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Abstract

We study the facility location problems (FLPs) with altruis-
tic agents who act to benefit others in their affiliated groups.
Our aim is to design mechanisms that elicit true locations
from the agents in different overlapping groups and place a
facility to serve agents to approximately optimize a given ob-
jective based on agents’ costs to the facility. Existing studies
of FLPs consider myopic agents who aim to minimize their
own costs to the facility. We mainly consider altruistic agents
with well-motivated group costs that are defined over costs
incurred by all agents in their groups. Accordingly, we define
Pareto strategyproofness to account for altruistic agents and
their multiple group memberships with incomparable group
costs. We consider mechanisms satisfying this strategyproof-
ness under various combinations of the planner’s objectives
and agents’ group costs. For each of these settings, we pro-
vide upper and lower bounds of approximation ratios of the
mechanisms satisfying Pareto strategyproofness.

Introduction

In recent decades, facility location problems (FLPs) have
been widely studied within the context of mechanism de-
sign without money (Chan et al. 2021). In the most basic
mechanism design version of FLPs, initiated by (Moulin
1980; Procaccia and Tennenholtz 2009), a planner seeks to
place a facility (e.g., school, library, or park) to best serve
a set of agents in a real line, based on the ideal locations
of the agents. Because agent ideal locations are unknown to
the planner, the planner must elicit agent locations to de-
termine a facility location that best serves the agents. As
there is a potential for the agents to misreport private lo-
cations to manipulate the facility location, the main research
agenda in mechanism design for FLPs is to design a strat-
egyproof mechanism to elicit the true private agents’ loca-
tions and place the facility that (approximately) optimizes a
given planner’s objective (e.g., minimizing the total or max-
imum distance of the agents to the facility).

Beyond placing a physical facility geographically, FLPs
conceptually can be used to model general settings for se-
lecting an overall representative to represent the preferences
of the agents within some well-defined representative space.
For example, selecting the temperature for a classroom given
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the preferences of the students (Bartholdi and Trick 1986)
and selecting an overall committee view to represent indi-
viduals with different political views (Chan et al. 2021).

Our Research Agenda with Altruistic Agents. Previous
mechanism design studies in FLPs have focused only on
myopic (egoistic) agents in which each agent cares about
their own cost to the facility (e.g., the distance between their
ideal location and the facility location). However, in many
real-world settings (e.g., group decision-making), agents ex-
hibit group behavior (Hogg and Tindale 2001), altruistic be-
havior (Schroeder et al. 1995; Penner 2021), or prosocial
behavior (Eisenberg 2014; Schroeder and Graziano 2015),
where altruistic agents act to benefit others in their affiliated
groups without expecting anything in return (Monroe 1996;
Fehr and Fischbacher 2003). For instance, in the social psy-
chology literature (Hogg and Tindale 2001), altruistic agents
within the same group exhibit group behavior that is consis-
tent with the overall goal of the group. In group-selected al-
truism (Okasha 2005), altruistic agents can make efforts to
take actions that help their groups. Examples of altruistic be-
havior are well-documented and include doing nice things to
one’s family and relatives (e.g., donating organs, caregiving
for relatives, and fostering children), helping one’s friends
(e.g., loaning money and helping with work), and advocat-
ing for their organized groups (e.g., donating money to an
organization, joining the same day of protest, and fighting
for a common cause).

Motivated by the altruistic behavior of agents in real-
world situations, our focus is to study and model altruistic
agents in FLPs. Conceptually, FLPs with altruistic agents
model situations ranging from altruistic agents advocating
for facility accessibility of their own groups to altruistic
agents lobbying for a committee to represent their group
views on some issue. For instance, when analyzing voter be-
havior, the altruism theory of voting has examined the so-
cial preferences of voters that consider the welfare of oth-
ers (Edlin, Gelman, and Kaplan 2007; Jankowski 2002). We
also consider the setting where agents belong to multiple
groups, such as deciding an activity event location where
the students can belong to different school clubs (e.g., math
clubs, debate clubs, etc.) or deciding the location of a multi-
purpose recreation center where the citizens belong to multi-
ple local communities (e.g., senior associations, family/rel-
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ative/regional groups, etc.). The closer the location is to the
group, the more convenient it is for that group. To model
these situations, we address the following key questions.

(1) How should one model altruistic agents with mul-
tiple groups in mechanism design settings for FLPs?
(2) How should one design desirable mechanisms to
(approximately) optimize a given objective with altru-
istic agents?

