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ABSTRACT Network slicing enables operators to efficiently support diverse applications on a shared infras-
tructure. However, the evolving complexity of networks, compounded by inter-cell interference, necessitates
agile and adaptable resource management. While deep learning offers solutions for coping with complexity,
its adaptability to dynamic configurations remains limited. In this paper, we propose a novel hybrid deep
learning algorithm called IDLA (integrated deep learning with the Lagrangian method). This integrated
approach aims to enhance the scalability, flexibility, and robustness of slicing resource allocation solutions
by harnessing the high approximation capability of deep learning and the strong generalization of classical
non-linear optimization methods. Then, we introduce a variational information bottleneck (VIB)-assisted
domain adaptation (DA) approach to enhance integrated deep learning and Lagrangian method (IDLA)’s
adaptability across diverse network environments and conditions. We propose pre-training a variational
information bottleneck (VIB)-based Quality of Service (QoS) estimator, using slice-specific inputs shared
across all source domain slices. Each target domain slice can deploy this estimator to predict its QoS and
optimize slice resource allocation using the IDLA algorithm. This VIB-based estimator is continuously fine-
tuned with a mixture of samples from both the source and target domains until convergence. Evaluating on
a multi-cell network with time-varying slice configurations, the VIB-enhanced IDLA algorithm outperforms
baselines such as heuristic and deep reinforcement learning-based solutions, achieving twice the convergence
speed and 16.52% higher asymptotic performance after slicing configuration changes. Transferability
assessment demonstrates a 25.66% improvement in estimation accuracy with VIB, especially in scenarios
with significant domain gaps, highlighting its robustness and effectiveness across diverse domains.

INDEX TERMS Domain adaptation, deep learning, non-linear optimization, network slicing, resource
allocation.

. INTRODUCTION

ETWORK slicing has been widely investigated in

5G and beyond to support diverse services with
cost-efficiency, flexibility, and performance assurance [2].
It enables the creation of virtualized slices tailored to specific
service needs, optimizing resource utilization and enhancing
overall service quality. However, the ever-increasing com-
plexity and variability in network dynamics, highlighted
by frequent changes in slicing configurations, significantly

complicate the task of resource management [3]. In static
network environments, the problem of resource allocation has
been widely explored, focusing on optimizing slice resource
allocation for specific slice configurations. Prior studies [4],
[5] have tackled the challenges of highly intertwined and
constrained slice resource allocation by formulating analyt-
ical closed-form network models and employing constrained
non-linear optimization methods. Research findings in [6]
and [7] indicate that these approximated models cannot
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accurately represent the complex demands and performances
of slices and advocate the use of reinforcement learning (RL)
methods for resource management under dynamic network
optimization. Recent studies [8], [9] utilizing multi-agent
RL frameworks further simplify the complexity with low-
dimensional state and action spaces. Despite these advan-
tages, deep reinforcement learning (DRL)-based approaches
face significant challenges in reproducibility and general-
ization across diverse network scenarios. These models are
typically highly specialized to the environments in which
they are trained, often requiring extensive retraining and fine-
tuning for new conditions.
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FIGURE 1. Transfer learning (TL) of network slice resource
allocation. The figure illustrates the process of dynamic slicing
resource allocation in network operation and maintenance
(O&M), and TL is applied to address challenges in new
deployments.

To address poor model reproducibility and limited sample
efficiency, recent advancements in transfer learning (TL) [10]
rapidly adapt pre-solved solutions to new tasks, reducing both
processing time and data demand. By leveraging prior knowl-
edge from relevant tasks, TL improves training efficiency,
inspiring its use in wireless communication for network opti-
mization [11], [12], [13]. Several studies [14], [15], [16]
have shown TL’s potential to reduce resource consumption
and improve efficiency. However, TL methods struggle with
challenges like data imbalance, domain shift, and negative
knowledge transfer, limiting their generalization capabili-
ties. Those drawbacks highlight the importance of studying
domain adaptation (DA) [17], which mitigates domain dispar-
ities and enhances transferability. In wireless communication,
DA boosts robustness and generalization [18], [19], [20],
making it critical for dynamic scenarios like slice resource
allocation. Additionally, the information bottelneck (IB)
method [21] offers a promising path for generating flexible
and generalizable solutions across varying network environ-
ments by maximizing the transfer of relevant information
between source and target domains. The authors in [22] fur-
ther discussed IB implications in machine learning models
with practical applications in classification and generative
modeling tasks, which paves an inspirable path in exploring
IB-based approaches in the wireless communication field
for achieving flexible and generalizable solutions from one
network environment (source domain) to another (target
domain), even when characteristics differ.
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Fig. 1 illustrates the process of slice resource allocation
in network operation and maintenance (O&M), dynamically
allocating per-slice resource budgets as ratios of network
resource in each cell at medium time scale, i.e., minutes
or a quarter. Subsequently, the radio access network (RAN)
resource scheduler periodically allocates physical resource
blocks (PRBs) to each service based on the resource por-
tions assigned by O&M as per-slice resource upper bounds.
As Fig. 1 indicates, in fifth generation (5G) and beyond
networks, deploying new base stations with dynamic slice
configurations and sparse samples causes challenges for slice
resource schedulers using existing distributing strategies.
To address this issue, this work proposes a TL-aided deep
learning approach with DA to optimize slice resource allo-
cation for O&M, ensuring adaptability to diverse slice con-
figurations and network conditions with high flexibility and
generality. Our objective is to optimize slice-wise resource
allocation strategies for both existing (source domain) and
newly deployed (target domain) network slices, accommo-
dating dynamic configurations regarding the number of slices
and their respective quality of service (QoS) requirements.
We aim to derive common solutions based on limited domain
samples, ensuring efficient resource allocation across varying
slice conditions.

In this paper, we first introduce the IDLA algorithm, which
integrates deep learning with the Lagrangian method for
highly scalable slice-wise resource allocation. This approach
derives a general slice-wise network performance estimator
shared across all slices using a neural network regression
model and subsequently addresses the resource allocation
problem for each cell as a constrained non-linear opti-
mization problem. Then, based on the IDLA framework,
we further address domain gaps across network environments
by improving the slice-wise estimator’s generality through
TL techniques. Specifically, we implemented a VIB-based
regression model [23], which consists of an encoder for
invariant feature extraction and a network performance esti-
mator, to replace the multi-layer perceptron (MLP)-based
regression. This VIB model adapts to a broader range of
network scenarios with its high representative ability [24],
allowing the derivation of slice resource allocation solu-
tions following the IDLA approach. Compared to previous
TL methods, our approach integrates DA with a VIB-based
slice QoS model, significantly improving transferability and
accuracy within the IDLA framework. Unlike traditional TL
approaches that only apply to static slicing configurations,
our approach can flexibly adapt to dynamic network slic-
ing environments with varying number of slices and their
respective requirements, enhancing generalization and scala-
bility. To evaluate the VIB model’s performance in mitigating
domain discrepancies, we compared its estimation accuracy
in source and target domains across various sample combi-
nations and network setups against two baseline methods:
one employing domain sample re-weighting [25], a widely
adopted technique for addressing sample imbalance, and
the other using a conventional MLP regression model. The
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numerical results indicate that the VIB approach significantly
enhances target domain accuracy, even with fewer samples,
while maintaining robust performance in source domains,
particularly when incorporating more target samples dur-
ing training. In DA scenario comparisons, the VIB method
outperforms both MLP and loss-reweighting baseline meth-
ods [26]. We also implement our IDLA method with proposed
VIB-based estimators in a system-level network simulator to
evaluate their practical efficiency in diverse slicing scenarios.
In particular, we demonstrate a dynamic network slicing
scenario, which deploys varying slicing configurations in
terms of slice types and combinations in real-time, illustrating
the high flexibility and scalability of the TL-aided IDLA
algorithm compared with a DRL slicing approach [9] and
IDLA without TL. The main contributions of this paper are
summarized as follows:

o Improving scalability and robustness with integrated
deep learning and Lagrangian method: We introduce
IDLA, a novel method for slicing resource alloca-
tion that incorporates deep learning models, known for
their strong approximation capabilities with constrained
non-linear optimization method for robustness to data
distribution and diverse utility models. We derive a
general deep neural network (DNN) model to approx-
imate network utility across slices and use this model
to address the slicing resource allocation problem as
a constrained non-linear optimization task with the
Lagrangian method. By leveraging the computational
efficiency of deep learning’s partial derivatives, which
facilitates fast computation of gradients in Lagrangian
methods, we offer scalable and rapidly deployable solu-
tions for resource allocation in real-world scenarios.

o Enhancing generalizability with information bottleneck-
based domain adaptation: Given the challenges of
imbalanced data and domain shift, we formulated the
generalization of the slice QoS estimator as a domain
adaptation problem in the context of transfer learn-
ing. To broaden the generality of the slice performance
estimator, we develop a VIB-based DNN architec-
ture incorporating the domain adaptation features. The
model consists of an encoder extracting common pat-
terns across domains and an estimator handling domain
conditions.

e Reducing complexity and improving flexibility with
shared slice-wise models: Unlike other works, which
include features of all slices jointly, resulting in high-
dimensional state and action spaces [27], our approach
follows a multi-agent centralized training and dis-
tributed execution (CTDE) concept [28] and derives a
lightweight general slice-wise DNN model, to be shared
across diverse slices and domains. We train a single
shared slice-wise model using samples from all slices,
allowing it to generalize across various slice condi-
tions. After training, the model can be deployed for
inference across a large batch of distinct slices. In addi-
tion, we handle the inter-slice constraints with classical
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non-linear optimization methods. This approach signif-
icantly reduces the model complexity, improves sample
efficiency, and enhances adaptability to dynamic slice
configurations.

o Numerical studies and advantages: We evaluated the
domain adaptation ability of the proposed VIB model
under various cross-domain scenarios. Through exper-
imentation across diverse training data combinations
from various domains, our model exhibits twice conver-
gence speed and 16.52% higher asymptotic compared to
the conventional DNN model and a sample reweighting
technique tackling data imbalance issues. Concerning
domain shifts, the VIB-based model demonstrates a
25.66% improvement in estimation accuracy, especially
in scenarios with significant domain gaps, highlighting
its robustness and effectiveness across diverse domains.

