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ABSTRACT Sixth-generation (6G) wireless networks will become vulnerable due to native generative
Al (GenAl)-driven intelligent poisoning attacks in both the radio unit and the core network. In particular,
network parameters and metrics in cross-layer design pose fundamentally uncertain conditions and can be
compromised through the native GenAl mechanism, which leverages data augmentation and reconstruction
capabilities. This work investigates the capabilities of native GenAl to create novel poisoning attacks
in wireless networks, while investigating their impact through uncertainty-informed root analysis. Then,
detected attacks are mitigated by developing a trustworthy service aggregation in the wireless network.
First, a joint decision problem is formulated to generate intelligent poisoning attacks, understand their root
cause by defining a new measure of uncertainty as plausibility, and mitigate them through trustworthy
service aggregation in wireless networks. Second, to address the challenges of the formulated problem, a
novel Trust-By-Learning (TBL) framework is developed. The proposed TBL framework primarily consists
of three components: 1) a native GenAl mechanism that can penetrate intelligent poisoning attacks in
wireless networks’ metrics and parameters; 2) a Dempster-Shafer-based evidence theoretic mechanism
that is developed to understand the root cause of inherently uncertainty of those attacks to quantify
the trust for further mitigation; and 3) a meta-reinforcement-based Markov Decision Process learning
framework that can mitigate the intelligent attacks by enforcing trustworthy service aggregation. Extensive
experimental analysis demonstrates that native GenAl methods, such as generative adversarial network
(GAN), variational autoencoder (VAE), and autoencoder have significant capability to enforce poisoning
attacks. Results show that the autoencoder performs significantly better in generating poisoning attacks
capabilities of 98.2%, 97.4%, and 95% for Amazon, Netflix, and Download services, respectively. The
proposed TBL framework effectively replicates intelligent attack dependencies by achieving a trust score
of 0.972, 0.922, and 0.892 for Amazon, Download, and Netflix services, respectively. Finally, the proposed
TBL framework shows efficacy in understanding the trust in GenAl-driven intelligent poisoning attacks
on network parameters and metrics by quantifying root causes and mitigating rates.

INDEX TERMS Generative Al, 6G, intelligent attacks, evidence theory, trustworthy Al, meta-
reinforcement learning.

I. INTRODUCTION interconnected devices and services with tight integration of
HE EMERGENCE of the sixth-generation (6G) wire- Al Technologies [1], [2], [3]. However, these advancements
less networks promises significant advancements in also introduce new security challenges, particularly in the

speed, capacity, and reliability, enabling a future of context of generative AI attacks. The need for a new
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generation of wireless networks, such as 6G, stems from
the limitations of current 5G networks in handling the
increasing demand for data, connectivity, and intelligent
services. 6G networks aim to provide seamless intelli-
gent connectivity, ultra-low latency, and enhanced mobile
broadband, extending these capabilities to include sens-
ing and Al-driven services [2], [3]. These next-generation
6G networks will face a growing threat from intelligent
attacks that leverage generative Al (GenAl) to compromise
their trust. GenAl, with its ability to generate realistic
data and mimic system behavior, can be weaponized to
create sophisticated attacks that bypass traditional security
measures [4]. This can erode trust in the network and its
services, posing a significant challenge to the successful
deployment of 6G. In particular, the attacks include arti-
ficial intelligence and machine learning based intelligent
attacks, zero-day attacks, quantum attacks, and physical layer
attacks [4].

For instance, Al-native 6G networks [3], [5], [6], [7], [8],
[9], [10] in will face major security challenges in poisoning
attacks in network metrics and parameters. Further, the
emerging 6G applications such as Extended Reality (XR),
Connected and Autonomous Vehicles (CAV), Holographic
Telepresence, the Internet of Everything (IoE), Smart Grid
2.0, UAV-based mobility, Hyper-intelligent IoT, Digital Twin,
and so on significantly relies on AI/ML methods [4],
[51, [6], [11], [12], [13], [14]. Therefore, the chance
of intelligent poisoning attacks in 6G wireless networks
significantly increases due to the rigorous deployment of
Al methods in both the application level and wireless
infrastructure.

Protecting and securing 6G wireless networks from such
intelligent attacks, it is essential to understand the new
attack surface of network parameters and metrics while
establishing trust on services. The challenges incorporate
due to the highly uncertain behavior of intelligent attacks
in wireless parameters and metrics such as received sig-
nal strength indicator (RSSI), reference signal received
quality (RSRQ), reference signal received power (RSRP),
channel quality indicator (CQI), user mobility, and so
on. Further, establishing long-term temporal dependencies
among the network parameters and metrics and coping
with the high-dimensional attack space of heterogeneous
wireless services become major challenges. The studies [4],
[51, [6], [11], [12], [13], [14], [15], [16], [17] have
not investigated intelligent attacks on wireless networks’
parameters and metrics that are created by native GenAl
methods such as Autoencoder and Variational Autoencoder
(VAE), Generative Adversarial Networks (GANs), and so
on. In particular, the main motivation behind this research
is to investigate the capabilities of native such GenAl to
create novel poisoning attacks in wireless networks, while
investigating their impact through uncertainty-informed root
analysis. Subsequently, the detected attacks are mitigated by
developing a trustworthy service aggregation in the wireless
network. In essence, prior works have not adequately
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studied the complex and adaptive nature of intelligent
attacks in high-dimensional spaces [1], [4], [5], [6], [11],
[12], [13], [14], [15], [16], [17], highlighting the need
for a comprehensive framework like TBL to address these
challenges.

Our initial study in [1] shows the capability of intelligent
poisoning attack generation by native GenAl models and
understands their attack vectors in a quantifiable trust
metric. The main contribution of the paper is a novel
Trust-By-Learning framework that can help understand the
uncertain behavior of GenAl-driven intelligent attacks on
network change, parameters, and metrics while protecting
the wireless network through uncertainty-informed trustwor-
thy service aggregation. Our contributions are summarized
as follows:

e We propose a novel Trust-By-Learning framework
for understanding and mitigating intelligent cyber
attacks in next-generation wireless systems. In par-
ticular, the proposed framework can create intelligent
poisoning attacks on communication parameters and
metrics while understanding the root cause and pro-
tecting the 6G services by providing trustworthy
aggregation.

o We develop a new narrow GenAl framework capable
of creating new intelligent adversarial attack surfaces
in wireless systems for further understanding the attack
characteristics, severity, and the possible ways for
mitigating next-generation cyber-attacks.

« We develop a trust quantification mechanism based on
evidence theory that effectively captures the uncertainty
of intelligent poisoning attacks on wireless commu-
nication, aiming to safeguard next-generation wireless
systems from such sophisticated threats.

o We develop a meta-reinforcement-based Markov deci-
sion process learning framework to understand the
intelligent attacks and trustworthy service aggregation
in wireless networks by taking into account long-term
temporal dependencies among the intelligent attack
vectors.

o The experimental results show mutual information values
for dependency replication in the TBL framework
across various generative models show interesting
results. Autoencoder and Variational Autoencoder effec-
tively model attack patterns, achieving high correlation
coefficients of 0.972 for Amazon, 0.922 for Download,
and 0.892 for Netflix. In contrast, Generative Adversarial
Networks perform less effectively in this context, with
lower correlation coefficients of 0.212 for Amazon, 0.445
for Download, and 0.454 for Netflix. This demonstrates
that Autoencoders and VAEs are more adept at replicating
and understanding attack behaviours, which is crucial
for developing robust defenses.

The rest of the paper is organized as follows. In Section II,
we present important related works based on the existing
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literature. In Section III, we describe the proposed trustwor-
thy wireless network system model. Then, we formulate the
TBL problem in Section IV. The proposed TBL framework
is designed in Section V. In Section VI, we present and
analyze our experimental results. Finally, we conclude our
discussion in Section VII. Abbreviations are summarized in
the APPENDIX.

Il. RELATED WORKS

The design of security solutions for Al-native wireless
networks attracted significant attention recently [2], [3].
For instance, the work in [18], [19] identifies security
technologies and research challenges specific to 6G wireless
networks with a focus on the role of Al and blockchains.
The authors in [11] studied the problem of identifying and
understanding the emerging trends, applications, require-
ments, technologies, and future research directions in the
context of 6G networks. However, in [11], the authors do
not provide any technical direction of how to address the
intelligent attacks in wireless network infrastructure. The
work in [4] identifies future challenges by focusing on
security and privacy concerns that might arise with the
development of 6G. In particular, the authors survey potential
challenges associated with different 6G technologies and
applications. The work in [19] identifies the cyber attack
prediction mechanisms that leverage traditional machine
learning to GenAl models. However, our work focuses
on investigating intelligent poisoning attacks in wireless
networks that are posed by a native GenAl model. The
works [4], [11], [18], [19] primarily focus on various
aspects of 6G wireless security, such as general trends
and existing privacy measures. However, these studies have
not extensively explored the emerging challenge of GenAl
attacks in wireless networks or detailed specific protection
mechanisms against them. This paper aims to fill that gap
by investigating the potential for GenAl-driven attacks and
proposing effective defense strategies.

