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Abstract.—Methods for rapidly inferring the evolutionary history of species or populations with genome‑wide data are
progressing, but computational constraints still limit our abilities in this area. We developed an alignment‑free method to
infer genome‑wide phylogenies and implemented it in the Python package TOPICCONTML. The method uses probabilistic
topic modeling (specifically, Latent Dirichlet Allocation) to extract ”topic” frequencies from 𝑘‑mers, which are derived from
multilocus DNA sequences. These extracted frequencies then serve as an input for the program CONTML in the PHYLIP
package, which is used to generate a species tree. We evaluated the performance of TOPICCONTML on simulated datasets
with gaps and three biological datasets: 1) 14 DNA sequence loci from two Australian bird species distributed across nine
populations, 2) 5162 loci from 80 mammal species, and 3) raw, unaligned, nonorthologous PACBIO sequences from 12 bird
species. We also assessed the uncertainty of the estimated relationships among clades using a bootstrap procedure. Our em‑
pirical results and simulated data suggest that our method is efficient and statistically robust. [Alignment‑free; bootstrap;
CONTML; 𝑘‑mers; LDA; multilocus phylogeny; NLP; topic modelling.]

Phylogenetic analysis traditionally relies on the align‑
ment of orthologous sequence data, a process that can
be challenging due to the complexity of genomic vari‑
ations, difficulties in aligning noncoding regions, and
the presence of highly divergent sequences. Over the
past two decades, alignment‑free approaches based on
shared properties of subsequences of defined length 𝑘
(𝑘‑mers or 𝑘‑grams) (Deschavanne et al., 1999; Chapus
et al., 2005; Shedlock et al., 2007; Marçais and Kings‑
ford, 2011) have been developed to compare sequences
and genomes. Alignment‑free methods for evolution‑
ary analysis have been reviewed (Vinga and Almeida,
2003; Zielezinski et al., 2019) and their robustness in‑
vestigated (Chan et al., 2014; Bernard et al., 2016). For
example, they can be used to derive distances to be
summarized into phylogenies (Edwards et al., 2002;
Chan et al., 2014; Balaban et al., 2022; Van Etten et al.,
2023). Several studies have shown that alignment arti‑
facts can significantly impact tree topology (Ogden and
Rosenberg, 2006; Wong et al., 2008; Du et al., 2019).
Alignment becomes problematic with comparisons of
large genomes, complex genomic variations, challenges
in aligning noncoding regions, difficulties presented by
highly divergent sequences, and the time‑consuming
nature of aligning large datasets. Alignment‑free ap‑
proaches offer a promising alternative to address these
weaknesses of alignment‑based methods (Ren et al.,
2018).

Probabilistic topic modeling (Blei et al., 2003) is a
statistical approach aiming to identify major ”themes,”
”connections,” or ”topics” among themes in documents

and other large collections of text. The approach orig‑
inated from the field of Natural Language Processing
(NLP) and was introduced by statisticians looking for
applications of machine learning. Griffiths and Steyvers
(2004) applied this method to infer a natural grouping
(topics) of documents based on the content from a large
number of scientific documents, called a corpus. La‑
tent Dirichlet Allocation (LDA) is a popular technique
in topic modeling within the context of unsupervised
machine learning, introduced by Blei et al. (2003). The
goal is to uncover these topics by analyzing the words
in the documents and essentially ”learning” the struc‑
ture of the data. The method assumes that documents
consist of latent topics, each represented by a distribu‑
tion of words. LDA has also been a focus of attention
within the bioinformatics community and various ap‑
plications to biological data have been researched and
analyzed (Liu et al., 2016). Recently, some applications
of alignment‑free methods have been presented to solve
problems offered by DNA sequences or genomes. For
example, in a statistical application, LDA was used by
La Rosa et al. (2015) to extract the frequency of fixed‑
length 𝑘‑mers (words) of DNA sequences (documents)
and thereby discover latent patterns in massive bio‑
logical data to be used for clustering and classification
of DNA sequences. Other studies have adopted LDA
clustering for the analysis of single‑cell expression or
epigenetic data (duVerle et al., 2016; Dey et al., 2017).
Here, we present a novel computational approach using
probabilistic topic modeling to infer evolutionary rela‑
tionships among individuals from different populations
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or species. This method works with multilocus data,
including unaligned or aligned DNA sequences and
unassembled raw sequencing reads. We will use the
term species tree for these trees, whether derived from
single individual sequences or individuals grouped into
populations or species.

Genome‑wide datasets (sequences of whole genomes
or multiple genes per species) are becoming increas‑
ingly prominent in inferring the evolutionary history of
closely related species. Traditional approaches to mul‑
tilocus phylogenetics, such as concatenation methods
(Gatesy and Baker, 2005), and approaches that are con‑
sistent under the multispecies coalescent (de Queiroz
and Gatesy, 2007; Liu et al., 2009; Chifman and Ku‑
batko, 2014; Zhang et al., 2018; Mirarab et al., 2016), have
advanced the field significantly. However, these meth‑
ods often rely on high‑quality alignments, which can
be computationally expensive and error‑prone when
dealing with large or complex datasets. TOPICCONTML
offers a scalable and efficient alternative to traditional
approaches, addressing their limitations and enabling
the analysis of diverse and complex genomic datasets
without relying on sequence alignment.

