
A chi-square type test for time-invariant fiber pathways of
the brain: HARDI extension

Juna Goo1 and Lyudmila Sakhanenko2

1Department of Mathematics, Boise State University
2Department of Statistics and Probability, Michigan State University

Abstract
Integral curve estimation is a well-established method for reconstructing in vivo nerve fiber pathways in the

white matter of the brain. Using longitudinal high angular resolution diffusion imaging (HARDI) data, we
formulate the longitudinal ensemble of fiber trajectories as an integral curve with the parameter time. The goal
of this article is to develop a test statistic to determine whether there are anatomically plausible changes in
nerve fibers with two directions, such as crossing, kissing, or bending fibers. We envision that rejecting the
null hypothesis could help identify a potential anatomical biomarker for neurodegenerative diseases, such as
Alzheimer’s disease.
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1. Introduction

Alzheimer’s disease (AD) is an age-related neurodegenerative brain disorder, which is the most
prevalent cause of dementia [13]. AD can develop from mild cognitive impairment (MCI), a stage
in which cognitive decline extends beyond healthy aging. The main difference between MCI and
AD is whether cognitive impairment is severe enough to interfere with daily tasks [1]. Although
there is no universal laboratory test that can determine the progression of AD in patients with MCI,
diffusion-weighted magnetic resonance imaging (dMRI) has been pivotal in the early diagnosis and
progression of AD.

There are two popular techniques for modeling fiber tracts in vivo based on dMRI: diffusion ten-
sor imaging (DTI) and high angular resolution diffusion imaging (HARDI). In the early 1990s, DTI
was introduced to characterize water movement at a location using a 3 × 3 symmetric and positive
definite matrix, which is termed the “diffusion tensor” [2]. DTI estimates anatomically plausible
fiber trajectories in the white matter of the brain, assuming that the leading eigenvector of the diffu-
sion tensor associated with the largest eigenvalue is parallel to the local fiber tract orientation. The
estimation of white matter fiber tracts using DTI has been extensively studied [3, 4, 7, 11, 12, 15].

However, DTI averages the diffusion properties of water molecules within a voxel, making it
unable to capture different fiber tract orientations. HARDI was introduced to overcome the artifacts
of DTI by using more distinct spatial directions than DTI [17]. Unlike DTI, HARDI characterizes
water diffusion using a high-order supersymmetric and positive definite tensor [9, 14]. In order to
determine different fiber orientations, one can use pseudo-eigenvectors of the high-order tensor that
correspond to pseudo-eigenvalues [6, 18].

This article focuses on the longitudinal HARDI framework. Longitudinal models allow re-
searchers to investigate whether neural connectivity deteriorates over time due to disease pro-
gression or brain injury [5, 16]. Recently, a chi-square type test was proposed to examine time-
dependent anatomical changes in a region of the brain based on the longitudinal DTI model [10].
The null hypothesis in [10] corresponds to a zero rate of change with respect to time in the longitu-
dinal ensemble of fiber trajectories that are uniformly oriented.

This article extends the framework of [10] to the one for longitudinal high angular resolution dif-
fusion imaging (HARDI) studies. Our goal is to develop a statistical test to examine time-dependent
changes in local fiber tracts with two directions, such as crossing, kissing, or bending fibers.



2. Framework

Let D ∈ R3M denote a supersymmetric and positive definite high-order tensor of rank R and even
order M > 2. When M = 2, D is the same as the diffusion tensor in DTI. R denotes the maximum
number of fiber directions per voxel. Following [18], the best rank-1 approximation of the tensor D
is defined as follows:

λ v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
M times

= λv⊗M

where ⊗ denotes the tensor product, λ > 0 is an unknown scalar and v ∈ R3 is an unknown unit
vector (i.e., ∥v∥ = 1). Here, we wish to find (λ, v) that minimizes the following Frobenius norm:

∥D − λv⊗M∥2F . (1)

Solving the pair (λ, v) requires an iterative method starting from the initial values (λ0, v0). Let
(λ(1), v(1)) denote the solution to the best rank-1 approximation of the tensor D(1) = D. For
r = 2, . . . , R, we define (λ(r), v(r)) that make up the best rank-1 approximation of the tensor

D(r) = D(r−1) − λ(r−1)(v(r−1))⊗M . (2)

See [18] and references therein for details. λ(r) is termed the rth pseudo-eigenvalue and v(r) is
termed the rth normalized pseudo-eigenvector of the tensor D for r = 1, . . . , R.