A few of the works [15], [16], [17], [20], [21] studied
the problem of securing wireless networks against intelligent
attacks. The authors in [15] address the problem of securing
6G network-assisted Internet of Things(IoT) systems against
adversarial attacks. It explores various defense strategies
and evaluates their effectiveness through theoretical analysis,
up-to-date research, and Monte Carlo simulations. While
their work significantly advances the understanding of such
defense mechanisms, there is an opportunity to further
explore the potential roles of Generative Al in this context.
The authors in [20] investigate a key foundational aspect
of GenAl-driven risk in cybersecurity. In particular, the
authors raised concern that data poisoning attacks can be a
crucial threat from the GenAl. Further, the authors in [21]
study a theoretical and empirical study on response to
GenAl-driven in smart grid communication. Particularly, the
authors developed a Bayesian belief network framework
to understand the GenAl attack surface in smart grid

VOLUME 6, 2025

@ Generated Untrusted Data
- \‘\\ A Trusted Data '_,—""\“\
e )

Srg

:  GenAldriven
¥ Intelligent Attack

iy B

‘8
=
o

Central gNB Comm. link

e ——
Core Network

FIGURE 1. A system model of securing 6G service aggregation under generative
Al-driven intelligent attacks in a wireless network.

communication. Our research builds on these findings by
leveraging Generative Al to develop robust and adap-
tive strategies for enhancing the security of 6G wireless
networks.

The research [17] presented a robust-by-design framework
for anti-jamming in MIMO-OFDM wireless communica-
tions. Robust anti-jamming methods are created without
requiring presumptions about the adversary’s configuration,
thanks to the use of sensing-assisted information. The
work [16] solved network transparency and improving user
interactions in Zero Touch Networks (ZTNs) by integrating
Large Language Models (LLMs) that can distill com-
plex deep reinforcement learning (DRL)-based anti-jamming
techniques. The research [17] presented a robust-by-design
framework for anti-jamming in MIMO-OFDM wireless
communications. Robust anti-jamming methods are created
without requiring presumptions about the adversary’s con-
figuration, thanks to the use of sensing-assisted information.
However, these works [15], [16], [17] do not consider the
intelligent attacks that can be imposed by the GenAlI models
while not explore how to integrate GenAl approaches in
a realistic way for understanding the new intelligent data
poisoning attacks in wireless networks.

lll. SYSTEM MODEL OF TRUSTWORTHY WIRELESS
COMMUNICATION

Considering a wireless network consisting of a set Z =
{0,1,2,...,1} of I+ 1 6G NodeBs (gNBs) that encompass
I small cell base stations (SBSs) overlaid over an Al-native
central gNB i = 0 as shown in Figure 1. Figure 1 illustrates
a typical system model of securing service aggregation under
generative Al-driven intelligent attacks in a wireless network.
To make the system model more understandable to a broader
audience, we have omitted the detailed blocks related to the
core network in Figure 1. Each gNB i € 7 can serve a set J;
of J heterogeneous 6G services such as UAV-based mobility,
connected and autonomous vehicles (CAV), intelligent health
care, and so on. We consider a time-slotted system with each
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TABLE 1. Summary of notations.

Notation Description
T Set of next-generation NodeBs (gNBs)
J Set of heterogeneous 6G services
alﬁ Uplink data rate at gNB %
gfw“ Downlink data rate at gNB ¢
Y(t) Trust score of j service aggregation decision
a;t Aggregation decisions
I'¢;; [dBm] Reference signal received power (RSRP) of service
JE€T:
Agj(t) Channel quality indicator (CQI)
My4j User mobility
Vtij Received signal strength indicator (RSSI)
Stij signal-to-interference-plus-noise ratio (SINR)
Vioti Near cell RSRP
o) Attack vector generation parameters
0 Intelligent poisoning attacks parameters
¢ Latent space (i.e., attack vector)
Gmax Maximum downlink data rate
wmax Maximum uplink data rate
D Recurrent neural network (RNN) learning parameters
Or meta learned weight parameters
h; RNN hidden state

time slot ¢ belonging to a finite time horizon 7. In each slot
t,a gNB i € 7 establishes service aggregation decisions a;; €
Vay;. Each gNB i € Z will assign data rates al.utp and ,BSOW“
for uplink and downlink at gNB i. The considered system
model meets the 6G wireless network requirements [4], [5],
[6], [11], [12], [13], [14] by enabling native Al-agent at
each gNB for allocating uplink oz:g.) and downlink ﬂg.]‘.’“’“
data rates to a particular 6G service j € J. Therefore,
the Al-native agent of each gNB i € 7 can be affected
by AI/ML-based intelligent attacks such as poisoning, Al
compromises, and eavesdropping, during network operation
etc [4], [13]. To characterize such intelligent attacks and
protect the 6G wireless network, we need to understand three
models: 1) the communication model, 2) the intelligent attack
generation model, and 3) the trust model in the following

subsections, respectively.

A. COMMUNICATION MODEL

In our system, we consider both downlink and uplink
communication models to serve each 6G service j € J;
demands at gNB i € Z. We define Gg.;’wn as the downlink
channel gain and o2 as the additive white gaussian noise
(AWGN) at gNB i. Therefore, for reference signal received
power (RSRP) T';; and co-channel interference I'IS;?W“, the
signal-to-interference-plus-noise ratio (SINR) S;; of gNB i €
7 can be calculated as follow [22], [23], [24], [25], [26],

TG

L Y

S”j - Z o2 + [down (D
vieJ; tij
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The Channel Quality Indicator (CQI) A;;(¢) [26] is a crucial
metric used to capture and assess the performance of
wireless communication, including both downlink and uplink
behaviors. Therefore, we can estimate a CQI of gNB i € 7
as follow [23], [24], [26], [27]:

Ayi(t) = 0.5223 x Sy + 4.6176, )

where 0.5223 and 4.6176 are constant [23], [24], [27] on
the linear model (2).

We consider a 20 MHz wide bandwidth based on orthogo-
nal frequency-division multiplexing (OFDM). Each resource
block (RB) consists of 12 sub-carriers, totaling 180 KHz
per RB, and there are 100 RBs available for each channel
bandwidth [25], [26]. Then, for a fixed bandwidth Bg.;’wn, the
downlink data rate ﬂf};’wn of the considered communication
model can be calculated as follows:

..~down
FIU Gti j

g =2 L B (14 i) @)
i€ jeJy o’ + 1ij
Similarly, the uplink data rate oz;g.) can be calculated as
follows:
TGy
up up 1y
=X Y s (1)@
i€l jeJy 1y

where B;g.’ is the uplink bandwidth. In this work, we
investigate the effect of a new intelligent attack vector on
communication parameters and metrics generated by Al
Therefore, we describe an intelligent attack generation model
in the following subsection.

B. INTELLIGENT ATTACK GENERATION

Considering a vector x,4; = (x1, X2, ...,xx) of X elements
wireless communication metrics and parameters, where
Vx,; € X. Therefore, the elements of the vector xy;
include user mobility m;, RSSI yy;;, RSRP I'y;;, SINR Sy,
uplink data rate a;ll.l.) , downlink data rate ﬂt‘ll.;’wn, near-cell
RSRP ri+i, CQI Ayj. Attackers target such parameters
and metrics for generating AI/ML-based intelligent data
poisoning attacks in the wireless network so as to com-
promise the Al services and gain control over the service
execution.

We consider an intelligent poisoning attack vector param-
eters is ¢. ¢ that maps with X" in a latent space (i.e., attack
vector) ¢, where ¢ : X — ¢. In other words, ¢{ becomes
an intelligent attack’s latent space for the given network
parameters and metrics X on attack generation parameters ¢.
Now, consider 6 is an actual attack reconstruction parameter
that decodes the intelligent attack latent space ¢ into
poisonous network metrics and parameters x’;;. The network
data poisoning parameter 6 generates the actual attacks x’y;
through intelligent attack latent space ¢, 0 : ¢ — X, Vxg; €
X. Therefore, the intelligent attack generation model can be
defined as follows:

F(¢’ 9) = ]Ex”_'/"\'{ [Q(xtiiv g@(fqb(xty)))]» (5)
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where €2(.) is function of intelligent attack vector latent
space ¢ generation parameters ¢ and actual data poisoning
parameters 6.

Therefore, we formulate the intelligent poisoning attack
generation model as follows:

1 N
MinF($, 6) = F($,6) = 3 3 by — 86 fs o) 13, (©)
’ n=1

where x’;; = go (fy (x4;)) is the generated network parameters
and metrics and gj:{x1,x2,...xy} C X for N sample. As
a result, F(¢, 60) can generate intelligent poisoning attacks
in wireless communication systems by generating metrics
and parameters like RSRP, RSRQ, SINR, CQI, mobility, as
well as uplink/downlink data rates, among others. Thus, it
is imperative to protect the communication systems from
such attacks. Our goal is, therefore, to design a trust
model inspired by the concept of the Dempster—Shafer [28]
evidence theory. The following subsection describes the
proposed trust model between 6G service and gNB.