Here, we outline the architecture of TOPICCONTML and
demonstrate its application using simulated data and
three empirical datasets: 1) a small orthologous dataset
of individuals from various locations of two parapatric
bird species, consisting of 14 loci, along with a compar‑
ison to SVDQUARTETS (Chifman and Kubatko, 2014) and
the alignment‑free method MASH (Ondov et al., 2016),
including a discussion of bootstrap support; 2) an or‑
thologous dataset of mammalian species, consisting of
5162 loci across 90 vertebrate species; and 3) a 12‑species
bird dataset with unaligned, nonorthologous PACBIO
raw sequencing reads.

MATERIALS AND METHODS

TOPICCONTML Software
TOPICCONTML is a Python package based on a two‑

phase pipeline: 1) The mulitlocus or genome‑wide se‑
quences are fragmented into 𝑘‑mers; these 𝑘‑mers are
then used to learn a probabilistic topic model and ex‑
tract the topic frequencies of these 𝑘‑mers using the LDA
model for each locus (Fig. 1 left). For a data analysis with
multiple individuals from the same species or popula‑
tion, we set the option--merging n to merge individual
labels that start with the same 𝑛 letters into groups; oth‑
erwise, we assume that each sequence is an individual.
2) These topic frequencies from multiple loci are then
used to estimate a phylogeny with Continuous Charac‑
ters Maximum Likelihood (CONTML) (part of PHYLIP;
Felsenstein, 1981, 2004) (Fig. 1 right).

𝐾‑mer decomposition.—In NLP, large text datasets (cor‑
pora) are broken down into smaller units such as
documents, which are further divided into words or

sentences, referred to as tokens. Similarly, in bioin‑
formatics, datasets consisting of multiple genomes or
multilocus DNA sequences can be broken down into
individual genomes or groups of multilocus sequences
associated with an individual. These sequences are then
decomposed into 𝑘‑mers—substrings of length 𝑘 repre‑
senting short DNA or amino acid sequences. We decom‑
pose the DNA sequences into nonoverlapping 𝑘‑mers,
as shown in Figure 1, since overlapping 𝑘‑mers require
more memory and computation time without yielding
significantly better results. The program estimates an
optimal 𝑘‑mer length based on the probability of ob‑
serving a given 𝑘‑mer in a document (sequence) at each
locus, with options for user adjustments.

The probability of a given 𝑘‑mer 𝐾 appearing in a ran‑
dom genome 𝑋 of size 𝑛 is 𝑃(𝐾 ∈ 𝑋) = 1−(1 − |Σ|−𝑘)𝑛

,
where Σ = {𝐴, 𝐶, 𝐺, 𝑇}, without loss of generality. Given
a document size 𝑛 and the desired probability 𝑞 of ob‑
serving a random 𝑘‑mer, the value of 𝑘 that minimizes
the probability of observing a random 𝑘‑mer can be
computed as (Fofanov et al., 2004; Ondov et al., 2016)

̂𝑘 = ⌈𝑙𝑜𝑔|Σ|(𝑛(1 − 𝑞)/𝑞)⌉.

TOPICCONTML calculates ̂𝑘 for each document in a lo‑
cus based on this. We have found that 𝑘 = 20 and
𝑘 = 8 give accurate estimates in most cases for large
(e.g., 1,000,000 bp) and small sequences, respectively.
The program also allows users to choose different 𝑘‑mer
configurations, such as a combination of 𝑘‑mer lengths
or a single fixed length, based on their analysis needs.

Resolving ambiguities and missing data.—The current ver‑
sion of TOPICCONTML retains all IUPAC codes as they
are, except for “N,” “?,” “‑,” and other ambiguous char‑
acters, which can be filtered out prior to analysis. We
assume that such ambiguity codes are rare and do not
strongly affect the results.

Topic modeling.—Given a collection of 𝐷 documents and
a number of 𝑀 topics, topic modeling discovers the
𝑀 topics from a collection of text data and estimates
the probability of each topic for each document. We
use LDA to extract these frequencies. LDA is a gener‑
ative probabilistic model used to uncover hidden topics
within a collection of documents, referred to as a corpus.
Given a corpus with D documents, let 𝑁 be the number
of words in a specific document 𝑑 ∈ 𝐷. For each word
𝑤𝑑,𝑛 (the 𝑛th word in the 𝑑th document), 𝑧𝑑,𝑛 denotes
the associated topic. The distribution of topics for doc‑
ument 𝑑, represented by 𝜃𝑑, is drawn from a Dirichlet
distribution, 𝜃𝑑 ∼ 𝐷𝑖𝑟(𝛼), where 𝛼 > 0 is the parame‑
ter vector. Similarly, the distribution of words for each
topic 𝑚, denoted by 𝛽𝑚, is also drawn from a Dirich‑
let distribution, 𝛽𝑚 ∼ 𝐷𝑖𝑟(𝜂), with parameter vector
𝜂 > 0. In this model, the only observed variables are the
words 𝑤 in the documents, while the topics 𝑧, the topic
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FIGURE 1. TOPICCONTML workflow to generate topic frequencies and the corresponding phylogeny.

