA-Net does not work well at all CS ratios. Compared to other methods, for
example, the gain of our method with PSNR is about 1.01-5.57 dB at 50% CS ratio and 0.20-2.22 dB
at 10% CS ratio on dataset Urban100. The gain of our method with SSIM is about 0.0021-0.0301 at
50% CS ratio and 0.0057~ —0.0561 at 10% CS ratio on Urban100.

4.2.2  Visual Effect. The visual quality comparison of different CS methods on test images is
shown in Figures 4-7 at 10% CS ratio. It can be seen that the reconstructed images from COAST
and ISTA-Net++ have obvious blocking artifacts. This is because these methods only focus on the
individual reconstruction of each block and do not consider the correlations between neighboring
image blocks. On the contrary, there are no obvious blocking artifacts in the reconstructed images
generated by MADUN, OPINE-Net, AMP-Net, and our method, since these models all perform
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Table 1. Average PSNR (dB)/SSIM Performance Comparisons on Set5 with Different CS
Sampling Rates

Sets  PSNR (dB)/SSIM
Method 10% | 20% | 30% | 40% | 50%
DPA-Net [36] | 3032/0.8713 22 36.17/0.9495 | 38.05/0.9632 | 39.57/0.9716

AMP-Net [55]
COAST [48]
ISTA-Net++ [47]
MADUN [33]
ULAMP [41]
DPUNet [45]
Ours (64 X 64)
Ours (128 X 128)

31.95/0.9017
30.50/0.8794
29.61/0.8563
31.11/0.8910
30.78/0.8774
31.80/0.9079
32.14/0.9123
32.23/0.9132

35.49/0.9419
34.18/0.9298
33.33/0.9173
34.80/0.9363
31.94/0.8868
35.38/0.9458
35.39/0.9443
35.56/0.9461

37.86/0.9606
36.48/0.9515
35.62/0.9427
37.25/0.9561
36.39/0.9599
37.54/0.9618
37.82/0.9622
38.04/0.9637

39.70/0.9713
38.33/0.9645
37.40/0.9575
39.29/0.9693
38.20/0.9693
39.44/0.9716
39.94/0.9734
40.14/0.9746

41.51/0.9791
40.21/0.9744
38.94/0.9678
41.18/0.9784
40.97/0.9827
41.10/0.9783
42.09/0.9824
42.18/0.9827

The best and second-best results are highlighted in bold and italics, respectively.
#Indicates the case where the result at the corresponding sampling rate is missing in the original paper.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 2. Average PSNR (dB)/SSIM Performance Comparisons on Set11 with Different CS
Sampling Rates

Set11 PSNR (dB)/SSIM

Method 10% { 20% { 30% { 0% { 50%
DPA-Net [36] | 26.99/0.8354 aja aja 35.04/0.9565 | 36.73/0.9670
BCS-Net [57] | 29.36/0.8650 | 32.87/0.9254 | 35.40/0.9527 | 36.52/0.9640 | 39.58/0.9734
COAST [48] | 28.69/0.8618 | 32.54/0.9251 | 35.04/0.9501 | 37.13/0.9648 | 38.94/0.9744

ISTA-Net++ [47] | 27.62/0.8358 | 31.66/0.9127 | 34.23/0.9427 | 36.28/0.9593 | 37.94/0.9693
MADUN [33] | 29.29/0.8768 | 33.30/0.9355 | 36.00/0.9576 | 38.09/0.9700 | 39.86/0.9774
FHDUN [9] 29.53/0.8859 aja 36.12/0.9589 | 38.04/0.9696 aja
DPUNet [45] | 29.30/0.8815 | 33.17/0.9357 | 35.75/0.9581 | 37.90/0.9705 | 39.69/0.9782
SODAS-Net [35] | 28.89/0.8669 | 32.20/0.9243 | 35.55/0.9543 | 37.74/0.9680 | 39.60/0.9769
DPC-DUN [34] | 29.40/0.8798 | 33.10/0.9334 | 35.88/0.9570 | 37.98/0.9694 | 39.84/0.9778

Ours (64 X 64)
Ours (128 X 128)

29.53/0.8867
29.64/0.8877

33.58/0.9371
33.81/0.9399

36.27/0.9585
36.41/0.9597

38.26/0.9698
38.45/0.9708

40.22/0.9784
40.38/0.9789

The best and second-best results are highlighted in bold and italics, respectively.
3Indicates the case where the result at the corresponding sampling rate is missing in the original paper.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

denoising and deblocking operations on the full image at each reconstruction stage. Compared
with COAST, ISTA-Net++, MADUN, OPINE-Net, and AMP-Net algorithms, images recovered by
our WTDUN have richer texture details and sharper edges than other methods as shown in Figures
5 and 7. Therefore, our WTDUN has a stronger ability to reconstruct high-quality images compared
to other state-of-the-art methods.

