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Abstract—Federated learning (FL) is the promising privacy-
preserve approach to continually update the central machine
learning (ML) model (e.g., object detectors in edge servers) by
aggregating the gradients obtained from local observation data
in distributed connected and automated vehicles (CAVs). The
incentive mechanism is to incentivize individual selfish CAVs to
participate in FL towards the improvement of overall model
accuracy. It is, however, challenging to design the incentive
mechanism, due to the complex correlation between the overall
model accuracy and unknown incentive sensitivity of CAVs,
especially under the non-independent and identically distributed
(Non-IID) data of individual CAVs. In this paper, we propose a
new learn-to-incentivize algorithm to adaptively allocate rewards
to individual CAVs under unknown sensitivity functions. First,
we gradually learn the unknown sensitivity function of individual
CAVs with accumulative observations, by using compute-efficient
Gaussian process regression (GPR). Second, we iteratively update
the reward allocation to individual CAVs with new sampled
gradients, derived from GPR. Third, we project the updated
reward allocations to comply with the total budget. We evaluate
the performance of extensive simulations, where the simulation
parameters are obtained from realistic profiling of the CIFAR-10
dataset and NVIDIA RTX 3080 GPU. The results show that our
proposed algorithm substantially outperforms existing solutions,
in terms of accuracy, scalability, and adaptability.

Index Terms—Federated Learning, Incentive Mechanism, Ve-
hicular Networks, Edge Computing

I. INTRODUCTION

Federated learning is the promising paradigm to achieve

large-scale privacy-preserve distributed machine learning. To

collaboratively train a global model, a generic federated

learning system involves massive participants (which compute

the model update with their local data) and a central parameter

server, which aggregates distributed updates in the global

model, such as FedAvg [1]. Instead of sharing the raw training

data, only computed model updates (e.g., gradients) will be

transmitted to the central server, which substantially allevi-

ates the data privacy concerns and improves communication

efficiency. Hence, there are ever-increasing research efforts in

exploring and exploiting the advantages of federated learning

in a wide range of application domains, such as healthcare,

finance, and retail [2].

The incentive mechanism (i.e., incentivizing massive par-

ticipants to contribute their data) plays a key role in achieving

the goal of federated learning [3]. This is based on the

observation that individual participants are generally reluc-

tant to participate in federated learning without monetary

incentives. On the one hand, the local training consumes

non-trivial computation resources, which would squeeze the

limited computation capacity of participants (usually edge

devices). On the other hand, the transmission of the computed

model updates requires non-negligible mobile traffic, which

may increase the data usage of participants (usually mobile

devices). As a result, the sensitivity function of participants is

different concerning monetary incentives. In addition, recent

findings show that not all participants are equally important, in

terms of improving the overall accuracy of the global model,

because of their heterogeneous data quantity and quality [4],

such as independently and identically distributed (IID).

There are extensive existing works in designing incentive

mechanisms in the domain of federated learning [3], [5]. How-

ever, these works generally assume that the information of

local data (e.g., quality and quantity) in participants is known

by the central server, while this assumption may not always

hold. For example, participants can be selfish, and optimize

their contribution (e.g., data and computation) dynamically in

each federated learning round. Recent works focus on using

model-free approaches (e.g., deep reinforcement learning [6],

[7]) to learn and incentivize participants without the need

for prior knowledge. However, they typically use deep neural

networks (DNNs) to parameterize their policies, which tend to

be low sample efficiency and can hardly scale under dynamic

participants over time. Therefore, it is imperative to design

a sample-efficient and model-free approach to incentivize

diverse participants in federated learning.

In this paper, we propose the LeFi algorithm to learn and

incentivize participants, i.e., connected and automated vehi-

cles (CAVs), in automotive edge computing. The optimization

objective is to maximize the overall accuracy of the global

model under the total monetary budget, by optimizing the

reward weight of individual participating CAVs. First, we

develop a sample-efficient surrogate model to approximate

the unknown sensitivity function of participants, according

to the accumulative Server-to-CAV interactions over time.