C. TRUST MODEL BETWEEN SERVICES AND GNB

The proposed trust model aims to protect the wireless system
from intelligent poisoning attacks by establishing trustworthy
communication between the service and the gNB. First, we
define the belief of network parameters and metrics between
service j € J; and gNB i € Z. We consider a power set
2% of wireless communication metrics and parameters x of
service j € J;. For example, the power set 2*4 contains all
combinations of belief of user mobility, RSSI, RSRP, SINR,
uplink data rate, downlink data rate, near-cell RSRP, and
CQI, including the empty set. We define a belief assignment
mass function as M: 2¥4 — [0, 1], where erzxn‘j M(x).
Thus, for a non-empty set 2%, total sum of beliefs will be
1 such that ) jxex; = M(x) = 1. We estimate the belief
through a Bayesian approximation,

S ME)
S 1 Yoo M) =1,

0, otherwise.

M(x) = ! @)
In (7), the belief in a service request lies in quantifying
the uncertainty of a trusted request. In other words, (7) is
a degree of belief or mass (belief function) for a particular
service’s network parameters and metrics. We consider
plausibility [28] as a measure of uncertainty of network
parameters or metrics and define it as follows:

Pl(x) = 1 — M(YX' € Xgj, x # Xzi), ®)

where Vx" € x;; is an intelligent attacks parameter of service
J € Ji. We define a binary decision variable ay; to indicate
whether the network parameters of service j have been trusted
or not. Therefore, a,; becomes a binary decision variable that
decides the service aggregation decision of service j € Jj,

v
aiij = 0
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if M(x) < 1,Pl(x) < 1,
otherwise.

€))

Where PI(x) represents the plausibility of network parameter
x € X. We quantify the trust score of network parameters as
follows:

M) 1 S
e Pl * Ajj(n),if M(x) > 0,

0, otherwise.

Y() = (10

The trust score in (10) depends on belief M (x") and
plausibility Pl(x) of x” while we capture CQI Aji(®) in (2).
That means the trust score (10) relies on both prior evidence
of network parameters and metrics, and the current channel
quality index of service j € J; at gNB i € Z. The physical
meaning of the trust score is that lower plausibility indicates
higher trust, enabling us to better understand the intelligent
poisoning parameters and metrics x’, and vice-versa. In this
work, we formulate a joint optimization problem that can
generate an intelligent attack, understand the attack vectors
such as generated communication parameters and metrics,
and protect the communication system by providing service
aggregation decisions based on trust. A detailed description
of the Trust-By-Learning problem for a 6G wireless network
is discussed next.

IV. TRUST-BY-LEARNING DECISION PROBLEM
FORMULATION

This section proposes a joint decision problem to secure
wireless networks from AI/ML-driven intelligent attacks. The
objective of the proposed decision problem is to maximize the
trust score while finding the trustworthy service aggregating
decision ay; of a service j € J to gNB i € T by determining
belief M(x’) of the generative intelligent attack x’. The
proposed Trust-By-Learning is as follows:

T |71 171

max ) Y Y Eq [TO], (11

YME)a DT o
st. @ <X = ¢ fyx,x0, . xn} C A, (11a)
0 <¢—x Vx'yex, (11b)
Pl(x) < 1,vx ex’, (11c)
agM(x') < 1,¥x ex/, (11d)
agjNij (1) <1, (1le)
ﬂg})wn < 8max’ (llf)
agjoy; < 0™, (11g)

®; < Ho (). ) = {X, A, M), T(t)}, (11h)
a; € 10, 1).Yi € T, € J,. (11i)

The formulated decision problem (11) consists of three
decision variables, intelligent attack generated network
parameters and metrics x’, belief M (x") on generated attacks,
and trustworthy service aggregation decision Va;; € a.
The generated network parameters and metrics x’ rely on
parameters ¢, 0, and the attack vector latent space ¢.
Constraint (11a) ensures the mapping from attack generation
vector parameters ¢ to latent space ¢. Constraint (11b)
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ensures the mapping from attack latent space ¢ to com-
munication metrics x’ with generated parameters 6. The
parameters ¢ and 6 are determined by the intelligent attacks
model in (6). The plausibility is one of the key performance
metrics for determining the trust score of generated commu-
nication metrics and parameters x’, constraint (11c) assures
that this value must be positive and between O to 1. Similarly,
the marginal probability of belief is constrained between
0 and 1 in constraint (11d). Constraint (11e) ensures that
the CQI of a particular service fulfillment session between
the service j € J; and gNB i € Z does not exceed
the maximum n = 15 CQI [25], [26]. Constraints (11f)
and (11g) ensure that the allocated downlink and uplink
data rates of a service j € J; always bounded by maximum
downlink §™# and uplink capacity w™¥*, respectively.
Constraint (11h) transforms the formulated problem into a
Markov Decision Process V; = {X, A, M(x'), Y (f)}, where
x € X is the observations, a € A represents trusted service
aggregation decisions, M) presents evidence-based belief
of a generated intelligent attacks x’, and Y (r) is the trust
score of the Al-generated network parameters and metrics x’.
In particular, the constraint (11h) ensures that the formulated
problem (11) establishes a Trust-By-Learning problem by
accumulating a Markov Decision Process, where parameters
®; relies on the distribution of evidence © that belongs to the
belief distribution }); ~ M (x") of the Al-generated network
and parameters x’. Finally, constraint (11i) ensures that at
time slot r € T, each service j € J; cannot be aggregated
with more than one gNB.

The formulated problem (11) is hard to solve in poly-
nomial time complexity in an optimization problem solver
due to its non-linear constraints and uncertain dependencies
on intelligent attack parameters. Therefore, the formulated
problem (11) does not guarantee an optimal solution due
to the uncertainty constraint (11c). In consequence, we will
divide the solution of the formulated decision problem into
three sub-problems. First, we solve the intelligent attack
generation of network parameters and metrics x’. Second,
we determine the uncertainty-informed evidence creation
M. Finally, we develop a TBL framework to protect
from intelligent poisoning attacks by trustworthy service
aggregation a while fulfilling the service demands. A detailed
description of the proposed solution approaches is given in
the following section.

V. PROPOSED TRUST-BY-LEARNING FRAMEWORK

In this paper, we propose a novel TBL framework to
understand and mitigate intelligent cyber attacks in next-
generation wireless communication systems. We illustrate
the proposed three steps Trust-By-Learning framework in
Figure 2. In step 1 (yellow block in Figure 2), we generate
intelligent poisoning attacks on network parameters and
metrics by deploying the native GenAl model. Step 2 (green
block in Figure 2) represents the procedure of root-cause
analysis of the intelligent attacks. Finally, step 3 (light
brown block in Figure 2) presents the trustworthy learning
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FIGURE 2. The proposed Trust-By-Learning framework for mitigating intelligent
attack in wireless networks.

procedure of the proposed framework. Our approach involves
generating intelligent poisoning attacks on communication
parameters using a narrow GenAl framework to explore
new adversarial attack surfaces. We introduce an evidence-
theory-based trust quantification mechanism to capture the
uncertainty of these attacks and ensure the protection of
6G services through trustworthy service aggregation. We
outline the algorithmic procedure for Dempster—Shafer-
based uncertainty-informed evidence creation, including
generating sample space from poisoning attacks, estimating
evidence with a Bayesian Belief Network, and calculating
the plausibility of affected network parameters and metrics.
Additionally, we develop a meta-reinforcement learning
framework utilizing Markov decision processes to understand
long-term temporal dependencies among intelligent attack
vectors. Experimental results demonstrate that autoencoders
and VAEs effectively replicate dependencies in various
datasets, outperforming GANSs in this task.

A. INTELLIGENT ATTACK GENERATION FRAMEWORK
We will adopt the concept of unsupervised machine learning
to generate intelligent poisoning attacks related to wireless
network metrics and parameters. In particular, we create
intelligent attacks x” by developing an autoencoder-based
deep learning network. Algorithm 1 illustrates the overall
procedure of the intelligent attack generation framework. In
particular, Algorithm 1 solves the decision variable x of the
formulated problem in (11) in a data-driven manner.

The input of Algorithm 1 is network metrics and param-
eters of all x;; € X services J; in a finite time domain
T. Each service parameters and metrics vector x;; contains
mobility myj, RSSI yyj, RSRP TI'y;, SINR Sy, uplink data
rate oz;g) , downlink data rate ﬁg‘.’wn, near-cell RSRP ;,
and CQI Ay; information. Therefore, the role of Algorithm 1
is to generate the poisoning attack such that given network
parameters and metrics Xiij.
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Algorithm 1
Generation

Autoencoder-Based Intelligent  Attack

Input: Xijj = (xl,)Cz, . ,xX) ~ (m,,;j, Vtij F”:,', S,,‘j, O[;g?,
ﬂSfW“, Vs Nii), VX € X.
Output: Vx';; € x'.
Initialization: ¢, 6, ¢, W, wy, split(X).
1: while Vx,,-j e X do
2:  for epochs < max epochs do
: NN backpropagation: ||x — o’/ (W(o (Wx + b)) +
b)||* using (16)

4: Execute ADAM optimizer: using (17), (18),
(19), (20)

5: Estimate: ¢ — ¢ using (12)

6: Execute ReLLU function: g(x) using (13)

7: Estimate weight change: Aw; using (21)

8: Estimate: 6 using (14)

9: Execute Sigmoid function: s(x) using (15)

10 end for

11: NN weight update: w;;; = w; + Aw; using (22)
12: end while

13: return ¢, x’

Algorithm 1 initializes attack vector generation parameters
¢, intelligent poisoning attack parameters 6, latent space
(i.e., attack vector) ¢, and neural network (NN) initial weight
parameters W. Thus, then, generative parameters ¢ maps
with input network parameters and metrics X in a latent
space ¢, ¢:X — ¢.

