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Abstract— Socially-assistive robots (SARs) hold significant
potential to transform the management of chronic healthcare
conditions (e.g. diabetes, Alzheimer’s, dementia) outside the
clinic walls. However doing so entails embedding such
autonomous robots into people’s daily lives and home living
environments, which are deeply shaped by the cultural and
geographic locations within which they are situated. That begs
the question whether we can design autonomous interactive
behaviors between SARs and humans based on universal
machine learning (ML) and deep learning (DL) models of
robotic sensor data that would work across such diverse
environments? To investigate this, we conducted a long-term
user study with 26 participants across two diverse locations
(United States and South Korea) with SARs deployed in each
user’s home for several weeks. We collected robotic sensor
data every second of every day, combined with sophisticated
ecological momentary assessment (EMA) sampling techniques,
to generate a large-scale dataset of over 270 million data points
representing 173 hours of randomly-sampled naturalistic
interaction data between the human and SAR. Models built on
that data were capable of achieving nearly 84% accuracy for
detecting specific interaction modalities (AUC 0.885) when
trained/tested on the same location, though suffered significant
performance drops when applied to a different location.
Further analysis and participant interviews showed that was
likely due to differences in home living environments in the US
and Korea. The results suggest that our ability to create
adaptable behaviors for robotic pets may be dependent on the
human-robot interaction (HRI) data available for modeling.
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1. INTRODUCTION

A. Background

A fundamental challenge in the widespread deployment
of interactive robots into people's everyday living spaces
(home, work, etc.) is designing those interactions in a way
that is meaningful to the end user. Indeed, it is relatively easy
to design interactions from the perspective of the designer,
but understanding how users actually interact with our agents
in the real-world when we are not there actively observing is
more difficult [1,2]. This is of particular interest during
human-robot interaction (HRI) with socially-assistive robots
(SARs), where we have embodied robotic agents in users’
homes equipped with an array of sensors that can collect data
about the interaction and the environment within which it
takes place. Such sensor data can be used to understand the
interaction behaviors occurring in real-time by classifying
multi-modal sensor patterns into discernible activities, with
the aim of generating models for intelligent robot control [3].
Those autonomous robots could then serve various purposes,
such as enhancing human health or assisting with long-term
chronic conditions, e.g. dementia or Alzheimer’s [4,5].

A common assumption in social robotics is that models of
interactive behavior built in one geographic location will
seamlessly transfer to another location, from one culture to
another, with perhaps just a little adaptation [6,7]. However,
it is still an open question whether that is the case, or whether
behavioral models — e.g. machine learning (ML) or deep
learning (DL) models — created in one location would in fact
be sub-optimal in another. Can we truly develop a single
social robotic platform, running the same algorithms, and
then use it in many different culturally-distinct
geographic locations? Would the interaction patterns even
look the same at a second-by-second sensor data level?
Would a robotic pet be truly adaptable using that approach?

Part of that assumption is out of necessity, as it is difficult
to collect data in many different locations given the logistics
and costs of replicating robots in multiple research labs
and/or transporting them [8], let alone the challenges of
conducting simultaneous identical human research trials
across multiple countries [9]. Nevertheless, answering the
above question requires that we run such HRI studies in real-
world settings to generate naturalistic interaction data,
followed by meticulous modeling using a variety of ML/DL
techniques[1]. Yet doing so necessitates that we can sample
such real-world HRI data in a rigorous yet replicable manner.

B. Modeling Real-World Human Robot Interactions

A number of techniques have previously been developed
to understand real-world user interactions during HRI, in
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healthcare and other settings. Those include participatory
design and other recall-based methods to collect data post-
hoc (after the interaction), e.g. diaries, phone calls, and other
data-collection instruments at the end of each day/week [10-
12]. However, such methods are limited by people's capacity
to remember what occurred and their tendency to re-construct
past events based on current perceptions (i.e. “recall bias”)
[13]. A different approach is to use ecological momentary
assessment (EMA), which has been shown to be a powerful
tool for monitoring everyday user behaviors by gathering
real-time data via smartphones [14] as well as modeling
health-related behaviors in particular [15,16]. EMA works
by randomly sampling each user's behavior multiple times
throughout the day over a period of time (days, weeks,
months). More recent research has begun to combine
interactive robots (e.g. SARs) with EMA techniques [17,18].