The rest of the paper is organized as follows. In Section III,

we first define the network slicing model, then formulate the
slice resource allocation and DA problems. We introduce the
IDLA algorithm for scalable slice-wise resource allocation
by integrating deep learning with non-linear optimization
in Section IV. In Section V, we further introduce VIB-
aided IDLA as DA process for higher solution generality.
We demonstrated the numerical results in Section VI, and we
conclude this paper in Section VIIL.

Il. RELATED WORKS

This work relates to slice resource management in network-
ing, transfer learning methods, and information bottleneck
theory.

A. NETWORK SLICE RESOURCE MANAGEMENT
Numerous studies have focused on addressing a critical
challenge in network slicing: the allocation of RAN slice
resources. Traditional methods, like in [29], [30], assume
static slice demands to allocate resource budgets, uti-
lizing dynamic programming and stochastic optimization.
Anousheh et al. [31] adopted a two-time-scale approach,
considering slice demand distributions on different scales and
minimizing costs through stochastic mixed-integer program-
ming. Others, such as [32] and [33], tackled inter-cell inter-
ference by formulating resource allocation as constrained
optimization problems in dense networks, acknowledging
inter-cell dependencies.

Recent advancements in DRL have led to innovative slice
resource allocation solutions. Guo et al. [34] developed a
DRL approach for admission control and resource allocation
in network slicing. Similarly, Abiko et al. [35] proposed a
DRL strategy for flexible PRB allocation in RAN slicing,
enhancing profits and efficiency. In single-cell environments,
[36] applied DRL to align resource allocation with user
patterns, while Liu et al. [37] decomposed RAN slicing opti-
mization into a primary problem with dedicated DRL agents
for each slice. Yu and Gu [38] examined multi-cell scenar-
ios and implemented DRL algorithms for complex multi-
cell management. Notably, in [39], the authors introduced
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a constrained RL-based resource allocation framework for
network slicing by optimizing midterm minimal network QoS
or user quality of experience (QoE), demonstrating promis-
ing performance in satisfying service demand guarantees.
However, it only addressed slicing scenarios in single-cell
networks, neglecting the effects of inter-cell dependencies.
Moreover, these prior studies mainly focused on optimizing
slicing performance, with limited attention to the solutions’
generalization capabilities across diverse network conditions.

B. TRANSFER LEARNING AND DOMAIN ADAPTATION
APPLICATIONS

The method of TL has been well explored in various fields,
while its application on wireless communication remains
relatively scarce but is gradually gaining attention. Yang et al.
[40] applied TL to adapt a pre-trained beamforming model
in a massive MIMO system, mitigating hardware limitations
and requiring fewer channel data for derivation. TL was
also recommended in [41] for radio map estimation, where
the authors fine-tuned a source model trained on a specific
network for other environments, highlighting TL’s efficacy
with limited training data. Tailored for DRL, Janiar et al.
proposed a TL approach [42] to accelerate DRL training
in wireless networks with an integrated feature extractor,
which quantifies the disparity between source and tar-
get domains. Experimental results demonstrated significant
reductions in training time, outperforming conventional DRL
approaches.

Among TL techniques, DA has attracted significant atten-
tion in practical applications [43], [44], [45]. In [46], the
authors explored the use of TL and DA in the context of
Artificial Intelligence (Al)-native telecommunication net-
works, discussing their application to specific challenges,
such as service performance prediction, end-to-end latency
estimation, and block call rate prediction. The study high-
lighted the significant potential of DA techniques in improv-
ing performance within the communication field. Guan et al.
[47] introduced an uncertainty-aware domain adaptation net-
work (UaDAN) for object detection, applying conditional
adversarial learning to align samples with varying degrees
of similarity and leveraging uncertainty metrics for adaptive
learning. Chen et al. [48] introduced CrossTrainier, a system
for DA that leverages loss reweighting to improve model
reproducibility across different sample sources, yet the sensi-
tivity of loss reweighting hyperparameter requires expensive
tuning and retraining procedures. In End-to-End communica-
tion, Raghuram et al. [49] advocated for DA via autoencoders
to mitigate the need for frequent retraining amidst changing
channel conditions, proposing a method for adapting a Gaus-
sian mixture density network with minimal target distribution
samples and validating its effectiveness through simulation.
In the realm of wireless communication, Zhou et al. [20]
presented SemiAMR, a semi-supervised network utilizing
adversarial learning for cross-domain modulation recognition
without the need for pre-training on labeled target domain
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data, improving classification accuracy. Shi et al. [50] tack-
led the simulation-to-reality gap in network configuration
prediction through a teacher-student DNN approach for DA,
merging simulation and real-world data to enhance training
outcomes.

C. TRANSFER LEARNING WITH INFORMATION
BOTTLENECK
In the context of TL, one significant application of IB in
RL is introduced by Goyal et al. [51], where IB was applied
to enhance exploration by learning a default policy across
multiple goals. This approach showcases how IB can improve
knowledge transfer to new environments, offering advantages
over traditional task-specific RL methods. In the field of med-
ical imaging, Chen et al. [52] applied IB theory to a generative
adversarial network (GAN) for cross-domain image transla-
tion by preserving relevant features and discarding extraneous
information.

Building on the foundations of IB, the VIB emerged as
a powerful tool for extracting transferable knowledge across
domains. In [53], Fu et al. introduced Pluvio, a search engine
that applies the VIB to handle out-of-domain architectures
and libraries. By leveraging pre-trained language models
with VIB, Pluvio demonstrates improved resilience to unseen
architectures, outperforming state-of-the-art search engines
in robustness and accuracy. Similarly, Song et al. [54] pro-
posed a VIB-aided domain adaptation method to improve
feature transferability by focusing on task-relevant infor-
mation while filtering out irrelevant factors. The approach
achieves balanced representations across source and tar-
get domains by combining VIB with conditional entropy
minimization. These experiments show that VIB signifi-
cantly reduces generalization error, addressing the limitations
of traditional domain adaptation methods that only match
marginal distributions. Recent works extended the benefits
of VIB to TL. In [55], the authors propose using VIB to
suppress irrelevant features in pre-trained sentence represen-
tations, improving the ability of task-specific classifiers to
generalize from small datasets. The proposed model maps
sentence embeddings to a latent space, outperforming con-
ventional fine-tuning and other regularization techniques on
low-resource datasets. However, no existing works have inte-
grated the VIB approach into the cross-domain network
slicing problem. This gap presents an opportunity to improve
the robustness of feature extraction and decision-making,
enabling more resilient performance across diverse network
domains.

lll. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first, we define the dynamic network slic-
ing system model in Section III-A. Then, in Section III-B,
we formulate the scalable slice-wise resource allocation as a
nonlinear optimization problem. The DA problem formula-
tion under the context of TL is given later in Section V-A.
Table 1 lists the notations used in this paper.
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TABLE 1. Table of notations.

Symbol Meaning

s Network slice index s € S

c Network cell index ¢ € C

Oe,s Average user throughput of slice s and cell ¢
de,s Average user delay of slice s and cell ¢

Te,s Per-slice resource portion of slice s and cell ¢
Xc Per-cell portions of all slices in cell ¢

X Global slice resource portions over all cells
Ye,s QoS metric of slice s and cell ¢

Oc,s Network observation of slice s and cell ¢

Ve, s Number of active users of slice s and cell ¢
qe,s Average user CQI of slice s and cell ¢

X Input space

Yy Output space

P. s(X,Y) | Joint sample distribution of slice s and cell ¢
De,s Domain comprised by D, s := {X, ), P. s(X,Y)}
Te,s Task Tc,s := {Y, fe,s ()} with fo s : X — V.
Ds Source domain Ds := {D.,s : c € C,s € S¢}
Dt Target domain Dt := {X, Y, Pr(X,Y)}

I Information bottleneck

A. SYSTEM MODEL
In this work, we consider multi-cell slicing scenarios within a
network system comprising a set of cells C := {1, 2, ..., C}
with dynamically configured slices from a collection denoted
as set S := {1,2,...,S}. For each cell ¢ € C, the set of
slicing can be time-varying, represented as Sq(t) C S with
cardinality |S;(#)] = Sc(t), where S.(¢) is the number of
slices in cell ¢ at time slot ¢+ € Ny. At each time slot 7,
the instantaneous slice performance is measured by the net-
work QoS in terms of per-slice user throughput ¢, (f) and
delay d,. 4(t), referring to pre-defined requirements ¢; and d",
respectively. It is worth noting that the slice types in this work
are defined with network QoS referencing throughput and
delay requirements. The problem formulation and proposed
solutions in the following sections can be easily generalized
to broader requirements.

For each cell ¢ € C at time slot z, O&M optimizes inter-
slice resource portions x.(¢), composed of ratios of resource
allocation to all slices, given by

xe(t) = [xe1(0), ..., X 5.0@)] € Xe(D), Yee €, (1)

where X.(t) := | [0, 1]54’)‘ Sorsstt. @
s€S.(1)

Here, x.(¢) represents the resource portions allocated to slices
in cell ¢, with each element x¢ 1 (2), X¢,2(2), - . ., Xe,5.(1)(t) cor-
responding to the resource of a slice, bounded between 0 and
1. S.(¢) denotes the set of slices in cell ¢ at time 7. The slice
resource allocation space A,(t) consists of x.(¢), where the
sum constraint ZSE St e, s(t) < 1 ensures that the total
resource allocation across all slices in cell ¢ at time ¢ does
not exceed 1, reflecting finite resource availability.

Then, the overall collection of network slice resource por-
tions is denoted as x(¢) := [x(?), ..., xc(t)]. The slice-wise
performance of slice s € S.(¢) in cell ¢ € C is measured by
the QoS satisfaction level y. (x(¢)), which is a metric that
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assesses the effectiveness of the allocated resources deter-
mined by the proposed methods, defined as:

c,s dy
be, (x(t))’ S ] ’ 3)
¥ de s(x(1))

where ¢, ((x(¢)) and d. s(x(¢)) are the instantaneous slice
throughput and delay at time slot 7, respectively. As (3)
illustrates, slice performance is determined as the minimum
satisfaction level among slice throughput and delay, which is
upper-bounded by 1. In other words, the slice performance
Ye,s 1s measured as 1 only if both throughput ¢, s and delay
d..s meet the requirements; otherwise, it is measured as the
minimum between ¢, /¢ and d;/d. .