After estimating latent space ¢, we estimate parameters
of attack vectors 6:f — X, Vx,; € &

In line 3 of Algorithm 1, we execute neural network stan-
dard back-propagation to estimate latent space ¢. Therefore,
we define an encoder function as follows:

¢ =0Wx+D), (12)

where W is neural network weights and b is the bias. We
employ a rectified linear unit (ReLLU) activation function to
capture the positive part of input x from neural network
output. The ReLU activation function is defined as follows:

X+ |x|
2 9
where x > 0. We consider the outcome of (13) as the latent

space of a potential intelligent attack vector ¢. Therefore,
we can generate the poisoning attack as follows:

x' =o' (W +0),

g(x) = max(0,x) = (13)

(14)

where b’ becomes the bias regularization term of attacked
parameters and metrics. We consider the output layer of the
attack generation neural network as the sigmoid activation
function [29] to capture the distribution from negative to
positive value. The Sigmoid activation function is defined

as follows:
ex

. 15
s 5)

s(x) =
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Finally, we can model a neural network for standard
backpropagation loss function as follows:

L(x,x’) = min|lx —x||* =

llx — o' (W(o (Wx + b)) + )%, (16)

where ||x—x’||? is equivalent to the L2 norm or least squares
function [30] during neural network training. We used the
Adaptive Moment Estimation (Adam) optimization [31] to
train the neural network due to the capability of capturing
the first and second moments of the loss function the
function (16). The first and second moments of the loss
function (16) are defined by,

¢y =019 + (1 — 9)VL(x,x),
V=920 + (1= 02) (VPL(x, x))°,

A7)
(18)

where ¥ and @, are the decay rates. As this approximation
algorithm employs adaptive learning rates, the step size is
essential in the initial iterations of the training process.
Consequently, the algorithm conducts a bias correction
before estimating the weight updates. The bias correction

functions for the first and second moments are:
w

¢Aw = Tl (19)
1 — (P11
R v
e E— (20)
I — (%2)41

Hence, the function of weight updates Aw; with corrected
bias is defined by,
w
Awy = —r—? ,
W+ ¢
where r represents the learning rate and ¢ is a small value
that prevents division by zero. Thus, the updated weight for
the next time slot 7 + 1 is given by:

1)

Wil = Wy + AW;. (22)

In Algorithm 1, lines 3 and 4 execute the backpropagation
and ADAM optimization for neural network training, respec-
tively. Lines from 5 to 8 execute the procedure for intelligent
poisoning attack generation training in Algorithm 1. Line 11
of Algorithm 1 updated the neural network trained weight
for testing. Algorithm 1 generates a poisoning attack x’ in
network parameters and metrics. We have used the output
of Algorithm 1 to create uncertainty-informed evidence
to establish the trustworthy protection of next-generation
wireless systems.

The computational complexity primarily comes from
neural network backpropagation and the Adam optimizer
used for weight updates. Each epoch involves recalculating
weights based on the backpropagation of errors, and the
use of activation functions like ReLU and Sigmoid. For a
network with n neurons and [/ layers, the complexity per
epoch is O(nxl). The number of epochs further multiplies this
complexity, resulting in an overall complexity of O(epochs *
nxl.
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B. UNCERTAINTY-INFORMED EVIDENCE CREATION

Building evidence M) from previous knowledge is
necessary to establish trust in wireless network param-
eters and metrics to defend against new sophisticated
attacks. Therefore, the proposed intelligent attack generation
Algorithm 1 is utilized for generating such attacks Vx’.
We create a sample space using Pearson’s correlation
coefficient [32] from the generated attack as follows:

s () o
JEer(a=) Syeston -

We will now leverage the concept of Dempster—Shafer [28]
evidence theory to capture the uncertainty of evidence. In
particular, we capture plausibility [28] as a measure of
uncertainty of network parameters or metrics in (8). Thus,
we build a Bayesian network [27] that consists of prior
probability distribution P(G(.)E' , X)), likelihood function
P(G(X, X)|M(x")), and posterior probability P(M(x")|G(X.
Therefore, the posterior probability can be presented as
follows:

P(M)|G(X, X)) x P(G(X, X)IM(x')) x P(G(X, X)).
(24)

G()%, X) - . (23)

For each network parameter or metric X' € x’, the product
of the individual density functions becomes the conditional
on their parent variables v € &X'. Therefore, the conditional
parent will be given by:

PM@E')) = [ ] PUE ), IMX)pacy))-
veX

(25)

Thus, the joint distribution of intelligent attacks x” can be
calculated from conditional probabilities using the chain rule,

P(MK'1), ... M(x'x))
= [ [ PG )M 1), M(x'x) € Pa(M(x',)). (26)
veX

The evidence P(M(x'y),...M(x'x)) of intelligent attacks
x'x) can be estimated by (26).

We summarize the algorithmic procedure of the proposed
Dempster—Shafer-based uncertainty-informed evidence cre-
ation in Algorithm 2. Line 3 in Algorithm 2 creates sample
space from the generated poisoning attracts x’. Lines from
4 to 7 estimate evidence of generated attacks by populating
the Bayesian Belief Network (BBN) of the wireless network
parameters and metrics in Algorithm 2. The plausibility of
affected network parameters and metrics is calculated in
line 8 of Algorithm 2. Finally, Algorithm 2 provides the
evidence and plausibility in line 11. We will further utilize
the uncertainty-informed evidence of generated intelligent
attacks for developing a Trust-By-Learning framework to
establish adaptive mitigation of intelligent attacks in wireless
networks.

This algorithm’s complexity arises from nested loops
over the samples and elements in the dataset, leading to a
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Algorithm 2 Dempster—Shafer-Based Uncertainty-Informed
Evidence Creation
Input: Vx';; e x’, X.
Output: P(MX'1), ... M x)), pl(x).
Initialization: X , X
1: while Vxl,-j e X do
2. for Vx';; e X’ do
3: Create sample: G(??, X) using (23)
4: Estimate prior probability: P(G(A? , X)) from (23)
5.
6

Conditional density: P(M(x")) using (25)

Posterior probability: PM(x")| G(é? , X))
using (24)

7: Estimate evidence: PM&')), ... Mx'x))
using (26)

8: Calculate plausibility: Pl(x) = 1 — M(VX €
Xtij, X 7 Xtif)

9: end for
10: end while . A
11: return P(M(x'1),...M(x'x)), pl(x)

base complexity of O(m x n). Further complexity is added
through probabilistic calculations (e.g., prior, conditional,
and posterior probabilities) that depend on the number of
metrics, scaling the overall complexity to O(m x n?). The
operations grow quadratically with the number of metrics.

C. TRUST-BY-LEARNING FRAMEWORK FOR ADAPTIVE
MITIGATION OF INTELLIGENT ATTACK
The goal of the proposed TBL framework is primarily to
capture the highly uncertain behavior of intelligent attacks,
establish long-term temporal dependencies, and cope with
high-dimensional attack spaces for heterogeneous wireless
services. There, we design a Meta-RL-based centralized
training and decentralized execution-based mechanism to
establish trust in network parameters and metrics by enabling
adaptive mitigation of heterogeneous intelligent attacks.
We design an uncertainty-informed trust-based reward
function (10) to capture the trust during the learning. In
particular, the reward shaping is designed by capturing
uncertainty from the plausibility of Dempster—Shafer theory
(in Algorithm 2) while maximizing the CQI of the network.
In this solution design, we consider each heterogeneous
service j € J acts as a learning agent while a virtual
agent plays the role of a centralized meta-agent for training.
Therefore, the learning parameters ® of the meta-agent can
be estimated as follows:

|1
0* = ar@g max 21: Ery [T @], 27)
=

where ®; is the learning parameters of each service trust
score. In particular, we can capture as a function of
evidence M, over the distribution of meta-agents param-
eters O, ®; = Hg(M;). Then, thus, we design our
Trust-By-Learning as a Markov Decision Process (MDP)
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Y = (X, A, M), Y (1)}, where X is network param-
eters and metrics, A presents trust action, Y(¢) is trust
score, and M(x’ ) becomes evidence. For each heteroge-
neous service agent j € J, the MDP can present as )
= {15, @rjj X255, YD), ..., (i, @i, X1, T (0}, where
Vi~ Mx).