4.3 Ablation Study

To evaluate the contribution of each component in our WTDUN, we design several variants of the
proposed model in which some functional modules are selectively discarded or replaced. Tables 6
and 7 show comparative experimental results on Set11 and Urban100 at 20% and 50% CS ratios,
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Table 3. Average PSNR (dB)/SSIM Performance Comparisons on Set14 with Different CS
Sampling Rates

Set14 PSNR (dB)/SSIM
Method 0% | 20% | 30% | 40% | _ 50%
AMP-Net [55] | 28.69/0.8171 | 31.95/0.8933 | 34.27/0.9293 | 36.26/0.9505 | 38.10/0.9647
COAST [48] | 27.41/0.7799 | 30.71/0.8672 | 33.10/0.9106 | 35.12/0.9369 | 36.93/0.9549
ISTA-Net++ [47] | 26.75/0.7549 | 30.09/0.8518 | 32.40/0.8999 | 34.26/0.9287 | 35.90/0.9477
MADUN [33] | 27.97/0.7914 | 31.50/0.8790 | 34.05/0.9194 | 36.05/0.9439 | 37.96/0.9592

DPUNet [45]
Ours (64 X 64)
Ours (128 x 128)

28.49/0.8226
28.61/0.8216
28.71/0.8235

31.61/0.8963
31.89/0.8908
32.10/0.8944

33.95/0.9308
34.36/0.9280
34.57/0.9308

35.93/0.9505
36.27/0.9486
36.53/0.9507

37.66/0.9628
38.31/0.9644
38.49/0.9653

The best and second-best results are highlighted in bold and italics, respectively.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 4. Average PSNR (dB)/SSIM Performance Comparisons on Urban100 with Different CS
Sampling Rates

Urban100 PSNR (dB)/SSIM

Method 10% [ 20% [ 30% [ 40% [ 50%
DPA-Net [36] | 24.55/0.7841 aja 29.47/0.9034 | 31.09/0.9311 | 32.08/0.9447
OPINE-Net [52] | 26.56/0.8345 | 30.07/0.9088 | 32.64/0.9419 | 34.66/0.9600 | 36.64/0.9727
AMP-Net [55] | 25.96/0.8133 | 29.50/0.8974 | 32.07/0.9352 | 34.22/0.9569 | 36.16/0.9706
COAST [48] | 25.94/0.8038 | 29.70/0.8940 | 32.20/0.9317 | 34.21/0.9528 | 35.99/0.9665

ISTA-Net++ [47]
DPUNet [45]
SODAS-Net [35]
Ours (64 X 64)
Ours (128 x 128)

24.78/0.7607
26.10/0.8226
26.23/0.8084
26.58/0.8358
26.77/0.8402

28.55/0.8687
29.71/0.9027
29.51/0.8950
30.58/0.9109
30.82/0.9142

31.08/0.9152
32.23/0.9378
33.15/0.9412
33.18/0.9431
33.44/0.9459

33.10/0.9402
34.30/0.9573
35.28/0.9599
35.26/0.9610
35.60/0.9629

34.86/0.9560
36.10/0.9693
37.14/0.9721
37.39/0.9738
37.65/0.9748

The best and second-best results are highlighted in bold and italics, respectively.
Indicates the case where the result at the corresponding sampling rate is missing in the original paper.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

which include five functional modules. Tables 8 and 9 show the comparison of performing wavelet
decomposition at different levels. Table 10 demonstrates the effect of different reconstruction phase
numbers k on Urban100 and Set11 at 10% CS ratio. These Tables 1-4 show the effect of different
patch sizes of image blocks on reconstruction quality on these datasets: Set5, Set11, Set14, and
Urban100.