Then we have the following assumption:

Assumption 1 Let G denote a compact set with Lebesgue measure 1 in R3. D(u), u ∈ G is a
supersymmetric, twice continuously differentiable, and positive definite high-order tensor of rank R
and even order M > 2.

Throughout this article, we assume R = 2 (two fiber directions per voxel). Let T ∈ R+. For
r = 1, 2, we define the rth fiber trajectory at time t ∈ [0, T ] as an integral curve x(r)(s, t) which is
the solution to the following ordinary differential equation with the parameter time t ∈ [0, T ]:

∂

∂s
x(r)(s, t) = v(r)(x(r)(s, t)), x(r)(0, t) = x0, (3)

where x0 ∈ G is a time-invariant initial value, s ∈ [0, S], S ∈ R+ is the arc length along the curve,
and t ∈ [0, T ] plays a role of the parameter in its differential equation. v(r)(x(r)(s, t)) denotes the
rth normalized pseudo-eigenvector of the tensor D(u), where x(r)(s, t) is plugged into u.

The equation (3) is equivalent to

x(r)(s, t) = x0 +

∫ s

0

v(r)(x(r)(ξ, t))dξ. (4)

The solution x(r)(s, t) is unique and stays in G [8].
In this article, we aim to develop a test statistic to determine whether there are anatomically

plausible changes in local fiber tracts with two directions, such as crossing, kissing, or bending
fibers. We note that the cosine of an angle θ between two tangent lines to the curves at the arc

v(1)(x(1)(s, t))

θ(s, t)

v(2)(x(2)(s, t))

Figure 1: the angle between two tangent lines to the curves at the arc length s and time t



length s and time t can be defined as follows:

cos(θ(s, t)) = ⟨v(1)(x(1)(s, t)), v(2)(x(2)(s, t))⟩ (5)

since v(r)(u), r = 1, 2 is the rth normalized pseudo-eigenvector of the tensor D(u).
Let JM = (M +1)(M +2)/2. Let D ∈ RJM be the vectorization of the supersymmetric tensor

D ∈ R3M . For r = 1, 2, let

∇v(r)(x(r)(s, t)) = ∂v(r)(u)

∂D(u)

∣∣∣∣
u=x(r)(s,t)

be a 3× JM matrix-valued function and

∇D(x(r)(s, t)) =
∂D(u)

∂u

∣∣∣∣
u=x(r)(s,t)

be a JM × 3 matrix-valued function.
If the cosine of the angle between them does not change over time t, then we have

∂

∂t
cos(θ(s, t)) = ⟨∇v(1)(x(1)(s, t))∇D(x(1)(s, t))

∂

∂t
x(1)(s, t), v(2)(x(2)(s, t))⟩

+ ⟨v(1)(x(1)(s, t)),∇v(2)(x(2)(s, t))∇D(x(2)(s, t))
∂

∂t
x(2)(s, t)⟩ = 0.

Let
[
x(1)(s, t)
x(2)(s, t)

]
be a 6× 1 stacked vector. Then testing whether the angle between two fiber direc-

tions remains constant over time can be achieved by testing the following hypothesis:

H0 :
∂

∂t

[
x(1)(s, t)
x(2)(s, t)

]
= 06 against H1 :

∂

∂t

[
x(1)(s, t)
x(2)(s, t)

]
̸= 06

since the null hypothesis (H0) implies ∂cos(θ(s, t))/∂t = 0.

3. Estimation

For each u ∈ G, let y(u, g) denote the observed image signal affected by water diffusion along
a spatial direction g ∈ R3, ∥g∥ = 1, and y0(u) denote the observed image signal without any
magnetic field gradient. The log-losses of the signal can be observed in the acquired raw dMRI data
and can be modeled as follows [9, 14]:

log

(
y(u, g)

y0(u)

)
= −c

3∑
i1=1

· · ·
3∑

iM=1

Di1...iM (u)gi1 ...giM + σ(u, g)ξg, (6)

where the constant c depends only on the gyromagnetic ratio of hydrogen, the gradient pulse se-
quence shape, duration and other timing parameters of the imaging procedure, each of which are
known a priori, σ(u, g) > 0, and ξg describes noise. Di1...iM denotes the component of the tensor
D.