We define the cumulative discounted trust for adaptive
mitigation learning as follows:

TP, /) —
Vo (x IU) - Ea,,-jwngi(a,,»j\x’,,_-,-;(bj)

T
[Z P (4 1) W, an‘;} :

t'=t

(28)

where ,o[,_’ is a discount factor and ensures the convergence
of the state value function V% (x'4j) over the finite time
horizon T. By imposing Markovian property, the optimal
trusted-value function is written as follows:

Vn:gj (x/tl'j) = max En&k’j Z T(l/)

aj € :
Yy ]EJ

oo
+ Z Pt/_[V;rwJ (x,t’ij) |x’tij; @, atij:|~ (29)
=t

Here, the optimal trusted-value function (29) learns a
parameterized policy of intelligent attack g, (asij|x’'ij; ®;j) by
using a Long short-term memory (LSTM)-based Q-networks
for the parameters ®;. To employ multi-agent settings for
understanding the heterogeneity of intelligent attacks, we

define an advantage function as follows [33], [34]:
k.
A0 (x’tijv Al -5 Q) q)t) =T

T
7—t ’ ’
+ Y P T ME vl g aars - a)

X'y €X M=t
T () * * T, (. * *
V ](x t/ij’n(b]""’ﬂ(b‘/) _V J(xt,"/,ﬂ(bl,...,ﬂq,‘,),
(30)
where 7g: (wy,...,7mg;) is a joint policy and

F(s,/,-|x’n-j,an-1,...,a,ij) — [0, 1] represents state transi-
tion probability. Therefore, the objective of the proposed
TBL framework is to minimize the temporal differ-
ence [33], [34], [35]. Therefore, the loss function is defined
as follows:

T . . 2
<<T(t) +Y P TV (x'r/ij|<1>t)) —V'Y (x'n'j)) - GD
t'=t
Thus, we can redefine the trust policy loss function to capture
the uncertainty during learning as follows:

L(®)) = ~Ey,; q,7a; (@)
+ (th(me; (@glx’ i 1)) 1.

Entropy

(32)
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Therefore, the trusted policy gradient of the loss function (32)
is defined in terms of temporal difference and entropy.
Therefore, the policy gradient of the loss function of the
Trust-By-Learning framework is defined as follows:

1 o0

Vo, L(®)) = 7 Z Z Vo, log me, (asijlx’ i)
jeJ t'=t

A" (' . agjl0;) + Th(me, (@lx’ 5 6,)).

We train and estimate the parameters ®; of each ser-
vice j € J; trust-policy me,. We execute meta test
Miest ~ M) of intelligent attack x” and estimate ®; =
Heg(M,eg). During this test, we capture the trust-informed
decision from meta policy me as ay ~ n@(at,ﬂx’ +). The
objective is to improve policy with MDP experience )},
{(x1, aijl,x’z, T, ..., (x, agj, x't11, Y(£)} for decentral-
ized execution of adaptive mitigation from intelligent attacks.
Thus, each service j € J parameters will be updated through
LSTM-based RNN states ®; = [h;, O], nq>j(aj|x’ ), where
hj is RNN hidden state, and meta learned weight ©.

An algorithmic procedure of the proposed uncertainty-
informed Trust-By-Learning framework for defense against
intelligent attacks of network parameters and metrics is
described in Algorithm 3. Lines from 3 to 10 train individ-
uals service agents while lines from 12 to 16 update the
meta-policy of each service agent j € 7.

(33)

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental results and
discuss their implications for the effectiveness of our
Trust-By-Learning framework in safeguarding 6G service
architectures from intelligent cyber attacks. The section is
organized as follows: experiment setup and objectives,
performance analysis that includes trust evaluation of gen-
erated intelligent attacks of the proposed Trust-By-Learning
framework.

A. EXPERIMENT SETUP AND OBJECTIVES

This section outlines the experimental setup and objectives
designed to evaluate the effectiveness of our novel Trust-By-
Learning framework in mitigating intelligent cyber attacks
within 6G service architectures. Initially, we have considered
three GenAl such as GAN, Autoencoder, and Variational
Autoencoder models for the regeneration of network parame-
ters and metrics for three different services namely Amazon,
Netflix, and Download from the open source dataset [25].
By regenerating network parameters and metrics, we can
know the intelligent poisoning attack generation capabilities
of these GenAl models. The optimal choice among these
models will be determined based on training efficiency and
quality of intelligent attack generation.

The preprocessing of data is performed for the three
services. We have used python platform for performing
scientific experiment while we have used open-source tools
such as Google Collaboratory (Collab) for data preprocess-
ing, model training, and evaluation. We have utilized the
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Algorithm 3 Uncertainty-Informed Trust-by-Learning for

TABLE 2. Summary of experiment setup.

Defense Against Intelligent Attacks Description Value
O O No of Sampl 2000
Input: P(M(x'y), ... M(x'x)), pl(x),Vx'sj € x’, X. I ° ‘1 D_amp e =
Output: @ﬂ7 anj ~ 7o ( atij| xt) nput Dimensions
Autoencoder Encoding Dimensions 8

1: while episode_count < max_episode do

2 for t < T and Vj € J; do

3: Calculate trust score: Y () using 10
4

Build Markov decision process: ), =
{X, A, M), T(t)}

5: Estimate cumulative discounted reward:
V™ (x' ;) using (28)

6: opt*imal value function by imposing MDP:
V7% (& 1;5) using (29)

7: Parameterized policy via LSTM learning:
T (@rijx' s 5).

8: Estjmate parameterized policy:
A9 & 4ij, @it - . ., agy; ;) using (30)

9: Estimate joint policy: 5 : (g, ..., 7g;)

10: t=t+1

11:  end for

12:  Estimate gradient of loss: Vo, L(®;) using (33)

13: Pick: ajj ~ 7O (atijlx’t)

14:  Improve policy with MDP experience: ),
{Ger @, X2, T, @ a ¥ g1, Y0

15:  Meta learned weight parameters update: ®; =
[hj, O], 7e,;(a;lx")

16:  episode_count = episode_count + 1

17: end while

18: return O, ayj ~ we (ag;lx’;)

established Python libraries like Pandas for data engineering,
NumPy for numerical computations, and scikit-learn for
statistical utilities. Additionally, Matplotlib and Seaborn
libraries were leveraged for data visualization tasks. In case
of intelligent poisoning attack generation, the Autoencoder
model has been constructed and trained using the Keras
APIs that are provided by TensorFlow. Similarly, the Keras
API facilitated the training of a GAN model. Finally, a
PyTorch deep learning framework was utilized to implement
the VAE model architecture and perform model training and
evaluation of attack generation. Table 2 presents a summary
of important parameters that are used during the experiment.
In Table 2, the network parameters and metrics are selected
based on the dataset and the 3GPP standard [1], [25], [26],
while the hyperparameters are determined through a trial-
and-error method, using the best-performing combination
based on the accuracy metric.

The Autoencoder demonstrated a balance between
complexity and performance, effectively capturing and
replicating the dependencies within the original data. Its
computational complexity is moderate, making it a prac-
tical choice for real-time applications. The VAE emerged
as the most effective algorithm in terms of preserving
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Autoencoder Number of Encoder and

Decoder Layers

128 units, 64 units, 32

units, 8 units,

Autoencoder Dense Encoder Layerl

,Layer2, Layer3, Layer4

ReLU activation
32 units, 64 units, 128
units, 11 units

Autoencoder Activation function

Autoencoder Dense Decoded Layerl,

Layer2, Layer3, Layer4

Autoencoder Optimizer Adam

Autoencoder Loss Function Mean  Sqaured  Error
(MSE)

Autoencoder Batch Size 32

VAE Input Dimensions 11

VAE First Hidden Layer (H) 45 units,BatchNorm,
ReLU activation

VAE Second Hidden Layer (H2) 15 units, BatchNorm,
ReLU activation

VAE Third Hidden Layer (H2) 15 units, BatchNorm,
ReLU activation

VAE Latent Dimension 11

VAE Decoder First Hidden Layer (H2) 15 units, BatchNorm,

ReLU activation
VAE Decoder Second Hidden Layer 15 BatchNorm,
(H2) ReLU activation
VAE Decoder Third Hidden Layer (H2) | 45 BatchNorm,

ReLU activation

units,

units,

Learning Rate 0.001
Optimizer Adam
Activation Function ReLU
GAN Latent Dim 70
GAN Input dimension 11
GAN Hidden Layer 64
GAN Activation ReLU
GAN Optimizer Adam
GAN Output Layer Activation Sigmoid
Batch Size 18
BBN Input Dimensions 7
BBN Encoding Dimensions 1

Correlation Matrix with
Threshold
BDeu, dirichlet, K2

BBN Learning function

BBN Prior Type

BBN Sample Size 20
MAMRL Discount factor 0.9
MAMRL Number of Actions 2
MAMRL LSTM Units 48
MAMRL Activation Function (Policy) Softmax
MAMRL Entropy Bonus 0.05
MAMRL Gradient Clipping Norm 50.0

the integrity of the original data’s network relationships,
successfully replicating key dependencies with high fidelity
despite its higher computational complexity. In contrast, the
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Rssi

(a) RSSI of Amazon services.

(b) CQI of Amazon services.

(c) SNR of Amazon services. (d) NRxRSRP of Amazon services.

