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Abstract. We study the bridge-building problem from the mechanism
design perspective. In this problem, a social planner is tasked with build-
ing a bridge to connect two regions separated by an obstacle (e.g., a river
or valley). Each agent in a region has a private location and is interested
in traveling to a facility (e.g., a transportation hub) in the other region.
The cost of an agent with respect to a bridge is the distance from their
location to the facility of interest via the bridge. Our goal is to design
strategy-proof mechanisms that elicit truthful locations from the agents
and approximately optimize an objective by determining a location for
building a bridge. We consider the social cost and maximum cost objec-
tives, which are the total cost and maximum cost of agents, respectively.
For the social cost objective, we characterize an optimal solution and
show that it is strategy-proof. For the maximum cost objective, any
optimal solution is no longer strategy-proof. We present deterministic
5
3 -approximation and randomized 3

2 -approximation strategy-proof mech-
anisms. We complement the results by providing tight lower bounds.

1 Introduction

In many urban planning infrastructure projects, a social planner is often tasked
with building a bridge to connect two different regions that are in between an
obstacle (e.g., a body of water/river, a road, or a valley) [11]. Not surprisingly,
building a bridge can lead to many societal benefits. For example, building a
bridge over a river can help agents in a region to cross the river to reach the other
region more directly. Building a bridge between two mountains can shorten the
travel distances of agents compared to using spiral roads on either mountain.
Building a viaduct can help to carry a road or railway and reduce the travel
distances of agents between different regions. As a result, a bridge would enable
agents, at their starting locations, to travel from one region to a point of interest
(e.g., an access point, a transit station, or a region center) in another region
more efficiently and safely without going through the obstacle directly.

In Fig. 1, we provide an example in which agents are in two regions (modeled
simply as a line) separated by a river, which divides the whole region into A
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and B. The agents from Region A need to be connected to a fixed access point
in Region B, and agents in Region B need to access the fixed access point in
Region A. The access points (referred to as facilities) can be viewed as a hub,
such as a center of the community or transit station (determined by the social
planner), which the agents can use to reach other places in different regions. The
agents’ starting locations are alongside the regions (denoted as dots), and the
access points are denoted in squares. The social planner would like to improve
the distances of the agents from one region to the access point of another region
(e.g., from Region A to the access point in Region B) by building a bridge
(denoted as a green line in Fig. 1).

Region A

Region B

xF

yF

Agent:
Facility:
Bridge:

Fig. 1. An example for bridging two regions. The agents are represented as dots. The
two access points (facilities) are at xF and yF (represented as squares). (Color figure
online)

Existing studies have examined building optimal bridges between two dif-
ferent regions as an optimization problem, aiming to minimize the maximum
distance between any two points from the two regions (see, e.g., [2,9,10,16,17]).
These existing studies have designed polynomial algorithms for building (approx-
imately) optimal bridges between different types of convex polygons (see related
work for more details).

Unfortunately, there are two main assumptions that make existing optimiza-
tion literature not ideal for capturing real-world situations. First, existing liter-
ature assumes that all of the points in the regions are the starting locations of
some agents. However, in many real-world situations, agents’ starting positions
consist only of a subset of locations in the regions. Second, existing literature
assumes that each agent is required to connect to or access other agents’ starting
locations in another region. However, agents may not necessarily be concerned
about other agents’ starting locations and would only be interested in connecting
or accessing a given access point (e.g., a shopping mall, region center, or station)
Therefore, our goal is to build optimal bridges to account for agents’ starting
locations and the access points in regions.

1.1 Our Contribution

In this paper, we initiate the mechanism design study of building (approxi-
mately) optimal bridges between two regions to connect agents (at their starting
locations in their regions) to the corresponding facilities in other regions.

In such a setting, the agent’s starting locations in the regions might not be
publicly known or visible to the social planner. Therefore, our main goal is to
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design strategy-proof mechanisms that elicit agents’ starting locations truthfully
and output bridges that approximately minimize objectives based on the agents’
starting locations in their regions to the facilities in other regions.