Our Contribution

We consider the FLPs where n altruistic agents are divided
into m groups in which each agent can belong to multiple
groups. We study two well-studied classical objectives, the
social cost and the maximum cost, proposed by (Procaccia
and Tennenholtz 2009) and two well-motivated group-fair
objectives, the maximum total group cost (mtgc) and the
maximum average group cost (magc), considered in (Zhou,
Li, and Chan 2022; Marsh and Schilling 1994) for FLPs. Our
aim is to design mechanisms that satisfy the corresponding
strategyproof definitions. In our work, we have two main
points of contribution, one conceptual and one technical.

Conceptual Contribution.

* Different from the previous work, which only considers
the myopic agents whose costs are their own distances
from the facility, we study the altruistic agents who care
about their groups and define the altruistic cost. Moti-
vated by existing economic, decision theory, and compu-
tational studies on modeling altruistic behavior, we adopt
two types of altruistic costs for the agents, the altruistic
total cost and the altruistic maximum cost. We defined
these costs for each of the agents’ groups separately. Be-
cause an agent’s altruistic cost depends on the private
information of other agents in their groups, our prob-
lems are situated in the challenging interdependent valu-
ation mechanism design domains (Mezzetti 2004; Jehiel
and Moldovanu 2001; Bergemann and Morris 2008). No
studies have considered the proposed interdependent val-
uation settings for FLPs.

* As an agent can belong to multiple groups, the agent
can have separate altruistic costs. The agents may not be
able to compare/combine them and treat them as multi-
objectives (Roijers et al. 2013; Hayes et al. 2022). Thus,
we propose Pareto strategyproofness (PSP) concept to
ensure that each agent cannot misreport their location to
benefit their groups simultaneously. No studies have con-
sidered the proposed PSP concept, which can be applied
to other mechanism design domains.

Technical Contribution. We model the altruistic agents by
using the altruistic total cost and the altruistic maximum
cost. Table 1 summarizes our upper and lower bound results.

* For the altruistic total cost, we first present a profile
preprocessing method which helps us to design PSP
mechanisms. For the social cost, we present a series of
mechanisms that are extended from placing the facil-
ity at the largest group median location (Majority-Med)
or the median location (Weighted-Med, Union-Med)
via the profile preprocessing method. However, all
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Table 1: Result Summary. For each entry, the first line is the
upper bound, and the second line is the lower bound. n is the
number of agents. m is the number of groups. |Gax| is the
size of the largest group.

of them achieve large approximation ratios (at least
2m — 1). Finally, we leverage the advantages of both
Majority-Med and Union-Med to design a new PSP
mechanism (UnionTrunc-Med) for minimizing the so-
cial cost, which achieves an approximation ratio of

%. We present a lower bound of m for this setting.
For the maximum cost, we show that all of the mecha-
nisms we proposed have an approximation ratio of 2. We
also present a lower bound of 2. For the magc and magc,
we use Majority-Med and give approximation ratios of

3. We also present tight lower bounds.

¢ For the altruistic maximum cost, we observe that none
of the mechanisms we mentioned above is PSP. We
design two new PSP mechanisms (Majority-Mid
and Weighted-Mid) which are in a similar spirit
as Majority-Med and Weighted-Med. We use
Weighted-Mid for the social cost and the maxi-
mum cost, and use Weighted-Mid for the other two
group-fair objectives. We show the tight upper bounds
and lower bounds for four objectives, implying that
we complete the picture of this setting. Although the
mechanisms are similar to those for the altruistic total
cost, we emphasize that showing the approximation
ratios and lower bounds is a challenging problem and
requires different techniques since the altruistic total
cost is different from the altruistic maximum cost.

Due to the space limit, most of the proofs are omitted.

Related Work

The classical (mechanism design variants of) facility loca-
tion problems (FLPs) were first studied by (Moulin 1980),
which characterized mechanisms that are strategyproof,
Pareto efficient, and anonymous for single-peaked prefer-
ences on a line. However, finding strategyproof mechanisms
with good approximation ratios in FLPs remains a chal-
lenging problem, which was first studied by (Procaccia and
Tennenholtz 2009). They proved that placing the facility at
the median and the leftmost location can achieve tight ap-
proximation ratios while guaranteeing the strategyproofness



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

for minimizing the social cost and the maximum cost, re-
spectively. However, we observe that neither of the mecha-
nisms mentioned above can guarantee Pareto strategyproof-
ness when agents are altruistic. Other works and variations
on FLPs can be found in a recent survey (Chan et al. 2021).