Prior work has also looked at using sensor data during
HRI studies to detect certain features of the interaction, such
as affect [19], pose estimation [20,21], and gesture
recognition [3], among others. Many of these studies,
however, were in lab settings, and a challenge remains for
identifying free-form activity patterns in everyday life where
the same “behavior modality” can manifest in slightly
different ways at different times, and thus would appear
differently in the sensor data. For example, talking can be
performed quite differently depending on if one is shouting at
someone across the room, versus if they are whispering to
their new puppy on the couch. Or take eating — e.g. eating
pasta versus eating popcorn are the same behavior modality,
but quite different in practice in terms of how the hands and
mouth are moved. This is a similar challenge seen with
human activity detection based on mobile phones, where a
particular behavior (e.g. walking) can look different in the
sensor data depending on if the person is carrying the phone
in their hand, on its side in their purse, upside down in their
jacket pocket, etc. [22]. EMA (and related ambulatory
assessment techniques) offers one potential strategy for
addressing this, by capturing the real-world variation of
various behavior modalities [23]. For example, many
researchers are starting to investigate the use of such
smartphone data for dementia, multiple sclerosis, and other
neurological diseases in terms of how changes in mood and
cognition (i.e. “brain health”) impact keyboard typing
dynamics [24,25]. However, thus far the existing research on
combining EMA with social robots is limited to a handful of
relevant papers [17,18,26,27].

C. Research Aims

The primary aim of this research is to address the above
questions by conducting a long-term deployment of a SAR
companion pet in user homes across diverse geographic
locations (South Korea and the United States), while using
sophisticated sampling techniques to produce a large-scale
dataset of randomly-sampled naturalistic human interactions
with the robot. The sampling combined real-time robotic
sensor data collected every second of every day along with
EMA interaction data collected via a smartphone app. The
data was then modeled using multiple ML/DL techniques to
compare differences across geographic locations.

More broadly, the long-term aim of this research is to
explore integration of in-home robots into a larger healthcare-

Figure 1. Robot cat wearing sensor collar

focused internet-of-things (IoT) ecosystems [28]. Indeed, the
true potential of in-home robotic data may come via
combination with data from other devices in user homes
(smartphones, wearables, other smart home devices) [15,17].
In a healthcare sense, such an approach may enable us to
have a more holistic view of a patient’s health on an
everyday basis outside the clinic walls. We return to this
topic in the Discussion section.

II. METHODS

A. Overview

We conducted a 1-year-long in-home user study with a SAR
companion pet between August 2021 and July 2022,
recruiting 26 participants (13 Korean, 13 US). Each
individual participated in the study for approximately 1
month, during which the robot was deployed in their homes
for roughly 3 weeks, with follow-up interviews conducted
afterwards. The goal was to study these users intensively over
a longer period of time, rather than study many users briefly
[29]. Due to technical hardware failures during deployment
leading to partial data loss, we had to exclude 3 of those
participants from analysis. This left us with a final sample of
23 participants (12 Korean, 11 US). During the deployment
phase, the robotic companion pet was equipped with a
custom-made sensor collar to detect interaction data in the
vicinity of the robot, including light, sound, motion, and
indoor environmental conditions (see Figure 1) [30].
Simultaneously, EMA data was collected about the types of
interaction modalities occurring. In short, the collar data
became our “features” while the EMA data became the
“targets” for modeling. The feature list is shown in Table 1.

Sensor collar data was collected roughly 9 times per
second, every minute of every day, across the three-week
deployment period. That produced roughly 11.7 million data
points per participant, for a total sensor dataset of over 270
million data points. Approximately 65% of the time
participants indicated no interaction with the robot was
occurring at the time the EMA prompt arrived. After
integrating the EMA and sensor collar data, there were
approximately 173 hours of randomly-sampled naturalistic
interaction data with the SAR representing nearly 700 in-
home interactions available for modeling.