distributions 𝜃 for all documents, and the word distri‑
butions 𝛽 for each topic are all latent variables. The joint
distribution is defined as

𝑝(𝑤, 𝑧, 𝜃, 𝛽|𝛼, 𝜂)

=∏
𝑚

𝑝(𝛽𝑚|𝜂)∏
𝑑

[𝑝(𝜃𝑑|𝛼) ∏
𝑛

𝑝(𝑧𝑑,𝑛|𝜃𝑑)𝑝(𝑤𝑑,𝑛|𝑧𝑑,𝑛, 𝛽)] .

Using this joint distribution, one can compute the pos‑
terior distribution of the unknown model parameters,
𝑝(𝜃, 𝑧, 𝛽|𝑤) = 𝑝(𝜃,𝑧,𝛽,𝑤)

𝑝(𝑤) , using expectation‑propagation
(Minka and Lafferty, 2012) or other maximization meth‑
ods.

For each locus, TOPICCONTML first estimates the topic
frequencies for every document, 𝜃, using the Python
package GENSIM (Řehůřek and Sojka, 2010) (Fig. 1). The
sequences (documents) in each locus are decomposed
into 𝑘‑mers (words). During preprocessing, LDA filters
out certain words, primarily those with low frequency,
to improve topic coherence and reduce noise in the

learned distributions (see Supplementary Fig. S8). The
process begins by randomly assigning a distribution of
topics to each document and a distribution of words
to each topic, with these distributions being governed
by Dirichlet priors. During the training phase, GENSIM’s
implementation of LDA iteratively refines these distri‑
butions using maximization methods. This training in‑
volves updating two key parameters: the distribution
of topics within each document and the distribution of
words within each topic. The model trains by analyzing
patterns of word co‑occurrence across the documents,
assigning words to topics in a way that maximizes
the likelihood of the observed data. As the iterations
progress, the model converges to a stable set of topics.

Determining the optimal number of topics.— Selecting the
optimal number of topics in LDA modeling is impor‑
tant for generating interpretable results. A widely used
method for this involves evaluating topic coherence,
which reflects the semantic similarity among top words
within each topic—higher coherence scores generally
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correlate with more interpretable topics (Röder et al.,
2015). Several algorithms are available for calculating
coherence scores. In this study, we use the “𝑢mass”
coherence measure in GENSIM (Řehůřek and Sojka,
2010), analyzing each locus individually to identify the
best topic number for each (see Supplementary Fig. S3).
However, because coherence analysis involves testing
multiple models with varying topic counts, it can be
time‑intensive, especially with large datasets. To ad‑
dress this, TOPICCONTML also allows users to specify a
fixed number of topics, which, in our case, proved to be
a practical alternative without compromising the inter‑
pretability or consistency of results. Although selecting
an optimal topic count can enhance detail in some stud‑
ies, our findings show that a fixed topic number per‑
forms well and offers efficiency for large‑scale analyses.
All our analyzed datasets are based on a fixed value of
five topics.

Visualizing topics and associated terms.—To visualize the
topics and associated terms (𝑘‑mers), we use the pack‑
age PYLDAVIS (Sievert and Shirley, 2014), an interac‑
tive visualization tool. TOPICCONTML allows users to
generate an HTML file containing the pyLDAvis out‑
put for each locus, saving them in a designated folder
within the directory (see Supplementary Fig. S2). This
enables detailed examination and extraction of informa‑
tion from the fitted LDA model, enhancing our ability to
interpret the underlying topic structures.

Contml (Continuous Characters Maximum Likelihood
method).—The results of the LDA analysis are the topic
frequencies for each document, which are then evalu‑
ated using CONTML to estimate a phylogeny from fre‑
quency data using the restricted maximum likelihood
method (Felsenstein, 1973) based on the Brownian mo‑
tion model for allele frequencies (Cavalli‑Sforza and Ed‑
wards, 1967). The primary assumption of CONTML is that
each character (each topic in our case) evolves indepen‑
dently according to a Brownian motion process and that
character state changes since divergence are indepen‑
dent of each other, which means that the net change af‑
ter 𝑡 units of time is normally distributed with zero mean
and variance 𝑐𝑡 (the same constant 𝑐 for all characters).