4.3.1 Validating the Capability of WAS. In this subsection, we validate the capability of the
WAS method. CS measurements allocation method is used to adaptively allocate CS measurements
according to the target sampling ratio. To test the effect of WAS, we train our network in settings
with and without WAS on Urban100 and Set11, as shown in Tables 6 and 7. Compared to the case
without WAS, the average PSNR scores of WTDUN can be improved by about 1.5-2.5 dB at 20%
and 50% CS ratios. The average SSIM scores of our WTDUN can be improved by about 0.01-0.05 at
20% and 50% CS ratios with WAS. Ablation results demonstrate that WAS can effectively improve
image reconstruction quality.
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GT COAST[48] ISTA-Net++[47] MADUN[33] DPUNet[45] AMP-Net[55] Ours

5

PSNR(dB)/SSIM 34.07/0.9399  32.31/0.9098  35.06/0.9509  34.92/0.9566  35.11/0.9535 35.59/0.9624

PSNR(dB)/SSIM 30.93/0.7660  30.44/0.7443  30.99/0.7731  32.17/0.8089  32.09/0.7898 32.31/0.8143

Fig. 4. Visual quality comparisons between our proposed method and recently state-of-the-art CS methods
on Set5 at 10% CS ratio. The best and second-best results are highlighted in bold and italics, respectively.

4.3.2  Validating the Capability of WTP. In this subsection, we validate the capability of the
wavelet tree-structured reconstruction model. The WTP is used to fully exploit the correlation
within multi-scale sub-bands. To test the effect of WTP, we trained our model in settings with
and without WTP. As shown in Tables 6 and 7, the PSNR scores of our WTDUN with WTP are
improved by about 0.08-0.2 dB. It can be seen that our model can obtain higher PSNR/SSIM when
the WTP is integrated into our framework.

4.3.3 Validating the Capability of Deblocking, Memory Context (MC), and CAC. In this sub-
section, we validate the capability of the Deblock module, MC module and CAC module. The
comparison results are presented in Tables 6 and 7. Of the three mentioned modules, the deblock
module brings the largest improvement in PSNR/SSIM, with a gain of about 1-2.5 dB for PSNR and
0.02-0.1 for SSIM. The gain for MC and CAC is almost the same, about 0.2 dB for PSNR and 0.01 for
SSIM.

4.3.4 Validating the Influence Image Patch Size. In this subsection, we validate the influence of
different image patch sizes. Tables 1-4 show that the reconstruction performance can be improved
with the increase of the block size. Larger patch size can help our model capture more contextual
information, which is vital for reconstruction methods. The contextual information enables the
method to more effectively estimate and fill in missing or corrupted areas of the image, resulting in
a more accurate and visually coherent reconstruction.
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GT COAST[48] ISTA-Net++[47] MADUN[33] DPUNet[45] AMP-Net[55] Ours

PSNR(dB)/SSIM 28.30/0.8929  27.65/0.8743  28.83/0.9000  28.76/0.9089  29.02/0.9038 29.58/0.9182

PSNR(dB)/SSIM 26.11/0.8245  25.09/0.8031  26.41/0.8344  26.40/0.8477  26.59/0.8528 27.18/0.8513

Fig. 5. Visual quality comparisons between our WTDUN and recently state-of-the-art CS methods on Set11
at 10% CS ratio. The best and second-best results are highlighted in bold and italics, respectively.

GT  COAST[48] ISTA-Net++[47] MADUN[33] DPUNet[45] AMP-Net[55] Ours

e e e .
N N B\

PSNR(dB)/SSIM 32.78/0.9207  31.27/0.9028  33.70/0.9256  33.07/0.9304  32.54/0.9296 33.85/0.9381

Fig. 6. Visual quality comparisons between our WTDUN and recently state-of-the-art CS methods on Set14
at 10% CS ratio. The best and second-best results are highlighted in bold and italics, respectively.

4.3.5 Validating the Capability of Wavelet Decomposition at Different Levels. In this subsection,
we validate the capability of wavelet decomposition at different levels on Set11 and Urban100.
Tables 8 and 9 show that the best reconstruction results can be obtained at two-level wavelet
decomposition. Multi-level wavelet decomposition can increase image sparsity, which can lead to
better reconstruction quality. Therefore, the PSNR/SSIM of the two-level and three-level wavelet
decomposition are better than the one-level wavelet decomposition. Since we use 64 X 64 image
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GT  COAST[48] ISTA-Net++[47] OPINE[52] DPUNet[45] AMP-Net[55] Ours

PSNR(dB)/SSIM 33.53/0.8972  31.46/0.8602  32.79/0.9059  31.86/0.8960  31.40/0.8908 33.79/0.9099

PSNR(dB)/SSIM 28.73/0.8651  27.43/0.8204  29.19/0.8825  28.79/0.8725  28.43/0.8587 29.72/0.8874

Fig. 7. Visual quality comparisons between the proposed WTDUN and recently state-of-the-art CS methods
on Urban100 at 10% CS ratio. To better illustrate the difference, we show the residual heatmap between the
reconstructed image patch and the GT patch. The best and second-best results are highlighted in bold and
italics, respectively.