One of the important notions in our paper is group fair-
ness. Recently, there is an increased interest in studying fair-
ness in FLPs (Cai, Filos-Ratsikas, and Tang 2016; Chen
et al. 2021; Ding et al. 2020; Liu et al. 2021; Lam 2021;
Zhou, Li, and Chan 2022). The work of (Cai, Filos-Ratsikas,
and Tang 2016; Chen et al. 2021) studied the minimax envy
objective that aims to minimize the (normalized) maximum
difference between any two agents’ costs. In addition, (Ding
et al. 2020; Liu et al. 2021) studied the envy ratio objective,
which aims to minimize the maximum over the ratios be-
tween any two agents’ utilities, and (Lam 2021) considered
the Nash Welfare objective in FLPs. (Aziz et al. 2022a,b,
2023) considered proportional fairness in FLPs, where the
distance of a facility from a group of agents should depend
both on the size of the group as well as how closely the
agents are clustered (this group is just a set of agents, not
a pre-defined group membership). All of these works con-
sidered fairness for individual agents, and there is no no-
tion of group memberships. The work of (Filos-Ratsikas and
Voudouris 2021) studied the FLPs with agents who are par-
titioned into multiple districts with equal size, which can be
regarded as each agent having her own group. They focused
on the social cost objective, rather than group-fair objectives.
The work of (Zhou, Li, and Chan 2022) studied group-fair
FLPs with (disjoint) groups (i.e., each agent belongs to a
single group) and group-fair objectives (including magc and
magc) for myopic agents. In our paper, we also study two
group-fair objectives they proposed for altruistic agents to
enrich recent studies on group fairness in FLPs.

Preliminaries

We consider facility location problems (FLPs) with groups
of altruistic agents. Let N = {1,2,...,n} be a set of agents
on the real line and G = {G1, ..., G;, } be the set of groups
of agents. Each agent ¢ € N has profile r; = (x;, g;) where
x; € R is the location of agent ¢ and g; C G is the group
membership of agent i. We use |G| to denote the number
of agents in group G; where j € [m] and |g;| to denote
the number of groups agent ¢ belongs to. Without loss of
generality, we assume that 1 < 22 < ... < z,. A pro-
file set r = {ry,r9,..,7,} is a collection of locations and
group memberships of agents. A deterministic mechanism is
a function f that maps profile r to a facility location y € R.
Let d(a,b) = |a — b| be the distance between any a,b € R.

Optimization Objectives. We consider the two classi-
cal cost objectives, minimizing the social cost and the
maximum cost (Procaccia and Tennenholtz 2009; Chan
et al. 2021). Given a facility location y and profile
set r, the social cost and the maximum cost are de-
fined as sc(y,r) > ien Ay, z;) and mc(y,r)
max;eny {d(y,z;)}. We also consider two group-fair
cost objectives (Zhou, Li, and Chan 2022; Marsh
and Schilling 1994). One is minimizing the maxi-
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mum total group cost (magc), which is mtge(y,r)
MAX;je [m] Ziecj d(y, xl)} The other is minimizing the
maximum average group cost (magc), which is defined as

mage(y,r) = maxjeqm) { Ciea, dy,2:)/1G51}.

Our goal is to design mechanisms that enforce some forms
of strategyproofness (discussed below) while approximately
optimizing an objective function when the agents are altruis-
tic. We measure the performance of a mechanism f by com-
paring the objective value that f achieves and the objective
value achieved by the optimal solution. If there exists a num-
ber « such that for any profile set r, the output from f is
within « times the objective value achieved by the optimal
solution, then we say the approximation ratio of f is c.

Altruistic Agents. In previous studies of FLPs, agents are
myopic. The myopic cost of agent 7 is defined as the distance
between the facility location and her location, ¢(f(r), z;)
d(f(r),z;), where f is a mechanism and r is a profile.

For an altruistic agent, existing studies in economic, de-
cision theory, and computational studies (see, e.g., (Simon
2016; Simon, Saari, and Keller 2020; Chen et al. 2014; Car-
valho Rodrigues and Xavier 2017)) have proposed to model
the altruistic agent’s cost to be some aggregation of the
agent’s cost and the costs of the other agents in their groups.

The simplest and most widely considered one is the ag-
gregated sum, which captures the altruistic total cost of the
agents and the welfare of their groups. Specifically, for all
agents in group G, the altruistic total cost is defined to
be the total cost of the agents in group G;, atc(y,G;) =
> cc, d(y,x;), which coincides with a typical utilitarian
objective for FLPs with a single group.