Remark 1: Note that at each time slot ¢, due to inter-cell
dependencies, the slice throughput ¢, (t) and delay d. (¢)
not only depend on the local slice resource portion x. (t) but
also on the allocated resources in other slices of interfered
cells. Therefore, in (3), the QoS metric y. 4(¢) is defined as a
function of the global slice resource allocation x(z).

yc,s(x(t)) = min

B. SLICE RESOURCE ALLOCATION PROBLEM
FORMULATION
In this work, our primary objective is to provide efficient and
scalable solutions for slice resource allocation to optimize the
utility of network QoS across all slices and cells at each time
slot ¢. In Problem 1, we formulate the general problem of
optimizing global network resource allocation concerning the
QoS performance at each time slot.

Problem 1 Global Slicing Problem:

max. Uy(x(1)))
x(t)

subject to y(x(1)) := [ye,s(x(1)) : ¢ € C, 5 € Se(1)],
1, @), 3), V. “
We define the network utility function as the sum of the
logarithms of the local network performance metrics:

Upa@)) = D> log(yesxm)+1). ()
ceC,seSq(t)

Here, we define the commonly used log utility func-
tion [56], which promotes fair resource distribution among
slices. This approach encourages more efficient resource
utilization while ensuring a balanced performance across
various slices. Please note that leveraging the superior
approximation capability of deep learning, our proposed
approach can be extended to accommodate a wide range of
utility functions according to different system designs and
requirements.

Solving Problem 1 presents multifaceted difficulties.
Firstly, the complexity of the utility function poses chal-
lenges for function approximation, mainly due to limited
measurements in O&M. In contrast to RAN, where user
and channel feedback can be collected with fine time gran-
ularity (e.g., in milliseconds), O&M only collects averaged
cell and slice-level key performance indicators (KPIs) with a
coarse granularity (e.g., in minutes). Consequently, deriving
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closed-form expressions becomes exceptionally challenging.
Secondly, the flexible slice configurations and inter-slice
constraints further complicate the problem, resulting in slow
convergence and poor adaptability of deep learning-based
approaches. Finally, O&M’s high scalability demand makes it
challenging to use large global models or collaborative multi-
agent local models that require extensive exploration to learn
from scratch.

Moreover, the challenges of deriving the solution for Prob-
lem 1 also raise another concern: since deriving the slice
resource allocation solution for one specific network scenario
can be time-consuming and complicated, deploying the same
approach when the network scenario changes or under a new
environment can incur significant costs in both time and
resources. Hence, we pose the question: Can we enhance the
adaptability of this solution to accommodate various network
environments or setups more effectively?

IV. THE IDLA ALGORITHM

In this section, we introduce IDLA, a novel algorithm
that integrates deep learning with a non-linear optimization
method to tackle the challenges posed by the complex utility
function, slice flexibility, and algorithm scalability. Initially,
we outline the design of a DNN model for estimating per-slice
network utility, allowing the decomposition measurement of
global network performance through distributed performance
estimators on a per-slice basis. Then, we address the slice
resource allocation problem by formulating it as a non-linear
optimization task, leveraging the insights provided by the
derived estimation model. Finally, we present an efficient
Lagrangian method that capitalizes on the strengths of both
the deep learning model and the optimization process.

A. QoS ESTIMATOR ON PER-SLICE BASIS

For flexible slice-wise solutions, we decompose the global
optimization problem defined in Problem 1 into multiple
local problems, enabling distributed solutions to derive opti-
mal local slice resource portions independently. However, the
challenge of solving function (5) arises from the inter-cell
dependency of each local utility U, (¥ s(x(¢))) on the global
slice resource allocation x(¢). In this work, we explore the
feasibility of approximating each local per-slice QoS satisfac-
tion level y. ¢(¢) using a general estimator fy(x¢ (), 0¢ (1))
for all cells and slices, based solely on the local observations
0. +(t) and slice resource portion x. s(¢). This approximation
is expressed as

Jo (xc,s(t)» oc,s(t)) ~ Ye,s (x(@)),

where 6 represents the parameters that characterize the
estimator.

Conventional QoS estimation models, based on assumed
closed-form expressions, struggle with complex utility func-
tions and sparse data from O&M. Yet O&M gathers averaged
performance indicators at cell and slice levels in coarser
intervals, like minutes, complicating the derivation of pre-
cise formulations. Unlike the conventional approach, our

Vs € Sc(t), Ve e C, (6)
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proposed estimator model is data-driven, utilizing samples
collected from network KPIs. Theoretically, deep learn-
ing models can effectively address the mapping between
allocated slice resource ratios and slice-wise network perfor-
mance if the training samples adequately represent network
behaviors. We propose the following data collection process
to ensure the representativeness of training samples.

1) DATA COLLECTION

The data for training the general network performance esti-
mator are collected periodically in network O&M, typically
every 15 minutes, Practically, collecting data too frequently
(e.g., every minute) increases the load on both network
resources and monitoring systems, while longer intervals
(e.g., hourly) may overlook critical performance fluctua-
tions. The 15 minutes interval balances the trade-off between
timely issue detection and minimizing overhead, offering
sufficient granularity for network KPIs analysis, which also
aligns with practical settings and performance measurement
guidelines suggested by [57]. Based on prior expert knowl-
edge of network behavior, to evaluate the defined slice
utility yc s(¢), computed by achieved throughput ¢, (t) and
latency d, ¢(t), for all ¢ and s, we consider the following
highly correlated per-slice network KPIs as samples for DNN
training:

o Per-slice resource portion: x. () is the actual ratio
of the PRBs occupied by the slice, resulting in achieved
network throughput ¢, (¢) and delay d. (). It can be
seen as the surrogate of the optimizing target x. (¢),
meaning that if resource portion x(f) = X ()
were allocated to the slice, the corresponding achieved
throughput and delay would be ¢, ((#) and d. (¢),
respectively. To avoid ambiguity, in the rest of the
paper, we only use x. s(¢) to represent the slice resource
portion;

o Number of active users: This terms composes the
previous H steps of historical per-slice average number
of active users as v s(t) := [ves(( —H), ..., ves(t—1D];

o Channel quality indicator (CQI): Similarly, the slice
CQI samples are taken with the previous H states of
per-slice average CQI as q.; = [qcs(t — H), ...,
qe,s(t — DI

« Slice QoS requirements: The QoS requirements are
considered in terms of slice throughput and delay
requirements as ¢  and d} ; respectively.

Here, we propose to collect multiple historical states of
the number of users and CQI based on the hypothesis that
the traffic demands do not change rapidly among successive
time steps. We hope that the historical slice states can capture
temporal correlation and reflect some hidden information
extracted from the missing global states, such as inter-cell
and inter-slice interference. Also, since in real-time v, (t)
and g, ¢(t) are unknown for estimating network performance
at time step 7, we can predict the succeeding readings from
previous records within [t — H,t — 1]. Then, the set of
local observations as the training input of slice QoS estimator
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collected during the period [1, T] is given by:

XL, = {0, 005() : fort=1,...,T, Ve, sh, (7)
where 0. 5(1) = [ve,s(1). 4. 5(t), ¢F. df] e R*F2. - (8)

The set of output samples is denoted by:
VI o= {yes(t): fort =1,...,T,Ve,s}, 9)

where the slice-wise QoS satisfaction level y. s(¢) is com-
puted by (3) based on the observed throughput ¢, (f) and
delay d, s(t).

2) LOCAL UTILITY APPROXIMATION
Assume we have derived the general slice QoS estimator
fo : X — Y defined in (6) based on the proposed data
collection approach, where the interference on each local
utility is extracted by collected network observations. Then,
local utility (3) is approximated with:

Ue,s(ve,s(x(1))) ~ log(fy (xc (1), 0¢,5(1)) + 1). (10)

In this manner, the local general estimator model has
much lower complexity and smaller sample dimensions with
input x. () € N than the global model where x € Re,
and the training process gains higher sample efficiency than
individual training of independent models. By introducing
slice-specific requirements in terms of throughput ¢ and
delay d in the training input features, the derived model
fo can handle various network slicing setups, even unseen
slice types. Additionally, to extend the diversity and explore
a broader spectrum of the unseen sample space, we employed
the following data augmentation methods on domain
samples:

(1) For samples where observed QoS falls below the
requirements, i.e., y. s() < 1, we augmented samples by
substituting QoS targets (¢;, d;) with the achieved QoS
(pc,s(2), dc.s(t)), and setting y. ¢(¢) to 1. This adjustment
implies that when the achieved QoS matches the set, the
requirement satisfaction level should be 1;

(2) For samples meeting or exceeding QoS requirements
ie., yos(t) = 1, we augmented samples by increasing
the allocated resource portion x. () to a random, higher
value within [x. 4(¢), 1]. Since y. s(¢) is upper bounded
by 1, enhancing resource allocation ensures that the
satisfaction level remains at its maximum according to
the monotonicity of y. ¢(t) over x. 4(¢).

Remark 2: By simulating variations within the defined
resource constraints and reward bounds, the applied data aug-
mentation methods enable the exploration of unseen sample
spaces, enhancing the model’s generality and ensuring robust
performance across various scenarios.

B. LAGRANGIAN METHOD FOR RESOURCE
ALLOCATION OPTIMIZATION

With local utility approximation (10), we can decompose the
global optimization Problem 1 into distributed per-cell local
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optimization problems respecting inter-slice resource con-
straints. For each cell ¢ € C at time ¢, the local optimization
problem for slice resource allocation is given by:

Problem 2 Decomposed Local Problem:

max. Foxe() = >, 108 (fo (ves(). 0c.0)) + 1),
‘ s€Se(t)

subject to (1), (2), Vt,Vc € C, (11

where o, () is the local observations defined in (8).