B. Data Description

The study here was designed using a convergent parallel
mixed method approach [31], which incorporated multiple
types of data collection (both quantitative and qualitative)
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TABLE L. FEATURE LIST
Features Description
TABLEIL  CATEGORY P
Light & Sound Sensor lightVal, audioVal Raw values from light and sound sensors
Accelerometer accX, accY, accZ Motion amount from accelerometer in x, y (lateral) and z
(up/down) directions

Rotation arc Amount of rotational motion during interaction
Orientation orientation The orientation of the robot at a given time, based in

accelerometer readings

Orientation Category
Portrait Down, Flat

Landscape Right, Landscape Left, Portrait Up,

Specific  orientation categories  detected,
accelerometer manufacturer-specified thresholds

using

Orientation Transitions orient_shift

Frequency of detected transitions between orientation
categories

Sound Category Quiet, Moderate, Loud

Specific sound categories detected, using sound sensor
manufacturer specified thresholds

Sound Transitions

Quiet-Moderate, Quiet-Loud, Moderate-Quiet,
Moderate-Loud, Loud-Quiet, Loud-Moderate

Frequency of detected transitions between sound

categories during interaction

Indoor Environmental Conditions temp, humidity, pressure (air)

Raw values for indoor environmental conditions

Air Quality 1AQ, co2Equivalent,

breathVocEquivalent

gasResistance, | Raw values for indoor air quality

to both model the interactions and better understand the
patterns the models detected. The study included 26
participants, 13 from South Korea and 13 from the United
States. The participants were drawn from the general
population aged 20-35 and living alone, approximately 70%
of the sample was female. Though in previous SAR research,
we did not detect any interaction gender differences [30].

For deployment, each participant was given a SAR, in
this case the Hasbro Joy-For-All robotic therapy pet
(https://joyforall.com) equipped with a robotic sensor collar
(see Figure 1). Participants were able to choose either a dog
or cat version, based on personal preference. The sensor
collar was developed through a research collaboration
between Mississippi State University, Indiana University, and
Hanyang University, and includes sensors that can detect
light, sound, movement, indoor air quality, and other
environmental health data in the vicinity of the robot (see
Table 1 above). This was an updated “V2” version of the
collar, intended to enhance the capabilities over previous
versions [17,30]. It is fabricated via custom 3D printed
designs, then assembled by hand, see Figure S1 in the online
Supplementary Material: https://tinyurl.com/yw546474

While sensor data was collected via the collars, self-
reported interaction behavior modalities were collected
simultaneously using an Expiwell EMA mobile app
(https://www.expiwell.com/). The EMA app was setup to
collect data about the interaction modality (the type of
behavior) and proximity (whether the interaction occurred
near/far to the robot), based on common interaction behaviors
observed in prior research during SAR use in in-home
settings [4,10,11,32]. The modalities included both active
interactions (e.g. petting, talking, playing, moving location)
and passive interactions (e.g. watching television/media,
eating together with the robot). Using an EMA approach
[17] participants were pinged via their smartphone roughly 5-
7 times per day (randomized across waking hours) and asked
to report all interactions with and around the robot during the
previous 15 minutes. Those prompts consisted of a 7-

question survey to assess their interactions with the SAR
(SoREMA instrument), along with additional psychological
assessment questions to gauge user perception and emotional
response post-interaction (instrument is described in [17]).
Approximately 2/3 of the time though, users reported no
interaction behavior to be occurring, which is to be expected
in real-world settings where users are not forced to interact
with the robot. Participants also sometimes reported multiple
modalities occurring during the same interaction period (on
average roughly 2 modality types per interaction).