Multilocus bootstrapping.—To assess the statistical con‑
fidence of the inferred phylogenies, we use bootstrap‑
ping (Efron, 1979). Given a multiple sequence align‑
ment, the bootstrap method involves resampling the
original dataset with the replacement of the aligned sites
and creating the phylogeny for each replicate. For un‑
aligned data, we use the approach used in Edwards et al.
(2002), where a random sample of 𝑥 𝑘‑mers is drawn
from all 𝑥 𝑘‑mers collected from the data. The fraction of
the time a particular clade appears in the resulting boot‑
strap trees presents support values for the clades in the
reference tree or a majority‑rule consensus tree (Hillis
and Bull, 1993; Efron et al., 1996; Holder et al., 2008).
TOPICCONTML implements bootstrapping strategies for

both aligned and unaligned sequences. It generates a
majority‑rule consensus tree from the bootstrap repli‑
cates using SUMTREES in DENDROPY (Sukumaran and
Holder, 2010).

Datasets
We evaluate the accuracy of TOPICCONTML for simu‑

lated data and multiple real biological data. The simu‑
lated data were used to explore the effects of the number
of loci and the accuracy of recovering the true topol‑
ogy from data sets consisting of 7 and 14 species. We
used three biological datasets with very different fea‑
tures: 1) a 14‑locus dataset from 2 parapatric closely
related bird species separated into 9 populations, to
evaluate the accuracy of estimation, bootstrapping, and
to compare accuracy with SVDQUARTETS (Chifman and
Kubatko, 2014) and the alignment‑free approach MASH
(Ondov et al., 2016); 2) a vertebrate dataset focusing on
mammals with 90 species and 5162 loci to evaluate the
effect of missing data and of aligned versus nonaligned
orthologous loci; 3) a dataset of raw PACBIO sequences
of 12 bird species, each containing 100,000 reads; these
sequences were neither orthologous nor aligned and can
be construed as having been sampled randomly and
potentially overlapping from their constituent genomes.

Simulated datasets.—We evaluated two sets of simu‑
lations: one with moderate and one with many in‑
sertions and deletions. We used the software DAWG
(Cartwright, 2005) to simulate aligned sequences with
indels/deletions on a 7‑species and a 14‑species tree
(Fig. 2). The moderate scenario inserts indels at a rate of
0.02 per site and deletes sites with a rate of 0.02 per site.
The more extreme simulation used an insertion/deletion
rate of 0.2 per site. An example of two individual se‑
quences for each indel/deletion scenario is shown in the
electronic supplement (Supplementary Fig. S1). We sim‑
ulated datasets of 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000
loci; each locus was between 800 and 2000 bp, depen‑
dent on indels/deletions. These simulated datasets were
then analyzed with gaps included (aligned), with the
gaps excised (unaligned), and with 𝑘‑mers that include
gaps removed (no gap‑kmer). We fixed the number of
topics for all simulation analyses to 5 and estimated
the best 𝑘‑mer size from the data; it turned to be 9
for all datasets. Each scenario was run 100 times. The
resulting trees were compared with the true trees us‑
ing unweighted and weighted Robinson–Foulds (RF)
distances.

Empirical datasets.—We evaluated three biological
datasets:

Two parapatric closely related bird species: The data con‑
tain multiple individuals of the Australian brown tree‑
creeper (Climacteris picumnus) and black‑tailed tree
creeper (Climacteris melanurus) (Edwards et al., 2022,
2023). DNA sequences consisted of 14 loci and 9 dif‑
ferent geographic locations. For each locus, sequence
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FIGURE 2. Phylogenies of 7 and 14 species used for the simulation of sequence data with deletions and indels (gaps). In Tables 1 and 2, these
are referenced as 7‑tip and 14‑tip trees.

length varied from 288 to 418 base pairs, and the number
of aligned sequences per locus ranged from 78 to 92. For
the evaluations of unaligned data, we removed all gaps
in each sequence. We applied LDA to each locus across
all nine locations and extracted the topic frequencies.
These topic frequencies were used in CONTML to gener‑
ate the population tree, evaluate bootstrap support, and
compare with another approach.

Mammal dataset: The second dataset includes 90 verte‑
brate species focusing on mammals with 5162 loci (Wu
et al., 2018) and was analyzed by Liu et al. (2017) using
concatenated maximum likelihood and coalescent ap‑
proaches. We analyzed this dataset using TOPICCONTML
under four conditions: 1) excluding 𝑘‑mers containing
gaps (”‑”) or unspecified nucleotides (”N”), 2) removing
alignment columns with gaps before excluding 𝑘‑mers
with ”N,” 3) removing all gaps from sequences before
excluding 𝑘‑mers with ”N,” and 4) using aligned se‑
quences while retaining ”N” characters. We then used
the RF distance to compare each phylogram with the
maximum‑likelihood tree and random trees.