FIGURE 3. Comparison of RSSI, CQl, SNR, NRXxRSRP metrics between original and intelligent poisoning attacks by GenAl models such as GAN, VAE, Autoencoder for Amazon

services.

GAN exhibited higher computational complexity due to its
adversarial training process but struggled to maintain the
intricate network relationships of the original data, resulting
in a less complex and less interconnected network. This
indicates that while GANSs can create realistic data, they may
not effectively capture the nuanced dependencies required
for robust trust evaluation in 6G architectures.

The performance of each GenAl model was evaluated
after training and testing the models. This comparison was
performed through both visual inspections and quantita-
tive metrics, including Root Mean Square Error (RMSE)
and Mean Squared Error (MSE). The analysis revealed
insights into the model’s effectiveness in replicating the
characteristics of the original dataset. The evaluation pro-
cess considered both training efficiency and the quality
of poisoning network metrics and parameters. we have
demonstrated how well our selected GenAl model produces
realistic intelligent poisoning attack, we are now focusing
on quantifying trust by using a Bayesian Belief Network
as a core component of our Trust-By-Learning framework.
We have designed a Bayesian Network using regression-
based mutual information, leveraging several key Python
libraries: numpy, pandas, networkx, matplotlib, pgmpy, and
scikit-learn. It begins by importing these libraries, which
are essential for data manipulation, network modeling,
probabilistic graphical models, and statistical calculations.
The code constructs a correlation matrix from the input
data to identify potential relationships between variables,
represented as nodes in a BayesianModel from pgmpy.
Edges between nodes are added based on the correlation
values, and Conditional Probability Distributions (CPDs) are
estimated using maximum likelihood. It computes the mutual
information (mi_value) between each pair of nodes using
the mutual_info_regression function from scikit-learn, which
quantifies the amount of shared information between two
variables, capturing both linear and non-linear dependencies.
A directed graph is created to visualize these relationships,
with edge weights corresponding to the calculated mutual
information values, helping to illustrate the strength of
the dependencies in the network. The resulting Bayesian
Network can be used for further probabilistic inference with
tools like Variable Elimination from pgmpy. However,to
effectively compare the evolving nature of intelligent attacks,
the framework requires a mechanism for continuous learning
and adaptation. Therefore, we compare the proposed TBL
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framework with a centralized method to justify the effective-
ness of the centralized tanning with decentralized execution
of the protection scheme.

B. PERFORMANCE ANALYSIS

In this experiment, our goal is to benchmark the proposed
framework by comparing with baseline methods. This
section describes the experimental findings and technical
analysis conducted for the Amazon, Netflix, and Download
services, focusing on the comparison between original and
intelligent poisoning attacks generated using three different
GenAl models. We explore various metrics including CQI,
RSSI, SNR, and Neighbor cell Reference signal received
power (NRxRSRP) through a sequence of visual represen-
tations. These metrics are visualized through a series of
Figures. Each Figure provides insights into the effective-
ness of GenAl models in replicating the underlying data
distributions and characteristics. Moreover, we delve into the
implications of these findings for network security, method
efficiency, and the significance of intelligent poisoning
attack generation for advancing 6G networks. Moreover, we
delve into the implications of these findings for network
security, method efficiency, and the significance of intelligent
poisoning attack generation for advancing 6G networks.

Figures 3, 4, and 5 present a comparison of key commu-
nication metrics: RSSI, CQI, SNR, and NRxRSRP between
the original data and intelligent poisoning attack for the
Amazon, Netflix, and Download services, generated by the
three GenAl models such as GAN, VAE, and Autoencoder.

An evaluation of key metrics as mentioned above reveals
that the Autoencoder model consistently demonstrated the
most accurate replication of the original data distribution.
This is evident in Figures 3(a), 3(b), 3(c), and 3(d) for
Amazon service, followed by Figures (4(a), 4(b), 4(c)),
and 4(d) represents Downlaod service. Further, intel-
ligent attacks on the Netflix service are shown in
Figures 5(a), 5(b), 5(c), and 5(d). The VAE model achieved a
reasonable level of accuracy, while the GAN model exhibited
less fidelity in replicating the original data patterns.

The Autoencoder’s superior ability to learn and gen-
eralize signal strength patterns from the training data
enables accurate replication of RSSI values as shown in
Figures 3(a), 4(a), and 5(a) for these services. This fidelity is
crucial for understanding and mitigating security vulnerabili-
ties related to signal strength fluctuations, thereby enhancing
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(a) RSSI of Download services. (b) CQI of Download services.

(c) SNR of Download services. (d) NRxRSRP of Download services.

FIGURE 4. Comparison of RSSI, CQl, SNR, NRXRSRP metrics between original and intelligent poisoning attacks by GenAl models such as GAN, VAE, Autoencoder for

download services.

2| — original Data

~ = Autoencoder
0 —.. e

@

Service Session

(a) RSSI of Netflix service. (b) CQI of Netflix service.

(c) SNR of Netflix service.

(d) NRxRSRP of Netflix service.

FIGURE 5. Comparison of RSSI, CQl, SNR, NRXRSRP metrics between original and intelligent poisoning attacks by GenAl models such as GAN, VAE, Autoencoder for Netflix

services.

the network’s defense mechanisms. High-quality intelligent
poisoning attacks RSSI data, aids in developing and refining
6G network algorithms and infrastructure, contributing to
better network reliability and efficiency.

Similarly, by accurately replicating CQI values as shown
in Figures 3(b), 4(b), and 5(b), the models can help simulate
various network conditions, aiding in the development of
robust security mechanisms against intelligent attacks that
exploit CQI variations. The ability to generate realistic
intelligent poisoning attack, demonstrates the value of
GenAl for data augmentation and testing. This is crucial
for network optimization, management, and ultimately, the
ongoing development and enhancement of 6G technologies.
Ensuring high-quality intelligent poisoning attack, especially
for critical metrics like CQI, is essential for simulating and
testing new 6G network features.

Replicating accurate SNR values as shown in Figure 3(c),
is vital for assessing and enhancing the network’s resilience
to interference and noise-based attacks, which are common
intelligent attack vectors. It is crucial for determining signal
quality. High-fidelity intelligent poisoning attacks SNR data
is significant for the development and testing of advanced
6G communication systems, ensuring they can maintain high
performance under various conditions.

The model’s ability to accurately replicate NRxRSRP
values as shown in Figures 3(d), 4(d), and 5(d) which
holds significant implications for network security and 6G
development. It plays a critical role in radio resource man-
agement and interference coordination within the network.
By generating realistic intelligent poisoning attacks data,
we can develop robust strategies to detect and mitigate
attacks that manipulate signal power levels, ultimately
strengthening network security. Furthermore, high-fidelity
intelligent poisoning attacks on NRxRSRP data are essential
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for designing and testing new 6G network features, ensuring
optimal performance and efficient resource utilization in
future network deployments.

Once we have generated the intelligent poisoning attack
for Amazon, Netflix, and Download services, we aim to
analyze the differences between intelligent poisoning attacks
generated for these services using various GenAl models like
VAE, GAN, and Autoencoder. To achieve this, we employed
BBNs to understand how the relationships between features
differ between the original and generated data.

In our analysis, we constructed a BBN by first calculating
the correlation matrix of our dataset to identify pairwise
correlations between features. Based on the correlation
values, we applied a threshold-based filtering method
to determine which features are highly correlated and
should be included in the BBN. We then estimated the
Conditional Probability Distributions (CPDs) for each node
using Maximum Likelihood Estimation (MLE) and Bayesian
Estimation methods, except for the target variable. These
CPDs represent the probabilities of each node conditioned
on its parent nodes in the network.

Figures 6, 7, and 8 illustrate the correlation matrix
comparisons for Amazon, Download, and Netflix services,
respectively, between the original network parameters and
metrics and those generated by the GenAl-based attack
vector.

The color intensity in these heatmaps indicates the
strength and direction of the correlations, with darker reds
representing stronger positive correlations and darker blues
representing stronger negative correlations.

Figure 6 illustrates the Amazon service, the original
correlation matrix shows moderate correlations between SNR
and CQI 0.52 in Figure 6(d) and a high correlation between
RSSI and NRxRSRP 0.76. When comparing this to the
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FIGURE 6. Comparison of different Amazon data generation methods with the original data.
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FIGURE 7. Comparison of Download data generation methods with the original data.

VAE-generated intelligent poisoning attack, we observe that
the intelligent poisoning attack shows stronger correlations
between SNR and CQI 0.79 in Figure 6(a) and a very high
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correlation between RSSI and NRxRSRP 0.93. This indicates
that the VAE model has amplified these relationships. The
GAN-generated heatmap reveals similar patterns but with
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FIGURE 8. Comparison of Netflix data generation methods with the original data.

a negative correlation between SNR and CQI —0.21 in
Figure 6(b), which is different from the original data pattern
and a correlation between RSSI and NRxRSRP 0.24. This
indicates that the GAN model has not really amplified
these relationships. The Autoencoder-generated data shows
an even higher correlation between RSSI and NRxRSRP 0.94
in Figure 6(c), and a high correlation between CQI and SNR
0.64 reflecting a slight exaggeration of feature dependencies.

