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ABSTRACT Sixth-generation (6G) wireless networks will become vulnerable due to native generative

AI (GenAI)-driven intelligent poisoning attacks in both the radio unit and the core network. In particular,

network parameters and metrics in cross-layer design pose fundamentally uncertain conditions and can be

compromised through the native GenAI mechanism, which leverages data augmentation and reconstruction

capabilities. This work investigates the capabilities of native GenAI to create novel poisoning attacks

in wireless networks, while investigating their impact through uncertainty-informed root analysis. Then,

detected attacks are mitigated by developing a trustworthy service aggregation in the wireless network.

First, a joint decision problem is formulated to generate intelligent poisoning attacks, understand their root

cause by defining a new measure of uncertainty as plausibility, and mitigate them through trustworthy

service aggregation in wireless networks. Second, to address the challenges of the formulated problem, a

novel Trust-By-Learning (TBL) framework is developed. The proposed TBL framework primarily consists

of three components: 1) a native GenAI mechanism that can penetrate intelligent poisoning attacks in

wireless networks’ metrics and parameters; 2) a Dempster-Shafer-based evidence theoretic mechanism

that is developed to understand the root cause of inherently uncertainty of those attacks to quantify

the trust for further mitigation; and 3) a meta-reinforcement-based Markov Decision Process learning

framework that can mitigate the intelligent attacks by enforcing trustworthy service aggregation. Extensive

experimental analysis demonstrates that native GenAI methods, such as generative adversarial network

(GAN), variational autoencoder (VAE), and autoencoder have significant capability to enforce poisoning

attacks. Results show that the autoencoder performs significantly better in generating poisoning attacks

capabilities of 98.2%, 97.4%, and 95% for Amazon, Netflix, and Download services, respectively. The

proposed TBL framework effectively replicates intelligent attack dependencies by achieving a trust score

of 0.972, 0.922, and 0.892 for Amazon, Download, and Netflix services, respectively. Finally, the proposed

TBL framework shows efficacy in understanding the trust in GenAI-driven intelligent poisoning attacks

on network parameters and metrics by quantifying root causes and mitigating rates.

INDEX TERMS Generative AI, 6G, intelligent attacks, evidence theory, trustworthy AI, meta-

reinforcement learning.

I. INTRODUCTION

THE EMERGENCE of the sixth-generation (6G) wire-

less networks promises significant advancements in

speed, capacity, and reliability, enabling a future of

interconnected devices and services with tight integration of

AI Technologies [1], [2], [3]. However, these advancements

also introduce new security challenges, particularly in the

context of generative AI attacks. The need for a new
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generation of wireless networks, such as 6G, stems from

the limitations of current 5G networks in handling the

increasing demand for data, connectivity, and intelligent

services. 6G networks aim to provide seamless intelli-

gent connectivity, ultra-low latency, and enhanced mobile

broadband, extending these capabilities to include sens-

ing and AI-driven services [2], [3]. These next-generation

6G networks will face a growing threat from intelligent

attacks that leverage generative AI (GenAI) to compromise

their trust. GenAI, with its ability to generate realistic

data and mimic system behavior, can be weaponized to

create sophisticated attacks that bypass traditional security

measures [4]. This can erode trust in the network and its

services, posing a significant challenge to the successful

deployment of 6G. In particular, the attacks include arti-

ficial intelligence and machine learning based intelligent

attacks, zero-day attacks, quantum attacks, and physical layer

attacks [4].

For instance, AI-native 6G networks [3], [5], [6], [7], [8],

[9], [10] in will face major security challenges in poisoning

attacks in network metrics and parameters. Further, the

emerging 6G applications such as Extended Reality (XR),

Connected and Autonomous Vehicles (CAV), Holographic

Telepresence, the Internet of Everything (IoE), Smart Grid

2.0, UAV-based mobility, Hyper-intelligent IoT, Digital Twin,

and so on significantly relies on AI/ML methods [4],

[5], [6], [11], [12], [13], [14]. Therefore, the chance

of intelligent poisoning attacks in 6G wireless networks

significantly increases due to the rigorous deployment of

AI methods in both the application level and wireless

infrastructure.

Protecting and securing 6G wireless networks from such

intelligent attacks, it is essential to understand the new

attack surface of network parameters and metrics while

establishing trust on services. The challenges incorporate

due to the highly uncertain behavior of intelligent attacks

in wireless parameters and metrics such as received sig-

nal strength indicator (RSSI), reference signal received

quality (RSRQ), reference signal received power (RSRP),

channel quality indicator (CQI), user mobility, and so

on. Further, establishing long-term temporal dependencies

among the network parameters and metrics and coping

with the high-dimensional attack space of heterogeneous

wireless services become major challenges. The studies [4],

[5], [6], [11], [12], [13], [14], [15], [16], [17] have

not investigated intelligent attacks on wireless networks’

parameters and metrics that are created by native GenAI

methods such as Autoencoder and Variational Autoencoder

(VAE), Generative Adversarial Networks (GANs), and so

on. In particular, the main motivation behind this research

is to investigate the capabilities of native such GenAI to

create novel poisoning attacks in wireless networks, while

investigating their impact through uncertainty-informed root

analysis. Subsequently, the detected attacks are mitigated by

developing a trustworthy service aggregation in the wireless

network. In essence, prior works have not adequately

studied the complex and adaptive nature of intelligent

attacks in high-dimensional spaces [1], [4], [5], [6], [11],

[12], [13], [14], [15], [16], [17], highlighting the need

for a comprehensive framework like TBL to address these

challenges.

Our initial study in [1] shows the capability of intelligent

poisoning attack generation by native GenAI models and

understands their attack vectors in a quantifiable trust

metric. The main contribution of the paper is a novel

Trust-By-Learning framework that can help understand the

uncertain behavior of GenAI-driven intelligent attacks on

network change, parameters, and metrics while protecting

the wireless network through uncertainty-informed trustwor-

thy service aggregation. Our contributions are summarized

as follows:

• We propose a novel Trust-By-Learning framework

for understanding and mitigating intelligent cyber

attacks in next-generation wireless systems. In par-

ticular, the proposed framework can create intelligent

poisoning attacks on communication parameters and

metrics while understanding the root cause and pro-

tecting the 6G services by providing trustworthy

aggregation.

• We develop a new narrow GenAI framework capable

of creating new intelligent adversarial attack surfaces

in wireless systems for further understanding the attack

characteristics, severity, and the possible ways for

mitigating next-generation cyber-attacks.

• We develop a trust quantification mechanism based on

evidence theory that effectively captures the uncertainty

of intelligent poisoning attacks on wireless commu-

nication, aiming to safeguard next-generation wireless

systems from such sophisticated threats.

• We develop a meta-reinforcement-based Markov deci-

sion process learning framework to understand the

intelligent attacks and trustworthy service aggregation

in wireless networks by taking into account long-term

temporal dependencies among the intelligent attack

vectors.

• The experimental results showmutual information values

for dependency replication in the TBL framework

across various generative models show interesting

results. Autoencoder and Variational Autoencoder effec-

tively model attack patterns, achieving high correlation

coefficients of 0.972 for Amazon, 0.922 for Download,

and 0.892 for Netflix. In contrast, Generative Adversarial

Networks perform less effectively in this context, with

lower correlation coefficients of 0.212 for Amazon, 0.445

for Download, and 0.454 for Netflix. This demonstrates

that Autoencoders andVAEs aremore adept at replicating

and understanding attack behaviours, which is crucial

for developing robust defenses.

The rest of the paper is organized as follows. In Section II,

we present important related works based on the existing
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literature. In Section III, we describe the proposed trustwor-

thy wireless network system model. Then, we formulate the

TBL problem in Section IV. The proposed TBL framework

is designed in Section V. In Section VI, we present and

analyze our experimental results. Finally, we conclude our

discussion in Section VII. Abbreviations are summarized in

the APPENDIX.

II. RELATED WORKS

The design of security solutions for AI-native wireless

networks attracted significant attention recently [2], [3].

For instance, the work in [18], [19] identifies security

technologies and research challenges specific to 6G wireless

networks with a focus on the role of AI and blockchains.

The authors in [11] studied the problem of identifying and

understanding the emerging trends, applications, require-

ments, technologies, and future research directions in the

context of 6G networks. However, in [11], the authors do

not provide any technical direction of how to address the

intelligent attacks in wireless network infrastructure. The

work in [4] identifies future challenges by focusing on

security and privacy concerns that might arise with the

development of 6G. In particular, the authors survey potential

challenges associated with different 6G technologies and

applications. The work in [19] identifies the cyber attack

prediction mechanisms that leverage traditional machine

learning to GenAI models. However, our work focuses

on investigating intelligent poisoning attacks in wireless

networks that are posed by a native GenAI model. The

works [4], [11], [18], [19] primarily focus on various

aspects of 6G wireless security, such as general trends

and existing privacy measures. However, these studies have

not extensively explored the emerging challenge of GenAI

attacks in wireless networks or detailed specific protection

mechanisms against them. This paper aims to fill that gap

by investigating the potential for GenAI-driven attacks and

proposing effective defense strategies.