HARDI requires N = JMm gradient directions where JM = (M + 1)(M + 2)/2 and m ≥ 1.
The equation (6) can be rewritten as follows:

Y (u) = BD(u) + Σ1/2(u)Ξ, (7)

where Y is a N × 1 vector obtained by stacking log(y(u, g)/y0(u)) along N gradient directions, B
is a N × JM fixed matrix determined from the set of directions, Σ is a N ×N unknown symmetric
positive definite matrix, and Ξ is a N × 1 random vector.

In order to accommodate the longitudinal HARDI studies, we let n = nxnt, where nx is the
number of spatial points in a 3D regular grid and nt is the number of time points (or the number of
visits for the dMRI scan over time). The observations are (Ui, Y (Ui)), i = 1, . . . , n, where Ui’s are
assumed to be independent and uniformly distributed in G and

Y (Ui) = BD(Ui) + Σ1/2(Ui)Ξi,



where Ξi’s are independent and identically distributed random vectors in RN having a zero mean
vector and an identity variance-covariance matrix.

Ordinary or weighted least squares estimators (OLS/WLS) can be used to estimate D(Ui) given
Ui. For example, for i = 1, . . . , n, the OLS of D at given Ui is as follows:

D̃(Ui) = (B⊤B)−1B⊤Y (Ui)

= (B⊤B)−1B⊤[BD(Ui) + Σ1/2(Ui)Ξi]

= D(Ui) + Γi,

where Γi = (B⊤B)−1B⊤Σ1/2(Ui)Ξi. Then we define

ΣΓ(Ui) = E[ΓiΓ
⊤
i |Ui] = (B⊤B)−1B⊤Σ(Ui)B(B⊤B)−1.

Next, a kernel smoothing estimator of D(u) can be defined as follows:

D̂n(u) =
1

nh3n

n∑
i=1

K

(
u− Ui

hn

)
D̃(Ui), (8)

where K is a kernel function and hn is a bandwidth. We have the following assumption on the
kernel function:

Assumption 2 K is nonnegative and twice continuously differentiable on its bounded support.
Moreover,

∫
R3 K(u)du = 1 and

∫
R3 uK(u)du = 0.

Let D̂n(u) denote a supersymmetric tensor estimator that is reconstructed from D̂n(u). Let
λ̂
(r)
n (u) and v̂(r)n (u) denote a pair of the rth pseudo-eigenvalue and (normalized) pseudo-eigenvector

estimators that make up the best rank-1 approximation of the tensor estimator. Ultimately, an esti-
mator of the rth fiber trajectory (r = 1, 2) at time t ∈ [0, T ] can be defined as follows:

∂

∂s
x̂(r)n (s, t) = v̂(r)n (x̂(r)n (s, t)), x̂(r)n (0, t) = x0, (9)

which is equivalent to

x̂(r)n (s, t) = x0 +

∫ s

0

v̂(r)n (x̂(r)n (ξ, t))dξ. (10)

Then

[
x̂
(1)
n (s, t)

x̂
(2)
n (s, t)

]
denotes an estimator of

[
x(1)(s, t)
x(2)(s, t)

]
.

We can also estimate Σ(u) in the equation (7) as follows:

Σ̂n(u) =
1

nh3n

n∑
i=1

K

(
u− Ui

hn

)
Σ̃(Ui),

where Σ̃(Ui) = [Y (Ui)−BD̂n(u)][Y (Ui)−BD̂n(u)]
⊤, i = 1, . . . , n.

4. Main results

The proofs of main results require the following assumptions:

Assumption 3 The bandwidth hn satisfies the condition nh6n → β as n → ∞, where β > 0 is a
known fixed number.

The proofs of the following lemmas are similar to the one in [10].

Lemma 1 Assumptions 1-3 hold. Then we have

sup
u∈G

|D̂n(u)− D(u)| P→ 0 as n→ ∞.



Lemma 2 Assumptions 1-3 hold. Then we have

sup
u∈G

|Σ̂n(u)− Σ(u)| P→ 0 as n→ ∞.

Lemma 3 Assumptions 1-3 hold. Then we have

sup
u∈G

|∇D̂n(u)−∇D(u)| P→ 0 as n→ ∞.

