
CAVE: Crowdsourcing Passing-By Vehicles for Reliable

In-Vehicle Edge Computing

Jiahe Cao, Qiang Liu

University of Nebraska-Lincoln

qiang.liu@unl.edu

Dawei Chen, Kyungtae Han

Toyota InfoTech Labs

{dawei.chen1, kt.han}@toyota.com

Abstract—In-vehicle edge computing is a much anticipated
paradigm to serve ever-increasing computation demands origi-
nated from the ego vehicle, such as passenger entertainments.
In this paper, we explore the unique idea of crowdsourcing
passing-by vehicles to augment computing of the ego vehicle.
The challenges lie in the high dynamics of passing-by vehicles,
time-correlated task computation, and the stringent requirement
of computing reliability for individual user tasks. To this end,
we formulate an optimization problem to minimize the end-to-
end latency by optimizing the task assignment and resource
allocation of user tasks. To address the complex problem, we
propose a new algorithm (named CAVE) with multiple key
designs. First, we reformulate the original problem into two
subproblems while incorporating not only incoming but also in-
progress tasks. Second, we solve the task assignment subproblem
with reliability constraints by using particle swarm optimization
with the adaptive barrier function. Third, we solve the resource
allocation subproblem by deriving the optimal allocation with
Karush–Kuhn–Tucker (KKT) condition. We build an end-to-end
network and compute simulator and conduct extensive simu-
lation to evaluate the performance of the proposed algorithm.
Simulation results show that, our CAVE algorithm reduces more
than 15% end-to-end latency than state-of-the-art solutions,
without degrading the reliability performance.

Index Terms—In-Vehicle Edge Computing, Reliable Comput-
ing, Task Assignment, Resource Allocation

I. INTRODUCTION

Vehicle computing [1] is much anticipated to be the next

edge computing paradigm to enable and catalyze a wide range

of applications on the drive, such as augmented and virtual

reality (AR/VR) and large language models (LLMs) from

passengers [2]. With the electrification and intelligentization

of vehicles, e.g., autonomous driving (AD) [3] and software-

defined vehicles (SDV) [4], modern vehicles are with much

higher computation, networking, and storage capabilities, for

example, NVIDIA DRIVE AGX delivers 200 TOPS. Apart

from the needed capability to perform vehicular-related com-

putation (if enabled), e.g., AD and advanced driver-assistance

system (ADAS), there remains non-trivial but varying compu-

tation and networking resources [5], which can be utilized for

accelerating generic computation tasks, such as AR/VR ren-

dering and DNN inference. This creates a unique possibility

to leverage the sparse computation capability of vehicles as

edge servers, towards pervasive vehicle edge computing.

Vehicle edge computing has been widely investigated from

various perspectives [6]–[8], including computation offload-

ing, resource allocation, content caching, security, and privacy.

As high-mobility vehicles have extremely high dynamics

(especially wireless connectivity on the drive), one of the key

considerations is the reliability of vehicle computation [9],

[10], in terms of completing user tasks. For example, a vehicle

may be disconnected from wireless networks (e.g., cellular

vehicle-to-everything (C-V2X)), or experience a significantly

low wireless data rate, which can fail its in-progress tasks.

Recent works [9], [10] investigated assigning user tasks to

multiple vehicles for increasing computation redundancy and

thus improving computing reliability. In existing works, all

vehicles are connected via the common wireless network

infrastructure (e.g., C-V2X Uu and public cellular), where ve-

hicles receive user tasks from the network side, and send com-

puting results back after task completion, via one-hop wireless

transmission (either vehicle-to-infrastructure or infrastructure-

to-vehicle). However, these approaches can be problematic

when user tasks originate from individual vehicles (e.g.,

passengers), which will involve two-hop wireless transmission

(i.e., vehicle-to-infrastructure-to-vehicle and reverse path) and

result in highly varying and delayed end-to-end performance.

In this paper, we focus on the unique idea of crowdsourcing

passing-by vehicles to augment computing of the ego vehicle,

where user tasks originate from the ego vehicle. The rationale

is that, there are more computation demands originating from

vehicles, including but not limited to, passenger entertain-

ment (e.g., AR/VR), personalized agents (e.g., LLMs), and

enhanced driving (e.g., connected AD). In this scenario, the

ego vehicle wirelessly connects with passing-by vehicles and

sends user tasks to them for reliable computation, if not

locally computed. Here, the unique challenges lie in the

high dynamics of passing-by vehicles, time-correlated task

computation, and the stringent requirement of computing

reliability for individual user tasks.

