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a b s t r a c t 

Structural characterization of polymer materials is a major step in the process of creating materials’ 

design-structural-property relationships. With growing interests in artificial intelligence (AI)-driven mate- 

rials design and high-throughput synthesis and measurements, there is now a critical need for develop- 

ment of complementary data-driven approaches (e.g., machine learning models and workflows) to enable 

fast and automated interpretation of the characterization results. This review sets out with a description 

of the needs for machine learning specifically in the context of three commonly used structural char- 

acterization techniques for polymer materials: microscopy, scattering, and spectroscopy. Subsequently, a 

review of notable work done on development and application of machine learning models / workflows for 

these three types of measurements is provided. Definitions are provided for common machine learning 

terms to help readers who may be less familiar with the terminologies used in the context of machine 

learning. Finally, a perspective on the current challenges and potential opportunities to successfully inte- 

grate such data-driven methods in parallel/sequentially with the measurements is provided. The need for 

innovative interdisciplinary training programs for researchers regardless of their career path/employment 

in academia, national laboratories, or research and development in industry is highlighted as a strategy 

to overcome the challenge associated with the sharing and curation of data and unifying metadata. 

© 2024 Elsevier Ltd. All rights reserved. 
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Abbreviations: AFL, Autonomous formulation laboratory; AFM, Atomic force mi- 

roscopy; AI, Artificial intelligence; CASGAP, Computational approach for structure 

eneration of anisotropic particles; CDF, Cumulative distribution function; CNN, 

onvolutional neural network; CREASE, Computational reverse engineering analy- 

is of scattering experiments; CRIPT, Community resource for innovation in poly- 

er technology; CTAB, Cetyltrimethylammonium bromide; DKL, Deep kernel learn- 

ng; FAIR, Findable, accessible, interoperable, reusable; FCN, Fully connected net- 

ork; FTIR, Fourier transform infrared spectroscopy; GA, Genetic algorithm; GISAS, 

razing incidence small-angle scattering; GISAXS, Grazing incidence small-angle X- 

ay scattering; GNoME, Graph networks for material exploration; GRF, Gaussian 

andom field; HAADF, High-angle annular dark-field; iPP, Isotactic polypropylene; 

BNL, Lawrence Berkeley National Laboratory; LLM, Large language models; ML, Ma- 

hine learning; MOF, Metal Organic Framework; MSDNets, Multi-scale dense net- 

orks; MSE, Mean squared error; NEXAFS, Near edge X-ray absorption fine struc- 

ure spectroscopy; NLP, Natural language processing; NMR, Nuclear Magnetic Reso- 

ance; P3HT, Poly(3-hexylthiophene); P4VP, Poly(4-vinyl pyridine); PCA, Principle 

omponent analysis; PEO, Polyethylene oxide; PLS, Partial least squares; PMMA, 

oly(methyl methacrylate); PS, Polystyrene; PVAc, Poly(vinyl acetate); R&D, Re- 

earch and development; SANS, Small-angle neutron scattering; SAS, Small-angle 

cattering; SAXS, Small-angle X-ray scattering; SEM, Scanning electron microscopy; 

TEM, Scanning transmission electron microscopy; TEM, Transmission electron mi- 

roscopy; t-SNE, t-distributed stochastic neighbor embedding; UMAP, Uniform man- 

fold approximation and projection; UV, Ultraviolet; VAE, Variational autoencoder; 
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. Introduction 

Establishing structure-property relationships for macromolecu- 

ar materials (e.g., block copolymers [ 1-6 ], polymer blends [ 7 , 8 ],

olymer nanocomposites [ 9-21 ]) has been the subject of active re- 

earch within polymer science and engineering for many decades. 