Lemma 4 Assumptions 1-3 hold. Then we have

sup
s∈[0,S],t∈[0,T ]

|x̂(r)n (s, t)− x(r)(s, t)| P→ 0 as n→ ∞.

In order to prove main theorems, we introduce the following definitions: For u ∈ R3, let

Ψ(u) =

∫
R3

K(z)K(z + u)dz, ψ(u) =

∫
R
Ψ(τu)dτ.

For r = 1, 2, let Gr be a 3 × 3 Green’s function, defined as the solution of the following partial
differential equation:

∂Gr(s, s
∗, t)

∂s
= ∇v(r)(x(r)(s, t))∇D(x(r)(s, t))Gr(s, s

∗, t), Gr(s
∗, s∗, t) = I,

where I denotes a 3 × 3 identity matrix. For the differentiation of the pseudo-eigenvector with
respect to the vectorization of the tensor, see Theorem 2 of [6].

Theorem 1 Assumptions 1-3 hold. At fixed t ∈ [0, T ], the sequence of stochastic processes

√
nh2n

([
x̂
(1)
n (s, t)

x̂
(2)
n (s, t)

]
−
[
x(1)(s, t)
x(2)(s, t)

])
converges weakly in the space of R6-valued continuous functions on [0, S] to the Gaussian process
GP(s, t), s ∈ [0, S], t ∈ [0, T ] with mean function[

µ1(s, t)
µ2(s, t)

]
=

√
β

2

∫ s

0

∫
R3

[
G1(s, ξ, t)∇v(1)(x(1)(ξ, t))K(z)⟨∇2D(x(1)(ξ, t))z, z⟩
G2(s, ξ, t)∇v(2)(x(2)(ξ, t))K(z)⟨∇2D(x(2)(ξ, t))z, z⟩

]
dzdξ

and covariance function for s, s∗ ∈ [0, S][
C11(s, s

∗, t) O3

O3 C22(s, s
∗, t)

]
,

where

Crr(s, s
∗, t) =

∫ s∧s∗

0

ψ(v(r)(x(r)(ξ, t)))Gr(s, ξ, t)∇v(r)(x(r)(ξ, t))

× [D(x(r)(ξ, t))D⊤(x(r)(ξ, t)) + ΣΓ(x
(r)(ξ, t))]

× (∇v(r)(x(r)(ξ, t)))⊤G⊤
r (s

∗, ξ, t)dξ, r = 1, 2,

and O3 denotes a 3× 3 matrix of zeros.

Sketch Proof of Theorem 1: Let y(r)(s, t) = x̂
(r)
n (s, t)− x(r)(s, t), r = 1, 2. Then we have[

y(1)(s, t)
y(2)(s, t)

]
=

∫ s

0

[
v̂
(1)
n (x̂

(1)
n (ξ, t))− v(1)(x(1)(ξ, t))

v̂
(2)
n (x̂

(2)
n (ξ, t))− v(2)(x(2)(ξ, t))

]
dξ

=

[
z(1)(s, t)
z(2)(s, t)

]
+

[
δ(1)(s, t)
δ(2)(s, t)

]
,



where [
z(1)(s, t)
z(2)(s, t)

]
=

∫ s

0

[
∇v(1)(x(1)(ξ, t))(D̂n − D)(x(1)(ξ, t))

∇v(2)(x(2)(ξ, t))(D̂n − D)(x(2)(ξ, t))

]
dξ

+

∫ s

0

[
∇v(1)(x(1)(ξ, t))∇D(x(1)(ξ, t))z(1)(ξ, t)
∇v(2)(x(2)(ξ, t))∇D(x(2)(ξ, t))z(2)(ξ, t)

]
dξ,

[
δ(1)(s, t)
δ(2)(s, t)

]
=

∫ s

0

[
∇v(1)(x(1)(ξ, t))∇D(x(1)(ξ, t))δ(1)(ξ, t)
∇v(2)(x(2)(ξ, t))∇D(x(2)(ξ, t))δ(2)(ξ, t)

]
dξ +R12(s, t),

and

R12(s, t)