Second, we design a sample-based gradient descent method

to update the reward weight of individual CAVs and project

the reward weights under the total budget if applicable. Third,

we use Karush-Kuhn-Tucker (KKT) conditions to derive the

data selection in each CAV independently. Then, the central

server will receive the actual data size of local training

in each CAV, which will be used to update the surrogate

model continuously. We evaluate the proposed algorithm via

extensive simulations, where the simulation parameters are

obtained by profiling a Convolutional neural network (CNN)-

based model under the CIFAR-10 dataset and Nvidia RTX

3080 GPU. The results show that our proposed algorithm

substantially outperforms existing solutions, in terms of con-

vergence, accuracy, and scalability.
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II. SYSTEM MODEL

We consider a generic federated learning system, including

a central server and a massive number of CAVs denoted as

N = {1, 2, ..., N}. To train the global DNN model, e.g.,

object detection and segmentation, CAVs perceive surrounding

environments with diverse onboard sensors (e.g., LiDAR and

cameras) and are responsible for the local training process

before the calculated gradients are sent to the central server.

The central server will aggregate the gradients received from

CAVs, e.g., averaging, to update the global DNN model. The

global model will be then disseminated to the participating

CAVs, e.g., changed parameters, which creates the next round

of federated learning.

Non-IID Data. Recent findings [4] show that the distri-

bution of training data of individual participants (i.e., CAVs)

would generate a non-trivial impact on the overall accuracy

of the global model. The training data is IID, only if its

samples are drawn from the same probability distribution,

and are independent of one another statistically. However,

the diversified trajectories of individual CAVs will naturally

create non-IID training data. Specifically, Non-IID data can be

characterized by the allocation of a proportion of samples for

each label to each party according to a Dirichlet distribution

[8]. Without loss of generality, we introduce the variable

π ∈ [0, 1] to quantify the degree of Non-IID in the training

data. A smaller π value indicates a higher degree of Non-IID,

signifying greater disparity in the proportion of samples for

each label across parties. In contrast, as π approaches 1, it

suggests that each party possesses an identical proportion of

the samples for each label.

Accuracy Model. The overall accuracy of the global model

is related to not only the non-IID severity but also the size

of training data in individual participating CAVs. In Fig. 2,

we show the correlations by training a CNN model over

the CIFAR-10 dataset (in total 50K training data) with 5

CAVs (different data sizes and same non-IID severities). It

can be seen that higher accuracy can be generally achieved

by increasing the data size under lower non-IID severity.

Without loss of generality, the accuracy model can be built by

fitting these data points with various regression models, such

as linear, polynomial and exponential. However, the non-IID

severity of training data in CAVs is mostly different, which

generates intractable complexity in regressing the accuracy

model, especially under thousands of CAVs, if not more.

For the sake of tractability, we approximately formulate the

overall accuracy of the global model as the combination of

the individual CAVs’ accuracy

Amean =
w

N

∑

n∈N

A(Dn, πn), (1)

where w is the weight, which relates to not only the distribu-

tion of non-IID severity among all CAVs but also the number

of participating CAVs. Here, A(Dn, πn) is the accuracy func-

tion of the n-th CAV, which may be regressed with tractable

profiling data points.
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Fig. 1: Computing resources needs in different dataset sizes

Incentive Mechanism. To improve the overall accuracy of

the global model, it is essential to incentivize the contribution

of selfish CAVs, in terms of computation resources and unique

training data. As we quantified the aforementioned accuracy

model, we designed the incentive mechanism by offering

monetary rewards to individual CAVs. In particular, we define

the reward function for the n-th CAV as

f(Dn) = αn(1− e−βnDn), (2)

where αn denotes the reward weight, Dn is the data size of

the CAV, and βn is a pre-defined non-negative hyperparameter.

The rationale behind this is that, by optimizing and allocating

the reward cap (i.e., αn), the reward function f(Dn) will

incentivize the n-th CAV to contribute more training data. In

addition, using the exponential-related functions (rather than

linear) can represent a wide range of correlations between the

size of training data and the reward.

Selfish Participating CAVs. The local training process and

sharing of data require non-negligible costs in each CAV,

e.g., computing resources and mobile traffic. Hence, it is

reasonable to assume that each CAV is selfish in participating

the federated learning, e.g., monetary rewards to compensate

for local resource consumption. In particular, we profile the

computational complexity of the local training process under

different training data sizes in Fig. 1, by using the metric

of TFLOPS (Tera Floating-point operations per second). By

fitting the profiled data point with linear regression, we obtain

the computation complexity C(Dn) = pDn + q, where

p = 79.1259 and q = 17.6219.