At the beginning of the deployment period, participants
were given instructions on interacting with the robot, using
the EMA app, and the different types of interaction
modalities, as well as asked to provide baseline information
about their typical daily waking/sleeping schedule for setting
up the EMA pings. All interviews and forms were done in
the participant’s native language (English or Korean) and
conducted by fluent speakers in the US or Korea. Though on
the Korean side, all participants were required to have at least
intermediate proficiency in English (equivalent to TOEIC
level B1) or higher to be eligible to participate. The study
was approved by the IRBs of Indiana University (US) and
Hanyang University (South Korea).

C. Analysis Methods

The analysis in this paper is broken into 3 parts: 1) a
general analysis of interaction patterns between the groups
using descriptive statistics, 2) a machine learning & deep
learning analysis, 3) a qualitative analysis of participant
interview data.

In order to better understand the interaction patterns, we
conducted an interaction modality frequency analysis as
well as a feature selection analysis. For the former, we were
particularly interested if there were differences in how the US
and Korean participants interacted with the SAR companion
pet in terms of different types of interaction modalities
performed with different frequencies. For the latter, multiple
types of feature selection were explored via the python
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Scikit-Learn library, in order to attempt to identify which
features were important for predicting specific modalities.
That exploration included both wrapper-based and filter-
based feature selection approaches [33].

Second, we analyzed the collected EMA and sensor collar
data via ML/DL modeling. In short, the EMA data became
the "targets" (i.e. interaction modalities) while the sensor data
became the "features" for the ML and DL models. For
simplicity, we collapsed the dataset into a series of binary
classification predictions (e.g. petting vs. not petting) rather
than attempt a complex multi-class classification problem.
Due to target class imbalance, the data was re-balanced using
SMOTE [34]. For predicting the EMA target, the feature
data for that 15-minute time period was sliced into 15-
second-long overlapping windows, with 50% overlap (similar
to [35]). The way these features were handled depended on
the type of modeling method. In general, the ML approaches
calculated averages or percentages/frequencies for each
feature across all the windows in the entire 15-minute
interaction time period resulting a single row of data for each
target, whereas the DL approaches utilized the smaller time
windows directly so that each interaction was broken into
many temporal slices. For DL, the data can be visualized as a
multi-dimensional array, with a row representing
approximately 100-150 milliseconds of data ("y" dimension),
a column for each sensor data feature ("x" dimension), and
each 15-second window being a third "z" dimension (see
Figure 2 for a visual example).

ML approaches were performed using the python package
Scikit-Learn (https://scikit-learn.org). Multiple modeling
methods were attempted: Random Forest, Gradient Boosting,
Neural Networks, and Support Vector Machines (SVM).
Models were generally run using the default parameters in
Scikit. Results were evaluated using 5-fold cross-validation
based on accuracy and AUC (area under curve) metrics,
following standard ML guidelines [36]. DL modeling was
performed using the python package Keras (https://keras.io/),
which is a deep learning library based on TensorFlow. To
evaluate performance, 20% of the data was held out as a test
set for each classification run. Multiple DL architectures
were explored for comparison, which generally involved
some combination of recurrent neural network (RNN) layers
and convolutional neural network (CNN) layers. The idea
was that the CNN could parse out "invariant representations”
of pattern signatures occurring anywhere in the interaction,
while the RNN could detect critical "sequences" of those
patterns over time. We also compared two types of RNN
layers: gated recurrent units (GRU) and Long-Short Term
Memory (LSTM). After experimentation, the optimal unit
size for those RNN layers was determined to be around 200,
while the optimal CNN layers were found to have filter size
of 26 with kernel size of 8. We also experimented with
different numbers of layers, though we found that adding
more complexity beyond just a few layers did not necessarily
improve model performance in this case.

