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Let Sn be the symmetric group on the set {1, 2, . . . , n}. Given a permutation � =
�1�2 · · · �n 2 Sn , we say it has a peak at index i if �i�1 < �i > �i+1. Let Peak(� )

be the set of all peaks of � and define P(S; n) = {� 2 Sn : Peak(� ) = S}. We
study the Hamming metric, `1-metric, and Kendall tau metric on the sets P(S; n)

for all possible S and determine the minimum and maximum possible values that
these metrics can attain in these subsets of Sn .

1. Introduction

We look at various sets of permutations and measure maximum and minimum
distances between the elements in these sets. Let Sn be the symmetric group, that is,
the set of n! symmetries of {1, 2, . . . , n}. We write the elements of Sn in one-line
notation, so for � 2 Sn we write � =�1�2 · · · �n to denote the permutation that sends
1 ! �1, 2 ! �2, . . . , n ! �n . We say � has a peak at position i in {2, 3, . . . , n�1}
if �i�1 < �i > �i+1, that is, �i is greater than its two neighbors. We define the peak

set of � , Peak(� ), to be the set of all indices at which � has a peak. For example,
if � = 58327164 2 S8 then Peak(� ) = {2, 5, 7}.

We can collect all permutations that have the same peak set S and define

P(S; n) = {� 2 Sn : Peak(� ) = S}.
We can partition Sn as a disjoint union of sets of the form P(S; n) as we range
through all possible peak sets S. The main purpose of this article is to describe the
maximum and minimum distances for each subset P(S; n) under three different
metrics: the Hamming metric, `1-metric, and Kendall tau metric. We report our
results in Proposition 3.2 and Theorems 3.4, 3.5, and 3.6.

Our study was motivated by recent work on peaks of permutations. The sets
P(S; n) were first studied in [Nyman 2003] to show that sums of permutations with
the same peak set form a subalgebra of the group algebra of Sn (over Q). Later,
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Billey, Burdzy, and Sagan [Billey et al. 2013] studied the cardinality of the sets
P(S; n) and showed

|P(S; n)| = 2n�|S|�1
pS(n),

where pS(n) is a polynomial in n known as the peak polynomial of S. The study of
these polynomials has led to a flurry of work such as [Billey et al. 2016; Diaz-Lopez
et al. 2017a; 2017b; Gaetz and Gao 2021; Oğuz 2020].

Permutations can be used to rank a collection of objects or quantities, and different
notions of distances between pairs of permutations have been studied extensively
[Deza and Huang 1998; Kendall and Gibbons 1990]. More recent applications of
permutations include data representation, for example in flash memory storage. In
the context of data representation, the Hamming metric, the `1 metric, and the
Kendall tau metric have all been considered [Barg and Mazumdar 2010; Chadwick
and Kurz 1969; Kløve et al. 2010].

2. Metrics on Sn

In this section we will formally define the metrics we use to measure the distance
between two permutations. First we recall the definition of a metric. Given a set S,
a metric d on S is a map d : S ⇥ S ! [0, 1) such that, for �, ⇢, ⌧ 2 S,

(1) d(�, ⇢) = 0 if and only if � = ⇢,

(2) d(�, ⇢) = d(⇢, � ),

(3) d(�, ⌧ )  d(�, ⇢)+ d(⇢, ⌧ ).

We will use three metrics: the Hamming metric, `1-metric, and Kendall tau metric.

Definition 2.1. Let dH , denoting the Hamming metric, be the map dH : Sn ⇥ Sn !
[0, 1) such that dH (�, ⇢) is the number of indices where � and ⇢ differ. That is,
if � = �1�2 · · · �n and ⇢ = ⇢1⇢2 · · · ⇢n then

dH (�, ⇢) = |{i : �i 6= ⇢i }|.
Let d`, denoting the `1-metric, be the map d` : Sn ⇥ Sn ! [0, 1) such that

d`(�, ⇢) = max{|�i � ⇢i | : 1  i  n}.
Let dK , denoting the Kendall tau metric, be the map dK : Sn ⇥ Sn ! [0, 1)

such that dK (�, ⇢) is the number of pairs (i, j) such that 1  i < j  n and
(�i � � j )(⇢i � ⇢ j ) < 0. The pairs (i, j) counted by dK are called deranged pairs.