Client-Side Problem. On the client side, the objective is

to maximize the revenue (i.e., the received reward minus its

cost), by optimizing the data size for local training. Therefore,

we formulate the client-side optimization problem of data

selection in the n-th CAV as follows

P0 : max
Dn

αn(1− e−βnDn)− θ · C(Dn)

s.t.







C(Dn)/Fn ≤ Tmax,

Dn ≤ Dmax,

(3)

where we introduce the latency requirement by dividing the

computation complexity of local training and the computation

capacity of the n-th CAV (i.e., Fn). Here, Tmax is the

maximum latency allowance and Dmax is the maximum data

size. In addition, θ is the rate per computation capability, e.g.,
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Fig. 2: Model accuracy varies in different dataset sizes and Non-IID
severity

per TFLOPS. Note that, the reward weight α is given by the

server side, when solving this client-side problem.

Server-Side Problem. On the server side, the objective is

to maximize the overall accuracy under the given budget, by

optimizing the reward weight of individual CAVs. Therefore,

we formulate the server-side optimization problem of incen-

tive design as follows

P1 : max
{αn,n∈N}

∑

n∈N

A(Dn(αn), πn)

s.t.
∑

n∈N
αn(1− e−βnDn) ≤ Mmax,

(4)

where we exclude the w,N in Eq. 1 without affecting the

overall optimization problem, and Mmax is the total budget.

Here, we consider the non-IID severity πn is known by the n-

th CAV and fixed in each federated learning round. Note that,

we denote sensitivity function as Dn(αn), which represents

the size of training data in the n-th CAV under a given reward

weight αn. This is because, selfish CAVs will determine their

contributed size of training data independently, where the

underlying calculations are dependent on various factors, e.g.,

user sensitivity of rewards and computation capacities. From

the perspective of the server side, the sensitivity function of

CAVs is unknown.

Challenges. The technical challenge of solving the afore-

mentioned problems lies in the unknown sensitivity function

of CAVs from the perspective of the server side. As a result,

the server-side problem falls into the black-box optimization

domain, where conventional linear, nonlinear, and convex

optimization methods cannot work directly. With the massive

number of CAVs in federated learning, it is intractable to

employ exhaustive search techniques in practice. Although

Bayesian optimization provides a generic framework to solve

blackbox problems, its scalability remains uncertain under

thousands of CAVs (if not more) in federated learning.

III. PROPOSED SOLUTION

In this section, we introduce the Learn-to-incentivize

Federated learning (LeFi) algorithm, which allows the server

to iteratively learn to allocate reward weights to individ-

ual CAVs without prior knowledge. Different from vanilla

Bayesian optimization, the LeFi algorithm works by following

three steps. First, we use a sample-efficient surrogate model to

approximate the size of training data under different reward

weights for each CAV. Second, we design a sample-based

gradient descent method to update the reward weight of

individual CAVs. Third, we project the reward weights under

the total budget. The server will receive the actual data size

of local training in each CAV, which will be used to update

the surrogate model continuously. These steps iterate until the

convergence of the algorithm.

A. Unknown Function Approximation

Here, the goal is to find a sample-efficient surrogate model

to learn and fit the unknown sensitivity function. The sur-

rogate model can be updated via accumulative query-and-

observation. In particular, we focus on learning the sensitivity

function of individual CAVs, rather than the overall accuracy

model. Although linear and polynomial regression are gener-

ally both compute- and sample- efficient, their approximation

capabilities are limited to represent complex and unknown

functions in selfish CAVs. In contrast, deep learning (DL)

utilizes multiple neurons and multi-layer neural networks

to effectively fit nonlinear and high-dim complex functions.

Nonetheless, DL practically requires a substantial amount of

training datasets, with a low sample efficiency.

Alternatively, GPR offers several advantages in terms of

sample-efficiency and approximation capability. Unlike linear

regression, GPR does not assume a predefined form of the

relationship between inputs and outputs, allowing for the

capture of complex, non-linear patterns. This non-parametric

approach leverages a covariance function, or kernel, which

encapsulates assumptions about the function to be learned.