Another commonly studied social welfare objective stud-
ied in FLPs is the egalitarian objective. In particular, the al-
truistic maximum cost is defined to be maximum cost among
the agents in G;, amc(y, Gj) = max;eq, {d(y, z;)}. In this
paper, we consider altruistic agent cost as the altruistic total
cost or the altruistic maximum cost.

Strategyproofness Concepts. For the standard myopic
costs, we often consider the standard strategyproof concept
when designing mechanisms.

Definition 1. A mechanism f is strategyproof (SP) if and
only if an agent can never benefit by reporting a false loca-
tion, regardless of the reporting of the other agents. More
formally, given any profile set r and any reported profile set
', let v, = (x},9;) be a profile with the false location re-
ported by agent i. We have c(f(r;,r"_;), ;) < c(f(r'), z;)
where 1'_, is the reported profile of all agents except agent 1.

When an agent is altruistic or belongs to multiple groups,
the standard SP concept does not apply directly. Moreover,
when the agent has multiple altruistic costs (one per group)
naturally, the agent might not be able to combine separate
altruistic costs into a single cost objective due to these costs
being incomparable or methods to combine objectives be-
ing observable/unknown (e.g., weights are not known to the
designer or agent) (Roijers et al. 2013; Hayes et al. 2022;
Sawaragi, Nakayama, and Tanino 1985). Therefore, we in-
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troduce the Pareto strategyproofness definitions for altruistic
agents with multiple group memberships.

Definition 2. A mechanism f is ex-ante Pareto strate-
gyproof if and only if an agent cannot benefit at least one
of their groups without hurting any other group the agent
belongs to by reporting a false location, regardless of the re-
portings of the other agents. More formally, given any profile
set r, any reported profile set ', let r; = (x5, g;) be a profile
with the false location reported by agent i. For any agent 1,
we have 3j € g;, ate(f(ri,r";),G;) < atc(f(r'),G;) or
Vi € g, ate(f(ri,r;), G;) = ate(f(r'), G;) where r'_ is
the reported profile of all agents except agent i. We also have
the same argument when we consider the altruistic maxi-
mum cost.

Different from strategyproofness, there does not exist any
ex-ante Pareto strategyproof mechanism with a bounded ap-
proximation ratio for both altruistic agent costs.

Proposition 1. There does not exist any ex-ante Pareto
strategyproof mechanism with a bounded approximation ra-
tio for both the altruistic total cost and the altruistic max-
imum cost and all four objectives even if there is only one
group.

The intuitive explanation of Proposition 1 is that if an
agent misreporting makes the facility farther away from
agent ¢’s ideal location, then agent ¢ may misreport to move
the facility back. Hence, an agent dominant strategy can-
not be decided before their group members makes deci-
sions. Hence, we consider a relaxed version of Pareto strat-
egyproofness definition.

Definition 3. A mechanism f is ex-post Pareto strate-
gyproof (PSP) if and only if an agent cannot benefit at least
one of their groups without hurting any other group the
agent belongs to by reporting a false location, given the true
profile of the other agents. More formally, given any profile
set r, any reported profile set ', let r, = (x4, g;) be a profile
with the false location reported by agent i. For any agent
i, we have 3j € g;, atc(f(r),G;) < atc(f(r',r_;),G;) or
Vi € g, ate(f(r),G;) = ate(f(r',r—;), G;) where r_; is
the profile of all agents except agent i. We also have the same
argument when we consider the altruistic maximum cost.

The major difference is that the ex-ante Pareto strat-
egyproof definition imposes that reporting truthfully is a
dominant strategy for every agent while the ex-post Pareto
strategyproof only requires that an agent will report truth-
fully if all the other agents report truthfully. Our ex-post
Pareto strategyproof definition extends the standard ex-post
implementation concepts when each agent has only a single
interdependent cost function (Bergemann and Morris 2008)
and FLPs (Aziz et al. 2020). For simplicity, we use Pareto
strategyproofness (PSP) to denote ex-post Pareto strate-
gyproof in the remaining part of this paper.

Existing Mechanisms with Altruistic Agents When con-
sidering a new setting, an immediate question is, do ex-
isting mechanisms still work? We first consider two well-
known mechanisms proposed by (Procaccia and Tennen-
holtz 2009): placing the facility at a left-median agent lo-
cation or placing the facility at the leftmost agent location,
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which achieve the best approximation ratio for the social
cost and the maximum cost, respectively, under the setting
of myopic agents.