Example 2.2. Consider �, ⇢ 2 S5, where � = 14325 and ⇢ = 25314. Then, � and ⇢

differ in four of the five entries; thus dH (�, ⇢) = 4. The differences between the
indices of � and ⇢ are |1 � 2|, |4 � 5|, |3 � 3|, |2 � 1|, |5 � 4|; thus d`(�, ⇢) = 1.
Finally, out of the 10 possible pairs (i, j) with 1  i < j  5, only (1, 4) and (2, 5)

satisfy that (�i � � j )(⇢i � ⇢ j ) < 0; hence dK (�, ⇢) = 2.
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It is worth noting that the Kendall tau metric has an alternative description
which is helpful in some contexts. For permutations �, ⇢ 2 Sn , let d

0
K
(�, ⇢) be

the minimum number of swaps of the form (i, i + 1) that transform � into ⇢;
that is, d

0
K
(�, ⇢) is the minimum number n such that there exist transpositions

⌧1, . . . , ⌧n of the form (i, i + 1) with ⌧n · · · ⌧1� = ⇢. In Proposition 2.5 we show
that dK (�, ⇢) = d

0
K
(�, ⇢) for all �, ⇢ 2 Sn . For example, for the permutations

� = 14325 and ⇢ = 25314 in Example 2.2, we can swap 1 and 2 and then swap 4
and 5 to convert � into ⇢.

We now present two lemmas, one about dK and one about d
0
K

, that will be helpful
in proving Proposition 2.5.

Lemma 2.3. The Kendall tau metric is right invariant; that is, for any �, ⌧,↵ 2 Sn ,
dK (�, ⇢) = dK (�↵, ⇢↵).

Proof. Let (i, j) be any pair with 1  i < j  n. Consider the pair (↵�1(i), ↵�1( j))

or (↵�1( j), ↵�1(i)), whichever has the first entry greater than the second entry.
Without loss of generality, assume it is (↵�1(i), ↵�1( j)). Then,

(�↵↵�1(i) � �↵↵�1( j))(⇢↵↵�1(i) � ⇢↵↵�1( j)) = (�i � � j )(⇢i � ⇢ j ). (1)

Thus, if (i, j) is a deranged pair for (�, ⇢) then (↵�1(i), ↵�1( j)) is a deranged
pair for (�↵, ⇢↵). Similarly, if (i, j) is not a deranged pair for (�, ⇢) (meaning
(�i � � j )(⇢i � ⇢ j ) > 0) then by (1) neither (↵�1(i), ↵�1( j)) nor (↵�1( j), ↵�1(i))

are deranged pairs for (�↵, ⇢↵). Since both (�, ⇢) and (�↵, ⇢↵) have the same
number of deranged pairs, dK (�, ⇢) = dK (�↵, ⇢↵). ⇤
Lemma 2.4. For �, ⇢,↵ 2 Sn , the following statements hold:

(a) d
0
K
(�, ⇢) = d

0
K
(�↵, ⇢↵).

(b) d
0
K
(�, ⇢) = d

0
K
(⇢, � ).

Proof. Let ⌧1, ⌧2, . . . , ⌧n be any collection of transpositions of the form (i, i +1) that
transforms � into ⇢, that is, ⌧n · · · ⌧2⌧1� = ⇢. Multiplying by ↵ on both sides we
get ⌧n · · · ⌧2⌧1�↵ = ⇢↵; thus d

0
K
(�, ⇢) � d

0
K
(�↵, ⇢↵). Similarly, let ⌧ 0

1, ⌧
0
2, . . . , ⌧

0
m

be any collection of transpositions of the form (i, i +1) that transforms �↵ into ⇢↵,
that is, ⌧ 0

n
· · · ⌧ 0

2⌧
0
1�↵ =⇢↵. Multiplying by ↵�1 on the right we get ⌧ 0

n
· · · ⌧ 0

2⌧
0
1� =⇢.