Finally, we performed a qualitative analysis of
participant interviews. These were first coded by two
independent coders using the Atlas TI software
(https://atlasti.com/), using a coding scheme developed for
the project that included a hierarchy of codes. The top level

Figure 2. Keras Data Input (described in-text)
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of the hierarchy (“Code Group 1) distinguished comments
related to the robot/collar, the EMA app, and the experiment
itself. Below those top-level codes was a second level with
codes for design, interactions, alerts, incentives, challenges,
charging/battery issues, and desire for leaderboards or other
types of gamification with the robot. For reference, the full
code hierarchy is provided in the online Supplementary
Material (Tables S6 and S7). The codes in the second level
(“Code Group 2”) were further broken into positive, negative,
or suggestions for improvement. Interrater reliability
between the two coders was calculated as 0.67, implying
moderate agreement. After coding, the resulting data was
analyzed in multiple ways. That included code occurrence
frequencies, keyword analysis, and TF-IDF cosine
similarities. We also conducted several t-test comparisons
(two-way independent samples) between the Korean and US
participant data for those analyses to detect any significant
differences, which are described in the Results section.

III. RESULTS

A. ML/DL Modeling Results

Our primary analysis was a comparison of ML/DL
models for SAR interactions built based on either the Korean
or US data separately (single-location) versus across
locations or the entire dataset combined, in order to
understand what might happen if a robotic pet built for users
in one geographic locale was utilized in another locale. To
do so, we evaluated five scenarios where we trained and then
tested the ML/DL models on different datasets:

1) Train on Korean data, test on Korean data (KOR
Only)

2) Train on US data, test on US data (US only)

3) Train on Korean data, test on US data (Train KOR /
Test US)

4) Train on US data, test on Korean data (Train US /
Test KOR)

5) All data combined as if one dataset, then split for
training/testing (US-KOR combined)

Results can be seen in Table 2, with the DL models
generally outperforming the ML models. For brevity here,
we show only the best performing DL model (CNN+LSTM)
and ML model (Random Forests), but more details can be
found in the online Supplementary Material. The DL models
worked the best on the Korean only data (scenario #1),
achieving nearly 84% accuracy across all modalities (with
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TABLEII. MODELING SCENARIO RESULTS (ACC=ACCURACY) TABLE IIL PERFORMANCE BY MODALITY (KOR ONLY DATASET)
ML DL ML DL
Dataset Acc AUC Acc AUC P Total
Modality n g)‘;‘;t"“ Interaction| Acc  AUC | Acc AUC
KOR only 75.5 0.8327 83.6 0.8847 Time (min)
US only 738 08292 | 814 08501 Petting 116 1740 | 66.4 0.7901] 76.5 0.8317
Tra?n K(S)I/{/Testgs 65.0 0.5201 68.6 0.6969 Talking 39 585 773 08725| 84.9 08753
L a T KOR 66.2 0'4203 613 8'62}2 Playing 23 345|902 0.9878| 96.1 0.9833
US-KOR combine 675 07450 | 749 7919 Listening TV/Media | 118 1770 | 51.1 05555 72.4 0.7663
. Eating/Cooking 33 495 81.3 0.8960| 81.3 0.8997
AUC of 0.885). The US only data performed slightly less Moving It 27 405 | 86.9 0.9540| 90.1 0.9520
(sc;enario #2), but still achieved accuracy and AUC in the Average 503 890 |75.5 08327]83.6 0.8847
mid-80s. In contrast, models trained on one geographic
locale then applied to another (scenario #3 and #4) did not TABLEIV.  MODALITY INTERACTION FREQUENCY ANALYSIS. EACH
work, exhibiting significant performance drops that would ROW TOTALS 100%
likely make them unusable for real-world applications.
.. Listening
When combining all the Korean and US data together as TV/  Eating/ Moved
one dataset (scenario #5), we found that the DL models fell Place Petting Talking Playing Media  Cooking It
somewhere in between the single-location and cross-location Korea 31.9%  10.7%  58%  32.4% 9.1%  7.4%
scenarios. They had reduced performance compared to the UsS 347% 16.0% 4.0%  16.0% 7.1%  21.8%

former, though did perform better than the latter. The ML
models in scenario #5 still performed similarly to the cross-
location scenarios, however.