Table 5. Average PSNR/SSIM Comparisons with Other Multi-Scale Sampling Methods on Set11
Dataset

Sampling Rate
10% | 20% | 30% | 40% | 50%

BCS-SPL-DWT [27] | 23.31/0.7056 | 27.68/0.8057 | 28.41/0.8614 | 30.32/0.8977 | 32.13/0.9241
MS-BCS-SPL [15] 27.00/0.8293 | 30.21/0.8893 | 32.51/0.9398 | 34.01/0.9428 | 35.33/0.9489
MS-DCSNet [3] 28.58/0.8648 | 32.20/0.9215 34.63/0.9478 | 36.65/0.9627 | 38.68/0.9740
Ours (64 X 64) 29.53/0.8867 33.58/0.9371 36.27/0.9585 38.26/0.9698 40.22/0.9784
Ours (128 x 128) 29.64/0.8877 | 33.81/0.9399 | 36.41/0.9597 | 38.45/0.9708 | 40.38/0.9789

Method

The best and second-best results are highlighted in bold and italics, respectively.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

blocks as input to our model, we can get some 8 X 8 wavelet sub-bands after three-level decomposi-
tion. Because the wavelet sub-bands of size 8 X 8 are too small for deep networks, the useful feature
cannot be effectively extracted, resulting in poor reconstruction quality. Thus, the PSNR/SSIM of
the two-level wavelet decomposition is better than that of the three-level wavelet decomposition.

4.3.6 Validating the Capability of Different Reconstruction Stage K. To investigate the selection
of K = 9 as the optimal value for our CS model, we conduct a series of comparative experiments.
These experiments show that when K goes beyond 9, the improvement in PSNR/SSIM becomes
marginal. To balance the performance and complexity, K = 9 is selected as the number of iterations
in our CS reconstruction model, as depicted in Figure 8 and Table 10.
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Table 6. The Effect of WAS Method, WTP, Deblock, Memory Context (MC) Module, and
CAC on Reconstruction Quality

Cases Modules PSNR/SSIM
WAS | WTP | Deblock | MC | CAC | 20% \ 50%
(a) v v v v | 28.59/0.8649 | 35.61/0.9600
(b) v V4 v v | 30.45/0.9010 | 37.38/0.9710
(©) v v v v | 28.05/0.8588 | 34.43/0.9552
(d) v V4 V4 v | 30.30/0.8995 | 37.12/0.9703
(e) v V4 V4 V4 30.31/0.9010 | 36.97/0.9699
WTDUN | v v v v | 30.58/0.9109 | 37.39/0.9738

The sampling ratio of CS measurement is 20% and 50% on the Urban100 dataset. The best results are
highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 7. The Effect of WAS Method, WTP, Deblock, MC Module, and CAC on
Reconstruction Quality

Cases Modules PSNR/SSIM
WAS | WTP | Deblock | MC | CAC | 20% \ 50%
(a) v v v | v | 31.63/0.9080 | 38.02/0.9675
(b) v v v | V| 33.46/0.9302 | 40.21/0.9766
(©) oV v | V| 31.67/0.9051 | 38.06/0.9681
(d) VoV v V' | 33.41/0.9305 | 39.98/0.9758
(@) VoV v v 33.43/0.9311 | 39.91/0.9759
WTDUN | v | V v v | V| 33.58/0.9371 | 40.22/0.9784

The sampling ratio of CS is 20% and 50% on the Set11 dataset. The best results are highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 8. The Effect of Multi-Level Wavelet Transform on
Reconstruction Quality

Method T’SNR glz)/ssmﬁ

10% 50%
29.50/0.8791 35.26/0.9581 40.00/0.9762
29.53/0.8867 | 36.27/0.9585 | 40.22/0.9784

29.41/0.8808 36.18/0.9578 | 40.05/0.9781

Ours-levell
Ours-level2
Ours-level3

The sampling ratio of CS is 10%, 30%, and 50% on the Set11 dataset. The
best results are highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

4.4 Model Complexity

In this section, we compare the model complexity of different CS approaches in terms of parameter
capacity and time complexity. The average running time is used to evaluate the actual reconstruc-
tion efficiency. Note that the average running time and the number of parameters are tested by
reconstructing nine test images of size 256 X 256.
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Table 9. The Effect of Multi-Level Wavelet Transform on
Reconstruction Quality