t has been shown for various classes of polymeric materials that 

n addition to the choices of polymer chemistry and architecture, 

heir assembled structures, which could be hierarchical and mul- 

iscale in many cases, dictate the ultimate properties of materi- 

ls composed of these polymers. With recent advances in poly- 

er synthesis and innovative polymer processing techniques, the 

ariety of equilibrium and non-equilibrium structures accessible 

ithin the materials has grown exponentially. Identification of the 

ptimal structure(s) that give rise to the desired properties and 

hat require minimal costs and efforts to scale up to industrial level 

roduction drive the need for high-throughput experimentation. 
AXS, Wide-angle X-ray scattering; XANES, X-ray absorption near edge spec- 

roscopy; XRD, X-ray diffraction. 
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ith high-throughput experiments comes the associated push for 

ast and preferably automated analyses of the synthesized materi- 

ls and their characterization, and in turn, the need for develop- 

ent of appropriate machine learning (ML) workflows. 

Development and use of ML workflows in (non-polymer) ma- 

erials domains have already made great strides [ 22-25 ]. An ex- 

mple of the power of ML for materials design is the latest work 

rom Google DeepMind which used graph networks for materi- 

ls exploration (GNoME) [ 26 ] and predicted ∼380,0 0 0 new the- 

retically stable inorganic crystalline materials [ 27 ]. Researchers 

rom Lawrence Berkeley National Laboratory (LBNL) then synthe- 

ized more than 40 new materials in just 17 days in A-Lab [ 28 ];

-Lab is a robotic (automated) laboratory with capability for syn- 

hesis, characterization, and analysis of synthesized inorganic crys- 

alline samples. Similarly, significant advances have been made in 

L-based analysis of inorganic/small molecule materials charac- 

erization results from microscopy [ 29-37 ], scattering [ 38-40 ] and 

pectroscopy [ 38 , 40-42 ]. In contrast to the many successes in the

norganic and small-molecule organic materials domains, the use 

f ML, high-throughput experimentation, and automation for syn- 

hesis and characterization within polymers and soft materials is 

till in initial stages. To achieve similar success for AI and ML in 

he field of polymer science and engineering requires investment 

nto creating polymer databases that enable polymer informatics 

 43 , 44 ], high-throughput experimentation [ 45-47 ], characterization 

echniques [ 48-52 ], ML, and data science methods customized to 

isualize and analyze the type of data seen with polymer materi- 

ls [ 46 , 53-58 ]. 

In this Review we present noteworthy studies aimed at devel- 

pment and application of ML models and ML based workflows 

pecifically aimed at fast and automated analyses of polymer struc- 

ural characterization data. We hope that these studies inspire the 

eaders to either develop new ML models and methods or adapt 

hese published methods for their own polymer characterization 

nalyses. We also encourage the readers to look at previously writ- 

en review articles and perspectives on other relevant subjects 

hat we do not cover, within the broader topic of machine learn- 

ng for polymer science and engineering namely, polymer informatics 

 43 , 44 , 59 , 60 ], featurization of polymers use in ML models [ 61 ], au-

omation in polymer synthesis [ 62 , 63 ], and natural language pro- 

essing for extracting polymer data from literature [ 64 , 65 ]. 

This review article is organized as follows: Section 2 presents 

elevant background information of three commonly used classes 

f experimental techniques for structural characterization of 

olymeric materials (microscopy, scattering and spectroscopy). 

ection 3 presents a review of ML methods applied for analyses, 

nterpretation, and automated data acquisition of such character- 

zation of polymeric materials. Section 4 provides current chal- 

enges and potential future directions for accelerating progress on 

he topic of this Review, with the aid of open-access database cura- 

ion, unified metadata, and interdisciplinary education on relevant 

opics. 