PACBIO dataset: A total of 6.5 GB of raw sequenc‑
ing reads of 12 bird species generated by the PACBIO
HIFI sequencing method. The 12 birds cover most of
the depth of the avian tree, including the two deepest
branches; Paleognathae and Neognathae Species were
chosen so as to broadly sample the tree for species be‑
longing to lineages whose higher relationships are fairly
stable, but also to include unambiguously close rela‑
tives, so that we could test the ability of our method to
recover close relatives (Jarvis et al., 2014; Oliveros et al.,
2019). We subsampled 100,000 reads from each species;
average read length per species varied from 9.3 kb in the
tinamou Crypterellus tataupa to 18.8 kb in chicken.

RESULTS

Analysis of Simulated Datasets
The simulations based on the moderate insertion/

deletion scheme, shown in Table 1, demonstrate that the
recovery of trees close to the true tree improves with
the number of loci for all treatments and also for both
tree topologies. The ”Aligned” treatment for both tree
topologies works well with more than 50 loci. The ”Not
aligned” treatment worked better for the 14‑species tree
than for the 7 species tree, but we used only a small num‑
ber of replicates (𝑛 = 100). Still, accurate recovery of the
true tree was almost as high as with the ”Aligned” treat‑
ment. The ”No gap‑kmer” treatment fairs as well as the
”Not aligned” treatment. Weighted RF distances (wRF)
show trends consistent with the percentage of trees re‑
covered that either match the true tree or are within two
distance units of it. Notably, the ’No gap‑kmer’ treat‑
ment is closer to the true tree than the ’Not aligned’
treatment, which performs comparably to the ’Aligned’
treatment.

The simulations with extreme insertion/deletion
strategy (as shown in Table 2) are markedly different for
the ’Not Aligned’ treatment of the 14 tip trees: even with
1000 loci none of the estimated trees were close to the
true tree; ’Aligned’ and ’No gap‑kmer’ faired similar to
the moderate indel/deletion scheme. For the 7‑species
tree all treatments are close to the true tree when the
number of loci is large. Overall the wRF values are all
higher than those for the moderate indel/deletion sce‑
nario, and the ”No gap‑kmer” delivers similar values as
the ”Aligned.”

Analysis of Empirical Datasets
Multilocus species tree from closely related Australian
birds.—For the treecreeper dataset, we tokenized each
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TABLE 1. Simulated data with low indel/deletion frequency and accuracy of phylogenetic reconstruction with TOPICCONTML: data were
simulated using DAWG (Cartwright, 2005), each locus has around 1000 bp with gaps using a low number of gap scenario (parameter: inser‑
tion/deletion probability 0.02/site, average indel length 12, topics=5, 𝑘‑mers were estimated from the data (all estimated 𝑘‑mers were 9 base
pairs); ’Aligned’ results are based on simulated data with gaps, ’Not Aligned’ had all gaps removed in the simulated data, ”No gap‑kmer” had
all 𝑘‑mers containing gaps removed before LDA. ”C” (Close) marks the frequency of topologies that are either the same as the true topology or
not more than 2 rearrangments apart; ”wRF” is the average weighted RF distance from the true tree. Each result is based on 100 simulations.

Loci 7 Species 14 Species
Aligned Not Aligned No gap‑kmer Aligned Not Aligned No gap‑kmer

C wRF C wRF C wRF C wRF C wRF C wRF

1 0.33 1.30 0.27 1.26 0.39 1.30 0.00 1.84 0.00 1.68 0.01 1.81
2 0.61 1.21 0.35 1.25 0.54 1.22 0.02 2.01 0.00 2.07 0.03 1.95
5 0.64 1.20 0.53 1.22 0.64 1.20 0.24 2.01 0.13 2.17 0.27 1.96
10 0.70 1.18 0.47 1.19 0.69 1.18 0.35 2.03 0.31 2.14 0.40 2.00
20 0.78 1.17 0.67 1.20 0.78 1.18 0.64 2.00 0.74 2.14 0.58 2.00
50 0.85 1.17 0.76 1.18 0.70 1.19 0.83 2.01 0.90 2.14 0.81 1.99
100 0.93 1.17 0.74 1.20 0.87 1.19 0.93 1.98 0.96 2.14 0.92 1.97
200 0.97 1.17 0.87 1.19 0.95 1.17 0.95 1.98 1.00 2.13 0.96 1.97
500 0.99 1.17 0.88 1.20 0.99 1.17 0.99 1.97 1.00 2.13 1.00 1.96
1000 1.00 1.17 0.94 1.19 1.00 1.18 1.00 1.97 1.00 2.13 1.00 1.95

TABLE 2. Simulated data with high indel/deletion frequency and accuracy of phylogenetic reconstruction with TOPICCONTML: data were
simulated using DAWG (Cartwright, 2005), each locus has around 1000 bp with gaps using a high number of gap scenario (parameter: inser‑
tion/deletion probability 0.2/site, average indel length 12, topics=5; 𝑘‑mers were estimated from the data (all estimated 𝑘‑mers were 9 base pairs);
”Aligned” results are based on simulated data with gaps, ”Not Aligned” had all gaps removed in the simulated data, ”No gap‑kmer” had all
𝑘‑mers containing gaps removed before LDA. ”C” (Close) marks the frequency of topologies that are either the same as the true topology or
not more than 2 rearrangments apart; ”wRF” is the average weighted RF distance from the true tree. Each result is based on 100 simulations.