More specifically, we focus on a basic setting where the two regions are rep-
resented by two separate parallel real lines R1 and R2 divided by an obstacle
(see Fig. 1). Agents’ starting locations are points in the real lines (i.e., xi ∈ R1

or yj ∈ R2 for any agent i in R1 and any agent j in R2), and the facilities
correspond to fixed points (i.e., xF ∈ R1 and yF ∈ R2) in the regions.

We aim to build a bridge that connects the two real lines R1 and R2, where
one endpoint is in R1 and the other is in R2. The bridge must be perpendicular
to both R1 and R2, and we use a single point s to denote the bridge location.
Given a bridge location s, the cost of an agent at xi ∈ R1 is the distance from
their starting location to the endpoint of the bridge in R1, plus the distance from
the facility location to the endpoint of the bridge in R2, i.e., |xi − s|+ |yF − s|.3
The cost of an agent at yj ∈ R2 is defined similarly. We study two objectives
that aim to minimize the social cost and the maximum cost.

For the social cost objective, we characterize an optimal solution and show
that an optimal solution is strategy-proof. For the maximum cost objective,
we characterize an optimal solution and show that any optimal solution is not
strategy-proof.

We provide a deterministic strategy-proof mechanism that has an approx-
imation ratio of 5

3 . We complement this result by providing a tight matching
lower bound. We also design a randomized strategy-proof mechanism that has
an approximation ratio of 3

2 . We also provide a tight matching lower bound for
any randomized strategy-proof mechanisms.

We note that our setting can be reduced to a special setting of Fukui et al.
[8], who studied a variant of facility location problems. Fukui et al. [8] proposed
a group strategy-proof mechanism that minimizes the social cost, but they did
not consider the maximum cost objective. Our characterization of an optimal
solution provides a more succinct mechanism result.

1.2 Related Work

The optimal bridge-building problem has been widely studied in the literature
[1,2,9,10,16,17]. Cai et al. [2] introduced the problem of adding a line segment
to connect two disjoint convex polygonal regions in a plane, such that the length
of the longest path from a point in one polygon, passing through the bridge, to
a point in another region is minimized. They proposed an O(n2 log n)-time algo-
rithm, where n is the maximum number of extreme points of the polygons. Later,
Bhattacharya and Benkoczi [1] proposed a linear-time algorithm that improves
the O(n2 log n)-time algorithm in [2]. Tan [16] independently presented an alter-
nate linear-time algorithm for the above setting and further generalized it to an
O(n2)-time algorithm for bridging two convex polyhedra in space. Kim and Shin

3 We assume that the bridge has zero cost for the agent using the bridge because it is
a constant term that each agent would incur. A positive bridge cost can only help
improve our approximation ratios.
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[10] provided algorithms to find an optimal bridge between two convex polygons,
two simple non-convex polygons, and one convex and one simple non-convex
polygons in O(n), O(n2), and O(n log n), respectively. Later, Tan [17] provided
an O(n log3 n)-time algorithm for the settings of two simple non-convex poly-
gons. The most related setting is by Kim et al. [9], who proposed a linear-time
algorithm to compute an optimal bridge between two parallel lines separated by
an obstacle to minimize the length of the longest path connecting two points
on the lines. On a related note, there are works that focus on minimizing the
diameter or average shortest distances between pairs of nodes of a network using
new edges (see, e.g., [5,14]). However, all of the works mentioned focusing on
all points in the regions. Our work focuses on a subset of points, which are the
agents’ starting points, and aims to bridge agents to their corresponding facilities
in other regions from the mechanism design perspective.