To address these challenges, we formulate an optimiza-

tion problem to optimize the task assignment and resource

allocation of user tasks, where each task can be assigned

to multiple passing-by vehicles to improve computing reli-

ability. Specifically, we aim to minimize the average end-to-

end latency of tasks originating from the ego vehicle, while

ensuring the requirement of computing reliability of individ-

ual tasks. We propose a new algorithm (named CAVE) to

efficiently solve the optimization problem, with the following

key designs. 1) We reformulate the original problem into two

subproblems at different locations, i.e., task assignment in the

ego vehicle and resource allocation in individual passing-by

vehicles. In particular, we tackle the time-correlation issue

by incorporating the existing in-progress tasks into both

subproblems, where we do not modify their task assignments

but re-optimize their resource allocation. 2) We convert the

task assignment subproblem into unconstrained by using the

2024 IEEE Global Communications Conference: Mobile and Wireless Networks

3401

G
LO

B
EC

O
M

 2
02

4
- 2

02
4

IE
EE

 G
lo

ba
l C

om
m

un
ic

at
io

ns
 C

on
fe

re
nc

e
| 9

79
-8

-3
50

3-
51

25
-5

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

G
LO

B
EC

O
M

52
92

3.
20

24
.1

09
01

78
7

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 14:43:33 UTC from IEEE Xplore. Restrictions apply.

adaptive barrier function, and solve the converted problem

by using enhanced particle swarm optimization. 3) We solve

the resource allocation subproblem by deriving the optimal

allocation with the Karush–Kuhn–Tucker (KKT) condition.

Note that, the algorithm does not require full controllability

of the wireless network (which is more practical in real-world

scenarios), and can be easily adapted to different wireless

connectivities. Extensive simulation results show that our pro-

posed algorithm substantially outperforms existing solutions,

in terms of convergence, reliability, and scalability.

II. SYSTEM MODEL

We consider a generic vehicle edge computing network

shown in Fig. 1, including an ego vehicle and multiple

passing-by vehicles. The ego vehicle serves as an edge com-

puting platform to accelerate the task computation from its

passengers (e.g., AR/VR headset and mobile gaming). We

consider the passengers’ devices to be connected with the

ego vehicle, either wireless (WiFi) or wired (plug-in), with

extremely high and consistent data rate, and thus omit the

modeling of such transmission latency. When the ego vehicle

drives on the road, it crowdsources passing-by vehicles via

direct wireless connectivity (e.g., C-V2X PC5 interface) to

accelerate its task computation. Due to the high dynamics

of passing-by vehicles, we aim to assure the computation

reliability of tasks by assigning individual tasks to one or

more vehicles. As tasks are completed in passing-by vehicles,

they will be sent back to the ego vehicle, and then forwarded

to the devices of passengers. We denote I as the computation

tasks and J as the participating vehicles. We define αi,j

as the binary indicator of task assignment, where αi,j = 1
means the ith task is assigned to the jthe vehicle. Moreover,

we define gi,j as the allocated computation resources to the

ith task by the jth vehicle. Denote A = {αi,j , ∀i, j} and

G = {gi,j , ∀i, j}, which are the optimization variables.

Reliability Model. From the perspective of the ego vehicle,

other passing-by vehicles are highly dynamic throughout its

driving period. Assigning a task to only one passing-by vehicle

may be unreliable, e.g., vehicles drive away from the coverage

of the ego vehicle before they complete the assigned tasks. To

ensure the reliable computation of tasks, we allow each task to

be assigned to one or more passing-by vehicles. We consider,

each passing-by vehicle has a reliability function [9] (denoted

as Pj(·), ∀j), which represents its probability of failing task

computation (e.g., out of the coverage of the ego vehicle and

other connectivity issues). Note that, this reliability function is

not constant but varies over time. Then, we can calculate the

reliability of computing a task in the jth vehicle as Pj(Li,j),
where Li,j is the round-trip latency of the task (see Eq. 2).