Loci 7 Species 14 Species
Aligned Not Aligned No gap‑kmer Aligned Not Aligned No gap‑kmer

C wRF C wRF C wRF C wRF C wRF C wRF

1 0.40 1.25 0.18 1.30 0.22 1.28 0.00 1.86 0.00 2.06 0.00 1.85
2 0.47 1.17 0.23 1.22 0.48 1.22 0.07 2.03 0.00 2.96 0.03 1.98
5 0.60 1.19 0.30 1.23 0.56 1.18 0.16 2.08 0.00 3.31 0.17 2.00
10 0.61 1.19 0.42 1.21 0.57 1.20 0.29 2.09 0.00 3.65 0.36 2.03
20 0.62 1.20 0.57 1.23 0.57 1.22 0.58 2.11 0.00 3.70 0.63 2.02
50 0.59 1.22 0.75 1.20 0.45 1.22 0.84 2.10 0.02 3.78 0.75 2.02
100 0.66 1.21 0.76 1.21 0.58 1.22 0.93 2.09 0.01 3.78 0.93 2.00
200 0.74 1.22 0.86 1.21 0.56 1.23 0.97 2.07 0.02 3.82 0.97 1.99
500 0.88 1.20 0.93 1.22 0.55 1.22 0.99 2.06 0.01 3.83 1.00 1.98
1000 0.82 1.21 1.00 1.22 0.59 1.22 1.00 2.05 0.02 3.81 1.00 1.98

DNA sequence at every locus using 𝑘‑mer representa‑
tion with a 𝑘 value of 8 (as estimated by TOPICCON‑
TML), employing nonoverlapping tokens. Individuals
from the same location were merged, and LDA was ap‑
plied to the corpus to generate topic frequencies for each
locus for each of the nine populations. We used five
topics in our analysis. These multilocus topic frequen‑
cies were then used to construct a maximum‑likelihood
tree with CONTML in the PHYLIP package. We did boot‑
strapping, and Figure 3b shows the majority‑rule con‑
sensus tree generated by TOPICCONTML for unaligned
data, with bootstrap support values derived from 1000
replicates. Inspection of the clades reveals that our tree
recovers the expected geographic relationship within
each species, and the locations are separated by species,
which in turn are separated by the Carpentarian barrier
in Australia (Cracraft, 1986; Edwards et al., 2023).

We compared the performance of TOPICCONTML
with SVDQUARTETS (Chifman and Kubatko, 2014) im‑
plemented in PAUP* (Swofford, 2003) (SVDQUARTETS
+PAUP*), as shown in Figure 3c. There are notable

differences between the results of SVDQUARTETS and
TOPICCONTML. When comparing these results to the
mapped locations in Figure 3a, we observe that our
bootstrap tree from TOPICCONTML recovers the relation‑
ships equally well or better than SVDQUARTETS. Both
methods encounter challenges in resolving certain pop‑
ulation splits but confidently separate the two species.
TOPICCONTML support values recover, in general, the
geographic pattern of the locations well.

We also compared our phylogenetic tree with one
generated using the alignment‑free approach MASH
(Ondov et al., 2016), which estimates evolutionary dis‑
tances between nucleotide sequences. For the MASH in‑
put, sequences from different loci for each individual
were concatenated, with missing data filled by gaps.
The sequences from individuals at the same location
were then merged to create nine FASTA files, represent‑
ing the nine populations in Australia. The pairwise dis‑
tance matrix generated by MASH was used to construct
a Neighbor‑Joining tree using the PHYLIP package
(Felsenstein, 2004). Figure 3d shows the phylogenetic
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FIGURE 3. Relationship tree of nine populations of two Australian treecreeper species reconstructed. (a) The map of Australia shows the lo‑
cations; the black disks mark Climacteris melanurus, and the white disks mark Climacteris picumnus (Edwards et al., 2023). (b) The majority‑rule
consensus tree of unaligned data by TOPICCONTML. For each bootstrap analysis, 1000 replicates were used. Values in the graphs are % support.
(c) The majority‑consensus tree of aligned data analyzed by SVDQUARTETS +PAUP*. (d) The phylogeny constructed by MASH.

tree generated by MASH. When comparing our tree to
the one generated by MASH, we observe that both trees
depict similar relationships among species.