Our work is within the paradigm of approximate mechanism design without
money. The paradigm of approximate mechanism design without money is ini-
tialized by Procaccia and Tennenholtz [15], who used facility location problems
as case studies. This paradigm investigates strategy-proof mechanisms through
the lens of the approximation ratio. In a typical setting of facility location prob-
lems, the agents report their private locations on the real line to a mechanism.
The mechanism determines the locations for building facilities, where the cost of
agents is the distance to the facilities. Following this work, variations of facility
location problems have been introduced (see, e.g., [6,7,12,13]). We refer readers
to a survey on models and results for mechanism design for facility location [3].
The most relevant mechanism design work to ours is by Fukui et al. [8], which
considers a more general setting called pit-stop facility game, where all agents
are in a real line, and each agent i reports an interval [xi, yi]. A mechanism
determines a point s ∈ R. The cost of agent i is |s − xi|+ |s − yi|. It is easy to
see that our setting is the special case when the agents in R1 has 0 (resp. the
agents in R2 has 1) as an endpoint of their intervals. Fukui et al. [8] proposed
a deterministic group strategy-proof mechanism that minimizes the social cost
(called lowest balanced mechanism), but they did not consider the maximum
cost objective. Another most relevant work to ours is the work of [4] in which
they considered modifying the structure of regions by adding a shuttle or road
to improve the distances of the agents to a prelocated facility in a real line.
However, they do not consider two regions separated by an obstacle.

2 Model

There are two parallel real lines, denoted by R1 and R2. Assume that R1 is above
R2, where R1 and R2 are regions A and B, respectively, as shown in Fig. 1. A set
of M = {1, . . . ,m} agents is located in R1, and a set of N = {1, . . . , n} agents is
located in R2. Each agent i ∈ M has a location xi ∈ R1, and each agent j ∈ N
has a location yj ∈ R2. Let x = (x1, . . . , xm) ∈ Rm

1 be the location profile of the
agents in M , and y = (y1, . . . , yn) ∈ Rn

2 be the location profile of the agents in
N . There are two facilities F1 and F2 located at R1 and R2, respectively. Both
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facilities have fixed locations. Let xF ∈ R1 be the location of facility F1, and
yF ∈ R2 be the location of facility F2.

The agents in M want to access facility F2, and the agents in N want to
access facility F1. To this end, we aim to build a bridge to connect the two
real lines R1 and R2, where one endpoint of this bridge is in R1 and the other
endpoint is in R2. The bridge is perpendicular to both R1 and R2. Hence, we can
use a single point s to denote the location of a bridge, where the two endpoints
are s ∈ R1 and s ∈ R2, respectively. Given a bridge s, the cost of each agent
i ∈ M is the length of the shortest path from this agent to facility F2,

c1(xi, s) := |xi − s|+ |s − yF |.

Similarly, the cost of each agent j ∈ N is defined as

c2(yj , s) := |yj − s|+ |s − xF |.

A (deterministic) mechanism f : Rm
1 × Rn

2 → R is a function that maps
the location profiles x,y of agents into a real value as the bridge location. A
randomized mechanism is a function f from Rm

1 ×Rn
2 to probability distributions

over R. If f(x,y) = P is a probability distribution, the cost of agent i ∈ M is
defined as the expectation c1(xi, P ) = Es∼P [c1(xi, s)], and the cost of j ∈ N is
defined similarly.

A mechanism is strategy-proof if no agent can decrease their cost by misre-
porting their location, where we restrict the misreporting on their own side, that
is, an agent in R1 cannot report a location in R2, and vice versa.

Definition 1. A mechanism f is strategy-proof if for any location profiles x,y,
it satisfies two conditions: (1) c1(xi, f(x,y)) ≤ c1(xi, f(x′

i,x−i,y)) for any agent
i ∈ M and x′

i ∈ R1, where x−i is the location profile of the agents in M \ {i},
and (2) c2(yj , f(x,y)) ≤ c2(yj , f(x, y′

j ,y−j)) for any agent j ∈ N and y′
j ∈ R2,

where y−j is the location profile of the agents in N \ {j}.