In addition, GPR can provide a probabilistic prediction along

with the uncertainty of the estimation, which is crucial for

decision-making processes.

The Gaussian process is defined by its mean function m(x)
and covariance function k(x, x′), which is expressed as:

m(x) = E[f(x)], (5)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (6)

where f(x) represents the unknown function to learn. The

choice of the kernel function k is pivotal as it determines the

smoothness and other properties of the functions drawn from

the process. The resultant predictive distribution for a new

input x∗ is then given by a normal distribution characterized

by a mean µ(x∗) and variance σ2(x∗), making GPR a robust

tool that inherently quantifies the uncertainty of its predictions.

With the GPR, we define its input as the reward weight and

the output as the resulting data size per CAV. In each iteration,

the GPR of CAVs is updated by using all the accumulated

reward-to-size pairs in the previous iterations.

B. Reward Allocation Updating

Here, the goal is to conduct a one-step update on the reward

weight of all CAVs given the current GPRs, towards the

optimal solution.
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First, we deviate the last reward weight αn with △, and

predict its mean and std by inferring the GPR as

µ, σ = GPR(αn +△), (7)

where µ and σ are the mean and std, respectively.

Second, we estimate the gradient at the last reward weight

αn as
∂Dn

∂αn

=
Normal(µ, σ)−GPR(αn)

δ
, (8)

where we sample from the Normal distribution

Normal(µ, σ). Here, we use the sampled value (rather

than the mean) to incorporate its variance in the following

gradient descent.

Third, we calculate the gradient by following

▽g =
∂An

∂αn

=
∂An

∂Dn

·
∂Dn

∂αn

, (9)

where,
∂An

∂Dn

= 2aDn + cπn + d, (10)

where a, c, and d are constants obtained from polynomial

regression of accuracy function in CAVs.

Fourth, we update the last reward weight as follows

αt+1
n = αt

n + η · ▽g, (11)

Fifth, we project the generated αt+1
n under the total budget

(if applicable) as follow

αp
n = Mmax/

∑

n∈N

αn(1− e−βnDn), (12)

which happens only if
∑

n∈N αn(1− e−βnDn) ≥ Mmax.

C. Selfish Dataset Selection

From the perspective of individual CAVs, optimizing the

data size of local training is a key approach to maximizing

its own revenue. Selecting a larger data size can generally

improve the received reward from the server side, but this also

introduces additional costs, which could potentially decrease

the revenue. Here, we employ the KKT conditions to identify

the optimal solution for training data size.

Initially, we establish the Lagrangian function with the in-

troduction of Lagrange multipliers to account for the imposed

constraints. Let λ1 be the Lagrange multiplier for the first

constraint, and λ2, λ3 be the multipliers for the inequality

constraints Dmin ≤ Dn and Dn ≤ Dmax, respectively.

Moreover, the Lagrange multipliers must fulfill the non-

negativity conditions,λ1, λ2, λ3 ≥ 0.

The Lagrangian, L, can be articulated as follows

L(Dn, λ1, λ2, λ3) = αn(1− e−βnDn)− θ · (aDn + b)

+ λ1

(

Tmax −
aDn + b

Fn

)

+ λ2(Dn −Dmin)

− λ3(Dn −Dmax),

(13)

Then, we differentiate L with respect to Dn and set the

derivative equal to zero

∂L

∂Dn

= −αnβne
−βnDn − θ · a− λ1

a

Fn

+ λ2 − λ3, (14)

Algorithm 1: The LeFi algorithm

Input: Mmax, Fn, θn, πn, Dmin, Dmax, η
Output: Dn, αn

1 Initialize the reward weight αn and warm start the

GPR model; for t = 0, 1, ..., Rounds do

2 / ∗ ∗ GPR Prediction ∗ ∗/;

3 Build training dataset with [α,D] and train GPR

model;

4 Get mean µ(Dn) and std σ of deviated dataset

size α+△ from GPR;

5 Sample dataset size from normal distribution

Normal(µ, σ);
6 / ∗ ∗ Sample− based Gradient Descent ∗ ∗/;

7 Update reward weight αn based on Eq. 11;

8 / ∗ ∗ Project Reward Weight ∗ ∗/;

9 if
∑

n∈N αn(1− e−βnDn) ≥ Mmax then

10 Project reward weights based on Eq. 12;

11 return optimal Dn and αn for all CAVs;

For the inequality constraints, the following conditions must

be satisfied

λ1

(

Tmax −
aDn + b

Fn

)

= 0,

λ2(Dn −Dmin) = 0,

λ3(Dn −Dmax) = 0.