Proposition 2. Placing the facility at the median (tie-
breaking by selecting the left-median) or the leftmost agent
location is not Pareto strategyproof for both the altruistic
total cost and the altruistic maximum cost.

Indeed, given any constant k, we can use the same anal-
ysis as above to show that placing the facility at the k'
agent location is not Pareto strategyproof. Besides the two
well-known classical mechanisms, we also consider a strate-
gyproof mechanism proposed by Zhou, Li, and Chan (2022),
which is designed for the magc and the magc.

Proposition 3. Placing the facility at the leftmost median
agent of the largest group, breaking ties in favor of the small-
est index, is not Pareto strategyproof for both the altruistic
total cost and the altruistic maximum cost.

The major reason that causes non-PSP under the altruis-
tic total cost setting is the tie-breaking rule for the group
with an even number of agents. If the tie is broken by select-
ing the right-median agent, we can also construct a profile
that can be used to show non-PSP. Moreover, if we do not
place the facility at a group median location, the approxima-
tion ratio can be unbounded, no matter what the objective
is. For instance, consider an example with only one group.
If we do not place the facility at the group median agent,
all the agents can report their locations to the group median
to make the mechanism output the group median to avoid
an unbounded approximation ratio. For the altruistic max-
imum cost, we can observe that placing the facility at any
median or group median cannot satisfy PSP since the agent
cost function is totally different. Therefore, a major chal-
lenge is to design PSP mechanisms for both objectives.

Altruistic Total Cost

As we have discussed, placing the facility at a group median
can lead to non-PSP. Hence, we first propose a profile pre-
processing method to avoid that situation. Let lmed(G) be
the left-median agent of G, rmed(G ;) be the right-median
agent of G;. If the number of agents is odd in G;, we have
Imed(G;) = rmed(Gj).

Profile Preprocessing. Given any profile r, map every
agent i from x; to P(z;)

min,jem Lrmed(G) lfxz < minngi Lrmed(G;)
MaXjcg, Limed(G,) e€lse if T; > MaXjcg, Timed(G;)
T; otherwise

Note that all mapping is based on the original group me-
dian location, it is possible that two agents switch the loca-
tions, e.g., Imed(G;) and rmed(G;) switch their locations
after mapping. Below, we show how Profile Preprocessing
helps us design PSP mechanisms.

Proposition 4 (Repellency). A mechanism f is PSP if it sat-
isfies repellency, i.e., for every profile r and every i € N, it
holds that

* P(x;) < f(r) implies that f(r},r_;) > f(r) forall 7}
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o P(xz;) > f(r) implies that f(r},r_;) < f(r) for all 7}

Moreover, if we want to place the facility at a certain
group median, placing the facility at that group median after
profile preprocessing can achieve the same effect.

Proposition 5 (Consistency). For every profile r and group
Gg’ it holds that Llmed(Gy) < P(xlmed(Gg)) < Lrmed(Gy)
and Llmed(Gy) < P(xrmed(Gg)) < Lrmed(Gy) after Profile
Preprocessing.

Therefore, we can design a PSP mechanism by mapping
all agents by Profile Preprocessing first, then place the fa-
cility at a certain group median since it can ensure that 1)
any misreporting makes the facility farther away from P(x;)
(Prop 4), 2) the facility location is also within the left median
and right median of the same group as the original profile
(Prop 4). Although we find a way to design a PSP mech-
anism, it is still a challenge to design mechanisms with a
good approximation ratio. Next, we present different PSP
mechanisms to approximately optimize different objectives.

Social Cost

In this section, we first extend the mechanism which places
the facility at the median agent of the largest group to our
setting with Profile Preprocessing. Then we consider two
median mechanisms which not only consider the largest
group but also consider all the other groups. Finally, we ana-
lyze the strengths and weaknesses of these mechanisms and
present a mechanism with a smaller approximation ratio.

Majority Median Mechanism (Majority-Med). Given
any profile r, map all agents by Profile Preprocessing. Place
the facility at the left-median of the largest group G 4, break-
ing ties in favor of the smallest index.

Proposition 6. Majority-Med is Pareto strategyproof and
has an approximation ratio of 2m — 1 for minimizing the
social cost.

Since Majority-Med is a combination of Profile Pre-
processing and the existing mechanism for optimizing the
group-fair objectives, it is not surprising that it achieves a
larger approximation ratio for the social cost. Recalling the
best mechanism for the social cost under the myopic agent
setting is placing the facility at the left-median agent loca-
tion. A natural idea is designing a median-like mechanism
by leveraging group memberships.