Multilocus species tree from genome‑widemammal dataset.—
We analyzed a mammal data with 90 species and 5162
loci . The dataset consisted of nucleotide characters
from the set ”ACGT‑N.” We analyzed the mammal
dataset under various conditions and compared the re‑
sulting trees to the maximum likelihood tree derived
from 4388 loci of 90 vertebrate species, as reported by
Liu et al. (2017). The comparisons were visualized us‑
ing tanglegrams (Revell, 2024). In the first analysis, af‑
ter generating 𝑘‑mers, we excluded any 𝑘‑mers contain‑
ing either ”‑” or ”N.” The resulting phylogenetic tree
(Fig. 4) was 60 steps away from the maximum likeli‑
hood tree, as measured by the RF distance. In the sec‑
ond analysis, we removed all alignment columns con‑
taining gaps, then excluded 𝑘‑mers with ”N.” The re‑
sulting tree (Supplementary Fig. S4) was 64 steps from
the reference tree. This resulted in a tree generated
using 1719 loci because 3443 of the 5162 loci did not

contain any data after the removal. In the third anal‑
ysis, we removed all gaps from each sequence before
excluding 𝑘‑mers containing ”N.” This approach did not
improve the tree (Supplementary Fig. S5), which was
90 steps from the reference tree. Finally, in the fourth
analysis, we generated a tree using aligned sequences
while retaining ”N” characters. This tree (Supplemen‑
tary Fig. S6) was 80 steps from the maximum likelihood
tree.

The RF distances between 1,000,000 random trees and
the maximum likelihood tree reveal a minimum dis‑
tance of 168, a mean distance of 173.5, and a max‑
imal distance of 174. The topic modeling trees are
therefore considerably closer to the maximum like‑
lihood tree than random trees (Supplementary Fig.
S7), confirming that our topic modeling approach
recovers phylogenetic signal. The tanglegrams (Fig. 4;
Supplementary Figs. S4–S6) also confirm that our tree
and the maximum likelihood tree are fairly similar de‑
spite a seemingly large RF distance, especially when
considering that many of the branches in the mammal
tree are very short (Foley et al., 2023).
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FIGURE 4. Tanglegram of mammal dataset comparing the TOPICCONTML tree (left), generated by excluding 𝑘‑mers containing ”‑” or ”N,” with
the maximum likelihood tree from Liu et al. (2017) (right). The alphabetical list of the species names in the tree is in Supplementary Table S1.
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FIGURE 5. The phylogeny generated by TOPICCONTML (left side) compared with the reference tree (right side).

Multilocus species tree from raw unassembled PACBIO se‑
quence reads.—This dataset consists of FASTA files con‑
taining 100,000 reads from each of 12 species. PACBIO
reads were counted and parsed with Seqkit stats (Shen
et al., 2016) and seqtk sample (Li, 2013). To optimize
computational efficiency, we concatenated every 1000
reads into single sequences, resulting in 100 loci per
species. This approach balances the need to manage se‑
quence length for LDA while reducing the total number
of loci, thereby enhancing computational performance.
Figure 5 (left) displays the tree generated by TOPICCON‑
TML using a nonoverlapping 𝑘‑mer length of 20, with an
RF distance of two from the reference tree, as shown
in Figure 5 (right). The reference tree was drawn from
Cracraft (1988), Oliveros et al. (2019), and Wu et al.
(2024). The discrepancy in relationships of the Wrentit
and Yellow warbler is uncertain, because relationships
in this portion of the passerine tree are certainly not
definitive (Oliveros et al., 2019).

Given the large size of each document, we performed
our first analysis using a longer 𝑘‑mer length (𝑘‑mer
length of 20 as we discussed in Section 𝐾‑mer decompo‑
sition). To assess the effects of different 𝑘‑mer ranges, we
experimented with lengths from 8 to 42. We found that
optimal results were achieved with 𝑘‑mers in the range
of 18–25, as demonstrated in Supplementary Figure S9.

DISCUSSION
This study integrates 𝑘‑mers and probabilistic topic

modeling to perform phylogenetic analysis on un‑
aligned or aligned multilocus sequence data, as well
as on unassembled raw sequencing reads. The Python
code TOPICCONTML offers an efficient workflow to
reconstruct evolutionary relationships potentially

without prior sequence alignment. TOPICCONTML con‑
tains a two‑phase analysis. First, 𝑘‑mers are extracted
from DNA sequences, and LDA uses these 𝑘‑mers to es‑
tablish how probable an individual’s set of 𝑘‑mers fits an
arbitrary number of topics. For each locus and each indi‑
vidual, we generate a vector of assignment frequencies
for a predefined set of topics. This step can be paral‑
lelized among loci. The LDA runtime depends on the
length of the sequences (documents) and the number of
loci. In the second step, the topic frequencies are used as
input for CONTML to construct a phylogenetic tree. The
CONTML evaluation time is influenced by the number of
tips and the number of loci, as the input matrix for CON‑
TML is structured as number of tips × (number of loci
× (number of topics ‑ 1)). Although the current version
of CONTML does not support parallelization, implement‑
ing this capability could significantly improve its run‑
time, particularly for analyses involving many species.
As shown in Supplementary Table S3, the Australian
bird dataset completed in seconds for both LDA and
CONTML. The mammal dataset, however, took longer
for LDA due to its large number of loci (5,162), de‑
spite relatively short sequence lengths, and even longer
for CONTML due to the large input size. For the PACBIO
dataset, the LDA runtime was extended by the signif‑
icantly longer sequence lengths, but the CONTML step
completed within seconds.