We study two objective functions, minimizing the social cost, and minimizing
the maximum cost. Given profiles x,y and bridge location s, the social cost is the
total cost of all agents SC(s,x,y) =

∑
i∈M c1(xi, s) +

∑
j∈N c2(yj , s), and the

maximum cost is the maximum value among the cost of all agents MC(s,x,y) =
max{maxi∈M c1(xi, s),maxj∈N c2(yj , s)}. We say that a mechanism f has an
approximation ratio α or is α-approximation for the objective S ∈ {SC,MC},
if for any instance (x,y, xF , yF ), we have S(f(x,y),x,y)

mins∈R S(s,x,y) ≤ α.
Within the agenda of approximate mechanism design, the goal is to design

strategy-proof mechanisms with good approximation ratios. Note that when
xF = yF , a trivial mechanism that always returns xF as bridge location is
clearly strategy-proof and optimal for both objectives (as all agents attain their
best possible cost). Hence, we focus on the situation xF &= yF , and assume that
xF = 1, yF = 0 throughout the remainder of this paper. This assumption is
without loss of generality because we can scale the locations in real lines.

As a preliminary result, the following lemma says that an optimal bridge
location is between the two facilities (public locations 0 and 1).
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Lemma 1. For both social cost and maximum cost objectives, there exists an
optimal solution s∗ ∈ [0, 1].

Proof. Let s be an optimal solution. If s ∈ [0, 1], the lemma is proved. Assume
without loss of generality that s < 0. Compared with the solution s∗ = 0, we
show that the cost of every agent under s∗ is no more than the cost under s. For
every agent i ∈ M , we have

c1(xi, s) = |xi − s|+ |s − 0| ≥ |xi| = c1(xi, 0).

For every agent j ∈ N , we have

c2(yj , s) = |yj − s|+ (1 − s) = |yj − s|+ |s|+ 1 ≥ |yj |+ 1 = c2(yj , 0).

Therefore, s∗ = 0 is also an optimal solution, establishing the proof. ()

3 Social Cost

In this section, we study the objective of minimizing the social cost SC(s,x,y) =∑
i∈M c1(xi, s)+

∑
j∈N c2(yj , s). We first present an intuitive algorithm for com-

puting an optimal solution and then show that it is strategy-proof.
Given location profiles x,y, for any s ∈ [0, 1], define Ml(s) = {i ∈ M |xi ≤ s}

to be the set of agents in M whose locations are on the left of s, and Mr(s) =
{i ∈ M |xi > s} to be the set of agents in M on the right of s. Similarly, define
Nl(s) = {j ∈ N |yj ≤ s} and Nr(s) = {j ∈ N |yj > s}. The algorithm moves
the bridge location s from 0 to 1 continuously until it cannot decrease the social
cost or it reaches 1. During the process of moving s to s + ε for any ε > 0, if
there is no agent located at interval (s, s + ε), then the cost of any agents in
Mr(s) ∪ Nl(s) does not change, the cost of the agents in Ml(s) increases by 2ε,
and the cost of agents in Nr(s) decreases by 2ε. The algorithm stops when the
number of agents in Ml(s) is no less than that in Nr(s). Formally, the algorithm
returns a bridge location

b(x,y) :=

{
1, if |Ml(1)| < |Nr(1)|
min{s ∈ [0, 1] | |Ml(s)| ≥ |Nr(s)|}, otherwise.

Theorem 1. For the social cost, bridge location b(x,y) is optimal. The mecha-
nism that returns b(x,y) is strategy-proof.