The primary takeaway from all this is that it appears
that simply collecting HRI interaction data in one
location to generate universal behavioral models for in-
home robotic pets may not be a successful strategy. This
is not entirely surprising, as the home living environments
and lifestyles may be quite different in many cultures, e.g.
Korea and the United States, which would in turn lead to
differences in the sensor patterns of various interaction
modalities with SARs. That suggests that we would need to
sample data from multiple geographic locations in order to
build a composite dataset that captures a variety of
idiosyncratic patterns for modeling purposes. Or
alternatively we would need to create models for each
specific cultural environment. That lies in direct contrast to
the notion of cultural homophily, i.e. attempting to simply
adapt the same robot to different cultures, which some HRI
researchers (including ourselves unfortunately) have argued
for in the past [6,7].

Additionally, we evaluated the performance of those
above-mentioned models on each individual interaction
modality. Results can be seen in Table 3 for the KOR only
dataset (scenario #1), with additional results for the US only
and Combined datasets in online Supplementary tables S1
and S2, as well as different modeling methods in tables S3-
S5. The DL models were obviously much more consistent in
their performance across modalities in all scenarios, which
likely indicates there is a significant temporal pattern to the
interactions (which the recurrent layers of the DL can detect,
but the ML cannot). However, one can also see that all the
models struggled in particular with the Listening TV/Media
modality, especially on the Korean side. We note that in
post-deployment interviews, the Korean participants
indicated that they were often watching YouTube or other
media on their phones, and that due to the small living spaces
in Korea were usually wearing headphones. That likely
would cause problems for the SAR companion pet, as it can
only hear ambient sounds.

B. Interaction Frequency and Feature Selection Results

To understand more about factors driving the patterns seen
in the modeling results in the previous section, we undertook
an interaction modality frequency analysis and a feature
selection analysis, comparing the Korean and US samples.
The results of the interaction frequency comparison can be
seen in Table 4. Most of the interactions were performed
with similar frequencies across the Korean and US samples
with two exceptions. First, Korean participants reported
Listening TV/Media more often with the robot. The
interview data showed that a common activity for Koreans
was lying on their bed or sitting at a desk watching YouTube
(as well other media like Netflix) with the robot beside them.
They also reported wearing headphones during that activity,
due to the small living spaces and lack of sound-proofing in
many Korean apartments. Conversely, US participants
reported moving the robot around more frequently (moving it
to a different spot in the room, or carrying it from room to
room). Obviously, the current generation of SAR companion
pets cannot walk, so carrying the robot from place to place is
a common activity. Again, our interpretation here was that
this was due to the differences in home living environments
between the US and Korea, with US homes much larger in
floor space and a greater number of rooms on average
(roughly twice the size, according to OECD data [37]).

We also conducted a feature selection analysis to see if
certain sensor features in our dataset we related to the
patterns of specific modalities. The feature selection was
conducted using multiple approaches (see Methods section).
The full table of results can be found in supplementary
material table S8, but to briefly summarize here we found
many commonalities across modalities but also some notable
distinctions. For instance, we found that Talking, Listening
TV/Media, and Eating/Cooking were indicated by louder
sounds as well as frequent sound shifts between sound levels
(e.g. Loud-Quiet). Talking and Moving were related to VOC
and CO2 levels near the robot, which we theorized was
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TABLE V. CODE OCCURRENCE PER PARTICIPANT, BY CULTURAL
LOCALE (QUOTE-LEVEL). FOR SIGNIFICANCE: *<0.05, **<0.01, ***<0.001

Occurrence
Count (per
participant)
T . Odds
Code Name US KOR stat p-val  Sign. Ratio
Alert 3.00 3.82 | 1.31 0.2053 0.63
Challenges 1.60  2.09 | 1.04 0.3125 0.64
Charging 1.10 1.64 | 143 0.1717 0.56
Design 0.64 0.70 | 0.17 0.8693 0.96
Feelings 7.10 345 | 3.19 0.0075 *ok 2.28
Gamifications 0.60 1.00 1.13  0.2737 0.51
Incentivizing 1.70 145 | 0.62 0.5497 1.03
Interactions 2.20 1.73 0.82 04214 1.13
Leaderboard 1.00 0.82 | 0.58 0.5726 1.07

possibly related to human contact (e.g. breathing). Petting
was indicated by a particular orientation (landscape left back,
derived from the accelerometer), which we believe was
related to the robot cat behaviors (specifically rolling over
when stroked on its back). Both Playing and Petting were
indicated by several motion and orientation features, along
with the ambient light levels.