Problem 2 is a classical constrained non-linear optimiza-
tion problem. Note that the objective in (11) is a monotonic
non-decreasing function over x € R,, i.e., we have
Fl(t)) = F(xc(1)) if x[.(r) > x.(r) (entrywise greater).
Therefore, the optimal solution to the problem with the
equality constraint is also an optimal solution to the original
problem, and we can solve it using the Lagrange multiplier
method. Since the problem is independently formulated for
each time slot ¢ and cell ¢ € C, hereafter in this subsection,
we omit the index of ¢ for brevity. Referring to [58], for each
cell ¢ € C, the Lagrangian is given by:

LG, A) = D Tog (fale) + 1) + Ae(1 = D xe.s),
SES, SES,
(12)

where X, 5 := (xc,s, oc,s),fo is the learned estimator in (11)
defined by @ € ©, and A\, € R is the real non-negative
Lagrangian multiplier. The primal and dual problems are
given by:

x:(\) = argmax L(x¢, Ac), (13)
xCERZ()
AF = argmin £(x}(Ae), Ac). (14)
Ac=0

The problems can be solved by iteratively computing the
partial derivatives with respect to each variable, apply-
ing gradient descent (GD), and Lagrange multipliers
accordingly [58]:

o2 (s9.)
ng;rl) — xéz)s + 80 ——5— | W€ Se,
0x¢.s
L +
e s (1o |
L SESC +
15)

where i is the index of iteration, §; and 8 are the positive
updating rates of x. s, Vs € S. and A, respectively, and [x]+
is equivalent to max{x, 0}. The partial derivative of £ with
respect to x. g, Vs € S, is given by:

oL (xg.i), )\g)) 1 dfe (xfl)s) _
) = ; ' o AL ae)
Oxe,s fo (xél)s) +1 0xes
A significant limitation of Lagrangian methods is their
difficulty in handling non-linear and non-convex functions,
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which can lead to multiple sub-optimums on the functional

surface, potentially trapping the search in a local optimum.

To overcome this challenge, we utilize the automatic differen-

tiation capabilities of deep learning and develop the following

strategies:

(1) Transitional initialization: Assuming that network
states between two successive time steps change
smoothly, we suggest initializing the starting points for
the optimization of each time slot ¢ with the optimized
solution of the previous time slot r — 1, i.e., xg.o)(t) =
x5t — 1);

(2) Parallel exploration: To find a superior among a pos-
sibly local optimum, we generate K neighboring points
near xgo) and run the GD optimizations from all initial
points in parallel, i.e., xglk) =xP 4+ e ke{l,... K
where € is the shifting variable for taking neighboring
points with € € N (i, X), and is clipped to ensure x;, €
X,. After GD optimizations have finished, we select the
best solution among them with:

x* := arg max Zlog (foxk so0e)+1). (A7

Yo seS,

Leveraging the automatic differentiation module forch.
autograd in PyTorch [59], we can efficiently calculate the
partial derivatives of the slice estimation models with respect
to any input variables on tensors, i.e., the partial derivative
dfe (xél)v) / 8)65’); as in (16) which facilitates rapid parallel
computation across multiple search paths.

V. TRANSFER LEARNING FOR IDLA ALGORITHM

In Section IV, we introduced the slice-wise resource alloca-
tion solution IDLA for scalable slice configurations within
the same network scenario. However, the transferability of
IDLA from one specific network scenario to another raises
concerns about its performance. This is because even a minor
configuration change in the network system can introduce a
drift in the slice sample space, which the derived slice-based
model may not have encountered before, leading to a possible
degradation in the accuracy of the QoS estimator. Conse-
quently, the Lagrangian method loses the gradient guidance
necessary to find optimal solutions.

To address these challenges, in this section, we propose
to enhance the generality of the estimator with a DA model
structure. We first provide the domain definitions under the
context of the proposed IDLA framework and formulate
the DA problem of slice-wise QoS estimation model in
Section V-A. Then, in Section V-B, we introduce a VIB-based
estimator. The derivation of this model involves finding a
common latent sample space, which extracts representative
features across different slice configurations. The underlying
hypothesis is that certain common hidden patterns exist in
samples across diverse cells and slices. By leveraging TL,
we aim to identify these representative sample space fea-
tures, deriving a general slice QoS estimator model. Lastly,
we evolve VIB-based estimator into IDLA approach.
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A. TRANSFER LEARNING PROBLEM FORMULATION
Before we formulate the DA problem of the IDLA solution,
let us introduce two general definitions related to TL:

e Domain: A domain D := {X, ), P(X, Y)} comprises
an input feature space X, a label space ), and the joint
probability distribution of random variables X and Y
with the sample space X" and ), respectively.

o Task: A task 7 := {J, f(-)} includes the label space )
and the mapping functionf : X — ).

In the following, we use upper case letters for random
variables, e.g., X, Y, and lower case letters for the particular
realizations (measured samples) of the random variables,
e.g., x,y. Formally, we extend the general definition of the
TL problem in [17] as follows:

Definition 1 Transfer Learning: Given a source domain

Ds := {Xs, Vs, Ps(X, Y)} with a set of samples QS :=
{ x;cs), y;{S) :k=1,..., Ngy for solving the source learn-
ing task Tg = {Vs, f(-)} by minimizing the training loss

l(f (), y) over all samples, where f(-) refers to the model
being trained. The expected loss in the source domain is given
by [17]:

RS(F) : = Fge e [ L(F@).7)] (18)

_ / 1(f@).y) - Ps(x.y)dxdy.  (19)

Define a target domain Dt := {X7,V1, P1(X,Y)}
which only has a limited number of samples QT =
{(x,(cT), yg)) k=1,... ,NT} with Nt <« Ng. The objective
of TL is to minimize the expectation of estimation loss in the
target domain with f (-):

R1(f) := E@.y)~Prx.y) [l(f (), y)]

=/z(f(x>,y) : %

Pr(x, y)
— - I(f(x), . 20
[Ps(x’y) (f@ y)] (20)
Note that in this work, the source and target tasks are
identical with the same label space Y1 = )sg, the objective
of TL in this work is to leverage the source data and limited
target data to learn a slice QoS estimator model f(-) capable
of performing well in the target domain. Under the context
of the slice-based QoS estimator in the IDLA approach, each
slice s € S, of cell ¢ € C can be regarded as a domain D, .
While all D, g and 7. 5, Vs € S, ¢ € C share the same sample
spaces, such as x. s € [0, 1]in (2), 0.5 € R2+2 in (8), and
Ye.s € [0, 1]1n (9), respectively. For brevity, in this section we
denote ¥, (1) := (Xc.5(t), 005(1)) With X, s(t) € X, where
X stands as an extension of X’ because of adding o(r). For
each domain, the set of input samples for the QoS estimator
is given by:

Xy = Xes(t): forr=1,..., T} C X. 1)

Ps(x, y)dxdy

= B y)~Psx.y)

The set of output samples is denoted by:
Ves 1= {yc,s(t) : fort = 1,...,T} c ), (22)
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where X' := UceC,seSc(t) XC,S and J = UceC,seSc(t) yC,S
are the collections of input samples and output samples,
respectively. Then, the local domain can be denoted as
Des = {QE', Y, Pm()_(, Y)}, and the local task of solving local
utility estimation is 7¢. s := {), fo 5(-)}, where f. s : X — ).

Based on TL formulation, the problem of DA for training
a slice-based QoS estimator can be formulated as Problem 3.
We omit the time index ¢ for brevity starting from this section.

Problem 3 DA Problem for Slice QoS Estimator: Given a
set of source domains Dg = {DC,S cceC,se SC}, where
each domain comprises collected samples from source cells
C C C and slices S, C S, and a target domain Dy =
{/"E', Y, PrX, Y)} representing the slice s € Sy of cell
¢’ ¢ C, we aims to derive a slice-based QoS estimator f ™) (.)
based on the samples from Ds, such that the expectation of
QoS estimation loss over samples in Dt is minimized. The
problem is given by

min. Rt (f (TL)) = E&,y~Pr&.y) [l (f T (), Y)]

f(TL)
PTX,y) . (,(TL), -
=B yrss [—_z (r™a.y) |,
(x y) S(x y) PS(x, y)

subject to (21), (22). (23)

Pg(x,y) = ZseS},ceC_ we sPe s(X,y) is the mixture distri-
bution of samples from all source domains used to derive
the model f™ = X — Y, where we,s are the weights
assigned to each local distribution with Zsesc,cec_ wes = 1.
In this work, we assume the domain weights are equally
distributed as w¢ s = 1/(C| - 1Se)), Vs € Se,c € C. The
rationale behind using equal weights across source domains
is to ensure that each domain contributes uniformly since
there is no prior knowledge about the relative importance
of specific domains, allowing the model to generalize more
effectively across all domains. Equal weighting also simpli-
fies the problem by normalizing the influence of each domain,
promoting the learning of transferable features to the target
domain. P1(x, y) denotes the distribution of samples collected
in slice s’ of cell c'.

The challenges in developing an adaptive QoS estima-
tor f(TH(.), that performs well on both source and tar-
get domains, arise primarily from the differences between
Ps(x,y) and Pt(x, y). In our problem, the source and target
task functions are the same, i.e., Pci,‘gp(ylfc) = ch,sq(yp'c)
with respect to a common slice-based estimator f TV (¥) = y
in (6). Hence, we can express the relationship as:

Pr®.y) _ PT@®PTOIR)  Pr(®)
Ps(x,y) Ps®Psty) Ps(x)
The difference between domains depends solely on the dis-
tributions of input samples. This allows us to rewrite (23) as:

. Pr(x) TL) =
B ypey -1(<>,). 25
;I}%g ®.)~Ps(E.y) [PS(J?) M),y (25)
B. A VIB-BASED QoS ESTIMATION

From (25), it is evident that the TL problem becomes an
authentic machine learning problem if Pt(x) = Pg(x),

(24)
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i.e., training and validating model f ™ on the same sample
distribution. We aim to map samples from different domains
into a common representative latent feature space. This com-
mon space should extract features informative enough to
distinguish and represent the patterns of various domains,
allowing the derivation of a general QoS estimator capable
of handling samples from different distributions.