Proof. By Lemma 1, there is an optimal solution s∗ ∈ [0, 1]. We prove the
optimality of b(x,y) by discussing two cases s∗ < b and s∗ > b (we write b(x,y)
as b when no confusion arises). If s∗ < b, by the definition of b, it must be
|Ml(s∗)| < |Nr(s∗)|. When moving the bridge location from s∗ to b, the cost
of each agent in Mr(b) ∪ Nl(s∗) does not change, the cost of each agent in
Ml(b) increases, and the cost of each agent in Nr(s∗) decreases. Let ε > 0 be a
sufficiently small value so that s < b − ε and no agent lies in interval (b − ε, b).
Then, in particular, the cost of each agent in Ml(b − ε) increases by at most
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2(b− s∗), and the cost of each agent in Nr(b− ε) ⊆ Nr(s∗) decreases by exactly
2(b − s∗). Hence,

SC(b,x,y) ≤ SC(s∗,x,y) − 2(b − s∗)|Nr(b − ε)|+ 2(b − s∗)|Ml(b − ε)|
< SC(s∗,x,y),

where the last inequality comes from the fact that |Ml(b − ε)| < |Nr(b − ε)| by
the definition of b.

If s∗ > b, it must be |Ml(s∗)| ≥ |Nr(s∗)|. When moving the bridge location
from b to s∗, the cost of each agent in Mr(s∗) ∪Nl(b) does not change, the cost
of each agent in Ml(s∗) is non-decreasing, and the cost of each agent in Nr(b)
decreases. In particular, the cost of each agent in Ml(b) ⊆ Ml(s∗) increases by
exactly 2(s∗ − b), and the cost of each agent in Nr(b) decreases by at most
2(s∗ − b). Hence, we have

SC(s∗,x,y) ≥ SC(b,x,y) − 2(s∗ − b)|Nr(b)|+ 2(s∗ − b)|Ml(b)|
≥ SC(b,x,y),

where the last inequality comes from the fact that |Ml(b)| ≥ |Nr(b)| by the
definition of b. Therefore, b must be an optimal solution for the social cost.

Next, we prove the strategy-proofness. Note that the agents in Mr(b)∪Nl(b)
have no incentive to lie because they attain the best possible cost. The agent
i ∈ Ml(b) with xi = b also has the best possible cost and, thus, will not misreport.
For each agent i ∈ Ml(b) with xi < b, the only way to change the solution is to
misreport a location x′

i > b, which leads to a solution b(x′
i,x−i,y) ≥ b; however,

this can only increase the cost of agent i. For each agent j ∈ Nr(b), the only
way to change the solution is to misreport a location y′

j < b, which leads to a
solution b(x, y′

j ,y−j) ≤ b and cannot bring any benefit. Therefore, no agent has
an incentive to misreport. ()

4 Maximum Cost

In this section, we consider the objective of minimizing the maximum cost.
Before presenting the mechanisms, we first characterize the optimal maximum
cost. Given location profiles x,y, define xl = mini∈M xi, xr = maxi∈M xi,
yl = minj∈N yj , and yr = maxj∈N yj . The maximum cost in any solution must
be attained by one of the four extreme agents. Intuitively, a good bridge loca-
tion should balance the cost of these extreme agents. Recall from Lemma 1 that
there is an optimal solution in [0, 1]. Indeed, the bridge location in [0, 1] that
minimizes the difference between the cost of xl and yr is optimal, that is,

arg min
w∈[0,1]

|c1(xl, w) − c2(yr, w)| = ||xl − w| − |yr − w| − 1 + 2w|.

Proposition 1. For the maximum cost, s∗ ∈ arg min
w∈[0,1]

|c1(xl, w)− c2(yr, w)| is

an optimal solution.
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Proof. Let s ∈ [0, 1] be an optimal solution. If c1(xl, s) = c2(yr, s), the proof
is done. Assume without loss of generality that c1(xl, s) > c2(yr, s). Note that
for any solution s′ > s, the difference |c1(xl, s′) − c2(yr, s′)| is no less than
c1(xl, s) − c2(yr, s). If the optimal solution s does not minimize the difference
between the cost of xl and yr, then there is a solution s′ with 0 ≤ s′ < s that
minimizes the difference. Indeed, compared with s, the cost of the agent at xl

under s′ is non-increasing, i.e., c1(xl, s′) ≤ c1(xl, s), and the cost of the agent
at yr is non-decreasing, i.e., c2(yr, s′) ≤ c2(yr, s). It follows that the difference
between these two agents is non-increasing. Further, while the cost of the agent at
xr is non-increasing, the cost of the agent at yl may be increasing. If it increases,
then it must be 0 ≤ yl ≤ yr, and yl cannot be responsible for the maximum cost.
Hence, the maximum cost is non-increasing, and the solution s′ is optimal. ()