Thus, d
0
K
(�, ⇢)  d

0
K
(�↵, ⇢↵), which completes the proof of part (a).

Part (b) follows from the fact that for any collection ⌧1, ⌧2, . . . , ⌧n of transposi-
tions of the form (i, i +1) we have that if ⌧n · · · ⌧1� = ⇢ then � = ⌧1 · · · ⌧n⇢. Thus,
the minimum number of swaps of the form (i, i + 1) that transforms � into ⇢ is the
minimum number of swaps of the form (i, i + 1) that transforms ⇢ into � . ⇤

We are now ready to prove that dK and d
0
K

are the same metric.

Proposition 2.5. For �, ⇢ 2 Sn , we have dK (�, ⇢) = d
0
K
(�, ⇢).
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Proof. Theorem 1 in [Chadwick and Kurz 1969] shows that for any permutation
⌧ 2 Sn we have dK (⌧, e) = d

0
K
(⌧, e), where e is the identity permutation. This,

together with Lemmas 2.3 and 2.4, implies

dK (�, ⇢) = dK (e, ⇢��1) = dK (⇢��1, e)

= d
0
K
(⇢��1, e) = d

0
K
(e, ⇢��1) = d

0
K
(�, ⇢). ⇤

Remark 2.6. The definition of the Kendall tau metric varies among different sources,
although most often the definitions are equivalent. For example, Diaconis [1988,
p. 112] defined the Kendall tau distance between permutations ⇡ and � as follows:

I(⇡,�)=minimum number of pairwise adjacent transpositions taking ⇡�1 to ��1.

This definition is equivalent to the one we present in Definition 2.1 and d
0
K
(�, ⇢).

The same definition appears in [Diaconis and Graham 1977] and is named after
Kendall based on work in the 1930s and beyond [Kendall and Gibbons 1990]. Some
ambiguity arises since Kendall defined a metric on rankings, and rankings can be
transformed into permutations in two different ways. A nonequivalent definition
of Kendall tau distance between permutations is often used in rank modulation
applications in the area of coding for flash memory storage (see, for example [Barg
and Mazumdar 2010]).

For a given set S of permutations, we will consider the pairwise distances
between distinct permutations in the set, as well as the maximum and minimum
values attained.

Definition 2.7. For a metric d on a set S, let d(S) be the set of positive integers
defined as

d(S) = {d(�, ⇢) : �, ⇢ 2 S, � 6= ⇢}.

We will denote the minimum and maximum of the set d(S) as min(d(S)) and
max(d(S)), respectively.

When S = Sn , it is straightforward to compute the values of min(d(S)) and
max(d(S)) for the Hamming, `1, and Kendall tau metrics, as we will show in
Proposition 2.8. In Section 3, we consider the same question for subsets of Sn

defined by their common peak set.

Proposition 2.8. For Sn with n � 2, the minimum and maximum for each of the

three metrics in Definition 2.1 are

• min(dH (Sn)) = 2, max(dH (Sn)) = n,
• min(d`(Sn)) = 1, max(d`(Sn)) = n � 1,
• min(dK (Sn)) = 1, max(dK (Sn)) =

�
n

2

�
.
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Proof. For the Hamming metric, the minimum possible value min(dH (Sn)) is 2
because distinct permutations must differ in at least two indices. This minimum
distance is achieved by, e.g., the pair � =123 · · · n and ⇢ =213 · · · n. The maximum
distance occurs when all indices of � and ⇢ are different, for example, with � =
12 · · · n and ⇢ = 23 · · · n1, so max(dH (Sn)) = n.

For the `1-metric, the minimum possible value of min(d`(Sn)) is 1, which is
achieved by, e.g., the pair � = 12 · · · n and ⇢ = 213 · · · n. The maximum possible
value of max(d`(Sn)) would be n � 1, which occurs when �i = n and ⇢i = 1 (or
vice versa) for some index i . The pair � = 12 · · · n and ⇢ = n n�1 · · · 1 achieves
this maximum.