For the sake of simplicity, we consider that the reliability

function of all passing-by vehicles are known when solving

the following optimization problem. Hence, given the task

assignment αi,j , ∀j, we express the unreliable probability of

the ith task when it is computed by multiple vehicles as

Ui =
∏

j∈J
(1− αi,jPj(Li,j)) . (1)

Task AssignmentResource

Allocation

incoming tasks

6 7 8 9

in
-p

ro
g

re
ss

 t
a

sk
s

1
2

5
4

in
-p

ro
g

re
ss

 t
a

sk
s

1
3

4

Resource

Allocation

ego

Fig. 1: Overview of in-vehicle edge computing.

Latency Model. Each task experiences three stages, i.e.,

downlink ego-to-vehicles transmission, vehicle computation,

and uplink vehicles-to-ego transmission, where both transmis-

sion stages may be omitted if the task is locally computed by

the ego vehicle. Hence, we model the round-trip latency [11]

of ith task in the jth vehicle as

Li,j = Di/R
d
i,j + Ci/gi,j + Ei/R

u
i,j , (2)

where Ru
i,j and Rd

i,j are the uplink (from other vehicles to

the ego vehicle) and downlink (from the ego vehicle to other

vehicles) wireless data rate. Here, we do not assume that the

ego vehicle has full controllability over the wireless commu-

nication, which is independently managed by other parties,

e.g., cellular network operators. In other words, the downlink

Rd
i,j and uplink Ru

i,j wireless data rate experienced by the

ith task at the jth vehicle are generally unknown. Moreover,

Ci, Di, and Ei are the known computation complexity (e.g.,

GFLOP), downlink and uplink data size, respectively.

Problem. The objective is to minimize the aggregated

latency of all the incoming tasks. Therefore, we formulate

the optimization problem P0 as follows:

P0 : min
A,G

∑

i∈I

∑

j∈J
αijLi,j (3)

s.t.
∑

i∈I
αijgi,j ≤ Gmax

j , ∀j, (4)
∏

j∈I
(1− αi,jPj(Li,j)) ≤ Hmin

i , ∀i, (5)

where Gmax
j is the computation capacity of the jth vehicle

and Hmin
i is the threshold of failure probability for the

ith task. The optimization variables are the task assignment

A = {αi,j , ∀i, j} (binary) for each task and resource alloca-

tion G = {gi,j , ∀i, j} (continuous) in each vehicle. The first

constraint in Eq. 4 ensures that, the allocated computation

resources to all tasks complies with the capacity Gmax
j of

individual vehicles. The second constraint in Eq. 5 ensures

that, the failure probability of each task is below the given

threshold Hmin
i .

Challenges. The technical challenges of addressing the

above problem are multi-fold. First, the optimization variables

A and G are closely coupled in both the objective function

and the second constraint. Moreover, multiple parameters in

the latency and reliability model, i.e., the experienced wireless

data rate, are unknown, when solving the above optimization

problem. Second, the vehicle edge computing system is tightly

time-correlated, where the life-cycle of tasks spans non-

negligible period, while incoming tasks could arrive at any

2024 IEEE Global Communications Conference: Mobile and Wireless Networks

3402
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 14:43:33 UTC from IEEE Xplore. Restrictions apply.

time. In other words, optimizing the incoming tasks could

degrade the performance of existing in-progressing tasks,

which leads to complicated far-reaching impacts over long-

term system performance. Third, the problem is NP-Hard.

Even if the resource allocation G is determined, the remained

task assignment A is binary. Considering the optimization

space of A covers all the tasks and vehicles, the optimization

problem turns out to be NP-Hard [9].

III. THE PROPOSED SOLUTION

In this section, we propose the CAVE algorithm to effi-

ciently address the above optimization problem. First, we

reformulate the original problem into two subproblems at

different locations, i.e., task assignment in the ego vehicle

and resource allocation in individual passing-by vehicles. In

particular, we tackle the time-correlation issue by incorpo-

rating the existing in-progress tasks into both subproblems,

where we do not modify their task assignments but re-optimize

their resource allocation. Second, we convert the task assign-

ment subproblem into unconstrained by using the adaptive

barrier function, and solve the converted problem by using

particle swarm optimization. Third, we solve the resource

allocation subproblem by deriving the optimal allocation with

the Karush–Kuhn–Tucker (KKT) condition. Note that, the

algorithm performs the optimization for incoming tasks while

taking care of existing in-progress tasks in both the ego

and passing-by vehicles, which addresses the time-correlated

issues.