A few of the works [15], [16], [17], [20], [21] studied

the problem of securing wireless networks against intelligent

attacks. The authors in [15] address the problem of securing

6G network-assisted Internet of Things(IoT) systems against

adversarial attacks. It explores various defense strategies

and evaluates their effectiveness through theoretical analysis,

up-to-date research, and Monte Carlo simulations. While

their work significantly advances the understanding of such

defense mechanisms, there is an opportunity to further

explore the potential roles of Generative AI in this context.

The authors in [20] investigate a key foundational aspect

of GenAI-driven risk in cybersecurity. In particular, the

authors raised concern that data poisoning attacks can be a

crucial threat from the GenAI. Further, the authors in [21]

study a theoretical and empirical study on response to

GenAI-driven in smart grid communication. Particularly, the

authors developed a Bayesian belief network framework

to understand the GenAI attack surface in smart grid

FIGURE 1. A system model of securing 6G service aggregation under generative

AI-driven intelligent attacks in a wireless network.

communication. Our research builds on these findings by

leveraging Generative AI to develop robust and adap-

tive strategies for enhancing the security of 6G wireless

networks.

The research [17] presented a robust-by-design framework

for anti-jamming in MIMO-OFDM wireless communica-

tions. Robust anti-jamming methods are created without

requiring presumptions about the adversary’s configuration,

thanks to the use of sensing-assisted information. The

work [16] solved network transparency and improving user

interactions in Zero Touch Networks (ZTNs) by integrating

Large Language Models (LLMs) that can distill com-

plex deep reinforcement learning (DRL)-based anti-jamming

techniques. The research [17] presented a robust-by-design

framework for anti-jamming in MIMO-OFDM wireless

communications. Robust anti-jamming methods are created

without requiring presumptions about the adversary’s con-

figuration, thanks to the use of sensing-assisted information.

However, these works [15], [16], [17] do not consider the

intelligent attacks that can be imposed by the GenAI models

while not explore how to integrate GenAI approaches in

a realistic way for understanding the new intelligent data

poisoning attacks in wireless networks.

III. SYSTEM MODEL OF TRUSTWORTHY WIRELESS

COMMUNICATION

Considering a wireless network consisting of a set I =

{0, 1, 2, . . . , I} of I + 1 6G NodeBs (gNBs) that encompass

I small cell base stations (SBSs) overlaid over an AI-native

central gNB i = 0 as shown in Figure 1. Figure 1 illustrates

a typical system model of securing service aggregation under

generative AI-driven intelligent attacks in a wireless network.

To make the system model more understandable to a broader

audience, we have omitted the detailed blocks related to the

core network in Figure 1. Each gNB i ∈ I can serve a set Ji
of J heterogeneous 6G services such as UAV-based mobility,

connected and autonomous vehicles (CAV), intelligent health

care, and so on. We consider a time-slotted system with each
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TABLE 1. Summary of notations.

time slot t belonging to a finite time horizon T . In each slot

t, a gNB i ∈ I establishes service aggregation decisions ait ∈

∀atij. Each gNB i ∈ I will assign data rates ³
up
it and ´down

it

for uplink and downlink at gNB i. The considered system

model meets the 6G wireless network requirements [4], [5],

[6], [11], [12], [13], [14] by enabling native AI-agent at

each gNB for allocating uplink ³
up
tij and downlink ´down

tij

data rates to a particular 6G service j ∈ J . Therefore,

the AI-native agent of each gNB i ∈ I can be affected

by AI/ML-based intelligent attacks such as poisoning, AI

compromises, and eavesdropping, during network operation

etc [4], [13]. To characterize such intelligent attacks and

protect the 6G wireless network, we need to understand three

models: 1) the communication model, 2) the intelligent attack

generation model, and 3) the trust model in the following

subsections, respectively.

A. COMMUNICATION MODEL

In our system, we consider both downlink and uplink

communication models to serve each 6G service j ∈ Ji
demands at gNB i ∈ I. We define Gdown

tij as the downlink

channel gain and σ 2 as the additive white gaussian noise

(AWGN) at gNB i. Therefore, for reference signal received

power (RSRP) �tij and co-channel interference �down
tij , the

signal-to-interference-plus-noise ratio (SINR) Stij of gNB i ∈

I can be calculated as follow [22], [23], [24], [25], [26],

Stij =
∑

∀j∈Ji

�tijG
down
tij

σ 2 + �down
tij

. (1)

The Channel Quality Indicator (CQI) �ij(t) [26] is a crucial

metric used to capture and assess the performance of

wireless communication, including both downlink and uplink

behaviors. Therefore, we can estimate a CQI of gNB i ∈ I

as follow [23], [24], [26], [27]:

�ij(t) = 0.5223 × Stij + 4.6176, (2)

where 0.5223 and 4.6176 are constant [23], [24], [27] on

the linear model (2).

We consider a 20 MHz wide bandwidth based on orthogo-

nal frequency-division multiplexing (OFDM). Each resource

block (RB) consists of 12 sub-carriers, totaling 180 KHz

per RB, and there are 100 RBs available for each channel

bandwidth [25], [26]. Then, for a fixed bandwidth Bdowntij , the

downlink data rate ´down
tij of the considered communication

model can be calculated as follows:

´down
tij =

∑

i∈I

∑

j∈Jit

Bdowntij log2

(

1 +
�tijG

down
tij

σ 2 + �down
tij

)

. (3)

Similarly, the uplink data rate ³
up
tij can be calculated as

follows:

³
up
tij =

∑

i∈I

∑

j∈Jit

B
up
tij log2

(

1 +
�tijG

up
tij

σ 2 + �
up
tij

)

, (4)

where B
up
tij is the uplink bandwidth. In this work, we

investigate the effect of a new intelligent attack vector on

communication parameters and metrics generated by AI.

Therefore, we describe an intelligent attack generation model

in the following subsection.

B. INTELLIGENT ATTACK GENERATION

Considering a vector xtij = (x1, x2, . . . , xX) of X elements

wireless communication metrics and parameters, where

∀xtij ∈ X . Therefore, the elements of the vector xtij
include user mobility mtij, RSSI γtij, RSRP �tij, SINR Stij,

uplink data rate ³
up
tij , downlink data rate ´down

tij , near-cell

RSRP ψk �=i, CQI �tij. Attackers target such parameters

and metrics for generating AI/ML-based intelligent data

poisoning attacks in the wireless network so as to com-

promise the AI services and gain control over the service

execution.

We consider an intelligent poisoning attack vector param-

eters is φ. φ that maps with X in a latent space (i.e., attack

vector) ζ , where φ : X → ζ . In other words, ζ becomes

an intelligent attack’s latent space for the given network

parameters and metrics X on attack generation parameters φ.

Now, consider θ is an actual attack reconstruction parameter

that decodes the intelligent attack latent space ζ into

poisonous network metrics and parameters x′

tij. The network

data poisoning parameter θ generates the actual attacks x′

tij

through intelligent attack latent space ζ , θ : ζ → X , ∀xtij ∈

X . Therefore, the intelligent attack generation model can be

defined as follows:

F(φ, θ) = Extij∼ζ

[



(

xtij, gθ (fφ(xtij))
)]

, (5)
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where 
(.) is function of intelligent attack vector latent

space ζ generation parameters φ and actual data poisoning

parameters θ .

Therefore, we formulate the intelligent poisoning attack

generation model as follows:

min
φ,θ

F(φ, θ) = F(φ, θ) =
1

N

N
∑

n=1

||xtij − gφ

(

fθ (xtij)
)

||22, (6)

where x′

tij = gθ (fφ(xtij)) is the generated network parameters

and metrics and ζtij:{x1, x2, . . . xN} ⊂ X for N sample. As

a result, F(φ, θ) can generate intelligent poisoning attacks

in wireless communication systems by generating metrics

and parameters like RSRP, RSRQ, SINR, CQI, mobility, as

well as uplink/downlink data rates, among others. Thus, it

is imperative to protect the communication systems from

such attacks. Our goal is, therefore, to design a trust

model inspired by the concept of the Dempster–Shafer [28]

evidence theory. The following subsection describes the

proposed trust model between 6G service and gNB.

C. TRUST MODEL BETWEEN SERVICES AND GNB

The proposed trust model aims to protect the wireless system

from intelligent poisoning attacks by establishing trustworthy

communication between the service and the gNB. First, we

define the belief of network parameters and metrics between

service j ∈ Ji and gNB i ∈ I. We consider a power set

2xtij of wireless communication metrics and parameters x of

service j ∈ Ji. For example, the power set 2xtij contains all

combinations of belief of user mobility, RSSI, RSRP, SINR,

uplink data rate, downlink data rate, near-cell RSRP, and

CQI, including the empty set. We define a belief assignment

mass function as M : 2xtij → [0, 1], where
∑

x∈2
xtij M(x).