For Kendall tau metric, the minimum distance occurs when the least number
of pairs (i, j) such that 1  i < j  n and (�i � � j )(⇢i � ⇢ j ) < 0 is obtained.
The least number of pairs (i, j) possible is 1, and this occurs when � = 12 · · · n

and ⌧ = 213 · · · n. The maximum distance occurs when all
�

n

2

�
pairs (i, j) with

1  i < j  n satisfy (�i � � j )(⇢i � ⇢ j ) < 0. This happens when � = 12 · · · n and
⇢ = n n�1 · · · 1. ⇤

3. Maximum and minimum distances among permutations
with the same peak set

For the remainder of this paper, we will explore the maximum and minimum values
of the three metrics described in Definition 2.1 in sets of permutations with the
same peak set. Recall that for any set S ✓ [n] of indices

P(S; n) = {� 2 Sn : Peak(� ) = S}.
We say S is admissible if P(S; n) 6= ?.

We explore min(dK (P(S; n)), min(d`(P(S; n)), and min(dH (P(S; n)) for ad-
missible sets S in Proposition 3.2, and we explore the equivalent problem for
maximum values in Theorems 3.4, 3.5, and 3.6. The following lemma is useful for
subsequent results.

Lemma 3.1 [Schocker 2005, Lemma 4.4]. Let S be an admissible set and � 2
P(S; n). For any i 2 {2, 3, . . . , n � 1}, if i and i + 1 do not appear consecutively

in � then swapping i and i + 1 creates a permutation � 0
with the same peak set

as � , i.e., � 0 2 P(S; n). If i = 1 then swapping 1 and 2 will produce a permutation

with the same peak set as � .

Proposition 3.2. Given an admissible peak set S and P = P(S; n) for n �2, we have

min(dH (P)) = 2, min(d`(P)) = 1, and min(dK (P)) = 1.

Proof. For any set S, by definition we have that P(S; n) ✓ Sn . Hence, by
Proposition 2.8 the minimum value of min(dH (P)) is at least 2 and for both
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min(d`(P)) and min(dK (P)) it is at least 1. Hence, it is enough to find pairs of
permutations in P that attain these values.

Let S be admissible and � be any permutation in P(S; n). By Lemma 3.1,
swapping 1 and 2 in � will lead to a permutation � 0 with the same peak set as � .
Since � and � 0 only differ in the indices where 1 and 2 are located, dH (�, � 0) = 2.
Using the same � and � 0 we see that d`(�, � 0) = 1, as the only indices in which
they differ have entries 1 and 2 and |2 � 1| = |1 � 2| = 1. Finally, for the Kendall
tau metric, we get that dK (�, � 0) = 1, as the only deranged pair between � and � 0

is the pair of indices where 1 and 2 are located. ⇤
We now proceed to explore the maximum values of the metrics when restricted

to sets of permutations with the same peak set. Proposition 2.8 bounds the values of
max(dH (P(S; n))), max(d`(P(S; n))), and max(dK (P(S; n))) by n, n�1, and

�
n

2

�
,

respectively, as P(S; n) ✓ Sn . In the main results of this section, Theorems 3.4, 3.5,
and 3.6, we show that these values are not always attained in the sets P(S; n).
Throughout the next results, we will use two particular permutations as our starting
point to create others.

Definition 3.3. Let e be the identity permutation e = 1 2 · · · n�1 n and let e⇤ =
n n�1 · · · 2 1. For an admissible peak set S, define e[S] as the permutation obtained
by swapping the entries of k and k + 1 in e for each k 2 S. Similarly, let e⇤[S]
be the permutation obtained by swapping the entries of k � 1 and k in e⇤ for each
k 2 S. Since any admissible set S has no consecutive entries, these permutations
are well-defined as the order of the swaps does not matter. More explicitly, we have
that, for i 2 {1, 2, . . . , n},

e[S]i =

8
<

:

i + 1 if i 2 S,

i � 1 if i 2 {s + 1 : s 2 S},
i otherwise,

e⇤[S]i =

8
<

:

(n + 1 � i) + 1 if i 2 S,

(n + 1 � i) � 1 if i 2 {s � 1 : s 2 S},
n + 1 � i otherwise.

For example, for the set S = {2, 5, 7} and S9, we have e[S] = 132465879 and
e⇤[S] = 897563421.

Theorem 3.4. For n � 2, the maximum Kendall tau distance between permutations

in P(S; n) is
�

n

2

�
� 2|S|.