Weighted Group Median Mechanism (Weighted-Med).
Given any profile r, map all agents by Profile Preprocessing.
Without loss of generality we assume that P(Zimed(c,)) <
co £ P(Timed(G,,))- Place the facility at y = P(Timea(a,))
where g = arg ming { Z?:l 1G] = %27:1 |G}

Proposition 7. Weighted-Med is Pareto strategyproof and

has an approximation ratio of 3m for minimizing the social
cost.

The major reason that Weighted-Med achieves an even
larger approximation ratio is that the agents in multiple
groups will be over counted in terms of the weight. Con-
sider an example where one agent in {G1, ..., Gp,—1} is at
0, m — 1 agents in GG; to G,,,—1, respectively, are at 1, and
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2m — 1 agents in G,,, are at 1. Weighted-Med places the
facility at O with the social cost of 3m — 1 while the opti-
mal location is 1 with the social cost of 1. Hence, we use the
union operation instead of the addition operation.

Union Group Median Mechanism (Union-Med). Given
any profile r, map all agents by Profile Preprocessing. With-
out loss of generality we assume that P(Zimeq(G,)) < - <
P(Zimed(a,n))- Let G = G1UG2U- - -UGj. Place the fa-
cility at y = P(Timeq(a,)) where g = argming {|Gg| >
Proposition 8. Union-Med is Pareto strategyproof and has
an approximation ratio of 2m — 1 for minimizing the social
cost.

Although Union-Med has the same approximation ra-
tio as Majority-Med, one can see that the scenarios caus-
ing those approximation ratios are totally different since
Majority-Med only leverages the largest group while
Union-Med takes all the groups into consideration. What
if we combine the spirit of these two mechanisms together,
i.e., considering part of groups? Finally, we propose a new
mechanism with a smaller approximation ratio.

Union Larger Group Median Mechanism (UnionTrunc
-Med). Given any profile r, map all agents by Profile Pre-
processing. Let |Gumax| be the number of agents in the
largest group. Let G' = {G,||G;| > %|Gmax|,Vi €
[m]} where X sm—2 and |G'| = m'. We denote
the j*" element in G \ G' as G; and the j'" element
in G' as Gé—. Without loss of generality we assume that

P(xlmcd(Gll) <= P(xlmcd(Glml)) and P(xlmed(Gl)) <
< P(‘rlmed(Gm,mz))' Define G[jl] = Gu UGy U
-+ U Gji. Place the facility at y = P(xlmed(g )) where

gl

g' = argming {|G| > 5|Gpayl}-

The intuitive explanation is that we place the facil-
ity at the union group median among all larger groups.
When A is equal to 1, UnionTrunc-Med is equivalent to
Majority-Med, when A approaches oo, UnionTrunc-Med
is equivalent to Union-Med.

Theorem 1. UnionTrunc-Med is Pareto strategyproof and
has an approximation ratio of % = %m + % (when

m approaches co) for minimizing the social cost.

Proof. We can show UnionTruc-Med satisfies repellency
since any misreporting by agent ¢ will move the facility far-
ther away from P(z;). Then we consider the approximation
ratio. Given any profile 7, let y be the facility location out-
put by UnionTrunc-Med and y* be the optimal facility lo-
cation. Without loss of generality, we assume that y < y*.
If ¢' = m!, due to the consistency of Profile Preprocess-

ing, for any group j, there are at least ‘C;—J‘ group members at
or on the left of y, and at most @ group members at or on

. G
the right of y*. Hence, there are at least max;i ¢ [41){ |2—"‘} >

l
|Gr§7a"‘ agents at or on the left of y, and at most "5~ |G ax|

agents at or on the right of y*. In addition, there are at most
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(m — ml)% agents at or on the right of y*. Hence, the

approximation ratio is at most m.

If ¢ < m! — 1, due to the consistency of Profile Prepro-
cessing, for each sz where jl < gl, there are at least half of
group members at or on the left of y, implying the number of
such agents is at least L = max;i¢c(q{ 1 ll} > ‘G"""‘l .In
addition, there are at most half of group members at or on the
right of y*, implying the number of such agents is at most

R < %l |Gmax|. The number of the remaining agents in any
group of G' is at most Ry < L+ Ry since |Gy)| > §[G .

Z:J’E[mfml] ‘Gl| < (m—ml)%
agents in any group belonging to G'\ G'. Therefore, there are
at most Ry — L+ R+ R3 more agents in (—oo, y| than there
are in [y*, 00), implying sc(y, ) < sc(y*,r) + (R; + Ra +
Ry — L)(y* — y)

Moreover, sc(y*,r) > L(y* — y) since there are at least
L agents at or on the left of y. Therefore, we have the ap-

sc(y,r) < RitRy+Rs

sc(y*,r) — L .