1) INFORMATION BOTTLENECK

In this work, we propose to derive an adaptive slice-based
network QoS estimator f (T based on source domain sam-
ples from Pg(x, y) that performs well on target samples from
Pt(x, y) using a domain adaptation approach inspired by the
VIB method [23]. Specifically, we aim to find intermediate
representations of X as latent variables Z by solving an
encoder g parameterized by €. We aim for Z € Z to be
maximally informative about the training output ¥ € ).
The informative level is measured by the mutual information
referring to [23]:

P(z, yl€)
P(z|le)P(yle)

I(Z,Y;€) = /P(z,y|e)log dzdy. (26)

.......................................................... B,

FIGURE 2. VIB-based slice QoS estimator. The proposed VIB
model consists of two sub-models: g, which acts as the
encoder, and hy, which serves as the QoS estimator.

We aim for a representative space Z that is informative
enough for capturing Y while maintaining a low dependency
on X. To restrict the complexity of the representation space,
we introduce a constraint on the mutual information between
XandZ as ! z, X; €) < I.. Here, I, represents the informa-
tion bottleneck, which sets the limit of information about X
that Z can obtain. Referring to [21], the problem of finding
the encoder g¢ is given by:

max.I(Z,Y;€), subjecttol(Z, X:e)<I.. 27
€
And by introducing a constant 8 > 0, the objective function
for solving (27) is:
Lip(e) :=1(Z,Y;€)— BI(Z,X; €). (28)

By maximizing the first term of (28), the function encour-
ages the representation Z to be predictive of output ¥, while
minimizing the second term encourages Z to “forget” X.
This means Z is forced to be a minimal sufficient statistic
of X for predicting Y. This objective function aligns with
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Shannon’s rate-distortion theory [60], where I(Z, X) repre-
sents the “rate” of information about X encoded in Z, and
1(Z,Y) inversely relates to “distortion,” reflecting how well
the representation Z predicts Y. The weight factor 8 adjusts
the trade-off between the information compression rate and
prediction distortion.

2) VIB-BASED MODEL

To derive the solution for (28), we propose using the VIB
approach, approximating the problem with variational infer-
ence. We assume P(z|x,y) = P(z|x) corresponding to the
Markov chain Y - X — Z — :)A/, i.e., the representa-
tion variables Z are not directly dependent on output labels
Y, while ¥ denoted the prediction of Y generated from Z
without direct dependence on Y. Under this assumption, the
joint distribution of P(x, z, y) can be factorized as:

P(x,z,y) = P@|x, y)P(y|X)P(X)
= P(z|®)P(y[X)P(X). (29)

Recalling the objective function (27), besides P(x, y) which
is determined by the sample distribution, the only content
we need now is the encoding function P(z|x), while other
distributions can be derived based on the Markov chain.

Following the derivation process of VIB, we can simplify
two terms in (28) respectively:

I(Z,Y) > / P(X)P(z|x)P(ylx) log O(y|z)dxdzdy,  (30)

P(z|x)
R(z)

where Q(y|z) and R(z) are the variational approximations of
P(y|z) and P(z) respectively. It is necessary to address that our
proposed VIB-based estimator aims to extract latent variables
Z as sufficient representatives of the original slice samples
from different domains and thereby capture common latent
features in between to conduct robust slice QoS estimations.

In this way, solving the Lagrangian (28) boils down to
maximizing L to find the optimal g, for encoding P(z|x; €).
In the context of slice-based QoS estimation presented in this
work, the joint sample distribution P(x, y) can be approxi-
mated based on collected samples from domains, as indicated
by (21) and (22), using the empirical distribution. Therefore,
in practice, we can compute L;g by:

1(Z,X) < / P(x)P(z)x) log dxdz, €)))

Lip~ —

w2 [Zreioweoo.m

ceC,seS. %

— B P(z|x,s)log

P(z|-’_cc,s)]’ (32)

R(z)

where Ng is the number of collected samples from source
domains. Assuming P(z|x. ;) follows a Gaussian distribution,
we define the encoding P(z|%.s) := N(zlgk (Xc.s), & (Xe.s))
with respect to the encoder g¢. To enable differentiability dur-
ing backpropagation, we sample z from P(z|x. s) in the first
term of (32) using the reparameterization trick [61], where
e ~ N(0,7) is a Gaussian random variable. For simplicity,
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we represent this as the deterministic function ge(X. s, €),
combining the encoder g¢ and reparameterization. In the
second term of (32), B P(z|x)log (P(z|x)/R(z)) corresponds
to the Kullback-Leibler (KL) divergence Dg; between the
learned posterior P(z|x) and the prior R(z), which measures
how much the learned distribution P(z|x) deviates from the
reference prior R(z).

In summary, we can derive the VIB model for slice-based
QoS estimation with domain adaptation by minimizing the
following objective function:

1 -
Jup =5 X B[~ 102 00esfgetEes. )

ceC,se8S,

+ B D[P, )IR) | (33)

The variational estimation Q(y. s|8e(Xc.s, €)) can be defined
as a DNN model iy : Z — Y for QoS estimation, consid-
ering the derived representations z = g¢(X..s, €). Therefore,
the proposed VIB model for QoS estimation comprises two
sub-models: the encoder g¢, parameterized by 6 € ©, and
the QoS estimator /g, parameterized by € € £. And the loss
function comprises two terms: the negative log-likelihood and
the KL divergence. The architecture of the model is illustrated
in Fig. 2.

C. VIB-AIDED IDLA ALGORITHM
In Section IV-A, we propose to collect slice-wise network
observations as in (8) to capture common features from dif-
ferent slices for learning a general slice QoS estimator fy. For
DA problems, the model is required to be generalizable to
different source domains but also “predictable” for adapting
to unseen domains. This implies that the DA model should
be capable of distinguishing domains and learning hidden
patterns through the collected source samples. Following the
approach proposed in Section V-B, we can derive a VIB-
based model as an adaptive QoS estimator.

Based on the VIB model, in the IDLA approach, the
Lagrangian function for solving local Problem 2 of each cell
¢ € C is reformulated as:

Lvip(e, Aei €)1 = D log (hg 0 ge(Xe s, £) + 1)
€S,

+ )\C(l -3 x) 34)

SES,

Similarly, we can solve the primal and dual problems and
solve each local optimization with GD iteratively:

- 4 0Ly (x(ci),kg))
sy Vi= a8 ——— | S WseS,
axc,s
+
i+1) . i 0] i+1
A = A0 =60 (1= D7 D
L XESL- +
(35)
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The VIB model is composed of models g¢ and hg, and
their differentiability is guaranteed by implementing the repa-
rameterization trick for sampling latent representation z, the
derivatives of Lyyp are derivable with respect to x,. ¢ as:

0Ly 1 98

0hg o ge
axg)s hg o ge + 1 08¢ axi’)s

2D 36)

With these changes, the VIB can further proceed with
the slice resource allocation following the pipeline of the
IDLA algorithm. Similarly, to ensure a robust and efficient
optimization process, for VIB-aided IDLA algorithm, we also
implement the searching strategies presented in Section IV-B.
Specifically, for parallel exploration in K different paths,
we select the optimal among them after convergence with:

xi=arg ?aXZIOg (ho 0 8e (x} 52 0c5.8) +1).  (37)

Yoy seS.

In Algorithm 1, we demonstrate the complete process of
IDLA algorithm with VIB-based estimator, where N (i, X),
129 "and & denote the normal distribution for taking neigh-
boring points with mean g and covariance matrix X, the
maximum iteration steps, and criterion for stopping iteration,
respectively.

Algorithm 1 VIB-Aided IDLA Algorithm
1: fort e Tandc € C do

2: i< 0
N xg)(t) - difault action, if t — 0
x,(t—1), otherwise
4: Take K neighboring points as:
50 x20) = xP@0) + e k € [1,...,K], with € €
N(p, T)
6 Parallelly compute for all k € [1,...,K]:
7: Initialize Lagrangian multiplier )\g)
8 Initialize update rates s < 0, ng) >0
o.  whilei < I™ and [lx% (1) — x V)| > £ do
10: Compute partial derivatives with respect to (36)
11: Update optimization variables multipliers
with (35) o
12: Decrease update rates SJ(C’), SX)
13: i+=1
14: end while
15: x;, (1) < xgk?(t)
16: Choose the optimal among K points with (37)
17: end for

Remark 3: [Complexity Analysis of Algorithm 1] For each
cell ¢ € C, we solve the decomposed constrained nonlinear
problemin (11) using the Lagrangian method, where a neural
network approximates the nonlinear function. We parallelly
compute the candidate solutions starting from K initial start-
ing points by performing (35) for maximum 1™ iterations
and choose the best solution among them. The computa-
tional complexity of each iteration consists of the following
components:
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o Computation of the gradient of Lagrangian (36) for all
slices s € S; in each cell. The complexity of comput-
ing (36) is dominated by two computations: computing
the forward pass through hg o ge¢(-) with complexity
O (|18 + |&]), where © and £ are the parameter spaces
of the neural networks hg (the QoS estimator) and g
(the encoder) respectively; and computing the gradient
(0hg 0 g¢/0ge) - (3ge / axél)s) using back propagation,
also with complexity O (|0]| + |E|). The overall com-
plexity to compute the Lagrangian gradient for all slices
in cell ¢ is then O ((|O]| + |&]) - |Sc])s

o Updating the multipliers \. with complexity O(|S,|).

For each cell ¢ € C, for solution selection, we per-
form the above two steps for maximum ‘'™ iterations
from K starting points parallelly, and find the best solu-
tion with (37). Computing (37) also involves complex-
ity of O((I1®| + |&]) - |Sc|). Therefore, summing up over
all cells in C, the overall complexity of Algorithm 1 is
O (HZ™ (|0] + €]) X ccc ISc)-

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
VIB-based model and IDLA algorithm under a system-level
network simulator Season II [62], where we can define var-
ious types of slices regarding slice service requirements and
build up network environments with arbitrary scales. First,
we introduce the network environments for assessing our pro-
posed methods, focusing on analyzing sample-based domain
discrepancies. We derive slice-wise network QoS estima-
tors using samples gathered from corresponding domains.
Subsequently, to evaluate the slice resource allocation per-
formance of the VIB-aided IDLA algorithm in real-time,
we deployed the model in an evolving network slicing sce-
nario within Season II, benchmarking its performance against
other state-of-the-art solutions, including a IDLA approach
with DNN-based estimator, a DRL approach and a traffic-
aware resource allocation method. Finally, we assess the
adaptability and scalability of the VIB-based models by com-
paring their DA efficacy against traditional DNN models and
a sample re-weighting baseline to address their DA perfor-
mance under data imbalance scenarios.