Proof. For any pair of permutations � and ⇢ in P(S; n), we have �i�1 < �i > �i+1
for each i 2 S, and analogously for ⇢. Therefore, the pairs (i � 1, i) and (i, i + 1)

are not deranged pairs for �, ⇢ since

(�i�1 � �i )(⇢i�1 � ⇢i ) > 0 and (�i � �i+1)(⇢i � ⇢i+1) > 0.
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Since there are a total of
�

n

2

�
pairs of possible deranged pairs, we have that dK (�, ⇢)�

n

2

�
� 2|S|.

We now consider a pair of permutations that attains the bound
�

n

2

�
� 2|S|. First,

note that the permutations e and e⇤ are Kendall tau distance
�

n

2

�
apart since for

all index pairs (i, j) with 1  i < j  n, e has (ei � e j ) < 0, while e⇤ has
(e⇤

i
� e⇤

j
) > 0. Consider e[S] and e⇤[S] as defined in Definition 3.3. We claim

dK (e[S], e⇤[S]) =
�

n

2

�
� 2|S|.

Since every pair of indices (i, j) with 1  i < j  n was a deranged pair for e
and e⇤ and we only altered the (consecutive) entries in indices k � 1 and k in e[S],
and (consecutive) entries in indices k and k + 1 in e⇤[S] for k 2 S, then only the
pairs (k �1, k) and (k, k +1) might no longer be deranged pairs for e[S] and e⇤[S].
Indeed, for the pair (k, k + 1),

(e[S]k � e[S]k+1)(e⇤[S]k � e⇤[S]k+1)

= (k + 1 � k)((n + 1 � k) + 1 � (n + 1 � (k + 1)) = 2 > 0.

Similarly, for the pair (k � 1, k) we have

(e[S]k�1 � e[S]k)(e⇤[S]k�1 � e⇤[S]k)

= (k � 1 � (k + 1))(n + 1 � (k � 1) � 1 � ((n + 1 � k) + 1)) = 2 > 0.

Thus, for each peak in S we have two pairs that are not deranged, and hence
dK (e[S], e⇤[S]) =

�
n

2

�
� 2|S|. ⇤

Theorem 3.5. For n � 2, the maximum `1 distance between permutations in

P(S; n) is n � 2 when S contains peaks at indices 2 and n � 1, and n � 1 otherwise.

Proof. First consider the case when {2, n � 1} 6✓ S. If 2 /2 S, then the permutations
e[S] and e⇤[S] achieve the maximum `1-distance n�1 as e[S]1 = 1 and e⇤[S]1 = n.
Similarly, if n�1 62 S then e[S]n =n and e⇤[S]n =1, and therefore d`(e[S], e⇤[S])=
n � 1.

If {2, n � 1} ✓ S, then we first claim d`(�, ⇢)  n � 2 for any pair of distinct
permutations �, ⇢ 2 P(S; n). In any permutation in P(S; n), n must not appear in
index 1 nor index n since indices 2 and n � 1 are peaks. Since n is larger than any
other number in the permutation, it must be in an index that is a peak. On the other
side, 1 will never appear in an index that is a peak. Hence, d`(�, ⇢) cannot be n �1
as the only way to obtain this would be for n and 1 to appear in the same index in �

and ⇢, respectively. Thus, d`(�, ⇢)  n � 2. To show that this bound is achieved,
consider the permutations e[S] and e⇤[S]. Since e[S]1 = 1 and e⇤[S]1 = n � 1, we
have d`(e[S], e⇤[S]) = n � 2. ⇤

The next result considers the maximum Hamming distance between permutations
with the same peak set in Sn for n �4. We first remark that for n =2, the only peak set
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S = ? S = {2} S = {3}
1234 1324 1342
4321 2431 4231

Table 1. Pairs of permutations in S4 with the same peak set and
Hamming distance 4.

S = ? S = {2} S = {3} S = {4} S = {2, 4}
12345 13245 13425 43251 13254
53214 25314 52314 54132 45132

Table 2. Pairs of permutations in S5 with the same peak set and
Hamming distance 5.

is ? and max dH (P(?; 2)) = 2, and for n = 3, we have that max dH (P(?; 3)) = 3
and max dH (P({2}; 3)) = 2.