=

∫ s

0

[
v̂
(1)
n (x̂

(1)
n (ξ, t))− v(1)(x̂

(1)
n (ξ, t))−∇v(1)(x(1)(ξ, t))∇D(x(1)(ξ, t))y(1)(ξ, t)

v̂
(2)
n (x̂

(2)
n (ξ, t))− v(2)(x̂

(2)
n (ξ, t))−∇v(2)(x(2)(ξ, t))∇D(x(2)(ξ, t))y(2)(ξ, t)

]
dξ

+

∫ s

0

[
v(1)(x̂

(1)
n (ξ, t))− v(1)(x(1)(ξ, t))−∇v(1)(x(1)(ξ, t))(D̂n − D)(x(1)(ξ, t))

v(2)(x̂
(2)
n (ξ, t))− v(2)(x(2)(ξ, t))−∇v(2)(x(2)(ξ, t))(D̂n − D)(x(2)(ξ, t))

]
dξ.

Using the Green’s functions Gr, r = 1, 2, we can write[
z(1)(s, t)
z(2)(s, t)

]
=

∫ s

0

[
G1(s, ξ, t)∇v(1)(x(1)(ξ, t))(D̂n − D)(x(1)(ξ, t))

G2(s, ξ, t)∇v(2)(x(2)(ξ, t))(D̂n − D)(x(2)(ξ, t))

]
dξ.

As similar to the proof in [10], the following can be proven:√
nh2n

[
z(1)(s, t)
z(2)(s, t)

]
⇒ GP(s, t), s ∈ [0, S], t ∈ [0, T ],

via the functional central limit theorem, and it can be proven that:

sup
s∈[0,S],t∈[0,T ]

∣∣∣∣ [δ(1)(s, t)δ(2)(s, t)

] ∣∣∣∣ = op

(
1√
nh2n

)
.

The mean µr(s, t) and covariance functions Crr(s, s
∗, t) for r = 1, 2, can be derived as in the

proof of [10]. The zero cross-covariance can be proven as follows: Let ψ = x(1)(ξ,t)−U
hn

. Then we
have

Cov[z(1)(s, t), z(2)(s∗, t)]

=
1

nh3n

∫ s

0

∫ s∗

0

∫
R3

G1(s, ξ, t)∇v(1)(x(1)(ξ, t))K(ψ)K

(
ψ +

x(2)(η, t)− (x(1)(ξ, t)

hn

)
D(x(1)(ξ, t)− hnψ)D⊤(x(1)(ξ, t)− hnψ)(∇v(2)(x(2)(η, t)))⊤G⊤

2 (s
∗, η, t)dUdηdξ

+
1

nh3n

∫ s

0

∫ s∗

0

∫
R3

G1(s, ξ, t)∇v(1)(x(1)(ξ, t))K(ψ)K

(
ψ +

x(2)(η, t)− x(1)(ξ, t)

hn

)
ΣΓ(x

(1)(ξ, t)− hnψ)(∇v(2)(x(2)(η, t)))⊤G⊤
2 (s

∗, η, t)dUdηdξ.

Let η = ξ + τhn. Then dη = hndτ and

x(2)(η, t)− x(1)(ξ, t)

hn

=
x(2)(ξ + τhn, t)− x(2)(ξ, t) + x(2)(ξ, t)− x(1)(ξ, t)

hn

=

∫ ξ+τhn

ξ
v(2)(x(2)(ζ, t))dζ +

∫ ξ

0
v(2)(x(2)(ζ, t))dζ −

∫ ξ

0
v(1)(x(1)(ζ, t))dζ

hn
→ ∞

as hn → 0. Thus, under any density kernel function, we have

lim
n→∞

∫
R3

K(ψ)K

(
ψ +

x(2)(η, t)− x(1)(ξ, t)

hn

)
dψ = 0.



Theorem 2 Assumptions 1-3 hold. Consider the following testing problem for 0 < a < b < T

H0 :
∂

∂t

[
x(1)(s, t)
x(2)(s, t)

]
= 06 against H1 :

∂

∂t

[
x(1)(s, t)
x(2)(s, t)

]
̸= 06, t ∈ [a, b].