. Common structural characterization in polymer materials 

In this section we provide a high-level summary of the three 

ommonly used classes of techniques for structural characteriza- 

ion of polymers, without many details of the instrumentation or 

he sophisticated protocols that researchers follow to use the in- 

trumentation in these techniques correctly. Instead, our emphasis 

s on describing the types of data generated from these character- 

zation techniques and the types of physical/chemical information 

ne can obtain by analyzing that raw or processed data. We believe 

hat the attention to the type of data and the information gathered 

rom the data is necessary for the reader to consider suitable types 

f ML models for interpreting such data. 
2

.1. Microscopy 

To characterize the morphology of polymer materials, the com- 

only used microscopy techniques are Optical Microscopy, Scan- 

ing Electron Microscopy (SEM), Transmission Electron Microscopy 

TEM), Scanning Transmission Electron Microscopy (STEM), cryo- 

EM, and Atomic Force Microscopy (AFM); we direct the reader 

o a recent review on electron microscopy for soft materials. [ 66 ] 

riefly, SEM and TEM provide atomic-level to microstructure im- 

ges by using electrons as the imaging radiation source. [ 67 ] The 

se of electrons as the source allows for images with spatial res- 

lution as low as tens of picometers in contrast to the hundreds 

f nanometers resolution obtained using photons in optical mi- 

roscopy. In contrast to electron microscopy, optical microscopy 

s used for imaging colloidal materials when the relevant lengths 

cales are between 100 s of nm and 100 s of microns. SEM and 

EM differ in the way the techniques work (e.g., thickness of the 

ample required, sample preparation, cost, expertise for using the 

echniques) as well as the types of images they provide. SEM im- 

ges provide information about the composition and roughness of 

he polymer film. Typically, in composites or blends, one of the 

omponents (polymers or additives) forms the continuous phase 

the matrix) and the other minority component(s) forms the dis- 

ersed phases. Via SEM images one can delineate the shapes, 

izes, and spatial distribution of these phases and in the case of 

hin films, the surface topography as well. TEM images provide 

igher resolution information as compared to SEM images and the 

ypes of structural details one can obtain from TEM images include 

olecular-level structure, dimensions, and shapes of the nanoscale 

bjects in a polymer matrix, crystalline arrangements, and defects. 

n STEM, a mode of TEM, the incident focused beam scans across 

he specimen and the transmitted signal are collected as a function 

f the beam location as it rasters across the sample. One can ob- 

ain the atomic arrangement, orientation, and crystalline or semi- 

rystalline structure of polymer materials from STEM. Cryo-TEM is 

 subclass of TEM that enables imaging soft materials in solvated 

nvironment by rapidly freezing the solvated sample. Cryo-TEM re- 

uces sample damage during preparation and from the electron 

eams and has gained attention as a valuable method for deter- 

ining macromolecular solution structure. Another complemen- 

ary technique to SEM and TEM is AFM which gives information 

f the surface topography (e.g., roughness) as well as the hard- 

ess/softness of the probed domains in the polymer material; typ- 

cal length scales probed range from a few Angstroms to a few mi- 

rons. 

The type of data one obtains from these above microscopy tech- 

iques are two-dimensional images where the pixels intensity at 

arious positions in the images conveys the intended physical in- 

ormation about the structure of the polymer sample being probed. 

xamples of raw data (colored or grayscale) from TEM, SEM and 

FM are shown in Figs. 1 a, 1 b, and 1 c, respectively. One has to

emember that these images are 2D projections of complex struc- 

ural features that may have irregular shapes, asymmetric surfaces, 

nd heterogeneity in the 3D structure. The quality of microscopy 

mages is subject to the different sample staining techniques, ex- 

ent of in-focus vs. out-of-focus, and contrast between object of 

nterest and the background. 

.2. Scattering 

For investigating multi-scale 3D amorphous polymer structures 

anging from 10 Å up to few microns, small-angle scattering (SAS) 

s a powerful technique. [ 4 8 , 6 8–76 ] Small-angle neutron scatter- 

ng (SANS) and small-angle X-ray scattering (SAXS) have been used 

xtensively in the polymer science and engineering community, 

or example, to study domains within microphase separated struc- 
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Fig. 1. Examples from polymer literature solely to depict the typical presentation of processed data from the various characterization techniques discussed in this re- 

view; the values, tick labels, and scale bars are specific to these examples and not general to all such measurements in the field of polymers. (a)TEM characteriza- 

tion of silica-polystyrene nanocomposite morphology. Reprinted with permission from ref. [ 88 ]. Copyright 2010 American Chemical Society. (b) SEM characterization of 