Define a rounding function r : R → [0, 1] that maps any real number x ∈ R
to the nearest point in [0, 1] from it, i.e.,

r(x) = arg min
w∈[0,1]

|x − w|.

For example, r(1.5) = 1, r(−2) = 0 and r(0.3) = 0.3. We call r(xl) and r(yr) the
rounding extremes, and as a corollary of Proposition 1, there exists an optimal
solution between them.

Corollary 1. For the maximum cost, there exists an optimal solution that lies
in [r(xl), r(yr)] or [r(yr), r(xl)].

Proof. If an optimal solution s∗ ∈ [0, 1] is larger than both r(xl) and r(yr),
then we can move it to the location max{r(xl), r(yr)}, in which no agent would
increase their cost. Thus, max{r(xl), r(yr)} is also optimal. Similarly, if s∗ is
smaller than r(xl) and r(yr), the location min{r(xl), r(yr)} is optimal. ()

In contrast to the social cost objective that admits an optimal strategy-proof
mechanism, the mechanism that returns an optimal solution for maximum cost is
not strategy-proof. Consider the instance with x = (0) and y = (1). The unique
optimal solution is 1

2 , where both agents have a cost equal to 1. Now, suppose
that the agent in N misreports the location as y′

1 = 3. Then the mechanism
takes x = (0) and y′ = (3) as input, and outputs the unique optimal solution 1.
After misreporting, this agent with true location y1 = 1 decreases the cost to 0.

4.1 Deterministic Strategy-Proof Mechanisms

In this subsection, we provide upper and lower bounds on the approximation
ratio of deterministic strategy-proof mechanisms for the maximum cost objec-
tive. Intuitively, based on Proposition 1, a good solution should balance the cost
of the two extremes xl and yr. However, to guarantee the strategy-proofness,
a mechanism cannot always achieve such a balance perfectly. Instead, we con-
sider specific locations between r(xl) and r(yr) by Corollary 1. The following
deterministic mechanism returns the bridge location 1

2 if it lies between the two
rounding extremes r(xl) and r(yr) and returns the rounding extreme that is
closer to 1

2 otherwise.
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Mechanism 1. Given location profiles x,y, if r(xl) ≤ 1
2 ≤ r(yr) or r(yr) ≤

1
2 ≤ r(xl), then return 1

2 . Otherwise, return argmins∈{r(xl),r(yr)} |s − 1
2 |.

Theorem 2. Mechanism 1 is strategy-proof and 5
3 -approximation for the max-

imum cost.

Proof. We first prove the strategy-proofness. If r(xl) ≤ 1
2 ≤ r(yr) and the mech-

anism returns 1
2 , the misreports from the agents in M can only lead to a situation

where both rounding extremes are on the right of 1
2 , and the outcome solution is

larger than 1
2 . Thus, the agents in M cannot decrease their cost. Similarly, the

misreports from the agents in N can only lead to an outcome smaller than 1
2 ,

and these agents cannot decrease their cost. If r(xl) ≥ 1
2 ≥ r(yr), all agents have

their best possible cost under the solution 1
2 , and thus they have no incentive to

misreport. When both rounding extremes r(xl) and r(yr) are larger than 1
2 , if

r(xl) ≥ r(yr) ≥ 1
2 , all agents have their best possible cost. If r(yr) ≥ r(xl) ≥ 1

2 ,
at the solution r(xl), all agents in M and those agents in N located on the left of
r(xl) already achieve their best possible cost, and only the agents inN located on
the right of r(xl) have the potential incentive to misreport. However, their mis-
reporting cannot benefit them. Finally, the symmetric argument/analysis works
for the case when both r(xl) and r(yr) are smaller than 1

2 .
Next, we prove the approximation ratio. When r(yr) ≤ 1

2 ≤ r(xl), it must be
that yr ≤ 1

2 ≤ xl, and the mechanism outputs 1
2 . In this case, all agents achieve

their best possible cost, and thus the solution 1
2 is optimal.