Thus, for a non-empty set 2xtij , total sum of beliefs will be

1 such that
∑

2
x∈xtij = M(x) = 1. We estimate the belief

through a Bayesian approximation,

M̂(x) =

{ ∑

x′ |x⊂x′ M(x′)
∑

X
M(X )

, if
∑

2
x∈xtij M(x) = 1,

0, otherwise.
(7)

In (7), the belief in a service request lies in quantifying

the uncertainty of a trusted request. In other words, (7) is

a degree of belief or mass (belief function) for a particular

service’s network parameters and metrics. We consider

plausibility [28] as a measure of uncertainty of network

parameters or metrics and define it as follows:

Pl(x) = 1 − M̂
(

∀x′ ∈ xtij, x �= xtij
)

, (8)

where ∀x′ ∈ xtij is an intelligent attacks parameter of service

j ∈ Ji. We define a binary decision variable atij to indicate

whether the network parameters of service j have been trusted

or not. Therefore, atij becomes a binary decision variable that

decides the service aggregation decision of service j ∈ Jj,

atij =

{

1, if M̂(x) ≤ 1,Pl(x) < 1,

0, otherwise.
(9)

Where Pl(x) represents the plausibility of network parameter

x ∈ X. We quantify the trust score of network parameters as

follows:

ϒ(t) =

{
M̂(x′)
M̂(x)

× 1
Pl(x)

× �ij(t), if M̂(x) > 0,

0, otherwise.
(10)

The trust score in (10) depends on belief M̂(x′) and

plausibility Pl(x) of x′ while we capture CQI �ij(t) in (2).

That means the trust score (10) relies on both prior evidence

of network parameters and metrics, and the current channel

quality index of service j ∈ Ji at gNB i ∈ I. The physical

meaning of the trust score is that lower plausibility indicates

higher trust, enabling us to better understand the intelligent

poisoning parameters and metrics x′, and vice-versa. In this

work, we formulate a joint optimization problem that can

generate an intelligent attack, understand the attack vectors

such as generated communication parameters and metrics,

and protect the communication system by providing service

aggregation decisions based on trust. A detailed description

of the Trust-By-Learning problem for a 6G wireless network

is discussed next.

IV. TRUST-BY-LEARNING DECISION PROBLEM

FORMULATION

This section proposes a joint decision problem to secure

wireless networks from AI/ML-driven intelligent attacks. The

objective of the proposed decision problem is to maximize the

trust score while finding the trustworthy service aggregating

decision atij of a service j ∈ J to gNB i ∈ I by determining

belief M̂(x′) of the generative intelligent attack x′. The

proposed Trust-By-Learning is as follows:

max
x′,M̂(x′),a,

T
∑

t=1

|I|
∑

i=1

|J |
∑

j=1

Eπ�j
[ϒ(t)], (11)

s.t. φ ≤ X → ζ, ζtij:{x1, x2, . . . xN} ⊂ X , (11a)

θ ≤ ζ → x′,∀x′

tij ∈ x′, (11b)

Pl
(

x′
)

≤ 1,∀x′ ∈ x′, (11c)

atijM̂
(

x′
)

≤ 1,∀x′ ∈ x′, (11d)

atij�ij(t) ≤ η, (11e)

´down
tij ≤ δmax, (11f)

atij³
up
tij ≤ ωmax, (11g)

�j ≤ H�

(

Yj
)

,Yj =
{

X ,A, M̂(x), ϒ(t)
}

, (11h)

atij ∈ {0, 1},∀i ∈ I,∀j ∈ Ji. (11i)

The formulated decision problem (11) consists of three

decision variables, intelligent attack generated network

parameters and metrics x′, belief M̂(x′) on generated attacks,

and trustworthy service aggregation decision ∀atij ∈ a.

The generated network parameters and metrics x′ rely on

parameters φ, θ , and the attack vector latent space ζ .

Constraint (11a) ensures the mapping from attack generation

vector parameters φ to latent space ζ . Constraint (11b)
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ensures the mapping from attack latent space ζ to com-

munication metrics x′ with generated parameters θ . The

parameters φ and θ are determined by the intelligent attacks

model in (6). The plausibility is one of the key performance

metrics for determining the trust score of generated commu-

nication metrics and parameters x′, constraint (11c) assures

that this value must be positive and between 0 to 1. Similarly,

the marginal probability of belief is constrained between

0 and 1 in constraint (11d). Constraint (11e) ensures that

the CQI of a particular service fulfillment session between

the service j ∈ Ji and gNB i ∈ I does not exceed

the maximum η = 15 CQI [25], [26]. Constraints (11f)

and (11g) ensure that the allocated downlink and uplink

data rates of a service j ∈ Ji always bounded by maximum

downlink δmax and uplink capacity ωmax, respectively.

Constraint (11h) transforms the formulated problem into a

Markov Decision Process Yj = {X ,A, M̂(x′), ϒ(t)}, where

x ∈ X is the observations, a ∈ A represents trusted service

aggregation decisions, M̂(x′) presents evidence-based belief

of a generated intelligent attacks x′, and ϒ(t) is the trust

score of the AI-generated network parameters and metrics x′.

In particular, the constraint (11h) ensures that the formulated

problem (11) establishes a Trust-By-Learning problem by

accumulating a Markov Decision Process, where parameters

�j relies on the distribution of evidence � that belongs to the

belief distribution Yj ∼ M̂(x′) of the AI-generated network

and parameters x′. Finally, constraint (11i) ensures that at

time slot t ∈ T , each service j ∈ Ji cannot be aggregated

with more than one gNB.

The formulated problem (11) is hard to solve in poly-

nomial time complexity in an optimization problem solver

due to its non-linear constraints and uncertain dependencies

on intelligent attack parameters. Therefore, the formulated

problem (11) does not guarantee an optimal solution due

to the uncertainty constraint (11c). In consequence, we will

divide the solution of the formulated decision problem into

three sub-problems. First, we solve the intelligent attack

generation of network parameters and metrics x′. Second,

we determine the uncertainty-informed evidence creation

M̂(x′). Finally, we develop a TBL framework to protect

from intelligent poisoning attacks by trustworthy service

aggregation a while fulfilling the service demands. A detailed

description of the proposed solution approaches is given in

the following section.

V. PROPOSED TRUST-BY-LEARNING FRAMEWORK

In this paper, we propose a novel TBL framework to

understand and mitigate intelligent cyber attacks in next-

generation wireless communication systems. We illustrate

the proposed three steps Trust-By-Learning framework in

Figure 2. In step 1 (yellow block in Figure 2), we generate

intelligent poisoning attacks on network parameters and

metrics by deploying the native GenAI model. Step 2 (green

block in Figure 2) represents the procedure of root-cause

analysis of the intelligent attacks. Finally, step 3 (light

brown block in Figure 2) presents the trustworthy learning

FIGURE 2. The proposed Trust-By-Learning framework for mitigating intelligent

attack in wireless networks.

procedure of the proposed framework. Our approach involves

generating intelligent poisoning attacks on communication

parameters using a narrow GenAI framework to explore

new adversarial attack surfaces. We introduce an evidence-

theory-based trust quantification mechanism to capture the

uncertainty of these attacks and ensure the protection of

6G services through trustworthy service aggregation. We

outline the algorithmic procedure for Dempster–Shafer-

based uncertainty-informed evidence creation, including

generating sample space from poisoning attacks, estimating

evidence with a Bayesian Belief Network, and calculating

the plausibility of affected network parameters and metrics.

Additionally, we develop a meta-reinforcement learning

framework utilizing Markov decision processes to understand

long-term temporal dependencies among intelligent attack

vectors. Experimental results demonstrate that autoencoders

and VAEs effectively replicate dependencies in various

datasets, outperforming GANs in this task.

A. INTELLIGENT ATTACK GENERATION FRAMEWORK

We will adopt the concept of unsupervised machine learning

to generate intelligent poisoning attacks related to wireless

network metrics and parameters. In particular, we create

intelligent attacks x′ by developing an autoencoder-based

deep learning network. Algorithm 1 illustrates the overall

procedure of the intelligent attack generation framework. In

particular, Algorithm 1 solves the decision variable x′ of the

formulated problem in (11) in a data-driven manner.

The input of Algorithm 1 is network metrics and param-

eters of all xtij ∈ X services Ji in a finite time domain

T . Each service parameters and metrics vector xtij contains

mobility mtij, RSSI γtij, RSRP �tij, SINR Stij, uplink data

rate ³
up
tij , downlink data rate ´down

tij , near-cell RSRP ψk �=i,

and CQI �tij information. Therefore, the role of Algorithm 1

is to generate the poisoning attack such that given network

parameters and metrics xtij.
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Algorithm 1 Autoencoder-Based Intelligent Attack

Generation

Input: xtij = (x1, x2, . . . , xX) ≈ (mtij, γtij, �tij, Stij, ³
up
tij ,

´down
tij , ψk �=i, �tij), ∀xtij ∈ X .