Figure 7 depicts the Download service, the original data
shows moderate correlations between RSSI and NRxRSRP
0.78 in Figure 7(d) and between DL _bitrate and UL_bitrate
0.57. The VAE-generated data shows moderate correlations
between DL_bitrate and UL_bitrate 0.74 in Figure 7(a) and
between RSSI and NRxRSRP 0.89. The GAN model cap-
tures similar trends with high correlation between UL _bitrate
and DL_bitrate 0.73 in Figure 7(b). The Autoencoder-
generated data displays consistent correlation patterns,
though the correlation between SNR and CQI is 0.28 in
Figure 7(c) is notably lower.

The original Netflix data shows good correlations between
DL _bitrate and UL_bitrate 0.77, SNR and CQI 0.61 in
Figure 8(d) and a moderate correlation between RSSI
and NRxRSRP 0.56. The VAE-generated data for Netflix
shows stronger correlations between SNR and CQI 0.79
in Figure 8(a) and a high correlation between RSSI and
NRxRSRP 0.93, indicating stronger dependencies than in
the original data. The GAN model captures similar trends
with some variations, such as a moderate correlation
between DL_bitrate and UL _bitrate 0.84 in Figure 8(b). The
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Autoencoder-generated data for Netflix shows slightly lower
correlations between SNR and CQI 0.67 in Figure 8(c) and
between RSSI and NRxRSRP 0.92 compared to the VAE
and GAN models.

By comparing these intelligent poisoning attacks cor-
relation matrices with those of the original datasets, we
can analyze how the relationships between features differ
across various generative models. This comparison helps
us assess the fidelity of the intelligent poisoning attack
and understand any discrepancies in feature dependencies.
Across all datasets and models, there is a consistently high
correlation between RSSI and NRxRSRP, indicating a strong
probabilistic dependency that is accurately captured by all
generative models. Some variations in correlations, such
as those between DL_bitrate and UL_bitrate or SNR and
CQI, suggest that different models capture different aspects
of the data relationships. Each generative model seems to
emphasize different feature dependencies, with Autoencoders
generally showing higher correlation values, while GANs
and VAEs show more moderate values.

We explore the effectiveness of generative models through
the construction and analysis of Bayesian Network graphs.
Using mutual information as a measure of dependency
between variables, we compare the original data with
data generated by Autoencoder, VAE, and GAN models
across various datasets, including Amazon, Netflix, and
Download services. The Bayesian Networks are constructed
by adding nodes for each variable and the relationship
between them based on a significant conditional probability
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FIGURE 10. Mutual information-based trust dependencies analysis of intelligent poisoning attacks on network metrics and parameters in wireless networks of download

services.

matrix, ensuring the most meaningful connections. The edges
were introduced in the BBN graphs based on a threshold for
mutual information greater than 0.2, indicating significant
relationships between variables. This approach allows us to
assess how well each generative model preserves the struc-
ture and dependencies of the original data, providing insights
into their capabilities and limitations in data replication.

By constructing Bayesian Network models for each dataset
type of the Amazon dataset involves comparing the original
data with data generated from Autoencoder, VAE, and GAN
models, focusing on mutual information values to understand
how well each model captures the relationships between key
variables. The original data’s Bayesian Network Figure 9(a)
displays a dense network with strong dependencies among
metrics such as CQI, RSSI, SNR, and NRxRSRP. For
instance, the mutual information between RSSI and SNR is
particularly high at 0.766, indicating a strong correlation,
while the relationship between NRxRSRP and SNR shows
an even higher mutual information value of 0.944, reflecting
a significant dependency. These values highlight the intricate
and interdependent nature of the metrics in the original
dataset.

The Autoencoder model closely replicates the original
parameters network structure as in Figure 9(b), preserving
key relationships with mutual information values that
are similar to those in the original data. For example,
the mutual information between RSSI and NRxRSRP
in the Autoencoder-generated data is 0.972, almost mirroring
the original, and the relationship between SNR and CQI
retains a mutual information value of 0.380. The VAE model,
Figure 9(c), also maintains key relationships effectively, with
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the mutual information between RSSI and NRxRSRP being
0.939, closely matching the original. However, the VAE tends
to simplify the network slightly, resulting in weaker but still
significant relationships. On the other hand, the GAN model,
Figure 9(d) demonstrates a notable reduction in the strength
of relationships, with mutual information values such as
0.212 between SNR and CQI, significantly lower than those
in the original dataset, indicating that the GAN struggles
to replicate the network’s complexity for Amazon service
parameters and metrics.

The Download service parameters and metrics analysis
reveals a significant difference between the original data
and the data produced by the GAN, VAE, and Autoencoder
models. The original dataset shows a highly interconnected
network as in Figure 10(a) with high values of mutual
information amongst important variables. For instance, the
mutual information value of 1.149 for the link between
RSSI and NRxRSRP indicates a very strong dependency,
whereas the value of 0.314 for the relationship between RSSI
and SNR indicates robustness. In contrast, the Autoencoder-
generated data retains significant relationships 10(b), such
as the mutual information between RSSI and NRxRSRP
at 0.922 and between NRxXxRSRP and speed at 0.230,
demonstrating that it captures the essential dependencies
of the original data, though with a slight reduction in the
strength of some relationships. The VAE model (10(c)) also
effectively preserves key relationships, maintaining mutual
information of 0.847 between RSSI and NRxRSRP, closely
aligning with the original, while slightly simplifying the
network by reducing mutual information in some relation-
ships. On the other hand, the GAN model in Figure 10(d)
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FIGURE 11. Mutual information-based trust dependencies analysis of intelligent poisoning attacks on network metrics and parameters in wireless networks of Netflix services.

shows a considerable drop in the strength and number of
relationships, with mutual information values like 0.445 for
RSSI and NRxRSRP, indicating weaker replication of the
original network’s complexity. This analysis highlights that
the Autoencoder and VAE models are more successful in
capturing the original data’s intricate dependencies compared
to the GAN model, which shows a less accurate replication
of the downloaded data.

As per the BBN analysis for Netflix parameters and
metrics, the original data exhibits strong mutual information
values among key variables in Figure 11(a), such as mutual
information of 0.892 between RSSI and NRxRSRP and
0.521 between RSSI and Speed, indicating significant
dependencies. The Autoencoder maintains these relationships
well 11(b), with mutual information values like 0.699 for
RSSI and NRxRSRP, closely mirroring the original data,
though some relationships are slightly weaker, such as the
0.315 mutual information between NRxRSRP and Speed.
The VAE model in Figure (11(c)) captures the original data’s
dependencies even more effectively, with mutual information
values that closely match the original, such as 0.892 for RSSI
and NRxRSRP and 0.404 for SNR and CQI. In contrast, the
GAN model shows a considerable reduction in the strength
and number of relationships as in Figure 11(d), with mutual
information values like 0.454 for RSSI and NRxRSRP,
indicating a much less complex and less connected network
structure compared to the original parameters and metrics.

Across the Amazon, Download, and Netflix parame-
ters and metrics datasets, the analysis demonstrates that
Autoencoder and VAE models consistently outperform the
GAN model in replicating the intricate relationships present
in the original data. The Autoencoder maintains signifi-
cant dependencies with mutual information values closely
matching those of the original data, though it tends to
slightly weaken some relationships. The VAE model not only
preserves the network complexity but also replicates key
dependencies with high fidelity, making it the most effective
in capturing the original data’s structure. In contrast, the
GAN model exhibits a marked reduction in the strength
and number of relationships, leading to a less complex and
less interconnected network. This trend is evident across
all three datasets, indicating that while GANs may generate
plausible data, they struggle to accurately replicate the
nuanced dependencies of the original datasets.
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In our experiment, we evaluate the performance of three
agents, Amazon, Download, and Netflix, as well as a cen-
tralized training approach, all trained using the Multi-Agent
Meta Reinforcement Learning (MAMRL) framework. Each
agent is trained with a dataset that combines both original
and intelligent poisoning attacks, the intelligent poisoning
attack, which is regenerated using an autoencoder to ensure
that the data retains significant characteristics of the original
while introducing variability. These datasets are shuffled
during training to ensure robust learning and generalization.
The integration of both original and autoencoder-regenerated
intelligent poisoning attack aims to enhance the agents’
ability to adapt to varied network conditions and improve
their overall performance in dynamic environments.

CQI is the key variable in calculating the trust score, which
serves as a comprehensive metric to evaluate the agents’
performance, as explained in 10. The trust score is used
to evaluate the reliability of both original and intelligent
poisoning attack in maintaining robust network performance
and guiding the agents’ decision-making processes.