(15)

Note that, the data selection problem in individual CAVs is

not known by the server side. Our proposed algorithm makes

no assumption on data selection methods and can be easily

extended to accommodate other methods in selfish CAVs.

D. The LeFi Algorithm

Based on the above analysis, we introduce the Learn-to-

incentivize Federated learning (LeFi) algorithm, whose pseu-

docode is provided in Alg. 1.

The process begins with the initialization of reward weight

αn. Using the α and the optimal dataset size D obtained

from the KKT conditions, we construct the training set and

train the GPR of each CAV. Next, the GPR model predicts

with the last deviated αn + △ and uses the mean and std

as parameters to randomly generate Dn(αn + △) followed

by the Normal distribution. Then, the gradient is calculated

and the reward weight of all CAVs is updated accordingly.

If the reward allocated exceeds the given budget, the reward

weights are projected back into the range of the budget. In

each iteration, all previously observed values of Dn and αn

are used to train the GPR, which would gradually improve

its approximation accuracy towards the convergence of the

algorithm.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithm with

extensive simulations. To obtain the simulation parameters, we

profile a CNN-based model under the CIFAR-10 dataset over a

desktop with NVIDIA 3080 GPU whose computation capacity
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is 28.9 FLOPS. All the regression models are obtained based

on the profiled measurement, including the overall accuracy

and the computation complexity. Based on the pricing of GPU

rental services in the market [9], we set the cost weight θ by

generating variations by varying from 0.5 to 2 times 0.9 USD.

Besides, the non-IID severity is uniformly generated between

0.1 and 1.0 for all CAVs. The maximum training time of each

round is 200s by default. The maximum size of training data

in each CAV is 10K entries. We conduct 2-order polynomial

regression to obtain the accuracy model A(Dn, πn) = aD2
n+

bπ2
n + cDnπn + dDn + eπn + f with root mean square error

(RMSE) 0.03, whose parameters are a = −0.000152, b =
0.071, c = −0.00117, d = 0.0151, e = 0.011, f = 0.073. The

default number of CAVs is 10, the budget is 5 USD, and the

latency requirement is 1 minute.

We compared with the following algorithms1:

• Baseline: the Baseline method uses random search to find

the combination of reward weight of all CAVs, which

serves as the baseline performance.

• BARA: the BARA method [7] uses Bayesian optimization

to optimize the reward weight of all CAVs, where a GPR

is created to approximate the correlation between all the

weights of CAVs and the overall accuracy of the global

model. The expected improvement (EI) is used for the

acquisition function.

Convergence. We show the convergence of the LeFi algo-

rithm, in terms of reward weights and data sizes in Fig. 3 and

Fig. 4, respectively. It can be seen that the reward weights

(server-side) and data sizes (client-side) converge in about

only 20 iterations. Notably, the reward weight of all CAVs

increases in the very beginning (e.g., 5 iterations) and then

diverges accordingly, which is because the total budget is

reached, and the projection is invoked to ensure the budget

for all CAVs. As the LeFi algorithm converges, we can see

that the optimal reward weights are different for all CAVs,

which is mainly attributed to their heterogeneous sensitivity

functions. In addition, we show the convergence of overall

accuracy under all the solutions in Fig. 5. As compared to

Baseline, the BARA can generally achieve better accuracy

performance, because it re-uses the previous observations for

future searching. As compared to other solutions, the LeFi

1We omit DRL-based solutions because they can hardly learn in very
limited Server-to-CAV interactions (i.e., maximum 100).

algorithm shows a very smooth convergence and eventually

higher accuracy performance throughout the iterations. Note

that, although the absolute numeric difference is relatively

small, such improvement in the accuracy of the global model

is non-trivial. These results verify the superior convergence of

the LeFi algorithm.