C. Qualitative Analysis

In order to develop a deeper understanding of the
interaction patterns, each participant took part in a 45-minute
interview after the deployment ended. Those interviews were
coded by two independent coders, then analyzed by various
methods (code co-occurrences, keyword analysis, etc.) to
compare between the US and Korean participants. A
visualization as a Sankey diagram of the code frequency and
co-occurrence associations was first created (see Figure S2).
That revealed there were two main thematic clusters: 1)
negative feelings associated with the technology (robot/collar
charging, design, alerts, challenges), and 2) more positive
feelings associated with the interactive experience (including
potential incentives and gamification). That said, we
suspected there may be significant differences between the
US and Korean participants, which have been observed in
previous cross-cultural SAR research with prior versions of
the robot and collar [30]. A statistical comparison of quote-
level code occurrences per participant (Korean vs US, two-
way independent samples t-test) can be seen in Table 5.

The only significant difference appeared in the Feelings
code category, which US participants mentioned during the
interviews twice as often as the Korean participants.
However, as mentioned above, we know from previous
research that Korean participants tended to be more critical
of this kind of SAR technology, while US participants
focused more on the interactive experience [30]. To test this
with the current study interview data, we re-coded the data
so there were two feeling-related clusters: one with quotes
about Alerts, Challenges, Charging, and Design and one
with Interactions, Incentivization, Gamifications, and
Leaderboards. A t-test comparison of those clusters (two-
way independent samples t-test) between the US and Korean
participants detected a significant difference (p-value 0.045).
A closer look at a few of the participant quotes highlights

this. For instance, amongst the Korean participants many
comments expressed discomfort with the technology and the
frequent sounds it made:

o “Actually, I didn’t feel uncomfortable, but I think it would
be nice to reform it [Collar] so that the user can feel a
little more frriendly. Like a real cat’s necklace. Since this
is a pet robot, I think it would be better.”

o “There was a cat's gesture ... but I don't know if it's a
reaction to my action or just [sic] a random reaction.
When I leave it on, it sometimes reacts alone, like
crying.”

e “I was really worried about what should I do with the
robot, at first, as I've never raised a pet before.”

In contrast, the US participants seemed to have more
experience with raising pets in general, and the larger living
spaces in the US [37] seemed more suitable for the current
generation of SAR designs:

e “Honestly, the study just kind of brought back memories
and like when I got my puppy, so it just it felt good to
like reflect on that. Or just to like look forward to having
something to come home to I guess.”

o “I enjoyed it [sic] if I had come home from my class or
something I [can] look forward to being able to interact
with the dog. Just being able to play with it and talk to
it.”

e “He actually came in really handy because my friend, she
came to visit me and she's like super scared of
thunderstorms and it was thundering real bad and she
saw the cat, and I was like do you want to hold him. So,
we turned him on and it actually really helped her.”

Finally, we would note that while many users expressed a
desire to be able to see a summary of their own human-robot
interactions and sensor collar data at the end of each day, the
majority of participants were negative rather than positive
when it came to being able to compare their data to other
people (e.g. leaderboards). There were also many conflicting
views on whether providing incentives or rewards based on
the data (or other types of “gamification”) was a good idea.
For reference, additional information about the code
hierarchy and definitions of various codes is included in the
Supplementary Material, tables S6 and S7.

IV. DiscussioN

A. Summary of Results

We conducted a long-term user study combining SARs in
people’s homes over several weeks with EMA sampling
techniques in two culturally-distinct geographic locations
(United States and South Korea) in order to understand
whether ML/DL models built for social robots in one location
would still work when applied to another location. Data was
collected every second of every day from 26 participants
across the locations, generating a large-scale dataset of over
270 million data points. Combined with the EMA sampling,
this produced over 173 hours of randomly-sampled
naturalistic human-robot interaction data with SARs in real
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world environments, which was then used for modeling to
detect various interaction behavior modalities.