PSNR (dB)/SSIM

Method 0% | 30% | 50%

Ours-levell | 26.52/0.8265 | 31.83/0.9390 | 37.01/0.9702
Ours-level2 | 26.58/0.8358 | 33.18/0.9431 | 37.39/0.9738
Ours-level3 | 26.42/0.8297 | 33.17/0.9430 | 37.26/0.9732

The sampling ratio of CS is 10%, 30%, and 50% on the Urban100 dataset.
The best results are highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

PSNR(dB)
t
%
b2
SSIM

- ——PSNR|{0.79
e —6—5s5IM

0 1 2 3 4 5 6 7 8 9 10 11 12 13
The number of iterative stage k

Fig. 8. The PSNR/SSIM curve with the increase of iterative stage K.

4.4.1 Parameter Capacity. Table 11 shows the number of sampling matrix parameters for ISTA-
Net, ISTA-Net++, OPINE-Net, AMP-Net, COAST, MADUN, DPUNet, and our method. For a normal
task, our method can achieve better reconstruction quality and faster reconstruction speed compared
to MADUN with a similar number of parameters. Even though our method samples with larger
patches (64 X 64), the number of parameters we use only increases by about 0.4 Mb parameters
rather than nearly four times parameters compared to small-size patches (33 x 33).

4.4.2 Time Complexity. As shown in Table 11, the average running time of deep learning
methods on GPU is less than 0.2 seconds. The reconstruction process of traditional CS methods is
implemented iteratively until convergence or the maximum iteration step is reached. As a result,
the reconstruction speed of traditional methods is lower than deep learning methods and deep
unfolding methods. Moreover, GPUs have advantages over CPUs in terms of computational power
and parallel computing capability. This can greatly reduce the running time of deep learning-based
CS and deep unfolding approaches.

All CS models shown in Table 11 have different time complexities. Owing to the superior
computing power of GPUs, the slight difference in the running time of these methods is not
significant. Since there is only a small difference in the running time of models, image reconstruction
quality is more important for deep learning-based methods. In summary, our method achieves a
better accuracy-complexity tradeoff than other state-of-the-art methods.
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Table 10. PSNR/SSIM of Models with Different Reconstruction Numbers k on
Urban100 at the CS Ratio of 10%

PSNR (dB)/SSIM
k=1 ] k=3 | k=6 | k=9
ISTA [50] | 22.03/0.6502 | 23.07/0.7001 | 23.48/0.7176 | 23.56/0.7230
ISTA++ [47] | 17.45/0.3585 | 21.87/0.6322 | 23.29/0.7072 | 24.14/0.7421
AMP-Net [55] | 25.03/0.7842 | 25.63/0.8042 | 25.96/0.8133 | 26.05/0.8156
Ours 24.85/0.7897 | 26.03/0.8230 | 26.36/0.8309 | 26.58/0.8358

Method

The best results are highlighted in bold.
PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

Table 11. Model Complexity Comparison between
WTDUN and Other CS Methods

Methods Parameters

PN (Mb) [ PM (Mb) [ Time (s)
ISTA-Net [50] 1.05 2.57 0.083
OPINE-Net [52] 2.13 4.18 0.099
AMP-Net [55] 2.13 5.40 0.072
COAST [48] - 8.56 0.093
ISTA-Net++ [47] |  2.13 5.80 0.082
MADUN [33] 2.13 23.04 0.177
DPUNet [45] - 12.1 0.071
Ours 2.50 19.72 0.170

PN and PM are the number of the learnable matrix param-
eters and total parameters, respectively. Running time is
computed at 50% CS ratio.

5 Conclusions

We propose a novel wavelet domain framework named WTDUN for image CS, which enables
simultaneous sampling based on sub-band characteristics and reconstruction guided by WTP.
To achieve better CS sampling, we have designed an algorithm that allocates CS measurements
based on the importance of each sub-band. Additionally, we have developed a wavelet domain
sampling method to achieve adaptive sampling, thereby effectively enhancing the acquisition
capability of sampling information. For CS reconstruction, we propose a tree-structured prior
guided unfolding network. This innovative method effectively maintains a similar structure among
wavelet sub-bands within a group by fully exploiting their inherent sparsity. By leveraging the
advantages of tree-structured sparsity, our method significantly enhances the quality of image
reconstruction compared to other state-of-the-art CS methods. Furthermore, as we increase the
number of reconstruction modules, we observe further improvements in the reconstructed results.
Our future work will focus on extending our model to exploit structural differences between blocks
and facilitate effective interaction among different stages of reconstruction.
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