Output: ∀x′

tij ∈ x′.

Initialization: φ, θ , ζ , W, wt, split(X ).

1: while ∀xtij ∈ X do

2: for epochs ≤ max epochs do

3: NN backpropagation: ||x − σ ′(W(σ (Wx + b)) +

b′)||2 using (16)

4: Execute ADAM optimizer: using (17), (18),

(19), (20)

5: Estimate: φ → ζ using (12)

6: Execute ReLU function: g(x) using (13)

7: Estimate weight change: �wt using (21)

8: Estimate: θ using (14)

9: Execute Sigmoid function: s(x) using (15)

10: end for

11: NN weight update: wt+1 = wt + �wt using (22)

12: end while

13: return ζ , x′

Algorithm 1 initializes attack vector generation parameters

φ, intelligent poisoning attack parameters θ , latent space

(i.e., attack vector) ζ , and neural network (NN) initial weight

parameters W. Thus, then, generative parameters φ maps

with input network parameters and metrics X in a latent

space ζ , φ:X → ζ .

After estimating latent space ζ , we estimate parameters

of attack vectors θ :ζ → X ,∀xtij ∈ X .

In line 3 of Algorithm 1, we execute neural network stan-

dard back-propagation to estimate latent space ζ . Therefore,

we define an encoder function as follows:

ζ = σ(Wx+ b), (12)

where W is neural network weights and b is the bias. We

employ a rectified linear unit (ReLU) activation function to

capture the positive part of input x from neural network

output. The ReLU activation function is defined as follows:

g(x) = max(0, x) =
x+ |x|

2
, (13)

where x > 0. We consider the outcome of (13) as the latent

space of a potential intelligent attack vector ζ . Therefore,

we can generate the poisoning attack as follows:

x′ = σ ′
(

Wζ + b′
)

, (14)

where b′ becomes the bias regularization term of attacked

parameters and metrics. We consider the output layer of the

attack generation neural network as the sigmoid activation

function [29] to capture the distribution from negative to

positive value. The Sigmoid activation function is defined

as follows:

s(x) =
ex

1 + ex
. (15)

Finally, we can model a neural network for standard

backpropagation loss function as follows:

L
(

x, x′
)

= min ||x− x′||2 =

||x− σ ′
(

W(σ (Wx+ b)) + b′
)

||2, (16)

where ||x−x′||2 is equivalent to the L2 norm or least squares

function [30] during neural network training. We used the

Adaptive Moment Estimation (Adam) optimization [31] to

train the neural network due to the capability of capturing

the first and second moments of the loss function the

function (16). The first and second moments of the loss

function (16) are defined by,

φwt+1 = ϑ1φ
w
t + (1 − ϑ1)∇

wL
(

x, x′
)

, (17)

νwt+1 = ϑ2ν
w
t + (1 − ϑ2)

(

∇wL(x, x′)
)2

, (18)

where ϑ1 and ϑ2 are the decay rates. As this approximation

algorithm employs adaptive learning rates, the step size is

essential in the initial iterations of the training process.

Consequently, the algorithm conducts a bias correction

before estimating the weight updates. The bias correction

functions for the first and second moments are:

φ̂w =
φwt+1

1 − (ϑ1)t+1

, (19)

ν̂w =
νwt+1

1 − (ϑ2)t+1

. (20)

Hence, the function of weight updates �wt with corrected

bias is defined by,

�wt = −r
φ̂w

√

ν̂w + ε
, (21)

where r represents the learning rate and ε is a small value

that prevents division by zero. Thus, the updated weight for

the next time slot t + 1 is given by:

wt+1 = wt + �wt. (22)

In Algorithm 1, lines 3 and 4 execute the backpropagation

and ADAM optimization for neural network training, respec-

tively. Lines from 5 to 8 execute the procedure for intelligent

poisoning attack generation training in Algorithm 1. Line 11

of Algorithm 1 updated the neural network trained weight

for testing. Algorithm 1 generates a poisoning attack x′ in

network parameters and metrics. We have used the output

of Algorithm 1 to create uncertainty-informed evidence

to establish the trustworthy protection of next-generation

wireless systems.

The computational complexity primarily comes from

neural network backpropagation and the Adam optimizer

used for weight updates. Each epoch involves recalculating

weights based on the backpropagation of errors, and the

use of activation functions like ReLU and Sigmoid. For a

network with n neurons and l layers, the complexity per

epoch is O(n∗l). The number of epochs further multiplies this

complexity, resulting in an overall complexity of O(epochs∗

n ∗ l).

VOLUME 6, 2025 6051



MUNIR et al.: TBL FRAMEWORK FOR SECURE 6G WIRELESS NETWORKS UNDER NATIVE GenAI ATTACKS

B. UNCERTAINTY-INFORMED EVIDENCE CREATION

Building evidence M̂(x′) from previous knowledge is

necessary to establish trust in wireless network param-

eters and metrics to defend against new sophisticated

attacks. Therefore, the proposed intelligent attack generation

Algorithm 1 is utilized for generating such attacks ∀x′.

We create a sample space using Pearson’s correlation

coefficient [32] from the generated attack as follows:

G
(

X̂ ,X

)

=

∑

j∈J

(

x′

tij − x̄′

)
(

xtij − x̄
)

√

∑

j∈J

(

x′

tij − x̄′

)2 ∑

j∈J

(

xtij − x̄
)2

. (23)

We will now leverage the concept of Dempster–Shafer [28]

evidence theory to capture the uncertainty of evidence. In

particular, we capture plausibility [28] as a measure of

uncertainty of network parameters or metrics in (8). Thus,

we build a Bayesian network [27] that consists of prior

probability distribution P(G(X̂ ,X )), likelihood function

P(G(X̂ ,X )|M̂(x′)), and posterior probability P(M̂(x′)|G(X̂ .

Therefore, the posterior probability can be presented as

follows:

P(M̂(x′)|G(X̂ ,X )) ? P(G(X̂ ,X )|M̂(x′)) × P(G(X̂ ,X )).

(24)

For each network parameter or metric x′ ∈ x′, the product

of the individual density functions becomes the conditional

on their parent variables v ∈ X . Therefore, the conditional

parent will be given by:

P(M̂(x′)) =
∏

v∈X

P(M̂(x′)v|M̂(x′)Pa(v)). (25)

Thus, the joint distribution of intelligent attacks x′ can be

calculated from conditional probabilities using the chain rule,

P(M̂(x′

1), . . . M̂(x′

X))

=
∏

v∈X

P(M̂(x′

v))|M̂(x′

k), M̂(x′

k) ∈ Pa(M̂(x′

v)). (26)

The evidence P(M̂(x′

1), . . . M̂(x′

X)) of intelligent attacks

x′

X) can be estimated by (26).

We summarize the algorithmic procedure of the proposed

Dempster–Shafer-based uncertainty-informed evidence cre-

ation in Algorithm 2. Line 3 in Algorithm 2 creates sample

space from the generated poisoning attracts x′. Lines from

4 to 7 estimate evidence of generated attacks by populating

the Bayesian Belief Network (BBN) of the wireless network

parameters and metrics in Algorithm 2. The plausibility of

affected network parameters and metrics is calculated in

line 8 of Algorithm 2. Finally, Algorithm 2 provides the

evidence and plausibility in line 11. We will further utilize

the uncertainty-informed evidence of generated intelligent

attacks for developing a Trust-By-Learning framework to

establish adaptive mitigation of intelligent attacks in wireless

networks.

This algorithm’s complexity arises from nested loops

over the samples and elements in the dataset, leading to a

Algorithm 2 Dempster–Shafer-Based Uncertainty-Informed

Evidence Creation

Input: ∀x′

tij ∈ x′, X .

Output: P(M̂(x′

1), . . . M̂(x′

X)), pl(x).

Initialization: X̂ ,X

1: while ∀xtij ∈ X do

2: for ∀x′

tij ∈ x′ do

3: Create sample: G(X̂ ,X ) using (23)

4: Estimate prior probability: P(G(X̂ ,X )) from (23)

5: Conditional density: P(M̂(x′)) using (25)

6: Posterior probability: P(M̂(x′)|G(X̂ ,X ))

using (24)

7: Estimate evidence: P(M̂(x′

1), . . . M̂(x′

X))

using (26)

8: Calculate plausibility: Pl(x) = 1 − M̂(∀x′ ∈

xtij, x �= xtij)

9: end for

10: end while

11: return P(M̂(x′

1), . . . M̂(x′

X)), pl(x)

base complexity of O(m × n). Further complexity is added

through probabilistic calculations (e.g., prior, conditional,

and posterior probabilities) that depend on the number of

metrics, scaling the overall complexity to O(m × n2). The

operations grow quadratically with the number of metrics.