The simulated data experiments reflect the influence
of gap handling on phylogenetic reconstruction accu‑
racy under different insertion/deletion (indel) rates and
tree complexities. The simulation protocol produced
aligned data with low and high gap numbers. The
aligned data produced the most accurate phylogenetic
inference; for both moderate and high indel frequencies.
The observed decline in accuracy for the ”Not Aligned”
group, especially in the high‑indel 14‑species tree, stems
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from the loss of indel information and, because gaps are
removed entirely, the formation of new 𝑘‑mer that do
not necessarily coincide with the phylogenetic signal.
The ”Not Aligned” group faired well with the moder‑
ate indel scheme because only few 𝑘‑mers were affected.
The ”No gap‑kmer” group’s results, which approximate
those of the ”Aligned” group under moderate indel
scenarios, suggest that excluding only gap‑containing
𝑘‑mers strikes a balance between noise reduction and in‑
formation preservation. This selective approach retains
enough informative content while minimizing the align‑
ment artifacts that become problematic in high‑indel
scenarios.

In contrast, the analysis of the real datasets was more
complex, as demonstrated using the mammal dataset
to evaluate the effect of structuring sequence data into
𝑘‑mers. The RF distances to the maximum likelihood
tree (Liu et al., 2017) reveal that increasing the number
of loci does not always improve phylogenetic accuracy.
The mammal dataset analysis highlights the robustness
of TOPICCONTML in recovering phylogenetic signal un‑
der various treatments of gaps and missing data. The
most accurate tree (RF distance of 60) was achieved by
excluding 𝑘‑mers containing gaps or ”N,” underscoring
the importance of targeted ambiguity removal. Remov‑
ing entire alignment columns with gaps reduced the
number of loci but still produced a comparable tree (RF
distance of 64). Conversely, removing all gaps from se‑
quences resulted in the least accurate tree (RF distance
of 90), likely due to the loss of biologically informative
gap signals or formation of phylogenetically noninfor‑
mative 𝑘‑mers created at the gap boundaries. Retaining
”N” characters in aligned sequences yielded an interme‑
diate result (RF distance of 80), showing that while am‑
biguity introduces noise, key phylogenetic relationships
are still preserved. Notably, all TOPICCONTML trees were
substantially closer to the reference tree than random
trees.

Tree uncertainty is commonly assessed through boot‑
strap analysis, which poses challenges for unaligned
datasets as it requires bootstrapping at the 𝑘‑mer level
rather than the sequence level. For the treecreeper
dataset, bootstrap analysis with TOPICCONTML demon‑
strates its robustness in recovering phylogenetic rela‑
tionships from unaligned data. The majority‑rule con‑
sensus tree effectively separates the two species and
accurately captures geographic patterns, including the
division across the Carpentarian barrier. Compared
with the alignment‑based SVDQUARTETS, TOPICCON‑
TML achieves equal or better precision in recovering
geographic relationships. Furthermore, the comparison
with the alignment‑free method MASH confirms that
TOPICCONTML effectively captures key phylogenetic re‑
lationships while working with unaligned data.

Our analyses of the PACBIO dataset shows substantial
promise deriving phylogenetic signal from unaligned
long‑read sequences and demonstrates the poten‑
tial of TOPICCONTML for alignment‑free phylogenetic
reconstruction. Despite the complexity of raw,

unassembled reads, TOPICCONTML produced trees closely
matching a reference phylogeny, showing its capacity
to infer evolutionary relationships directly from com‑
plex, heterogeneous data. An important goal of the fu‑
ture is to determine what components of unaligned ge‑
nomic data—tranposable elements, satellite sequences,
or other common components of genomes—are driv‑
ing these positive results. Although the LDA step for
this dataset required additional processing time due to
long‑read lengths, CONTML efficiently completed tree in‑
ference. These results suggest that TOPICCONTML offers a
promising approach for handling high‑throughput phy‑
logenetic data without requiring sequence alignment or
even genome or locus assembly.

TOPICCONTML is modular, and we have begun work
to replace CONTML with a network‑generating pack‑
age that may improve the analyses of such datasets
by incorporating gene flow between species. Currently,
for many datasets that do not suffer widespread in‑
trogression, TOPICCONTML allows the analysis of many
loci from many individuals that can be grouped,
for example, into locations or species. We believe
that TOPICCONTML will become a valuable addition to
the computational toolkit for phylogenetics by con‑
structing evolutionary trees without or with sequence
alignment.

SOFTWARE AVAILABILITY
We implemented our method as a free software

named TOPICCONTML under the MIT open‑source
license. The source code and the documentation
of TOPICCONTML are available at https://github.com/
TaraKhodaei/TopicContml.git
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