Theorem 3.6. For n � 4 and any admissible peak set S, the maximum Hamming

distance between permutations in P(S; n) is n.

Proof. We proceed by induction on n. For the base cases of n = 4 and n = 5,
consider the pairs of permutations in each of the admissible peak sets shown in
Tables 1 and 2, respectively. Suppose that for every 5  j < n the maximum
Hamming distance between permutations in P(S; j) is j .

Let S be an admissible peak set for permutations in Sn , and for this case assume
n�1 /2 S. Since n�1 /2 S, we know S is also an admissible peak set for permutations
in Sn�1, so there exist permutations �, ⇢ 2 P(S; n � 1) such that dH (�, ⇢) = n � 1
by the inductive hypothesis. Since � and ⇢ differ in every index, in at least one of
the permutations n � 1 does not appear in index n � 1. Without loss of generality,
assume ⇢n�1 6= n � 1. Construct permutations � 0, ⇢ 0 in Sn as follows: � 0 equals �

with n appended at the end. For ⇢ 0, first form an intermediate permutation ⇢ 00 by
appending n to the end of ⇢. Then to obtain ⇢ 0, swap values n and n � 1 in ⇢ 00. We
claim that dH (� 0, ⇢ 0) = n and the peak set of both � 0 and ⇢ 0 is S.

First recall that since dH (�, ⇢) = n � 1, we have that dH (� 0, ⇢ 00) = n � 1 since
they are formed by appending n to the end of each permutation. Swapping the
values n � 1 and n in ⇢ 00 results in the distance dH (� 0, ⇢ 0) = n. The peak set S of
� 0 and ⇢ 00 is inherited from � and ⇢ by construction. Since ⇢n�1 6= n � 1, we know
n � 1 and n are not neighbors in ⇢ 00. By Lemma 3.1 the peak set of ⇢ 0 is the same
as the peak set of ⇢ 00, which is S.

Now assume S is an admissible peak set for permutations in Sn , and n � 1 2 S.
Define S

0 = S \ {n � 1}, which is an admissible peak set on Sn�2. By our inductive
assumption there exist permutations �, ⇢ 2 P(S

0; n �2) such that dH (�, ⇢) = n �2.
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S = ? S = {2} S = {3} S = {4} S = {5} S = {2, 4} S = {2, 5} S = {3, 5}
123456 132456 134256 432516 123465 132546 132465 134265
632145 263145 623145 641325 632154 461325 263154 623154

Table 3. Pairs of permutations in S6 with the same peak set and
Hamming distance 6, created using the constructions in the proof
of Theorem 3.6, with � and ⇢ taken from Tables 1 and 2.

Thus, at least one of � or ⇢ must have its n � 2 index not equal to n � 2. Without
loss of generality, suppose ⇢n�2 6= n � 2. Define the following permutations in Sn:
� 0 equals � with values n and n � 1 appended to the end, in that order, that is,

� 0 = �1 · · · �n�2 n n�1.

Starting with ⇢, define ⇢ 00 to be the permutation ⇢ with n and n � 1 appended to
the end in that order. Let i be the index such that ⇢i = n � 2, then ⇢ 00 is of the form

⇢ 00 = ⇢1 · · · ⇢i�1 n � 2 ⇢i+1 · · · ⇢n�2 n n�1.

Let ⇢ 0 be
⇢ 0 = ⇢1 · · · ⇢i�1 n ⇢i+1 · · · ⇢n�2 n�1 n�2.

In other words, ⇢ 0 equals ⇢ with value n � 2 replaced by n, and then n � 1, n � 2
appended in that order to the end of the permutation. By construction, � 0 and ⇢ 0 differ
in every index, so dH (� 0, ⇢ 0) = n. Finally, the peak set of both � 0 and ⇢ 0 is S as we
have introduced a peak at n�1 and have not altered any other entry other than cycli-
cally permuting (n, n � 1, n � 2) in ⇢ 00, which does not change the peak set. Hence,
the result is proven. Table 3 showcases these constructions for the case n = 6. ⇤
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