C. TRUST-BY-LEARNING FRAMEWORK FOR ADAPTIVE

MITIGATION OF INTELLIGENT ATTACK

The goal of the proposed TBL framework is primarily to

capture the highly uncertain behavior of intelligent attacks,

establish long-term temporal dependencies, and cope with

high-dimensional attack spaces for heterogeneous wireless

services. There, we design a Meta-RL-based centralized

training and decentralized execution-based mechanism to

establish trust in network parameters and metrics by enabling

adaptive mitigation of heterogeneous intelligent attacks.

We design an uncertainty-informed trust-based reward

function (10) to capture the trust during the learning. In

particular, the reward shaping is designed by capturing

uncertainty from the plausibility of Dempster–Shafer theory

(in Algorithm 2) while maximizing the CQI of the network.

In this solution design, we consider each heterogeneous

service j ∈ J acts as a learning agent while a virtual

agent plays the role of a centralized meta-agent for training.

Therefore, the learning parameters � of the meta-agent can

be estimated as follows:

�∗ = arg
�

max

|J |
∑

j=1

Eπ�j
[ϒ(t)], (27)

where �j is the learning parameters of each service trust

score. In particular, we can capture as a function of

evidence Mj over the distribution of meta-agents param-

eters �, �j = H�(Mj). Then, thus, we design our

Trust-By-Learning as a Markov Decision Process (MDP)
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Yj = {X ,A, M̂(x′), ϒ(t)}, where X is network param-

eters and metrics, A presents trust action, ϒ(t) is trust

score, and M̂(x′) becomes evidence. For each heteroge-

neous service agent j ∈ J , the MDP can present as Yj
= {(x′

1ij, a1ij, x
′

2ij, ϒ(1), . . . , (x′

tij, atij, x
′

jt+1, ϒ(t)}, where

Yj ∼ M̂(x′).

We define the cumulative discounted trust for adaptive

mitigation learning as follows:

V
π�j

(

x′

tij

)

= Eatij∼π�j(atij|x
′

tij;�j)
[

T
∑

t′=t

ρt
′−tϒ

(

t + t′
)

|x′

tij, atij

]

, (28)

where ρt
′−t is a discount factor and ensures the convergence

of the state value function V
π�j (x′

tij) over the finite time

horizon T . By imposing Markovian property, the optimal

trusted-value function is written as follows:

V
π∗

�j
(

x′

tij

)

= max
atij∈A

Eπ∗
�j

⎡

⎣

∑

j∈J

ϒ
(

t′
)

+

@
∑

t′=t

ρt
′−tV

π�j

t′

(

x′

t′ij

)

|x′

tij;�j, atij

]

. (29)

Here, the optimal trusted-value function (29) learns a

parameterized policy of intelligent attack π�j(atij|x
′

tij;�j) by

using a Long short-term memory (LSTM)-based Q-networks

for the parameters �j. To employ multi-agent settings for

understanding the heterogeneity of intelligent attacks, we

define an advantage function as follows [33], [34]:

�
π∗

�j
(

x′

tij, ati1, . . . , atiJ;�t

)

= ϒ(t)

+

T
∑

x′

t′ij∈X ,t′=t

ρt
′−tM

(

x′

t′ij|x
′

tij, ati1, . . . , atiJ
)

V
π�j

(

x′

t′ij, π
∗
�1

, . . . , π∗
�J

)

− V
π�j

(

x′

tij, π
∗
�1

, . . . , π∗
�J

)

,

(30)

where π∗
� : (π∗

�1, . . . , π
∗
�J) is a joint policy and

�(st′i|x
′

tij, ati1, . . . , atiJ) �→ [0, 1] represents state transi-

tion probability. Therefore, the objective of the proposed

TBL framework is to minimize the temporal differ-

ence [33], [34], [35]. Therefore, the loss function is defined

as follows:

L
(

�j

)

= min
π�j

1

|J |

∑

j∈J

1

2

(
(

ϒ(t) +

T
∑

t′=t

ρt
′−tV

π∗
�j

(

x′

t′ij|�t

)
)

− V
π∗

�j
(

x′

tij

)
)2

. (31)

Thus, we can redefine the trust policy loss function to capture

the uncertainty during learning as follows:

L
(

�j

)

= −Ex′

tij,atij
[π�j

(

atij|x
′

tij

)

+
(

τh
(

π�j(atij|x
′

tij;�t)
))

︸ ︷︷ ︸

Entropy

]. (32)

Therefore, the trusted policy gradient of the loss function (32)

is defined in terms of temporal difference and entropy.

Therefore, the policy gradient of the loss function of the

Trust-By-Learning framework is defined as follows:

∇�jL
(

�j

)

=
1

|J |

∑

j∈J

@
∑

t′=t

∇�j log π�j

(

atij|x
′

tij

)

�
π�j

(

x′

tij, atij|θt
)

+ τh
(

π�j(atij|x
′

tij; θt)
)

. (33)

We train and estimate the parameters �j of each ser-

vice j ∈ Ji trust-policy π�j . We execute meta test

Mtest ∼ M̂(x′) of intelligent attack x′ and estimate �j =

H�(Mtest). During this test, we capture the trust-informed

decision from meta policy π� as atij ∼ π�(atij|x
′

t). The

objective is to improve policy with MDP experience Yj,

{(x1, aij1, x
′

2, ϒ(1), . . . , (xt, atij, x
′

t+1, ϒ(t)} for decentral-

ized execution of adaptive mitigation from intelligent attacks.

Thus, each service j ∈ J parameters will be updated through

LSTM-based RNN states �j = [hj,�π ], π�j(aj|x
′), where

hj is RNN hidden state, and meta learned weight �π .

An algorithmic procedure of the proposed uncertainty-

informed Trust-By-Learning framework for defense against

intelligent attacks of network parameters and metrics is

described in Algorithm 3. Lines from 3 to 10 train individ-

uals service agents while lines from 12 to 16 update the

meta-policy of each service agent j ∈ Ji.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental results and

discuss their implications for the effectiveness of our

Trust-By-Learning framework in safeguarding 6G service

architectures from intelligent cyber attacks. The section is

organized as follows: experiment setup and objectives,

performance analysis that includes trust evaluation of gen-

erated intelligent attacks of the proposed Trust-By-Learning

framework.

A. EXPERIMENT SETUP AND OBJECTIVES

This section outlines the experimental setup and objectives

designed to evaluate the effectiveness of our novel Trust-By-

Learning framework in mitigating intelligent cyber attacks

within 6G service architectures. Initially, we have considered

three GenAI such as GAN, Autoencoder, and Variational

Autoencoder models for the regeneration of network parame-

ters and metrics for three different services namely Amazon,

Netflix, and Download from the open source dataset [25].

By regenerating network parameters and metrics, we can

know the intelligent poisoning attack generation capabilities

of these GenAI models. The optimal choice among these

models will be determined based on training efficiency and

quality of intelligent attack generation.

The preprocessing of data is performed for the three

services. We have used python platform for performing

scientific experiment while we have used open-source tools

such as Google Collaboratory (Collab) for data preprocess-

ing, model training, and evaluation. We have utilized the
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Algorithm 3 Uncertainty-Informed Trust-by-Learning for

Defense Against Intelligent Attacks

Input: P(M̂(x′

1), . . . M̂(x′

X)), pl(x),∀x′

tij ∈ x′, X .

Output: �π , atij ∼ π�(atij|xt)

1: while episode_count ≤ max_episode do

2: for t ≤ T and ∀j ∈ Ji do

3: Calculate trust score: ϒ(t) using 10

4: Build Markov decision process: Yj =
{

X ,A, M̂(x′), ϒ(t)
}

5: Estimate cumulative discounted reward:

V
π�j (x′

tij) using (28)

6: optimal value function by imposing MDP:

V
π∗

�j (x′

tij) using (29)

7: Parameterized policy via LSTM learning:

π�j(atij|x
′

tij;�j).

8: Estimate parameterized policy:

�
π∗

�j (x′

tij, ati1, . . . , atiJ;�t) using (30)

9: Estimate joint policy: π∗
� : (π∗

�1, . . . , π
∗
�J)

10: t = t + 1

11: end for

12: Estimate gradient of loss: ∇�jL(�j) using (33)

13: Pick: atij ∼ π�(atij|x
′

t)

14: Improve policy with MDP experience: Yj,{

(x1, aij1, x
′

2, ϒ(1), . . . , (xt, atij, x
′

t+1, ϒ(t)
}

15: Meta learned weight parameters update: �j =

[hj,�π ], π�j(aj|x
′)

16: episode_count = episode_count + 1

17: end while

18: return �π , atij ∼ π�(atij|x
′

t)

established Python libraries like Pandas for data engineering,

NumPy for numerical computations, and scikit-learn for

statistical utilities. Additionally, Matplotlib and Seaborn

libraries were leveraged for data visualization tasks. In case

of intelligent poisoning attack generation, the Autoencoder

model has been constructed and trained using the Keras

APIs that are provided by TensorFlow. Similarly, the Keras

API facilitated the training of a GAN model. Finally, a

PyTorch deep learning framework was utilized to implement

the VAE model architecture and perform model training and

evaluation of attack generation. Table 2 presents a summary

of important parameters that are used during the experiment.