Scalability. We show the scalability of the LeFi algorithm in

Fig. 6 by evaluating its accuracy performance under different

numbers of CAVs. Here, the metric of relative accuracy

improvement (RAI) is defined as the ratio between the ac-

curacy improvement of a solution and the LeFi algorithm.

The accuracy improvement denotes the achieved accuracy

increase of the LeFi algorithm as compared to arbitrary reward

weights. In general, a higher RAI indicates that the solution

can achieve better accuracy. As we can see, the RAI of both

Baseline and BARA are below 1.0, which means they are less

comparative with the LeFi algorithm. In addition, their RAI

difference becomes larger, as the increment of the number

of CAVs, which suggests they are less scalable as compared

to LeFi algorithm. When there are a massive number of

CAVs in federated learning, the searching space for both

Baseline and BARA increases exponentially, which decreases

their effectiveness in finding the optimal reward weights of

all CAVs.

Adaptability. We evaluate the adaptability of the LeFi algo-

rithm under varying budget and latency requirements in Fig. 7

and Fig. 8, respectively. As more budget allows higher data

sizes in all CAVs, the accuracy performance of all solutions

is increased accordingly, as shown in Fig. 7. When the budget

is no longer a significant constraint, all CAVs would like to

contribute all of their training data, which is the main reason

why all solutions share similar accuracy when the budget

is 25 USD. However, we see that the LeFi algorithm can

achieve higher improvement than other solutions, especially

when the budget is smaller (e.g., 1). As a more strict latency

requirement is enforced, we see the accuracy performance

of all solutions generally reduce in Fig. 8, because CAVs

cannot contribute more training data to match the allocated

reward weights. In the meantime, the LeFi algorithm typically

achieves higher accuracy gain than other solutions, especially

when the latency requirement is loosened. These results justify

the better adaptability of the LeFi algorithm under different

conditions in federated learning.
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Fig. 8: Accuracy under different latency
requirement.

V. RELATED WORK

The incentive mechanism in federated learning has been

extensively investigated in recent years. Chai et al. [10]

employed game theory and blockchain to encourage secure

knowledge sharing by designing a transactional market-based

approach. Saputra et al. [11] proposed employing Smart CAVs

(SVs) as federal members to enhance network functionality

with minimal data exposure. They devise a contract-based

policy focusing on the optimal selection of SVs and payment

contracts, dependent on the data quality. Yang et al. [7]

introduced BARA, a Bayesian optimization-based algorithm

for dynamic reward budget allocation in federated learning,

aimed at optimizing model utility and accuracy. This novel

approach effectively handles the complex relationship between

reward allocation and model performance in federated learn-

ing environments. Weng et al. [12] presented FedServing, a

federated prediction serving framework that incentivizes truth-

ful machine learning predictions through a Bayesian game

theory-based mechanism and enhances accuracy using truth

discovery algorithms. This framework also ensures model

privacy and exchange fairness by employing blockchain and

Trusted Execution Environments (TEEs). Toyoda et al. [13]

introduced a mathematical framework using contest theory to

analyze and optimize reward distribution in a model updating

environment. Emphasizing Bayesian-Nash incentive compat-

ibility ensures that workers maximize their payoffs with no

better alternative strategies, and it establishes an optimal

reward distribution policy. However, existing works either

assume the known sensitivity function of all CAVs or cannot

scale to the massive number of CAVs (thousands if not more).

In this work, we proposed the high-scalable LeFi algorithm to

learn and incentivize heterogeneous CAVs without the need

for prior knowledge of their sensitivity functions.

VI. CONCLUSION

In this work, we proposed a new LeFi algorithm to in-

centivize the participation of heterogeneous CAVs in fed-

erated learning. The key observation is that the sensitivity

function of CAVs is generally unknown by the server side,

due to a variety of practical factors, such as computation

capacity and monetary sensitivity. Our key idea to solve this

challenge is to develop a sample-efficient surrogate model to

learn and approximate the unknown sensitivity function, from

accumulated Server-to-CAV interactions. Then, we design a

sample-based gradient descent method to iteratively update

the reward allocations and apply projection if needed to meet

the budget. The simulation results show that our proposed

algorithm can significantly outperform existing solutions, in

terms of accuracy, scalability, and adaptability.
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