Let Ry be x|G|, which can be seen as = groups each with
|G| agents. Then the approximation ratio is at most

There are at most R3 =

proximation ratio p =

e Mt Ra 4R
|G gt R B L
Gmax
s.t. | 9 | < L Rl < *|Gmax|
Ry =z|Gz|l, Ry <L+ Ry
1 < Z, |Gac| < |Gmax‘ ’
Gmax
Rsé(m—gl—f)‘i)\'
3m—4
om—2 9=

which can be simplified as

Gmax
% |Cuna| + 2G| + (m — g — ) 05!
max
2,|Gal.g! [Gunax|
2
! .
g |Gmax 3m —4
b 2|Gy| € Z|Gmax : =
st @lGal < G 1Cmad + =5 om — 2
1S1’7 |G:C|S|Gmax7 lﬁglﬁm—l
If \GI| > “‘“l » the objective function is monotoni-

cally increasing Wrth x 1ncreasmg The objective function

|G mx |

2[Gal
z|Gy| < -3 |Gmax| + % Then we plug z into the objec-
tive to yield

reaches the maximum when x = e G T |G rnax|+ since

. (2m — 2 4 29+ 1)|Gupay| — U Coma]
B |Grmax

m(4dm — 5)
- 3m—4

l

where the equality is satisfied |G| = |Gmax| and g' = m
l=m-1.
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If |G| < %, the objective function is monotonically
decreasing with z increasing. The objective function reaches
the maximum when x = 1 since x > 1. Then we plug z into
the objective to yield

k|Gmax| + 2|Gz| +2(m — g _l)l max|
|GH1&X

m(4m — 5)
3m—4

where the equality holds by |G| = % andg' =1. O

Then we show a lower bound in this setting.

Theorem 2. Any deterministic Pareto strategyproof mecha-
nism has an approximation ratio of at least m for minimizing
the social cost.

Maximum Cost

For the maximum cost, one can see that placing the facility
at a certain agent location can achieve a 2-approximation
ratio (but may not be PSP), which satisfies all of our Pareto
strategyproof mechanisms.

Theorem 3. All the mechanisms (Majority-Med,
Weighted-Med, Union-Med, UnionTrunc-Med) have
an approximation ratio of 2 for minimizing the maximum
cost.

Theorem 4. Any deterministic Pareto strategyproof mecha-
nism has an approximation ratio of at least 2 for minimizing
the maximum cost.

Maximum Total & Average Group Cost

In this subsection, we use Majority-Med for both magc and
magc.

Theorem 5. Majority-Med has an approximation ratio of
3 for both magc and magc objectives.

Theorem 5 also implies Majority-Med can achieve an ap-
proximation ratio of 3 under the setting of myopic agents
and multiple group memberships, which generalize the cor-
responding result of Zhou, Li, and Chan (2022). Then we
present a lower bound.

Theorem 6. Any deterministic Pareto strategyproof mecha-
nism has an approximation ratio of at least 3 for both magc
and magc objectives.

Altruistic Maximum Cost

When we consider the altruistic maximum cost, none of the
mechanisms we mentioned are Pareto strategyproof. Hence,
we need to design new mechanisms for this setting. We first
introduce the following PSP mechanism, which is similar to
Weighted-Med.

Weighted Group Middle Mechanism (Weighted-Mid).
Let mid(G;) be the middle of group G;, and without
loss of generality we assume that Toyiqg,) < <

Tmnid(Gom)- Place the facility aty = Tmia(a,) where k
argming {31, Gy > § Y7, Gy}
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Proposition 9. Weighted-Mid is Pareto strategyproof.

Next, we will use Weighted-Mid to maximize the social
cost and the maximum cost.

Social Cost & Maximum Cost

Theorem 7. Weighted-Mid has an approximation ratio of
5 for minimizing the social cost.

Theorem 8. Any deterministic Pareto strategyproof mecha-
nism hqs an approximation ratio of at least 3 for minimizing
the social cost.

Theorem 9. Weighted-Mid has an approximation ratio of
2 for minimizing the maximum cost.

The lower bound can be inferred from Theorem 4.

Corollary 1. Any deterministic Pareto strategyproof mecha-
nism has an approximation ratio of at least 2 for minimizing
the maximum cost.