In Table 2, the network parameters and metrics are selected

based on the dataset and the 3GPP standard [1], [25], [26],

while the hyperparameters are determined through a trial-

and-error method, using the best-performing combination

based on the accuracy metric.

The Autoencoder demonstrated a balance between

complexity and performance, effectively capturing and

replicating the dependencies within the original data. Its

computational complexity is moderate, making it a prac-

tical choice for real-time applications. The VAE emerged

as the most effective algorithm in terms of preserving

TABLE 2. Summary of experiment setup.

the integrity of the original data’s network relationships,

successfully replicating key dependencies with high fidelity

despite its higher computational complexity. In contrast, the
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FIGURE 3. Comparison of RSSI, CQI, SNR, NRxRSRP metrics between original and intelligent poisoning attacks by GenAI models such as GAN, VAE, Autoencoder for Amazon

services.

GAN exhibited higher computational complexity due to its

adversarial training process but struggled to maintain the

intricate network relationships of the original data, resulting

in a less complex and less interconnected network. This

indicates that while GANs can create realistic data, they may

not effectively capture the nuanced dependencies required

for robust trust evaluation in 6G architectures.

The performance of each GenAI model was evaluated

after training and testing the models. This comparison was

performed through both visual inspections and quantita-

tive metrics, including Root Mean Square Error (RMSE)

and Mean Squared Error (MSE). The analysis revealed

insights into the model’s effectiveness in replicating the

characteristics of the original dataset. The evaluation pro-

cess considered both training efficiency and the quality

of poisoning network metrics and parameters. we have

demonstrated how well our selected GenAI model produces

realistic intelligent poisoning attack, we are now focusing

on quantifying trust by using a Bayesian Belief Network

as a core component of our Trust-By-Learning framework.

We have designed a Bayesian Network using regression-

based mutual information, leveraging several key Python

libraries: numpy, pandas, networkx, matplotlib, pgmpy, and

scikit-learn. It begins by importing these libraries, which

are essential for data manipulation, network modeling,

probabilistic graphical models, and statistical calculations.

The code constructs a correlation matrix from the input

data to identify potential relationships between variables,

represented as nodes in a BayesianModel from pgmpy.

Edges between nodes are added based on the correlation

values, and Conditional Probability Distributions (CPDs) are

estimated using maximum likelihood. It computes the mutual

information (mi_value) between each pair of nodes using

the mutual_info_regression function from scikit-learn, which

quantifies the amount of shared information between two

variables, capturing both linear and non-linear dependencies.

A directed graph is created to visualize these relationships,

with edge weights corresponding to the calculated mutual

information values, helping to illustrate the strength of

the dependencies in the network. The resulting Bayesian

Network can be used for further probabilistic inference with

tools like Variable Elimination from pgmpy. However,to

effectively compare the evolving nature of intelligent attacks,

the framework requires a mechanism for continuous learning

and adaptation. Therefore, we compare the proposed TBL

framework with a centralized method to justify the effective-

ness of the centralized tanning with decentralized execution

of the protection scheme.

B. PERFORMANCE ANALYSIS

In this experiment, our goal is to benchmark the proposed

framework by comparing with baseline methods. This

section describes the experimental findings and technical

analysis conducted for the Amazon, Netflix, and Download

services, focusing on the comparison between original and

intelligent poisoning attacks generated using three different

GenAI models. We explore various metrics including CQI,

RSSI, SNR, and Neighbor cell Reference signal received

power (NRxRSRP) through a sequence of visual represen-

tations. These metrics are visualized through a series of

Figures. Each Figure provides insights into the effective-

ness of GenAI models in replicating the underlying data

distributions and characteristics. Moreover, we delve into the

implications of these findings for network security, method

efficiency, and the significance of intelligent poisoning

attack generation for advancing 6G networks. Moreover, we

delve into the implications of these findings for network

security, method efficiency, and the significance of intelligent

poisoning attack generation for advancing 6G networks.

Figures 3, 4, and 5 present a comparison of key commu-

nication metrics: RSSI, CQI, SNR, and NRxRSRP between

the original data and intelligent poisoning attack for the

Amazon, Netflix, and Download services, generated by the

three GenAI models such as GAN, VAE, and Autoencoder.

An evaluation of key metrics as mentioned above reveals

that the Autoencoder model consistently demonstrated the

most accurate replication of the original data distribution.

This is evident in Figures 3(a), 3(b), 3(c), and 3(d) for

Amazon service, followed by Figures (4(a), 4(b), 4(c)),

and 4(d) represents Downlaod service. Further, intel-

ligent attacks on the Netflix service are shown in

Figures 5(a), 5(b), 5(c), and 5(d). The VAE model achieved a

reasonable level of accuracy, while the GAN model exhibited

less fidelity in replicating the original data patterns.

The Autoencoder’s superior ability to learn and gen-

eralize signal strength patterns from the training data

enables accurate replication of RSSI values as shown in

Figures 3(a), 4(a), and 5(a) for these services. This fidelity is

crucial for understanding and mitigating security vulnerabili-

ties related to signal strength fluctuations, thereby enhancing
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FIGURE 4. Comparison of RSSI, CQI, SNR, NRxRSRP metrics between original and intelligent poisoning attacks by GenAI models such as GAN, VAE, Autoencoder for

download services.

FIGURE 5. Comparison of RSSI, CQI, SNR, NRxRSRP metrics between original and intelligent poisoning attacks by GenAI models such as GAN, VAE, Autoencoder for Netflix

services.

the network’s defense mechanisms. High-quality intelligent

poisoning attacks RSSI data, aids in developing and refining

6G network algorithms and infrastructure, contributing to

better network reliability and efficiency.

Similarly, by accurately replicating CQI values as shown

in Figures 3(b), 4(b), and 5(b), the models can help simulate

various network conditions, aiding in the development of

robust security mechanisms against intelligent attacks that

exploit CQI variations. The ability to generate realistic

intelligent poisoning attack, demonstrates the value of

GenAI for data augmentation and testing. This is crucial

for network optimization, management, and ultimately, the

ongoing development and enhancement of 6G technologies.

Ensuring high-quality intelligent poisoning attack, especially

for critical metrics like CQI, is essential for simulating and

testing new 6G network features.

Replicating accurate SNR values as shown in Figure 3(c),

is vital for assessing and enhancing the network’s resilience

to interference and noise-based attacks, which are common

intelligent attack vectors. It is crucial for determining signal

quality. High-fidelity intelligent poisoning attacks SNR data

is significant for the development and testing of advanced

6G communication systems, ensuring they can maintain high

performance under various conditions.

The model’s ability to accurately replicate NRxRSRP

values as shown in Figures 3(d), 4(d), and 5(d) which

holds significant implications for network security and 6G

development. It plays a critical role in radio resource man-

agement and interference coordination within the network.

By generating realistic intelligent poisoning attacks data,

we can develop robust strategies to detect and mitigate

attacks that manipulate signal power levels, ultimately

strengthening network security. Furthermore, high-fidelity

intelligent poisoning attacks on NRxRSRP data are essential

for designing and testing new 6G network features, ensuring

optimal performance and efficient resource utilization in

future network deployments.

Once we have generated the intelligent poisoning attack

for Amazon, Netflix, and Download services, we aim to

analyze the differences between intelligent poisoning attacks

generated for these services using various GenAI models like

VAE, GAN, and Autoencoder. To achieve this, we employed

BBNs to understand how the relationships between features

differ between the original and generated data.

In our analysis, we constructed a BBN by first calculating

the correlation matrix of our dataset to identify pairwise

correlations between features. Based on the correlation

values, we applied a threshold-based filtering method

to determine which features are highly correlated and

should be included in the BBN. We then estimated the

Conditional Probability Distributions (CPDs) for each node

using Maximum Likelihood Estimation (MLE) and Bayesian

Estimation methods, except for the target variable. These

CPDs represent the probabilities of each node conditioned

on its parent nodes in the network.

Figures 6, 7, and 8 illustrate the correlation matrix

comparisons for Amazon, Download, and Netflix services,

respectively, between the original network parameters and

metrics and those generated by the GenAI-based attack

vector.

The color intensity in these heatmaps indicates the

strength and direction of the correlations, with darker reds

representing stronger positive correlations and darker blues

representing stronger negative correlations.

Figure 6 illustrates the Amazon service, the original

correlation matrix shows moderate correlations between SNR

and CQI 0.52 in Figure 6(d) and a high correlation between

RSSI and NRxRSRP 0.76. When comparing this to the
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FIGURE 6. Comparison of different Amazon data generation methods with the original data.

FIGURE 7. Comparison of Download data generation methods with the original data.