We deployed the model in an evolving network slicing
scenario within Season II, benchmarking its performance
against other state-of-the-art solutions.

A. NETWORK SETTING

To implement the proposed methods and evaluate their trans-
ferability and scalability, we aimed to build a network system
that can imitate a realistic scenario where slicing settings,
such as slice requirements or served user behaviors, may vary
within a consistent network architecture. Therefore, to induce
domain disparities, we constructed a virtual network system
consisting of 4 three-sector base stations operating at 2.6 GHz
located in a small area of Helsinki city, represented by a
network environment with C = 12 cells under the buildings
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map of Helsinki in Season II. All cells are provided with the
same bandwidth of 20 MHz.

We defined a set of network slices with distinct service
requirements with varying user throughput ¢* varying from
0.5 to 4 Mbit/s. The slice combination of any cell ¢ can be
configurable and time-varying, while each slice s € S.(¢)
is correspondingly assigned to a specific service. Besides,
to manually create diverse user behaviors across cells, we cat-
egorized users into groups with varying moving radius U®
from 200 to 100 meters, and the maximum user number per
service UM changing between [12], [36].

These deliberate discrepancies among slices and user
groups aim to simulate diverse domain sample characteristics
under an identical network architecture. During experiments,
we have the flexibility to construct slicing scenarios by select-
ing various combinations of slices and user groups under
the structure of the pre-built network system. Specifically,
to address the performance of the proposed DA method,
we can acquire network data from a particular set of cells,
denoted as source domains, to train slice-aware network
performance estimation models. Subsequently, we evaluate
these models’ efficacy on the cell not included in the source
domain, i.e., denoted as the target domain, to assess their
transferability. For convenience, we omit the units in the rest
of the section.

B. DATA COLLECTION AND TRAINING

In this subsection, we first outline the process for collecting
training samples from the network system we established
above for training slice-wise QoS estimators, followed by
introducing training setups for these estimators, including
the specification of training hyperparameters. We explored
various configurations of slices and user groups to gen-
erate diverse per-slice samples for DA assessment. The
per-slice samples that exhibited common characteristics were
aggregated as source domains for training slice-wise QoS
estimators. Subsequently, we deployed these models on target
domain samples after training convergence to evaluate the
DA features of the proposed estimator model. These target
domains, while distinct, retain relevance to their correspond-
ing source domains. In Subsection VI-D, we introduce the
selection of source and target domain pairs by identifying
specific combinations of network slice setups as indicated in
Table 2 to facilitate evaluation.

1) DOMAIN SAMPLE COLLECTION AND AUGMENTATION
Before implementing the training of proposed slice QoS
estimators, we first demonstrate the data collection process
within the Season II network system. Following the data
collection pipeline presented in IV-A, we collect per-slice
samples across all cells, incorporating H = 5 steps of his-
torical data to enhance the capture of temporal correlations.
Consenquently, this forms the training input [x. s, 0. 5] € %!’
refer to (8).

It is worth mentioning that consistent with DA assump-
tion, we have limited data volumes in target domains, which
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results in a much smaller set of samples compared to those
from source domains. Before initiating the training of QoS
estimators with these per-slice samples, we analyzed the
discrepancy between source and target domains. This pre-
liminary step was essential for assessing the feasibility and
potential challenges of implementing DA techniques across
domains. Accordingly, we derived the domain discrepancy
measurements utilizing the approach from our previous
work [63]. This discrepancy metric is determined by aver-
aging the KL divergence [64] across latent variables of the
source and target samples extracted by a variational auto-
encoder (VAE) with:

1
Diji= ——-
NiN;
> Drr (N(ny, diag(@ ) IV (i, diag(o,)) . (38)
(’Ln’an);
(Il«m»am)

where i,j are the domain labels and (p;, o)k € i,j are
the parameters of latent variable distributions extracted with
PVAE(z|xx) = N(py, diag(oy)) from x,, € X; and x,, € X
Please note that the encoder used here differs from the one in
the VIB-based estimation model.
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FIGURE 3. Compare distributions of input between domains.
Here, we compare sample distributions regarding four key
parameters: Actual Load, Number of Users (UEs), and Channel
Quality Indicator (CQl) between the source and target domains
for each evaluated domain pair. This visualization highlights the
domain differences for the considered parameters across
different source-target pairs.

2) TRAINING OF THE ESTIMATION MODEL

In this section, we evaluate the DA performance of proposed
models by comparing slice QoS estimation accuracy across
source and target domains in each defined comparison pair.
Regarding the DA approach, in addition to our proposed VIB
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model, we implement a label distribution smoothing (LDS)
[26] technique to address the data distribution imbalance
issue across different slices. LDS decicates to smooth the
domain label distribution by convolving the empirical distri-
bution with a symmetric kernel. In this work, we obtained
a smoothed version of the domain label distribution. This
smoothed distribution was used to reweight the loss func-
tion during training, inversely proportional to each domain
label’s effective density, thereby emphasizing rarer domain
samples and improving the model’s performance on under-
represented data. The weighted estimation loss in the form
of the mean absolute error (MAE) for LDS training can be
expressed as:

Lips = — Z wi - |yi — yil. (39)

The weights for each sample are given as w; = 1/p(y;),
where p(y;) represents the effective presenting frequency of
y; determined by its distribution, emphasizing domains with
fewer samples to potentially mitigate the impact of label
imbalance. Specifically, we compare the following estimation
models with corresponding model configurations:

e VIB: The VIB-based model incorporated both an
encoder and an estimator, both structured as MLPs
with hidden layers (36,24, 16) for the encoder and
(24, 16, 16) for the estimator, respectively. To achieve a
good trade-off between representative richness and esti-
mation precision, we mapped the original input samples
[xc.s. 0c.5]1 € N7 into latent variables z., € R'2. It is
trained by targeting (33), where 8 was set to 0.002 to
balance the model’s ability to generalize across domains
while maintaining meaningful information in the latent
representation. The distribution r(z) of the latent vari-
ables is assumed as a standard Gaussian N(0, 7).

o DNN: The conventional DNN-based estimator, con-
structing with a MLP architecture comprising 5 hidden
layers with neurons (64, 36, 24, 16, 16), targeting MAE
as estimatino loss metric Lpyy = % Zflz (13— yils

o LDS: The LDS technique, while not a model itself,
is applied to the DNN estimator to address label imbal-
ance through effective reweighting. This enhances the
DA performance of the DNN estimator and serves as a
baseline for assessing the performance of VIB models.
The LDS approach is incorporated into the DNN setup
by training with a weighted loss function, as described
in (39).

For each domain pair, we trained all model types for
200 epochs with a learning rate of 5 x 1073, batch size of
32, using the Adam optimizer. Early stopping with a patience
of 10 epochs was applied to prevent overfitting. The training
was conducted on two Nvidia GeForce 2080Ti GPUs. Both
the VIB and DNN-based IDLA approaches took less than
0.5 seconds in real time to complete all slice partitions in our
experimental network systems at each time step. Addition-
ally, each iteration of GD took about 2 milliseconds.
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In our previous work [1], we validated the effectiveness of
the DNN-based estimator on both simulated and real-world
datasets. Additionally, we applied a realistic traffic mask
(see Fig. 4) to closely replicate real-world network condi-
tions, further ensuring the proposed methods’ applicability
and robustness in practical deployment environments. These
efforts help to bridge the sim-to-real gap and demonstrate the
real-world feasibility of our approach.

C. PERFORMANCE COMPARISON OF RESOURCE
ALLOCATION

In this subsection, we assess the online performance of
slice QoS estimators by implementing the proposed IDLA
procedure presented in IV. Our objectives were twofold:
firstly, we intend to evaluate the online performance of
the estimators within the framework of the proposed IDLA
algorithm, and secondly, we aim to explore the adaptabil-
ity of the IDLA approach in practical network dynamics.
Specifically, we investigated how the IDLA would respond
to domain shifts when facing network slicing changes. In this
subsection, we implement the IDLA approaches based on
derived models in a scenario with dynamically changing
networks. For comparison, we also implemented a DRL-
based approach and a traffic-aware slice resource allocation
mechanism as baselines. In detail, the following schemes
were implemented for online comparisons:

1.0
0.8
4
<
= 0.6
2
f@ 0.4 Sllce 1
= Slice 2
0.2 Slice 3
Slice 4
0 200

t1me step

FIGURE 4. Traffic masks for slices in 3. Varying traffic masks
ts(t) € [0, 1] were applied to each slice s € S¢(t) to simulate
realistic user traffic patterns based on data collected from a real
network system. The first 192 steps of the traffic mask for

‘Hg are shown here, aligned with the other phases.