A. Problem Reformulation

To tackle the coupled optimization variables in the original

problem P0, we decompose it into two subproblems, i.e., task

assignment and resource allocation. The rationale is that, task

assignment is performed in the ego vehicle whenever there are

incoming tasks from passengers, while the resource allocation

is performed in the passing-by vehicles at any time slots. In

particular, to tackle the time-correlation issue, we incorporate

existing in-progress tasks into the formulation of the following

two subproblems.

On the one hand, when optimizing the task assignment

subproblem for incoming tasks, we incorporate the impact

from existing in-progress tasks into the objective function.

Denote K = {K1, ..,Kj , ..,KJ} as the set of existing in-

progress tasks, where Kj is the subset in the jth vehicle.

Here, we do not re-optimize the task assignment for existing

in-progress tasks, as they are already under computation

by different passing-by vehicles. Thus, we build the task

assignment subproblem P1 in the ego vehicle as

P1 : min
A

∑

i∈I+K

∑

j∈J

αijLi,j (6)

s.t.
∏

j∈J

(1− αi,jPj(Li,j)) ≤ Hmin
i , ∀i, (7)

where we only optimize the task assignment A for incoming

tasks I, although we consider both I and K.

On the other hand, when optimizing the resource allocation

for incoming tasks, we also re-optimize that for existing

in-progress tasks. Thus, we build the resource allocation

subproblem P2 in the passing-by vehicles as

P2 : min
G

∑

i∈I+K

∑

j∈J

αijLi,j (8)

s.t.
∑

i∈I+K

αijgi,j ≤ Gmax
j , ∀j, (9)

where the optimization variables αi,j are given, from the

perspective of solving this subproblem.

B. Task Assignment Subproblem

In this subsection, we aim to solve the task assignment

subproblem P1 by assigning the incoming tasks to passing-by

vehicles only. Here, we identify the difficulties as 1) unknown

parameters (i.e., uplink and downlink wireless data rate) and

non-determined resource allocation G. 2) the NP-Hardness of

the subproblem with constraints.

Parameter Prediction. First, we deal with unknown param-

eters in the subproblem P1. Specifically, we create a simple

prediction model for each passing-by vehicle to estimate its

wireless data rate over time, which will be trained with all

historical observations. The prediction model will observe the

number of in-progress tasks and historical wireless data in the

passing-by vehicle, and generate the prediction of the next

wireless data rate. In this way, the impact of in-progress tasks

will be considered in optimizing incoming tasks. On the other

hand, as resource allocation is performed more frequently

after the task assignment, it is difficult to forecast how many

computing resources will be allocated to each user task. To

balance the accuracy and complexity, we simply presume the

resource allocation will be equally allocated, which will derive

the fixed gi,j , given the in-progress tasks in individual passing-

by vehicles.

Adaptive Barrier Method. Second, we deal with the

constraints in the subproblem P1, under determined resource

allocation and predicted parameters. Specifically, we use adap-

tive barrier function inspired by the interior point method [12]

to convert the constrained subproblem into unconstrained. The

basic idea is to adaptively incorporate the constraint into the

objective function and then solve a series of unconstrained

subproblems. Hence, we build the unconstrained subproblem

as

P3 : min
A

∑

i∈I+K

∑

j∈J

αijLi,j

+ µ
∑

i∈I

ln



Hmin
i −

∏

j∈I

(1− αi,jPj(Li,j))



 ,

(10)

where µ is the non-negative factor, and we use ln(·) penalize

if the constraint is violated. Note that, we consider the impact

from existing in-progress tasks in the objective function, while

their reliability constraints are skipped.