The centralized learning scenario, as depicted in
Figure 12, shows a high level of trust score stability,
maintaining around 1294.3 per episode. This performance
underscores the centralized approach’s capability to handle
a diverse dataset and maintain optimal network conditions
effectively. The moderate reward levels suggest that central-
ized training is particularly adept at balancing original and
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intelligent poisoning attack. The Amazon agent performs
moderately well with a stable trust score around 1375.65,
Figure 12 showcasing its robust learning mechanism and
superior ability to generalize from the diversified data to
optimize performance. This agent’s consistent trust score
highlight its proficiency in managing network conditions
and integrating varied data inputs effectively. On the other
hand, the Netflix agent, while maintaining reward stability,
achieves the lowest performance with a trust score of
around 1046.79. This indicates potential deficiencies in its
learning or variation in the dataset, which hinders model
performance. Despite its stable rewards, the Netflix agent
struggles to match the performance of the other agents. The
Download agent has high performance with a stable reward
of approximately 1460.45, surpassing the Netflix agent and
Amazon agent. The stability in the Download agent’s trust
scores suggests effective management of network conditions
and successful utilization of the mixed dataset for consistent
performance.

The trust score plots reveal significant disparities in how
each agent manages the mixed dataset of original and
intelligent poisoning attack. The Download training approach
achieves the highest and most stable trust scores, indicating
its efficacy in maintaining balanced network conditions
and optimizing performance. The Amazon agent also dis-
plays high and stable performance, demonstrating effective
generalization and robust learning. The Centralized agent,
while maintaining stability, achieves moderate trust scores,
reflecting its ability to handle data diversity effectively.
The Netflix agent, despite its stability, records the lowest
trust scores, suggesting potential areas for improvement in
its learning approach and data handling strategies. These
findings underscore the importance of a well-structured trust
score function and diverse training data in achieving stable
and robust performance across different training scenarios.

In Figure 13, we compare the value per episode across
all agents, illustrating a clear differentiation in performance.
The Amzon agent demonstrates the highest and most stable
value, approaching 3.5, which signifies strong learning capa-
bilities and effective integration of diverse data inputs. The

VOLUME 6, 2025

—— Netflix
Download

*
144

1

i —— Meta
1

1

1

1

1

1

—<- Centralized Training
121

1.0 1

1
i
1
1
1
1
Il
\
0.8 7 |
1
1
1
1
.
0.6 7
\
-

T T T T T T T T
50 100 150 200 250 300 350 400
Episode

Losses

FIGURE 14. Convergence analysis by value loss.

centralized training approach follows closely, maintaining
a steady value of around 3.3, reflecting its proficiency in
leveraging the comprehensive dataset for robust performance.
The Download agent achieves a moderate value of approx-
imately 3.2, indicating effective learning but slightly less
optimization compared to the Meta agent. The Netflix
agent records the lowest value, just above 2.5, suggesting
challenges in handling the mixed dataset and potential areas
for improvement in learning strategies.

Overall, the graphs collectively highlight significant differ-
ences in how each agent handles and learns from the mixed
dataset. The centralized approach and Meta agent show
superior performance with high and stable values, indicating
effective learning and data management. The Download
agent achieves moderate success, while the Netflix agent’s
lower value highlights opportunities for improvement in data
handling and learning strategy.

The graph in Figure 14 presents a comparative analysis
of losses per episode for all agents. The Amazon agent
achieves the lowest loss values, rapidly decreasing to around
0.5 within the first 50 episodes and maintaining stability
thereafter. This indicates effective learning and quick conver-
gence to optimal policies. The centralized training approach
also exhibits a significant reduction in losses, stabilizing at
around 0.6, reflecting its ability to leverage a comprehensive
dataset effectively. The Download agent’s losses stabilize
around 0.6 as well, demonstrating moderate efficiency in
managing the mixed dataset. The Netflix agent, however,
records the highest initial loss values, peaking at 1.4, and
gradually reduces to around 0.7. This suggests challenges in
learning from the combined dataset, highlighting areas for
potential improvement.

Figure 15 illustrates the comparative performance of four
agents—Netflix, Download, Amazon, and a centralized
training approach—across 400 training episodes. The graph
highlights that the Netflix agent experiences a substantial
decrease in policy loss, stabilizing at the lowest values
around —0.6, indicating effective policy optimization and
learning. The centralized training method also performs
robustly, showing a rapid decrease in policy loss to near-zero
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levels, reflecting its efficiency in achieving optimal policy
quickly. The Amazon agent maintains a low and stable
policy loss, demonstrating consistent and effective learning.
In contrast, the Download agent’s policy loss initially rises
and then stabilizes at a relatively higher value around
0.15, suggesting less effective adaptation and optimization
compared to the other agents. Overall, the centralized and
Netflix agents lead in minimizing policy loss, showcasing
superior learning capabilities and performance in aligning
actions with the optimal policy.

Figure 16 further complements the analysis of policy loss
by shedding light on the exploration-exploitation dynamics
across the agents. Initially, the centralized training approach
exhibits a higher entropy loss around 0.7, indicative of a
significant exploratory phase, which aligns with its rapid
initial adjustments seen in the policy loss Figure. This
entropy quickly stabilizes at approximately 0.68, highlighting
a balanced shift towards more deterministic policies as
training progresses. Similarly, the Amazon and Download
agents begin with lower entropy, around 0.45, suggesting a
controlled exploration strategy from the outset. They both
follow a trajectory that sees a rapid increase and subse-
quent stabilization at around 0.68, mirroring the centralized
method’s trend towards a balanced exploration-exploitation
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trade-off. The Netflix agent, however, starts with the lowest
entropy, reflecting minimal initial exploration, and undergoes
significant fluctuations before settling near 0.67. This initial
low entropy, combined with the substantial decrease in policy
loss, suggests that Netflix’s policy initially focused more
on refining a deterministic strategy rather than exploring
new actions. Overall, the entropy loss Figure indicates
that while the agents adopted varying levels of exploration
initially, they all converge towards a similar level of policy
stability, reflecting an effective learning process that balances
exploration with policy refinement, thus complementing the
trends observed in the policy loss metrics.

In summary, our evaluation of the Amzon, Download,
and Netflix agents, alongside a centralized training approach
using the MAMRL framework, highlights significant dif-
ferences in their performance and learning dynamics. The
centralized method and Amzon agent emerged as the top
performers, demonstrating high and stable trust scores and
values, indicating effective learning and data management
from a mixed dataset of original and intelligent poison-
ing attack. The Download agent also showed competent
performance, albeit with room for improvement in data
handling strategies. The Netflix agent, despite achieving
reward stability, exhibited the lowest trust scores and
struggled with policy optimization, suggesting challenges in
processing the combined dataset effectively. The analysis
of entropy loss further underscored the importance of a
balanced exploration-exploitation strategy, with all agents
eventually converging to similar levels of policy stability.
These findings underscore the critical role of diverse training
data and robust learning mechanisms in enhancing agent
performance in dynamic environments, positioning the cen-
tralized approach and Amazon agent as exemplary models
for future reinforcement learning applications.

VIl. CONCLUSION

In this work, we have proposed a new Trust-By-Learning
framework to secure upcoming 6G wireless networks
from GenAl-driven intelligent attacks by understanding
uncertainty, severity, root cause, and trustworthy service
aggregation. To cope uncertain nature of GenAl-driven
intelligent attacks in network parameters and metrics, we
device a narrow GenAl to produce such poisoning attacks
and examine them by deploying Dempster—Shafer-based
evidence theory for quantifying trust. Then, we have
developed a meta-RL-based Markov Decision Process learn-
ing to mitigate intelligent attacks by enabling trustworthy
service aggregation in a wireless network. The proposed
TBL framework has established a secure and trustworthy
wireless communication by capturing the highly uncertain
intelligent poisoning attacks while employing long-term
temporal dependencies in network parameters and metrics for
trust establishment. Our experimental results show that the
Autoencoders and VAEs successfully replicate dependencies
with scores of 0.972 for Amazon, 0.922 for Download, and
0.892 for Netflix. In contrast, GANs demonstrate weaker
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TABLE 3. Summary of abbreviation.

Abbreviation Meaning

6G Sixth-generation

AWGN Additive white Gaussian noise

CAV Connected and Autonomous Vehicles
CPDs Conditional Probability Distributions
CQI Channel quality indicator

DRL Deep Reinforcement Learning

GANs Generative Adversarial Networks
GenAl Generative Al

gNBs Next-generation NodeBs

IoE Internet of Everything

LLMs Large Language Models

MAMRL Multi-Agent Meta Reinforcement Learning
MLE Maximum Likelihood Estimation
MSE Mean Squared Error

NRxRSRP Neighbor cell Reference signal received power
RMSE Root Mean Square Error

RSRP Reference signal received power
RNN Recurrent neural network

RSSI Received signal strength indicator
SINR Signal-to-interference-plus-noise ratio
TBL Trust-By-Learning

VAE Variational autoencoder

XR Extended Reality

ZTNs Zero Touch Networks

performance in replicating dependencies, with scores of
0.212 for Amazon, 0.445 for Download, and 0.454 for
Netflix across all network parameters and metrics. In sum-
mary, this work investigates the capabilities of native GenAl
to generate poisoning attacks in wireless communication
systems, while also analyzing the nature of such intelligent
threats to facilitate effective mitigation strategies. In the
future, the proposed TBL framework will be extended to
vertical enablers of 6G wireless networks such as connected
autonomous vehicles, critical infrastructure, and smart grids
to enhance trustworthy and resilient network operations.

APPENDIX
See Table 3.
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