« IDLA-VIB: the proposed IDLA algorithm based on the
VIB-based slice QoS estimator. The IDLA algorithm is
implemented by setting the number of initial neighbor-
ing points P = 5 with offset ¢ ~ N(0, 0.05);

o IDLA scheme: the proposed IDLA algorithm with
a DNN-based QoS estimator. The initial neighboring
point setting is identical to the IDLA-VIB;

« DRL: a distributed cell-wise DRL approach using a
twin delayed deep deterministic policy gradient (TD3)
algorithm, similar to our prior work [9], which solves
optimal slice resource portions in a cell-wise manner
regarding defined DRL reward as the minimum QoS
satisfaction level among all slices;
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FIGURE 5. Comparison of average user throughput for different dynamic slicing schemes across three phases (#1, #,,

and H3).

o Traffic: a traffic-aware approach that dynamically
adapts slice resource portions in each cell proportion-
ally to the current per-slice user traffic demands, which
assumes perfect knowledge of the traffic amount;

We applied the IDLA approaches with the help of derived
slice performance estimators, i.e., VIB-based and DNN-
based models, that were derived with source domain data
from the corresponding network environments. To evaluate
the adaptation performance of the IDLA-VIB scheme against
the others, we implemented an online assessment in the
network simulator under dynamic network slicing config-
urations and various user groups, i.e., during the network
processing, we changed network slicing combinations or
user behaviors. For fair comparisons, we divided the whole
online process into 3 time periods, denoted by Hi, Ha, H3,
respectively:

e Hy (t € [0,1000)): First, in time phase H; we set

3 slices with combination S.(¢) :=[1,2,4],t € Hi,c €
C in network, with slice throughput requirements as
¢>;§1 € {2.0, 1.0, 0.5} Mbit/s respectively.

e Hy (¢t € [1000,2000)): At time step 2000, the net-
work scenario enters phase H, and we changed the
network slicing configuration by introducing a new slice
with index 3, i.e., the new slice combination becomes
Sc(t) :=[1,2, 3, 4]. The new slice throughput require-
ments become ¢>;‘12 € {2.0, 1.0, 1.5, 0.5} Mbit/s.

e H3 (t € [2000,3000]): We further changed the
slicing configuration at the switching point between
phase H; and H3 by increasing the throughput require-
ment of each slice by 0.5 Mbit/s, i.e., the new slice
requirements are ¢;‘{3 € {2.5,1.5,2.0, 1.0} Mbit/s.

To assess transferability, during this process, we kept
collecting new samples from the network simulators and
finetuned the estimators periodically every 200 steps for
100 epochs for IDLA-VIB and IDLA schemes, while
the DRL finetunes itself through online interaction when
entering a new phase with new slicing setups. For fairness
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FIGURE 6. Comparison of the CDF of network utility during
phase 7, and phase {3 for different resource allocation
schemes.

comparison, the initial exploration phase of the DRL scheme
was excluded at the beginning of Hj. To simulate realistic
user traffic patterns, we applied varying traffic masks 7,(¢) €
[0, 1] collected from a real network system to each slice
s € Sc(t), reflecting the daily periodic pattern of the per-
slice user traffic, where each step represents 15 minutes in
real time. To avoid overlapping of traffic peaks, on each slice,
the traffic mask has 16 steps shift to the next. For instance,
Fig. 4 illustrates the first 192 steps of the applied traffic mask
for Hs.

Fig. 5 illustrates the trends in average throughput across
all cells for each slice during phase Hj, Hz, and H3 by
implementing different slice resource allocation schemes.
Both the IDLA-VIB and IDLA schemes maintain consis-
tent and stable throughput levels across all slices before
encountering network condition changes, with the IDLA-
VIB scheme offering slightly improved and more robust
performance. In contrast, the DRL and Traffic schemes
exhibit higher fluctuations, especially after each configura-
tion change. At the network change points, a clear impact
on throughput is observed for all schemes. However, the
IDLA-based schemes show better adaptability and stabilize
within approximately 300 time steps, with the IDLA-VIB
scheme demonstrating even faster convergence due to its
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TABLE 2. Table of source-target domain pairs. Here, we define four domain pairs with varying network setups to assess the model
adaptability across domains in the experimental network scenario. Each pair introduces specific differences between the source and
target domains, such as the maximum number of users (pair 1), user movement radius (pair 2), slice combinations (pair 3), and the
number of slices (pair 4). The final column presents the domain discrepancy metrics, with higher values indicating greater domain

differences.
Source Domain Target Domain Distance Metric
Pair | | ¢f € {2.0,1.5,1.0,0.5}, U™ = 500, ULV € {16,24} | 63 € {2.0,1.5,1.0,0.5}, UL = 500, UMY = 36 0.311
Pair 2 | ¢z € {2.0,1.5,1.0,0.5}, U™ = 250, U™ = 24 ¢% € {2.0,1.5,1.0,0.5}, ULV = 750, U = 24 0.746
Pair 3 | % € {2.0,1.5,1.0,0.5}, U = 500, UMY = 24 ¢% € {2.5,2.0,1.5,1.0}, U = 500, U = 24 0.383
Pair 4 | % € {2.0,1.0,0.5}, UL = 500, UMY = 24 ¢% € {2.0,1.5,1.0,0.5}, U = 500, U8 = 24 0.958

online fine-tuning capabilities. On the other hand, the DRL
scheme, which requires exploration and retraining after
each network change, exhibits larger fluctuations in per-
formance post-change, eventually converging after about
600 steps. While having initial knowledge of traffic demands,
the Traffic-aware baseline shows varying adaptability after
configuration changes. Across the slices, the IDLA-VIB
consistently outperforms the other schemes in maintaining
higher throughput levels, particularly under dynamic condi-
tions. This highlights the robustness and efficiency of the
VIB-based estimator in optimizing resource allocation for
different slice requirements under changing network condi-
tions. Overall, the IDLA-VIB scheme demonstrates superior
performance over the other allocation strategies, successfully
managing and optimizing resource allocation in a dynamic
slicing environment.

In Fig. 6, we compare the empirical complementary
cumulative distribution function (CDF) of the network util-
ity (5) across different resource allocation schemes during
phase H; and H3, which represent target domains in this con-
text. The defined utility (5) is calculated by taking the logistic
of the minimum satisfaction level between slice throughput
and delay, with a maximum possible utility of 2.773. The
results highlight the superior performance of the IDLA-VIB
scheme in both phases. In phase H>, the IDLA-VIB scheme
achieves a 95% utility level for 54.72% of the time, compared
to 38.91% for the IDLA scheme and 34.19% for the DRL
scheme. Similarly, in phase H3, the IDLA-VIB continues to
perform the best, with 42.56% of the time spent at the highest
utility level, outperforming both the DRL scheme at 31.24%
and the IDLA scheme at 11.05%. These results emphasize
the robustness and adaptability of the IDLA-VIB approach,
which consistently achieves the highest utility levels under
dynamic slicing configurations. The high transferability of
the VIB-based models further enhances the efficiency and
scalability of the IDLA algorithm in optimizing resource
allocation across diverse network conditions. This compar-
ison underscores the overall effectiveness of IDLA combined
with VIB models in ensuring optimized performance in target
domains with varying slice demands.

D. PERFORMANCE COMPARISON OF ESTIMATORS

To assess the models’ adaptability to samples across domains,
we set up 4 domain pairs with variant network living setups
under the experimental network scenario. Specifically, our
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defined categories of domain setups are summarized as
follows:

o Pair 1: Different maximum number of users. In the
source domain, the maximum number of users ranges
between UéN) € {16, 24}, whereas in the target domain,
this expands to a larger group with U-(l-N) = 36;

o Pair 2: Different user moving radius. In the source
domain, users move within a radius of UéR) =
250 meter, compared to the target domain, where the
moving radius increases to U%R) = 750 meter, indicating
a significantly wider range of movement;

o Pair 3: Different slice combinations. The source
domain features slice types with throughput require-
ments ofd)g € {2.0, 1.5, 1.0, 0.5} Mbit/s. In contrast, the
target domain requires higher throughputs for each slice,
with values at qb? € {2.5,2.0, 1.5, 1.0} Mbit/s, making
an increase of 0.5 Mbit/s per slice.

« Pair 4: Different number of slices. The source domain
includes 4 slice types with throughput requirements of
¢§ € {2.0, 1.0, 0.5} Mbit/s. The target domain expands
this set by introducing an additional slice, making the
slice combination (]bT- € {2.0, 1.5, 1.0, 0.5} Mbit/s.

Table 2 specifies these domain configurations pairwisely.
In the final column of Table 2, we provide the domain dis-
crepancy measures derived with (38), higher metric values
indicate greater domain differences, notably in pairs 2 and 4,
attributed to varying slice types despite similar user counts
and CQI distributions.

To demonstrate the domain difference, Fig. 3 illustrates a
comparison of sample distributions of four key parameters -
actual load, number of user equipments (UEs), and CQI -
between the source and target domains for each evaluated
domain pair. The distribution comparisons highlight distinct
differences, such as the number of users in pair 1 and CQI
in pair 2, leading to variations in per-slice resource occupa-
tions as depicted by the actual load. However, the differences
between source and target domains are less pronounced for
certain domain pairs due to their shared slice configurations.
As illustrated in Table 2, domain pair 4 exhibits the largest
domain distance measure, which is attributed to adding a new
slice in the target domain.

1) ABILITY OF DOMAIN GENERALIZATION
To investigate the domain generalization (DG) ability of
models, we first trained these estimators exclusively on
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source domain samples following the procedures outlined in
Section VI-B.1 and subsequently evaluated their accuracy on
both source and target domains.

Source Domain Target Domain

1.0 1.0
o9
8 0.5 0.5
—— Pair1VIB —— Pair1VIB
Pair 1 DNN Pair 1 DNN
00 0.2 0.4 00 0.2 0.4 0.6
1.0 1.0 =
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FIGURE 7. Comparison of MAE CDF between VIB and DNN
models on source and target domains.