Particle Swarm Optimization. Third, we deal with the

NP-Hardness in the above unconstrained subproblem P3 by

using particle swarm optimization (PSO) [13]. PSO is an

efficient global searching algorithm, and has been applied and

2024 IEEE Global Communications Conference: Mobile and Wireless Networks

3403
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 14:43:33 UTC from IEEE Xplore. Restrictions apply.

evaluated in a wide range of application domains [14], e.g.

energy sector and transportation systems. Generally, PSO first

initializes a candidate solution and iteratively improves the

candidate solution (aka. particles) by moving them towards

the global optima as well as the local optima among particles

in current iteration based on a given quality measurement of

solutions Eq. 10.

Specifically, we first generate the initial task assignment by

randomly sampling from its optimization space. We observe

that, to achieve the given requirement of computing reliability,

only a partial of vehicles are needed in most scenarios. Hence,

accelerate the convergence of the PSO searching by reducing

its optimization space into n vehicles, such as 5 or 10.

Second, as the particle moves during the search iterations,

some particles may not satisfy the requirement anymore.

Hence, we dynamically delete some particles and re-sample

them again from the reduced optimization space. Finally, we

stop the searching if reaching the given maximum iterations,

where the best assignment strategy is chosen according to the

quality measurement throughout the whole search iterations.

Note that, PSO can easily be implemented in parallel for

further computing acceleration, which would benefit the real-

time decision of task assignment.

C. Resource Allocation Subproblem

In this subsection, we aim to solve the resource allocation

subproblem P2 in individual passing-by vehicles. Given the

task assignment, we observe that the subproblem P2 is fully

separable, with respect to each passing-by vehicle. Hence,

we apply the KKT condition to derive the optimal resource

allocation in each vehicle. This is based on our observation

that, the subproblem is convex by evaluating the Hessian

matrix, which are all positive.

First, we build the Lagrangian function for the jth vehicle

by including the constraint in Eq. 9 as

Lj =
∑

i∈I+K

αijLi,j + λj(
∑

i∈I+K

αijgi,j −Gmax
j), (11)

where λj is the Lagrange multiplier for the jth vehicle.

Then, we differentiate Lj with respect to gi,j and set the

derivative equal to zero, which is expressed as
∂Lj

∂gi,j
= −

∑

i∈I+K

αi,jCi

(gi,j)2
+ λj

∑

i∈I+K

αi,j = 0, (12)

where the following condition must be satisfied for the in-

equality constraints, i.e.,

λj(
∑

i∈I+K

αijgi,j −Gmax
j) = 0. (13)

Based on Eq. 12 and Eq. 13, we can obtain that the optimal

resource allocation at the jth vehicle for both incoming and

in-progress tasks, expressed as

gi,j =
√

CiG
max
j /

∑

i∈I+K

αij

√

Ci, (14)

when αi,j is non-zeros, otherwise gi,j = 0.

D. The CAVE Algorithm

Based on the above analysis, we propose the CAVE algo-

rithm to solve the problem P0, whose pseudocode is sum-

Algorithm 1: The CAVE algorithm

Input: Hmin
i , Gmax

j , Ci, Di, Ei, µ
Output: A,G

1 / ∗ ∗ Ego V ehicle Side ∗ ∗/;

2 Estimate unknown parameters Ru
i,j , R

d
i,j and gi,j ;

3 Initialize N particles by random sampling A;

4 for t = 0, 1, ...,M do

5 Calculate Eq. 10 for all particles;

6 for n = 0, 1, ..., N do

7 if Eq. 7 is not satisfied then

8 Delete the particle and re-sampling.

9 Move particles with PSO accordingly;

10 Decaying µ;

11 Find the best A∗ from historical PSO searching;

12 / ∗ ∗ Passing − by V ehicle Side ∗ ∗/;

13 Obtain all tasks in each passing-by vehicle;

14 for t = 0, 1, 2, ..., (parallel) do

15 Calculate optimal resource allocation, G∗
j ←

Eq. 14;

16 return A∗ and G∗
j , ∀j;

marized in Alg. 1. On the ego vehicle side, it optimizes the

task assignment once incoming tasks arrive. First, we estimate

the unknown parameters based on their historical data points.

Second, we initialize the particles and continuously move

them in PSO, where particles will be deleted and resampled if

the reliability constraint cannot be satisfied. Third, we stop the

PSO searching under given iterations and use the historically

best A∗ as the task assignment. On the passing-by vehicle

side, each of them optimizes its resource allocation at any

continuous time (e.g., per milliseconds). In each passing-by

vehicle, we obtain all the tasks and calculate optimal resource

allocation based on Eq. 14.