When r(xl) ≤ 1
2 ≤ r(yr), it must be that xl ≤ 1

2 ≤ yr, and the mechanism
outputs 1

2 . If the maximum cost MC( 12 ,x,y) is attained by the agents at xr or
yl, they already achieve the best possible cost, and an optimal solution should
have a maximum cost equal to MC(12 ,x,y). Hence, we only need to focus on
the case when the maximum cost is attained by the agents at xl or yr, which is

MC(
1
2
,x,y) = max{c1(xl,

1
2
), c2(yr,

1
2
)} = max{1

2
− xl +

1
2
, yr − 1

2
+ (1 − 1

2
)}

= max{1 − xl, yr}.

Since an optimal solution s∗ lies in interval [r(xl), r(yr)] by Corollary 1, the
optimal maximum cost is

MC(s∗,x,y) ≥ max{c1(xl, s
∗), c2(yr, s∗),

c1(xl, s∗) + c2(yr, s∗)
2

}

= max{c1(xl, s
∗), c2(yr, s∗),

(2s∗ − xl) + (yr − s∗ + 1 − s∗)
2

}

≥ max{−xl, yr − 1,
yr + 1 − xl

2
}.

Therefore, the approximation ratio is

MC( 12 ,x,y)
MC(s∗,x,y)

≤ max{1 − xl, yr}
max{−xl, yr − 1, yr+1−xl

2 }
.
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Taking into account the constraint that xl ≤ 1
2 ≤ yr, it is easy to verify that

this ratio is no more than 5
3 , as desired. It equals 5

3 when (xl, yr) = (− 3
2 ,

1
2 ) or

(xl, yr) = (12 ,
5
2 ).

When r(xl), r(yr) ≤ 1
2 or r(xl), r(yr) ≥ 1

2 , by symmetry we can only consider
the case when r(xl), r(yr) ≤ 1

2 . If r(xl) ≥ r(yr), then the mechanism will output
r(xl), in which all agents achieve their best possible cost. If r(xl) ≤ r(yr), the
mechanism returns r(yr). All agents in N , and the agents in M who are located
on the right of r(yr), already achieve their best possible cost. Hence, we only
need to consider the case when the induced maximum cost of r(yr) is attained
by xl, that is, MC(r(yr),x,y) = c1(xl, yr) = 2yr − xl. The optimal solution s∗

has a maximum cost

MC(s∗,x,y) ≥ max{c1(xl, s
∗),

c1(xl, s∗) + c2(yr, s∗)
2

}

= max{c1(xl, s
∗),

|s∗ − xl|+ |s∗|+ |yr − s∗|+ |1 − s∗|
2

}

≥ max{|xl|,
yr − xl + 1

2
}.

Therefore, the approximation ratio is

MC( 12 ,x,y)
MC(s∗,x,y)

≤ 2yr − xl

max{|xl|, yr−xl+1
2 }

.

Taking into account the constraint that xl ≤ yr ≤ 1
2 , it is easy to verify that

this ratio is no more than 5
3 . It equals

5
3 when (xl, yr) = (− 3

2 ,
1
2 ). ()

The following theorem provides a matching lower bound 5
3 for deterministic

mechanisms, indicating that Mechanism 1 has tight approximation ratio.

Theorem 3. For the maximum cost objective, no deterministic strategy-proof
mechanism has an approximation ratio less than 5

3 .