Results showed that creating universal ML/DL models
for SARs based on data from only one geographic
location may not be a successful strategy. While models
created in one location were successful when used in the
same location (~84% accuracy, 0.885 AUC), when applied to
a different location they suffered significant performance
drops (into the mid-60s). This was true whether we applied
models from the United States to South Korea, or vice versa.
Conversely, models built from a combined dataset of
interaction data sampled from multiple geographic locations
fell somewhere in between the single-location and cross-
location models (~75% accuracy). In general, the DL models
outperformed the ML models across all scenarios, indicating
that there may be some differences in the temporal patterns in
how various behavior modalities are performed across
geographic locations that subsequently show up in the sensor
data, which are subsequently detectable by the recurrent DL
layers.

To further understand those geographic and cultural
differences, we also undertook an analysis into the human-
robot interaction frequency of different modalities across
locations, as well as conducting in-depth qualitative
interviews with participants. Those revealed that some of the
modeling results above are likely due to differences in home
living environments between the US and Korea, which affect
the way that different behavioral modalities are performed
and human perceptions of SAR technology. These results
have potentially significant implications for autonomous
SARs deployed in the real-world, e.g. into patients’ homes
for healthcare purposes.

B. SARs as Socially-Situated Healthcare Tools

As mentioned in the Introduction section, the true power
of SARs for healthcare applications outside the clinic walls
may lie in ecosystems of interconnected technology to create
a single I[oT type system, combining in-home robots,
smartphones, wearables, and other devices. To put it a
different way, this sort of connected systems approach is akin
to the "systems biology" approach in healthcare settings that
seeks to combine different sources of data (e.g. genetic,
clinical, behavioral, social determinants) to more holistically
understand an individual person’s health status [38,39]. That
approach has radically altered the field for both clinicians and
patients, through the extension and integration of new forms
of multi-modal data beyond "traditional" clinical data [40].
Indeed, we would be remiss not to mention the potential of
sensor data from social robots integrated into home IoT
systems to provide useful information about people's
everyday social and cognitive functioning back to other in-
home devices or even to in-clinic electronic health record
(EHR) systems.

Furthermore, such an IoT ecosystem may provide support
for a richer set of interactions with embodied agents like
SARs in user's homes. Extending the types of data available
for the robot to information not available in the robot's
immediate vicinity can obviously open up a broader array of
detectable human activity patterns that may only be a vague
signal in the onboard robotic sensors alone, as well as
possibly enable triadic (or higher degree) interaction

behaviors between the user and multiple devices (with the
SAR being one) [41].

Perhaps less obvious is the potential to model the effects
of human-robot interactions that go beyond the immediate
moment in time, to see how the initial impact might create
long-term ripple effects downstream for the user's life and
health status. In order to fully understand such long-term
ripple effects of SARs in a more data-driven manner likely
will necessitate an IoT approach [28]. Such data could then
be used to link interaction modalities to their longer-term
consequences. In other words, if an in-home robot behaves
in a particular way today, how will that impact the user’s
health in a week or month later? Might it even influence their
interactions with other technology? This may also enable a
path towards better personalization of embodied agents [42].
For instance, outside the scope of research one might imagine
a "continuous EMA data collection system" developed as a
smartphone mobile app or wearable device that could
accompany SARs or other robots when deployed in user's
homes, which could then modulate agent behavior
autonomously through machine learning models based on
IoT ecosystem data.

All of the above suggests that if we want to design SARs
in a manner that maximizes their utility as a healthcare
technology, particularly in in-home settings outside the clinic
walls, then we need methods to better understand the
socially-situated environments they will inhabit [43,44].
Given the differences from one location to another, or one
culture to another, means that doing so will likely be a
significant engineering challenge for future research.
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