2) ABILITY OF DOMAIN ADAPTATION
In response to the diminished performance in target domains
with substantial domain gaps identified in DG scenar-
ios, we further explored the models’ DA capabilities by
incorporating varying proportions of limited target domain
samples in the training data. Specifically, we implemented
the training process of estimators under the DA sce-
narios, utilizing target domain sample inclusion ratio of
[0%, 20%, 50%, 70%, 90%]. It is important to note that even
with a 90% inclusion rate of target samples, the aggregate pro-
portion of target domain data within the training set remains
significantly lower than the portion of the source domain
data, which reflects the basic assumption of DA scenarios.
Table 3 demonstrates the average estimation error derived
from 6 independent implements in MAE of each model,
i.e., VIB, DNN, and LDS, in comparison under different
usage ratios of target domain samples under all domain pairs.
As Table 3 illustrates, VIB models consistently outper-
form DNN estimators across all domain pairs, demonstrating
notable reductions in estimation errors as the target sample
ratio increases. Particularly in pairs 2 and 4, where the VIB
model shows exceptional adaptability, significantly reducing
the performance gap between the source and target domains.
In contrast, the DNN model exhibited less flexibility and
struggled to adapt to varying domain conditions.
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When integrated with the LDS method, the DNN model
showed improved performance, particularly in managing data
imbalance, indicating LDS’s effectiveness in adaptability.
However, even with the enhancement provided by LDS,
conventional models still exhibit lower estimation accuracy
compared to VIB. Specifically, in pair 1, which has the small-
est domain discrepancy, the VIB model offers improvements
ranging from 24.01% to 41.62% under varying inclusion
rates of target samples. This is compared to the 10.74% to
15.96% improvement range provided by the LDS model. This
improvement becomes even more evident as domain discrep-
ancy increases, as seen in domain pairs 2 and 4. The last
column of each sub-table showcases the baseline estimation
accuracy achieved by applying models exclusively on target
domain samples. The estimation errors of both VIB and DNN
models suggest that including target domain samples may
slightly impact their performance on source domains. On the
contrary, with the LDS method, the models’ accuracy in the
source domain is not adversely affected by including fewer
samples. It even achieves higher accuracy in source domains
with the reweighted loss. In Fig. 8, we visualize the models’
estimation errors in target domains across various target sam-
ple ratios, where shadowed solid lines depict the baselines
for each model. The comparison focuses on the impact of
incorporating varying ratios of target domain samples into the
training process under the DA scenarios.

Pair 1 Pair 2

[

VIB Target BL

DNN Target BL
04| = ViR
DNN
—4— LDs

20% 50% 70% 920% 0% 20% 50% 70% 920%
Ratio of Used Target Samples Ratio of Used Target Samples

Pair 3 Pair 4
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0.125 0.05
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Ratio of Used Target Samples Ratio of Used Target Samples

FIGURE 8. Comparison of MAE on target domain across four
domain pairs for VIB, DNN and LDS models by involving variant
ratio of target samples.

For domain pairs 1 and 3 with smaller domain discrepan-
cies, the VIB model shows notable improvements in target
domain accuracy with increased target sample inclusion.
In pair 1, the VIB model reduces the MAE from 7.36 x 1072
to 4.3 x1072, stabilizing around the 70% inclusion mark.
In pair 3, the VIB model demonstrates even more sub-
stantial improvements, lowering MAE from 15.15 x 1072
to 4.26 x1072. In contrast, the DNN model shows slight
improvements in pair 1, where MAE drops from 6.44 x 1072
t05.04 x 1072, and in pair 3, where it decreases from 15.96 to
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TABLE 3. Estimation error in domain pair 4 (in 0.01).

(a): Estimation Error in Domain Pair 1 (in 0.01)

(b): Estimation Error in Domain Pair 2 (in 0.01)

] Target Sample Ratio (in %) [ ] Target Sample Ratio (in %) [

‘ Model ‘ Domain ‘ 0 0 55 70 90 ‘ Target Only Model | Domain [ 0 55 70 90 ‘ Target Only
VIB Ds 3.17 326 329 336 347 — VIB Ds 1.31 1.54 1.61 1.68 1.64 —
Dt 736 559 479 455 430 4.07 Dt 737 545 392 358 312 3.02
DNN Ds 473 481 485 488 537 — DNN Ds 2.63 254 288 283 289 —
Dt 644 582 590 559 541 5.04 Dt 801 680 621 638 6.02 4.85
Ds — 534 527 526 5.17 — Ds — 329 305 3.06 3.02 —
LDS Dt — 576 554 550 543 — LDS Dt — 6.55 6.12 6.08 598 —

(c): Estimation Error in Domain Pair 3 (in 0.01) (d): Estimation Error in Domain Pair 4 (in 0.01)
] Target Sample Ratio (in %) [ . ] Target Sample Ratio (in %) [ .

Model ‘ Domain ‘ 0 0 5 70 30 ‘ Target Only Model | Domain [ 0 55 70 90 ‘ Target Only
VIB Ds 3.77 387 399 406 4.14 — VIB Ds 129 144 1.61 1.61 1.68 —
Dt 1515 635 481 450 4.26 2.89 Dt 572 406 319 290 275 2.37
DNN Dg 4.56 5.18 522 596 540 — DNN Ds 241 263 274 273 280 —
Dt 1596 824 831 7.59 722 5.98 Dt 5.60 492 463 455 4.67 4.09
Dg — 598 582 6.06 5.68 — Ds — 294 283 278 2.80 —
LDS Dt — 7.68 721 6.65 692 — LDS Dt — 482 451 461 445 —

7.57. The LDS-enhanced DNN model improves performance
as well but does not achieve the same low MAE as the
VIB model, particularly in domain pairs with larger gaps.
In domain pairs 2 and 4, where domain gaps are larger,
the VIB model exhibits even more significant reductions in
MAE, improving from 7.37 x 1072 to 3.12 x 1072 in pair 2,
and from 5.72 x 1072 to 2.75 x 1072 in pair 4. These results
suggest the VIB model’s robust adaptability in response to
increased proportions of target domain samples. In contrast,
the DNN model shows more restrained improvements in pair
2 and 4. And the LDS method, while improving DNN perfor-
mance in managing data imbalance, still falls short of the VIB
model’s performance, with MAE reductions. In addition, the
VIB model demonstrates superior robustness in maintaining
high accuracy in the source domains, even as target domain
samples are incorporated. For instance, in pair 1, the VIB
model consistently maintains an MAE range between 3.17
%1072 and 3.47 x10~2. We can observe similar patterns in
other domain pairs, where the DNN and LDS models exhibit
larger fluctuations. This ability to balance source domain
accuracy while improving target domain performance under-
scores the robustness and reliability of the VIB model.

Overall, incorporating target domain samples into the
training significantly improved the VIB model’s accuracy
in the target domain, with a little compromising of source
domain performance in the cases of small domain dis-
crepancies, while the DNN model does not exhibit clear
enhancements from the inclusion of target domain samples.
The VIB model consistently demonstrates superior general-
ization to the target domain across all pairs under both DG and
DA contexts, particularly with higher ratios of target samples.
The numerical results of estimation performance underscore
VIB model’s superior adaptability and robustness relative to
the DNN model.

It is worth mentioning that, although we could not imple-
ment our method in real network environments, we assessed
the effectiveness of the deep learning-based QoS estimator
using real network data in our previous work [1]. In that
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study, we evaluated the deep learning-based QoS estimator
not only on simulation data but also on a dataset collected
from a commercial LTE network. As shown in [1], the
results demonstrate the estimator’s high effectiveness, with a
strong correlation between predicted and actual performance
metrics. The QoS estimator provides accurate predictions
of network quality based on the allocated slice resources.
The average MAE was 0.0639 for the simulation dataset
and 0.0573 for the real dataset. These results underscore the
reliability of our framework’s core components, particularly
the QoS estimation, which has numerically verified to be both
robust and adaptable to real-world network conditions.

E. KEY TAKEAWAYS
We summarize the following key takeaways based on the
discussions of numerical results above:

o Scalable Resource Allocation: Implementing the
IDLA algorithm in real-time network slicing scenarios
revealed its high scalability in resource allocation. When
compared to other approaches, such as a DRL approach
and a traffic-aware allocation mechanism, the IDLA
algorithm, especially when combined with VIB-based
estimators, provides significant improvements in man-
aging slice resources dynamically and efficiently with
2 times faster convergence.

« Dynamic Adaptability: The evaluation within dynam-
ically changing network environments highlighted the
adaptability of IDLA-VIB scheme. Despite the chal-
lenges posed by varying network conditions and slicing
configurations, the VIB-based approach consistently
outperformed other models in achieving higher through-
put levels across different slices with the highest ratios
of utility satisfaction, thereby illustrating its robustness
in optimizing slice resource allocation under dynamic
conditions.

o Transferability: Deploying the VIB-based model in
dynamically changing network settings further empha-
sized its transferability. The model provided higher
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adaptability over the original IDLA approach with-
out TL. This underscores the flexibility of VIB,
which optimizes resource allocation under varying slice
configurations.

o Domain Adaptation Performance: The VIB-aided
slice-wise network QoS estimators demonstrated higher
DA capabilities in comparison with traditional DNN-
based models. This is evident under varying TL tasks,
where the VIB-based models exhibited lower MAE val-
ues across both source and target domains, signaling
enhanced estimation accuracy and robust DA capacity.

VIl. CONCLUSION

In this paper, we introduced a novel framework that inte-
grates the robust generalization capabilities of the Lagrangian
method with the approximation potential of deep learning.
Our proposed IDLA algorithm specifically addresses the
resource allocation challenges inherent in network slicing,
considering inter-slice resource constraints. The empirical
results from a system-level network simulator indicate the
efficacy of our proposed methods, demonstrating higher
transferability, faster convergence, and better scalability
compared to state-of-the-art solutions. More importantly,
we applied the TL methods to IDLA by integrating the DA
technique with a VIB-based slice QoS estimation model
to further expand the transferability of IDLA algorithm.
We investigated the DA capability of the proposed VIB mod-
els under four different TL scenarios in the context of network
slicing, showcasing remarkable accuracy in QoS estimations
across both source and target domains. This was particularly
evident through the comparison of MAE estimation errors
under different DA setups in comparison with traditional
MLP-based model and a sample reweighting baseline, high-
lighting its enhanced estimation precision and robust DA
capabilities.

In conclusion, our proposed method provides a highly scal-
able and transferable solution for network slicing. By ensur-
ing near-optimal performance, fast convergence, and high
generality, the IDLA algorithm with the VIB-based DA
model sets a new pipeline for slicing resource allocation,
paving the way for its scalable and generalized application
in real-world network systems. Future research directions
include expanding this work into a general domain adaptation
and transfer learning framework for real-time dynamic net-
work optimization beyond the scope of the slicing resource
allocation problem. This involves integrating safe and effi-
cient multi-agent deep reinforcement learning to enhance
adaptability and exploring cross-domain transferability to
broaden its applicability across diverse industries such as
internet of things (IoT) and edge computing. These devel-
opments will further improve the robustness, scalability, and
generalizability of the proposed solution.
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