4.2 Randomized Strategy-Proof Mechanisms

While the bounds in Sect. 4.1 for deterministic mechanisms are tight, in this
section, we consider randomized mechanisms and also derive tight bounds.
Inspired by Corollary 1 that an optimal solution lies between r(xl) and r(yr),
the following randomized mechanism returns a random point between them. Pre-
cisely, it outputs r(xl), r(yr), and the point that is between them and is closest
to 1

2 , with specified probabilities.

Mechanism 2. Given location profiles x,y, with probability 1
4 , return r(xl);

with probability 1
4 , return r(yr); with probability 1

2 , return

mid(xl, yr) =






1
2 , ifxl ≤ 1

2 ≤ yrorxl ≥ 1
2 ≥ yr

arg min
s∈{r(xl),r(yr)}

|s − 1
2 |, otherwise
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The point mid(xl, yr) coincides with r(xl) or r(yr) when both xl and yr are
larger than 1

2 or both are smaller than 1
2 . For example, when xl = 1.2 and

yr = 0.6, the mechanism returns r(xl) = 1 with probability 1
4 , and returns

r(yr) = mid(xl, yr) = 0.6 with probability 1
4 + 1

2 = 3
4 .

Lemma 2. Mechanism 2 is strategy-proof.

Proof. We show that any agent i in M cannot decrease the cost by misreporting.
The analysis for the agents in N is the same. Clearly, agent i cannot change yr.
When the location of agent i is xi > xl, the only way to change the solution is to
misreport a location x′

i < xl. Then the realizations of the random point returned
by the mechanism become r(x′

i), r(yr) and mid(x′
i, yr). Since xi > xl and 0 ≤

r(x′
i) ≤ r(xl), we have c1(xi, r(x′

i)) = c1(xi, r(xl)) = xi. On the other hand,
if xi ≥ mid(xl, yr), then we have cost(xi,mid(xl, yr)) = cost(xi,mid(x′

i, yr)) =
xi. If xi < mid(xl, yr), then it must be xl < xi < mid(xl, yr) ≤ r(yr), and
the misreport of agent i would not change mid(xl, yr), that is, mid(x′

i, yr) =
mid(xl, yr) = min{ 1

2 , r(yr)}. Hence, agent i cannot benefit from misreporting.
When agent i’s location is xi = xl, if agent i misreports a location x′

i < xl,
the analysis is the same as above. If agent i misreports x′

i > xl, as both functions
r(·) and mid(·, ·) are non-decreasing with xl, it cannot decrease the cost. ()

We remark that the above proof for the strategy-proofness does not rely
on the probabilities of the mechanism. Therefore, any constant probabilities
assigned to the candidate locations r(xl), r(yr),mid(xl, yr) can induce a strategy-
proof mechanism. Nevertheless, we show that the probabilities specified in Mech-
anism 2 lead to the best possible approximation ratio.

Theorem 4. Mechanism 2 is a randomized strategy-proof mechanism and is
3
2 -approximation for the maximum cost.

Theorem 5. For the maximum cost objective, no randomized strategy-proof
mechanism has an approximation ratio less than 3

2 .

5 Conclusion

We studied a novel mechanism design setting for building a bridge to connect two
regions separated by an obstacle under the social and maximum cost objectives.
For both objectives, we characterized their optimal solutions. While any optimal
solution for the social cost objective is strategy-proof, it is not strategy-proof
for the maximum cost objective. Therefore, for the maximum cost objective,
we provided a deterministic 5

3 -approximation mechanism and a randomized 3
2 -

approximation mechanism. Furthermore, we derived tight lower bounds, showing
that no strategy-proof mechanisms can have better approximation ratios.

For the future directions, we note that our model is just a starting point
of the mechanism design for bridge-building problems. While we model the two
regions as two real lines, the regions could be a network, Euclidean plane, or
other metric spaces. It is interesting to study how the existing and new methods
can be applied to these regions. More generally, we can also further consider
building multiple non-perpendicular bridges among multiple regions.
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