Therefore, Weighted-Mid is the best mechanism for both
the social cost and the maximum cost.

Maximum Total & Average Group Cost

For the magc objective, we first show that Weighted-Mid
has an approximation ratio of at least |Gyax|, The case
where |Gmax| = 1 is equivalent to the myopic setting, thus
we only consider |G x| > 2.

Proposition 10. Weighted-Mid has an approximation ratio
of at least |G ax| for minimizing the magc.

Because Weighted-Mid is designed for the classical ob-
jectives, it is natural that it cannot guarantee a smaller ap-
proximation under a totally different objective. Hence, we
propose a new mechanism for group-fair objectives, which
leverages the idea of designing Majority-Med.

Majority Group Middle Mechanism (Majority-Mid).
Place the facility at the middle of the largest group G,
breaking ties in favor of the smallest index.

Next, we provide its approximation ratio for the magc.

Theorem 10. Majority-Mid is Pareto strategyproof and

has an approximation ratio of % + 1 for both magc and
magc.

Proof. For the Pareto strategyproofness, we can show that
every agent misreporting can only move the facility farther
away from one group middle point they belong to. Then we
prove the approximation ratio. Let y be the mechanism’s
output and y* be the optimal output. Without loss of gener-
ality, we assume that y < y*. Give any profile r, we observe
that mtge(y, r) < mtge(y™*, ) +|Gmax|(y™ —y) since there
are at most |Gmax| agents in the same group at or on the
right of y*. Further, we have the approximation ratio

‘GmaXKy* - y)
mtge(y*,r)

_ mtge(y, )
 mtge(y*,r) ~

We observe that the smaller mtge(y*,7) is, the larger the
approximation ratio is. Hence, we need to calculate the min-
imum value of mtge(y*, r). Let the location of the leftmost
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agent in the largest group be z; and the location of the right-
most agent in the largest group be x,.. Let L = =, — ;.

If |Gmax| = 1, L is 0 and mtge(y*,r) > y* — y since
there exists an agent at y. Then we have the approximation

ratio p < 1+ [Gmal ) — 9 yp |G,
: . L L
itbycases: y* —y < Fand y* —y > 3.

Ify*—y < 5, it means that y < y* < x,.. We have
mtge(y*,r) > L since there is at least one agent at x; and at
least one agent at z,.. Therefore, we have the approximation

> 2, we discuss

ratio p < 1+ W which reaches the maximum
1+ Lrg‘“l when y* —y = L/2.
fy*—y> % y* is on the right of x,. and we have

mtge(y*,r) > (y —y+§)+(|Gmax|—1)(y —y—g)
L

= |Gmax| (¥" —y) — (|Gmax| — 2)5

since there is at least one agent at x; and at most |Gyax| — 1
agents at x,. We further have the approximation ratio

|G max|(¥™ — )
|G max| (¥* —y) = (|Gmax| — 2)%

which reaches the maximum 1 + m‘éi"‘ when y* —y = %

Here we briefly discuss the approximation ratio of
Majority-Mid for minimizing the magc since the analyzes
are similar to the proof of magc. Specifically, the con-
dition for equivalence of all inequalities in the proof is
that both mtge(y, r) and mtge(y™, r) are achieved by the
groups with size |Gax|. Therefore, we have mtge(y, r)
|Gmax| mage(y, r) and mtge(y*, 7) = [Grmax| mage(y®,
implying the same upper bounds.

p<1+

),
O
Then we present a tight lower bound.

Theorem 11. Any deterministic Pareto strategyproof mech-

anism has an approximation ratio of at least % + 1 for
both magc and magc.

Conclusion

We consider the facility location problems (FLPs) with altru-
istic agents where the agents belong to a set of overlapping
groups. We model the altruistic agents using the altruistic
total cost and the altruistic maximum cost. For both agent
cost functions, we design new mechanisms and show that
the existing mechanisms that satisfy various strategyproof
notions approximately optimize several standard and group-
fair objectives (i.e., total cost, maximum cost, maximum to-
tal group cost, and maximum average group cost). We pro-
vide lower bounds for each setting.

There are many directions that can be further explored.
The first is whether the current results can be improved, i.e.,
proposing mechanisms with better approximation ratios or
providing higher lower bounds. Moreover, studying altruis-
tic agents in other facility location problems, such as obnox-
ious facility location problems, is an interesting direction.
Besides the Pareto strategyproofness, there are some other
methods to model the agents with multiple objectives that
can be explored, such as the sum of the objectives and the
maximum among the objectives.
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