polystyrene−polydimethylsiloxane block copolymer thin film morphology. Reprinted with permission from ref. [ 89 ]. Copyright 2007 American Chemical Society. (c) AFM char- 

acterization of neat poly(vinyl alcohol) (PVA). Reprinted with permission from ref. [ 90 ]. Copyright 2001 American Chemical Society. (d) 1D SAXS profile of silica-polystyrene 

nanocomposite with 5 % volume fraction inclusion of silica nanoparticles. Reprinted with permission from ref. [ 88 ]. Copyright 2010 American Chemical Society. (e) 2D SAXS 

profile of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer thin film. Reprinted with permission from ref. [ 91 ] 2023 Creative Commons Attribution 

License. (f) XRD profile of neat PVA and PVA-sodium montmorillonite (MMT) nanocomposite with different MMT loading. Reprinted with permission from ref. [ 90 ]. Copyright 

2001 American Chemical Society. (g) FTIR spectra of pure poly(vinyl acetate) (PVAc), pure silica nanoparticle, and PVAc absorbed onto silica nanoparticle surface. Reprinted 

with permission from ref. [ 92 ]. Copyright 2013 American Chemical Society. (h) UV–vis spectra of polymeric graphitic carbon nitride at different preparation temperatures. 

Reprinted with permission from ref. [ 93 ]. Copyright 2014 American Chemical Society. (i) NEXAFS spectra of dimer, oligomer, and poly(3-methylthiophene). Reprinted with 

permission from ref. [ 94 ]. Copyright 2017 American Chemical Society. 
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ures in block copolymers, dispersion or aggregated states of par- 

icles in polymer nanocomposites, and network structure in poly- 

er gels. [ 48 , 51 , 77 ] The raw SAXS and SANS data is intensity ( I)

ersus magnitude of scattering wavevector q and azimuthal an- 

le. For polymer systems without any anisotropy in spatial ar- 

angements, the scattering data is averaged azimuthally to cre- 

te one-dimensional (1D) scattering profile, I(q ) vs. magnitude of 

avevector q . ( Fig. 1 d) Traditionally, the I(q ) vs. q profile is an-

lyzed in one of two ways: First, by fitting the data to analyti- 

al models (e.g., core-shell [ 78 , 79 ], core-multishell [ 80 , 81 ] etc.) de-

eloped for various canonical polymer structures, on user-friendly 

nalysis packages like SASVIEW [ https://www.sasview.org/ ] or SAS- 

it [ https://sasfit.org/ ], or second, by using shape-dependent anal- 

ses (e.g., Kratky plot, q2 I(q ) vs. q ). [ 52 , 75 , 76 ] 

For samples where one expects to see anisotropic structures 

e.g., liquid crystalline order within one or more domains of the 
3

olymer blend, anisotropic aggregates of nanoparticles or extruded 

bers within polymer nanocomposites), the steps taken during 

easurement as well as analyses is more complex than that for 

sotropic structures. In such cases, first the scattering measure- 

ents have to be made along carefully selected orientations (with 

ome domain knowledge of which orientations are strategically 

etter than others depending on direction of anisotropy) and then 

he resulting data has to be analyzed as a 2D scattering profile, 

ithout averaging over all or sections of azimuthal angles. ( Fig. 1 e) 

ays to analyze such 2D profiles are quite complex as com- 

ared to 1D profiles. 2D profiles can be analyzed using packages 

ike GRASP [ https://www.ill.eu/users/support- labs- infrastructure/ 

oftware- scientific- tools/grasp ] and DAWN [ https://dawnsci.org/] . 

he qualitative analyses of such images involve looking for dif- 

use halos (implying disorder or weak ordering), patterns of dots 

ith high intensity like Fig. 1 d (indicating ordered domains), and 

https://www.sasview.org/
https://sasfit.org/
https://www.ill.eu/users/support-labs-infrastructure/software-scientific-tools/grasp
https://dawnsci.org/]
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symmetry in the image (implying presence of some anisotropic 

rrangement along the direction of input beam). The quantita- 

ive interpretation of the 2D profiles traditionally relies on av- 

raging sections of the 2D profile into 1D profiles that are 

hen fit to shape dependent or independent models as described 

bove. 