VAE-generated intelligent poisoning attack, we observe that

the intelligent poisoning attack shows stronger correlations

between SNR and CQI 0.79 in Figure 6(a) and a very high

correlation between RSSI and NRxRSRP 0.93. This indicates

that the VAE model has amplified these relationships. The

GAN-generated heatmap reveals similar patterns but with
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FIGURE 8. Comparison of Netflix data generation methods with the original data.

a negative correlation between SNR and CQI −0.21 in

Figure 6(b), which is different from the original data pattern

and a correlation between RSSI and NRxRSRP 0.24. This

indicates that the GAN model has not really amplified

these relationships. The Autoencoder-generated data shows

an even higher correlation between RSSI and NRxRSRP 0.94

in Figure 6(c), and a high correlation between CQI and SNR

0.64 reflecting a slight exaggeration of feature dependencies.

Figure 7 depicts the Download service, the original data

shows moderate correlations between RSSI and NRxRSRP

0.78 in Figure 7(d) and between DL_bitrate and UL_bitrate

0.57. The VAE-generated data shows moderate correlations

between DL_bitrate and UL_bitrate 0.74 in Figure 7(a) and

between RSSI and NRxRSRP 0.89. The GAN model cap-

tures similar trends with high correlation between UL_bitrate

and DL_bitrate 0.73 in Figure 7(b). The Autoencoder-

generated data displays consistent correlation patterns,

though the correlation between SNR and CQI is 0.28 in

Figure 7(c) is notably lower.

The original Netflix data shows good correlations between

DL_bitrate and UL_bitrate 0.77, SNR and CQI 0.61 in

Figure 8(d) and a moderate correlation between RSSI

and NRxRSRP 0.56. The VAE-generated data for Netflix

shows stronger correlations between SNR and CQI 0.79

in Figure 8(a) and a high correlation between RSSI and

NRxRSRP 0.93, indicating stronger dependencies than in

the original data. The GAN model captures similar trends

with some variations, such as a moderate correlation

between DL_bitrate and UL_bitrate 0.84 in Figure 8(b). The

Autoencoder-generated data for Netflix shows slightly lower

correlations between SNR and CQI 0.67 in Figure 8(c) and

between RSSI and NRxRSRP 0.92 compared to the VAE

and GAN models.

By comparing these intelligent poisoning attacks cor-

relation matrices with those of the original datasets, we

can analyze how the relationships between features differ

across various generative models. This comparison helps

us assess the fidelity of the intelligent poisoning attack

and understand any discrepancies in feature dependencies.

Across all datasets and models, there is a consistently high

correlation between RSSI and NRxRSRP, indicating a strong

probabilistic dependency that is accurately captured by all

generative models. Some variations in correlations, such

as those between DL_bitrate and UL_bitrate or SNR and

CQI, suggest that different models capture different aspects

of the data relationships. Each generative model seems to

emphasize different feature dependencies, with Autoencoders

generally showing higher correlation values, while GANs

and VAEs show more moderate values.

We explore the effectiveness of generative models through

the construction and analysis of Bayesian Network graphs.

Using mutual information as a measure of dependency

between variables, we compare the original data with

data generated by Autoencoder, VAE, and GAN models

across various datasets, including Amazon, Netflix, and

Download services. The Bayesian Networks are constructed

by adding nodes for each variable and the relationship

between them based on a significant conditional probability
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FIGURE 9. Mutual information-based trust dependencies analysis of intelligent poisoning attacks on network metrics and parameters in wireless networks of Amazon services.

FIGURE 10. Mutual information-based trust dependencies analysis of intelligent poisoning attacks on network metrics and parameters in wireless networks of download

services.

matrix, ensuring the most meaningful connections. The edges

were introduced in the BBN graphs based on a threshold for

mutual information greater than 0.2, indicating significant

relationships between variables. This approach allows us to

assess how well each generative model preserves the struc-

ture and dependencies of the original data, providing insights

into their capabilities and limitations in data replication.

By constructing Bayesian Network models for each dataset

type of the Amazon dataset involves comparing the original

data with data generated from Autoencoder, VAE, and GAN

models, focusing on mutual information values to understand

how well each model captures the relationships between key

variables. The original data’s Bayesian Network Figure 9(a)

displays a dense network with strong dependencies among

metrics such as CQI, RSSI, SNR, and NRxRSRP. For

instance, the mutual information between RSSI and SNR is

particularly high at 0.766, indicating a strong correlation,

while the relationship between NRxRSRP and SNR shows

an even higher mutual information value of 0.944, reflecting

a significant dependency. These values highlight the intricate

and interdependent nature of the metrics in the original

dataset.

The Autoencoder model closely replicates the original

parameters network structure as in Figure 9(b), preserving

key relationships with mutual information values that

are similar to those in the original data. For example,

the mutual information between RSSI and NRxRSRP

in the Autoencoder-generated data is 0.972, almost mirroring

the original, and the relationship between SNR and CQI

retains a mutual information value of 0.380. The VAE model,

Figure 9(c), also maintains key relationships effectively, with

the mutual information between RSSI and NRxRSRP being

0.939, closely matching the original. However, the VAE tends

to simplify the network slightly, resulting in weaker but still

significant relationships. On the other hand, the GAN model,

Figure 9(d) demonstrates a notable reduction in the strength

of relationships, with mutual information values such as

0.212 between SNR and CQI, significantly lower than those

in the original dataset, indicating that the GAN struggles

to replicate the network’s complexity for Amazon service

parameters and metrics.

The Download service parameters and metrics analysis

reveals a significant difference between the original data

and the data produced by the GAN, VAE, and Autoencoder

models. The original dataset shows a highly interconnected

network as in Figure 10(a) with high values of mutual

information amongst important variables. For instance, the

mutual information value of 1.149 for the link between

RSSI and NRxRSRP indicates a very strong dependency,

whereas the value of 0.314 for the relationship between RSSI

and SNR indicates robustness. In contrast, the Autoencoder-

generated data retains significant relationships 10(b), such

as the mutual information between RSSI and NRxRSRP

at 0.922 and between NRxRSRP and speed at 0.230,

demonstrating that it captures the essential dependencies

of the original data, though with a slight reduction in the

strength of some relationships. The VAE model (10(c)) also

effectively preserves key relationships, maintaining mutual

information of 0.847 between RSSI and NRxRSRP, closely

aligning with the original, while slightly simplifying the

network by reducing mutual information in some relation-

ships. On the other hand, the GAN model in Figure 10(d)
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FIGURE 11. Mutual information-based trust dependencies analysis of intelligent poisoning attacks on network metrics and parameters in wireless networks of Netflix services.

shows a considerable drop in the strength and number of

relationships, with mutual information values like 0.445 for

RSSI and NRxRSRP, indicating weaker replication of the

original network’s complexity. This analysis highlights that

the Autoencoder and VAE models are more successful in

capturing the original data’s intricate dependencies compared

to the GAN model, which shows a less accurate replication

of the downloaded data.

As per the BBN analysis for Netflix parameters and

metrics, the original data exhibits strong mutual information

values among key variables in Figure 11(a), such as mutual

information of 0.892 between RSSI and NRxRSRP and

0.521 between RSSI and Speed, indicating significant

dependencies. The Autoencoder maintains these relationships

well 11(b), with mutual information values like 0.699 for

RSSI and NRxRSRP, closely mirroring the original data,

though some relationships are slightly weaker, such as the

0.315 mutual information between NRxRSRP and Speed.

The VAE model in Figure (11(c)) captures the original data’s

dependencies even more effectively, with mutual information

values that closely match the original, such as 0.892 for RSSI

and NRxRSRP and 0.404 for SNR and CQI. In contrast, the

GAN model shows a considerable reduction in the strength

and number of relationships as in Figure 11(d), with mutual

information values like 0.454 for RSSI and NRxRSRP,

indicating a much less complex and less connected network

structure compared to the original parameters and metrics.

Across the Amazon, Download, and Netflix parame-

ters and metrics datasets, the analysis demonstrates that

Autoencoder and VAE models consistently outperform the

GAN model in replicating the intricate relationships present

in the original data. The Autoencoder maintains signifi-

cant dependencies with mutual information values closely

matching those of the original data, though it tends to

slightly weaken some relationships. The VAE model not only

preserves the network complexity but also replicates key

dependencies with high fidelity, making it the most effective

in capturing the original data’s structure. In contrast, the

GAN model exhibits a marked reduction in the strength

and number of relationships, leading to a less complex and

less interconnected network. This trend is evident across

all three datasets, indicating that while GANs may generate

plausible data, they struggle to accurately replicate the

nuanced dependencies of the original datasets.

FIGURE 12. Cumulative training rewards based on accumulating CQI-based trust

score.

In our experiment, we evaluate the performance of three

agents, Amazon, Download, and Netflix, as well as a cen-

tralized training approach, all trained using the Multi-Agent

Meta Reinforcement Learning (MAMRL) framework. Each

agent is trained with a dataset that combines both original

and intelligent poisoning attacks, the intelligent poisoning

attack, which is regenerated using an autoencoder to ensure

that the data retains significant characteristics of the original

while introducing variability. These datasets are shuffled

during training to ensure robust learning and generalization.