IV. PERFORMANCE EVALUATION

End-to-End Simulator. We build a simulator based on our

prior work [11] with multiple modules, including ego vehicle

computing, downlink wireless network, passing-by vehicle

computing, and uplink wireless network. The basic idea of the

time-slotted simulator is to flow tasks among these sequential

modules, e.g., if a task finishes its downlink transmission, it

will be enqueued into the next module (i.e., passing-by vehicle

computing). The computation and transmission of tasks are

simulated by deducting its remaining computing complexity

and transmission data size, respectively. In particular, the

wireless network is simulated with an open-source 5G system-

level simulator [15], with the radio channel of urban micro

(UMi - Street Canyon).

Simulation Parameters. The default number of passing-by

vehicles is 20, where their locations are randomly generated

in a radius of 100 meters. The default uplink and downlink

bandwidth is 10 MHz, with a maximum transmit power of 20

dBm. We use the Poisson Point Process (PPP) to generate the

user tasks in the ego vehicle, where the default intensity is 20

2024 IEEE Global Communications Conference: Mobile and Wireless Networks

3404
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 14:43:33 UTC from IEEE Xplore. Restrictions apply.

100 200 300 400 500 600 700
Avg. latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0
Cu

m
ul

at
iv

e
pr

ob
ab

ilit
y

CAVE
FPSO-MR
Baseline

Fig. 2: CDF of task latency under different
methods.

0.0 0.2 0.4 0.6 0.8
Failure probability

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

pr
ob

ab
ilit

y

CAVE
FPSO-MR
Baseline

Fig. 3: CDF of task failure probability under
different methods.

0 50 100 150 200
Tasks

1

2

3

4

5

Nu
m

b.
 o

f r
ed

un
da

nt
 v

eh
icl

es CAVE
FPSO-MR
Baseline

Fig. 4: Number of redundant vehicles per
task under different methods.

per second. Without loss of generality, transmission size and

computation complexity of user tasks are uniformly sampled

from [10, 100] Kbits and [1000, 2000] GFLOP. By default,

the computation capacity of vehicles is 10 TFLOPS, and

reliability requirement Hmin
i = 0.2, ∀i. In addition, we use

the exponential decaying function to represent the reliability

function over time, where Pj(x) = exp(−x), ∀j, and the unit

of x is second.

Comparison Algorithms. We compare the CAVE algorithm

with the following works:

• Baseline uses least-workload criteria to assign user tasks

to passing-by vehicles, where computing resources in

vehicles are equally shared by all assigned tasks.

• FPSO-MR [9] is a fault-tolerant particle swarm optimiza-

tion algorithm. As its problem is different from ours,

we adopt its algorithm idea to solve our problem, where

existing in-progress tasks are not considered during its

optimization. Besides, computing resources in vehicles

are equally shared by all assigned tasks.

Latency. Fig. 2 shows the empirical CDF of the average

latency of user tasks under different methods. As we can see

that, our proposed CAVE algorithm achieves the best latency

performance (194.83ms on average), with a 15.25% and

33.60% reduction than the FPSO-MR and Baseline method,

respectively. Moreover, the CAVE algorithm obtains more

than 80% tasks have the latency below 221ms, where the

comparative percentile latency is 273ms and 408ms under

FPSO-MR and Baseline method, respectively. In particular, we

observe the long tail of the Baseline method, which suggests

the necessity of optimizing the task assignment, rather than

simply finding the least workload vehicle.

Reliability. Fig. 3 shows the empirical CDF of the failure

probability of user tasks under different methods. We can see

that, all methods cannot assure 100% failure probability below

the given threshold Hmin = 0.2. This could be attribute to

the complex system dynamics (e.g., traffic, communication,

and computing), especially the lack of fully controllability of

wireless transmissions. For example, the FPSO-MR method

obtains only reliability of 57th percentile for all the tasks (i.e.,

below 0.2), and the Baseline method fails to finish any tasks

under the threshold Hmin = 0.2. In contrast, our proposed

CAVE algorithm obtains more than 90th percentile for all

the tasks (i.e., below 0.2), with a maximum of 0.431 failure

probability.