For s ∈ [0, S], let

Ŵn(s) =
√
nh2n

{
w⊤(b)

[
x̂
(1)
n (s, b)

x̂
(2)
n (s, b)

]
− w⊤(a)

[
x̂
(1)
n (s, a)

x̂
(2)
n (s, a)

]
−

∫ b

a

(
d

dt
w⊤(t)

)[
x̂
(1)
n (s, t)

x̂
(2)
n (s, t)

]
dt

}
,

where w(t) is a 6× 1 vector-valued and time-dependent weight function. Under the null hypothesis
H0, the stochastic process Ŵn(s), s ∈ [0, S] converges weakly in the space of R-valued continuous
functions on [0, S] to the Gaussian process GP(s), s ∈ [0, S] with mean function

µ(s) = w⊤(b)

[
µ1(s, b)
µ2(s, b)

]
− w⊤(a)

[
µ1(s, a)
µ2(s, a)

]
−

∫ b

a

(
d

dt
w⊤(t)

)[
µ1(s, t)
µ2(s, t)

]
dt

and covariance function for s, s∗ ∈ [0, S]

C(s, s∗) = w⊤(b)

[
C11(s, s

∗, b) O3

O3 C22(s, s
∗, b)

]
w(b)

+ w⊤(a)

[
C11(s, s

∗, a) O3

O3 C22(s, s
∗, a)

]
w(a),

where
[
µ1(s, t)
µ2(s, t)

]
and

[
C11(s, s

∗, t) O3

O3 C22(s, s
∗, t)

]
are defined as in Theorem 1.

For finite points s1 < · · · < sm in [0, S], we define

Ŵ0 =


Ŵn(s1)

Ŵn(s2)
. . .

Ŵn(sm)

 , µ0 =


µ(s1)
µ(s2)

...
µ(sm)

 , and C0 =


C(s1, s1) . . . C(s1, sm)
C(s2, s1) . . . C(s2, sm)

... . . .
...

C(sm, s1) . . . C(sm, sm)

 .
Then we reject the null hypothesis H0 if

[Ŵ0 − µ0]
⊤C+

0 [Ŵ0 − µ0] > χ2
α,df=k,

where A+ denotes the Moore-Penrose pseudoinverse of A, χ2
α,df=k is the critical value of the lim-

iting chi-square distribution with k degrees of freedom at a significance level α, and k ≤ m is the
rank of C0.

Sketch Proof of Theorem 2: Using the method of integration by parts, we note that

Ŵn(s) =
√
nh2n

∫ b

a

w⊤(t)
∂

∂t

[
x̂
(1)
n (s, t)

x̂
(2)
n (s, t)

]
dt.

Under the null hypothesis, it can be rewritten as follows:

Ŵn(s) =
√
nh2n

∫ b

a

w⊤(t)
∂

∂t

[
x̂
(1)
n (s, t)− x(1)(s, t)

x̂
(2)
n (s, t)− x(2)(s, t)

]
dt

=
√
nh2n

{
w⊤(b)

[
y(1)(s, b)
y(2)(s, b)

]
− w⊤(a)

[
y(1)(s, a)
y(2)(s, a)

]
−
∫ b

a

(
d

dt
w⊤(t)

)[
y(1)(s, t)
y(2)(s, t)

]
dt

}
,

where y(r)(s, t) = x̂
(r)
n (s, t)− x(r)(s, t), r = 1, 2.

Let y(r)(s, t) = z(r)(s, t)+ δ(r)(s, t) as in the sketch proof of Theorem 1. Then we can decom-

pose Ŵn(s)
under H0= Z(s) + ∆(s), where

Z(s) =
√
nh2n

{
w⊤(b)

[
z(1)(s, b)
z(2)(s, b)

]
− w⊤(a)

[
z(1)(s, a)
z(2)(s, a)

]
−

∫ b

a

(
d

dt
w⊤(t)

)[
z(1)(s, t)
z(2)(s, t)

]
dt

}



and

∆(s) =
√
nh2n

{
w⊤(b)

[
δ(1)(s, b)
δ(2)(s, b)

]
− w⊤(a)

[
δ(1)(s, a)
δ(2)(s, a)

]
−

∫ b

a

(
d

dt
w⊤(t)

)[
δ(1)(s, t)
δ(2)(s, t)

]
dt

}
.

Then the rest of the proof is similar to the one of Theorem 2 in [10].

5. Discussion

In this article, we use the cosine of the angle between two tangent lines to the integral curves
to investigate time-dependent anatomical changes in nerve fibers with two directions. Our future
direction aligns with the application of real HARDI data based on our present theoretical work.
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