The integration of both original and autoencoder-regenerated

intelligent poisoning attack aims to enhance the agents’

ability to adapt to varied network conditions and improve

their overall performance in dynamic environments.

CQI is the key variable in calculating the trust score, which

serves as a comprehensive metric to evaluate the agents’

performance, as explained in 10. The trust score is used

to evaluate the reliability of both original and intelligent

poisoning attack in maintaining robust network performance

and guiding the agents’ decision-making processes.

The centralized learning scenario, as depicted in

Figure 12, shows a high level of trust score stability,

maintaining around 1294.3 per episode. This performance

underscores the centralized approach’s capability to handle

a diverse dataset and maintain optimal network conditions

effectively. The moderate reward levels suggest that central-

ized training is particularly adept at balancing original and
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FIGURE 13. Preference value during Trust-By-Learning.

intelligent poisoning attack. The Amazon agent performs

moderately well with a stable trust score around 1375.65,

Figure 12 showcasing its robust learning mechanism and

superior ability to generalize from the diversified data to

optimize performance. This agent’s consistent trust score

highlight its proficiency in managing network conditions

and integrating varied data inputs effectively. On the other

hand, the Netflix agent, while maintaining reward stability,

achieves the lowest performance with a trust score of

around 1046.79. This indicates potential deficiencies in its

learning or variation in the dataset, which hinders model

performance. Despite its stable rewards, the Netflix agent

struggles to match the performance of the other agents. The

Download agent has high performance with a stable reward

of approximately 1460.45, surpassing the Netflix agent and

Amazon agent. The stability in the Download agent’s trust

scores suggests effective management of network conditions

and successful utilization of the mixed dataset for consistent

performance.

The trust score plots reveal significant disparities in how

each agent manages the mixed dataset of original and

intelligent poisoning attack. The Download training approach

achieves the highest and most stable trust scores, indicating

its efficacy in maintaining balanced network conditions

and optimizing performance. The Amazon agent also dis-

plays high and stable performance, demonstrating effective

generalization and robust learning. The Centralized agent,

while maintaining stability, achieves moderate trust scores,

reflecting its ability to handle data diversity effectively.

The Netflix agent, despite its stability, records the lowest

trust scores, suggesting potential areas for improvement in

its learning approach and data handling strategies. These

findings underscore the importance of a well-structured trust

score function and diverse training data in achieving stable

and robust performance across different training scenarios.

In Figure 13, we compare the value per episode across

all agents, illustrating a clear differentiation in performance.

The Amzon agent demonstrates the highest and most stable

value, approaching 3.5, which signifies strong learning capa-

bilities and effective integration of diverse data inputs. The

FIGURE 14. Convergence analysis by value loss.

centralized training approach follows closely, maintaining

a steady value of around 3.3, reflecting its proficiency in

leveraging the comprehensive dataset for robust performance.

The Download agent achieves a moderate value of approx-

imately 3.2, indicating effective learning but slightly less

optimization compared to the Meta agent. The Netflix

agent records the lowest value, just above 2.5, suggesting

challenges in handling the mixed dataset and potential areas

for improvement in learning strategies.

Overall, the graphs collectively highlight significant differ-

ences in how each agent handles and learns from the mixed

dataset. The centralized approach and Meta agent show

superior performance with high and stable values, indicating

effective learning and data management. The Download

agent achieves moderate success, while the Netflix agent’s

lower value highlights opportunities for improvement in data

handling and learning strategy.

The graph in Figure 14 presents a comparative analysis

of losses per episode for all agents. The Amazon agent

achieves the lowest loss values, rapidly decreasing to around

0.5 within the first 50 episodes and maintaining stability

thereafter. This indicates effective learning and quick conver-

gence to optimal policies. The centralized training approach

also exhibits a significant reduction in losses, stabilizing at

around 0.6, reflecting its ability to leverage a comprehensive

dataset effectively. The Download agent’s losses stabilize

around 0.6 as well, demonstrating moderate efficiency in

managing the mixed dataset. The Netflix agent, however,

records the highest initial loss values, peaking at 1.4, and

gradually reduces to around 0.7. This suggests challenges in

learning from the combined dataset, highlighting areas for

potential improvement.

Figure 15 illustrates the comparative performance of four

agents—Netflix, Download, Amazon, and a centralized

training approach—across 400 training episodes. The graph

highlights that the Netflix agent experiences a substantial

decrease in policy loss, stabilizing at the lowest values

around −0.6, indicating effective policy optimization and

learning. The centralized training method also performs

robustly, showing a rapid decrease in policy loss to near-zero
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FIGURE 15. Policy loss during agents’ training.

FIGURE 16. Entropy loss during agents’ training.

levels, reflecting its efficiency in achieving optimal policy

quickly. The Amazon agent maintains a low and stable

policy loss, demonstrating consistent and effective learning.

In contrast, the Download agent’s policy loss initially rises

and then stabilizes at a relatively higher value around

0.15, suggesting less effective adaptation and optimization

compared to the other agents. Overall, the centralized and

Netflix agents lead in minimizing policy loss, showcasing

superior learning capabilities and performance in aligning

actions with the optimal policy.

Figure 16 further complements the analysis of policy loss

by shedding light on the exploration-exploitation dynamics

across the agents. Initially, the centralized training approach

exhibits a higher entropy loss around 0.7, indicative of a

significant exploratory phase, which aligns with its rapid

initial adjustments seen in the policy loss Figure. This

entropy quickly stabilizes at approximately 0.68, highlighting

a balanced shift towards more deterministic policies as

training progresses. Similarly, the Amazon and Download

agents begin with lower entropy, around 0.45, suggesting a

controlled exploration strategy from the outset. They both

follow a trajectory that sees a rapid increase and subse-

quent stabilization at around 0.68, mirroring the centralized

method’s trend towards a balanced exploration-exploitation

trade-off. The Netflix agent, however, starts with the lowest

entropy, reflecting minimal initial exploration, and undergoes

significant fluctuations before settling near 0.67. This initial

low entropy, combined with the substantial decrease in policy

loss, suggests that Netflix’s policy initially focused more

on refining a deterministic strategy rather than exploring

new actions. Overall, the entropy loss Figure indicates

that while the agents adopted varying levels of exploration

initially, they all converge towards a similar level of policy

stability, reflecting an effective learning process that balances

exploration with policy refinement, thus complementing the

trends observed in the policy loss metrics.

In summary, our evaluation of the Amzon, Download,

and Netflix agents, alongside a centralized training approach

using the MAMRL framework, highlights significant dif-

ferences in their performance and learning dynamics. The

centralized method and Amzon agent emerged as the top

performers, demonstrating high and stable trust scores and

values, indicating effective learning and data management

from a mixed dataset of original and intelligent poison-

ing attack. The Download agent also showed competent

performance, albeit with room for improvement in data

handling strategies. The Netflix agent, despite achieving

reward stability, exhibited the lowest trust scores and

struggled with policy optimization, suggesting challenges in

processing the combined dataset effectively. The analysis

of entropy loss further underscored the importance of a

balanced exploration-exploitation strategy, with all agents

eventually converging to similar levels of policy stability.

These findings underscore the critical role of diverse training

data and robust learning mechanisms in enhancing agent

performance in dynamic environments, positioning the cen-

tralized approach and Amazon agent as exemplary models

for future reinforcement learning applications.

VII. CONCLUSION

In this work, we have proposed a new Trust-By-Learning

framework to secure upcoming 6G wireless networks

from GenAI-driven intelligent attacks by understanding

uncertainty, severity, root cause, and trustworthy service

aggregation. To cope uncertain nature of GenAI-driven

intelligent attacks in network parameters and metrics, we

device a narrow GenAI to produce such poisoning attacks

and examine them by deploying Dempster–Shafer–based

evidence theory for quantifying trust. Then, we have

developed a meta-RL-based Markov Decision Process learn-

ing to mitigate intelligent attacks by enabling trustworthy

service aggregation in a wireless network. The proposed

TBL framework has established a secure and trustworthy

wireless communication by capturing the highly uncertain

intelligent poisoning attacks while employing long-term

temporal dependencies in network parameters and metrics for

trust establishment. Our experimental results show that the

Autoencoders and VAEs successfully replicate dependencies

with scores of 0.972 for Amazon, 0.922 for Download, and

0.892 for Netflix. In contrast, GANs demonstrate weaker
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TABLE 3. Summary of abbreviation.

performance in replicating dependencies, with scores of

0.212 for Amazon, 0.445 for Download, and 0.454 for

Netflix across all network parameters and metrics. In sum-

mary, this work investigates the capabilities of native GenAI

to generate poisoning attacks in wireless communication

systems, while also analyzing the nature of such intelligent

threats to facilitate effective mitigation strategies. In the

future, the proposed TBL framework will be extended to

vertical enablers of 6G wireless networks such as connected

autonomous vehicles, critical infrastructure, and smart grids

to enhance trustworthy and resilient network operations.

APPENDIX

See Table 3.
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