Redundancy. To dissect the details behind the failure

probability, we show the number of redundant assignment

of user tasks over time in Fig. 4, under different methods.

The Baseline method always select only one vehicle, and the

FPSO-MR method assign a task to 2.45 vehicles on average.

In contrast, the CAVE algorithm tends to assign more vehicles

(average 2.33 vehicles), to assure the given threshold of the

failure probability. We observe that, although the FPSO-MR

method assigns tasks to more vehicles, its achieved latency

performance is still worse than our proposed CAVE algorithm.

This may be attribute to the reason that, it overlooks the

in-progress tasks when optimizing the incoming user tasks,

which can lead to non-trivial performance degradation of user

tasks, including both latency and reliability.

Traffic Intensity. Fig. 5 and Fig. 6 show the average latency

and failure probability of user tasks under various traffic

intensities, respectively. As more user tasks in the system,

the average task latency of all methods generally increases,

because the resource competition becomes more severe in both

communication and computation. In the CAVE algorithm, the

average latency is increased from 186.1ms to 221.4ms, and the

failure probability also increased, but still not exceed the given

threshold of 0.2. In contrast, we observe the other methods

are with much higher task latency. This result justifies the

CAVE algorithm in handling varying user traffic and assuring

the computing reliability.

Failure Threshold. Fig. 7 shows the average latency

and failure probability of user tasks under different failure

thresholds, respectively. The lower failure threshold means

that the more redundant vehicles per task needed to assure

the computing reliability. Hence, we found that the average

number of redundant vehicles per task increase from 1.62

(Hmin = 0.4) to 2.96 (Hmin = 0.1) in the CAVE algorithm.

As a result, the latency performance generally increases under

lower failure thresholds. This results show that the CAVE

algorithm can adapt to different reliability functions while

assuring the reliable computing for user tasks.

V. RELATED WORK

This work relates to the computation offloading, resource

allocation, and reliable computing in the scenario of vehi-

2024 IEEE Global Communications Conference: Mobile and Wireless Networks

3405
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 14:43:33 UTC from IEEE Xplore. Restrictions apply.

10 15 20 25 30
Traffic intensity (tasks/s)

200

225

250

275

300

325
Av

g.
 la

te
nc

y
(m

s)
CAVE
FPSO-MR
Baseline

Fig. 5: Average task latency under various
traffic.

10 15 20 25 30
Traffic intensity (tasks/s)

0.2

0.3

0.4

0.5

0.6

Fa
ilu

re
 p

ro
ba

bi
lit

y

CAVE
FPSO-MR
Baseline

Fig. 6: Task failure probability under various
traffic.

0.1 0.2 0.3 0.4
Failure threshold

200

205

210

215

Av
g.

 L
at

en
cy

 (m
s)

Latency

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Fa
ilu

re
 p

ro
ba

bi
lit

y

Failure probability

Fig. 7: CAVE performance under different
failure thresholds.

cle edge computing. Computation offloading [11], [16] is

the widely used approach to exploit more powerful servers

(e.g., edge or cloud) to accelerate the task computation of

mobile devices and vehicles. To achieve diverse objective

(e.g., latency and energy), existing works have formulated

various optimization problems and designed a wide range of

algorithms and methods, via both model-based and model-free

approaches. Task assignment and resource allocation are ex-

tensively investigated and optimized to achieve more efficient

and effective computation offloading [17]. For example, Feng

et. al. [16] proposed two algorithms that minimize the system

latency under both binary and partial reverse offloading prob-

lems respectively, by optimizing both offloading decision and

radio resource allocation. However, most existing works [11]

focused on offloading tasks from vehicles to infrastructural

edge/cloud servers, where the wireless connectivity is more

reliable and consistent. In the scenario of in-vehicle edge

computing, we explore the idea of crowdsourcing passing-

by vehicles to serve passengers tasks, where the vehicle-to-

vehicle wireless connectivity becomes much more volatile

over time. Several works [9], [10] focused on the reliable

computing in vehicle edge computing, by assigning single

task to multiple vehicles to increase computation redundancy.

However, their works considered only snapshot-based task

computation, where the complex time correlation among con-

secutive tasks in individual vehicles are overlooked. In this

paper, we focus on the reliable computing problem in the in-

vehicle edge computing, where the time correlation of tasks

are incorporated in the design of the CAVE algorithm.

VI. CONCLUSION

In this work, we explored the possibility of crowdsourcing

passing-by vehicles to accelerate the computation of the ego

vehicle. We formulate the optimization problem to reduce the

average end-to-end latency by optimizing task assignment and

resource allocation for user tasks. We designed the CAVE

algorithm with several key designs to efficiently solve the

problem. Extensive simulation results show that our proposed

algorithm outperformed existing solutions, in terms of con-

vergence, reliability, and scalability.

ACKNOWLEDGEMENT

This work is supported by the US National Science Foun-

dation under Grant No. 2321699.

REFERENCES

[1] S. Lu and W. Shi, “Vehicle computing: Vision and challenges,” Journal

of Information and Intelligence, vol. 1, no. 1, pp. 23–35, 2023.
[2] J. Mao, Y. Qian, J. Ye, H. Zhao, and Y. Wang, “GPT-Driver: Learning

to Drive with GPT,” in NeurIPS 2023 Foundation Models for Decision

Making Workshop, 2023.
[3] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of

autonomous driving: Common practices and emerging technologies,”
IEEE access, vol. 8, pp. 58 443–58 469, 2020.

[4] C. Jiacheng, Z. Haibo, Z. Ning, Y. Peng, G. Lin, and S. X. Sherman,
“Software defined internet of vehicles: architecture, challenges and
solutions,” Journal of communications and information networks, vol. 1,
no. 1, pp. 14–26, 2016.

[5] L. Liu, Z. Dong, Y. Wang, and W. Shi, “Prophet: Realizing a predictable
real-time perception pipeline for autonomous vehicles,” in 2022 IEEE

Real-Time Systems Symposium (RTSS). IEEE, 2022, pp. 305–317.
[6] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge computing

for autonomous driving: Opportunities and challenges,” Proceedings of

the IEEE, vol. 107, no. 8, pp. 1697–1716, 2019.
[7] S. Raza et al., “A survey on vehicular edge computing: architecture,

applications, technical issues, and future directions,” Wireless Commu-

nications and Mobile Computing, vol. 2019, 2019.
[8] C. Ma, J. Zhu, M. Liu, H. Zhao, N. Liu, and X. Zou, “Parking edge

computing: Parked-vehicle-assisted task offloading for urban vanets,”
IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9344–9358, 2021.

[9] X. Hou et al., “Reliable computation offloading for edge-computing-
enabled software-defined iov,” IEEE Internet of Things Journal, vol. 7,
no. 8, pp. 7097–7111, 2020.

[10] K. Liu, C. Liu, G. Yan, V. C. Lee, and J. Cao, “Accelerating dnn
inference with reliability guarantee in vehicular edge computing,”
IEEE/ACM Transactions on Networking, 2023.

[11] Y. Xue et al., “CoMap: Proactive Provision for Crowdsourcing Map
in Automotive Edge Computing,” in IEEE International Conference on

Communications (ICC), 2023, pp. 1–6.
[12] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge

university press, 2004.
[13] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in MHS’95. Proceedings of the sixth international symposium

on micro machine and human science. IEEE, 1995, pp. 39–43.
[14] A. G. Gad, “Particle swarm optimization algorithm and its applications:

a systematic review,” Archives of computational methods in engineering,
vol. 29, no. 5, pp. 2531–2561, 2022.

[15] E. J. Oughton, K. Katsaros, F. Entezami, D. Kaleshi, and J. Crowcroft,
“An open-source techno-economic assessment framework for 5g de-
ployment,” IEEE Access, vol. 7, pp. 155 930–155 940, 2019.

[16] W. Feng et al., “Latency minimization of reverse offloading in vehicular
edge computing,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 5, pp. 5343–5357, 2022.

[17] Y. Chen, F. Zhao, X. Chen, and Y. Wu, “Efficient multi-vehicle task of-
floading for mobile edge computing in 6g networks,” IEEE Transactions

on Vehicular Technology, vol. 71, no. 5, pp. 4584–4595, 2021.

2024 IEEE Global Communications Conference: Mobile and Wireless Networks

3406
Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 14:43:33 UTC from IEEE Xplore. Restrictions apply.