While amorphous polymers usually lack precise order and spa- 

ial arrangement of atoms, semi-crystalline polymers exhibit peri- 

dic and precise atomic and polymer segment-level arrangements. 

o discern this atomic arrangement and extent of crystallinity 

n semi-crystalline polymer materials, X-ray diffraction (XRD) and 

ide-angle X-ray scattering (WAXS) techniques are used. [ 82 , 83 ] 

he plot in Fig. 1 f shows the typical processed XRD data one an-

lyzes to interpret structural information. The presence of peaks, 

heir intensity and location along x-axis, are then interpreted 

o structural information about the type of crystalline order. 1D 

AXS profiles look similar to the SAXS profiles of materials with 

ore order (e.g., Fig. 1 d), however, the length scales probed by 

AXS are smaller than SAXS and related to atomic-level spatial 

rrangements. 

.3. Spectroscopy 

Spectroscopy techniques such as Fourier Transform Infrared 

FTIR) spectroscopy, UV–vis spectroscopy, and X-ray absorption 

pectroscopy are useful for studying the atomic and electronic 

omposition of polymer materials. [ 84-86 ] Depending on the wave- 

ength of the incident light wave, spectroscopy methods can detect 

r identify different chemical species or functional groups. FTIR 

pectroscopy is often used to identify functional groups present in 

olecules that have signature absorption peaks at tabulated vibra- 

ional frequencies in the FTIR spectrum. For UV–vis spectroscopy, 

esearchers look for certain ratios of different absorption peaks 

resent in the UV–vis spectrum for identification of the molecules 

r polymer materials. X-ray Absorption Near Edge spectroscopy 

XANES) or Near-Edge X-ray Absorption Fine Structure (NEXAFS) 

an generate information of the electronic state, coordination en- 

ironment, oxidation state of atoms or molecules from the X-ray 

bsorption peaks. 

Typical data from spectroscopic measurements are in the form 

f 1D vector array or 2D image containing a plot of the intensi- 

ies of the measured physical property vs. the light beam wave- 

ength ( Figs. 1 g and 1 h) or energy ( Fig. 1 i). Analyses of these

easurements require extensive expertise assigning features to 

nown chemical species and in many cases comparison of the 

pectra of the new sample to a reference spectrum (or spectra) 

n a database. For example, in Ref. [ 87 ], focused on NEXAFS tech-

iques for chemical analysis of polyurethanes, the authors show 

ow spectra of model polymers provide reference standards for 

he quantitative analysis (‘speciation’) of polyurethane polymers 

e.g., quantify the amounts of aromatic and aliphatic components 

f polyurethanes). We quote a section from Ref. [ 87 ]: “For ac- 

urate quantitation, well-characterized NEXAFS spectra of care- 

ully chosen models of the polymer components is required. For a 

lend of two or more homopolymers (i.e., polystyrene/poly(methyl 

ethacrylate)), the analytical models can simply be the individual 

omopolymers. For quantitation of components in a random block 

opolymer (i.e., styrene acrylonitrile), the spectra of the homopoly- 

ers (polystyrene and polyacrylonitrile) can be used as compo- 

ent models if the polymer and monomer spectra are additive. 

olyurethane polymers are complex, and care must be taken in the 

hoice of analytical models.” The need for an established reference 

pectra database for polymer materials can be a barrier to analyses. 

achine learning methods are deemed as attractive alternatives to 

ot only circumvent the challenge of reference spectra but also ac- 

elerate the data analysis process. 
4

. Applications of ML models and workflows 

In the polymer science and engineering community, traditional 

nalyses of the results from microscopy, scattering, and spec- 

roscopy relies on experts with knowledge and experience to 

nterpret qualitative (e.g., identifying shapes of domains, types of 

rdered structure, or presence or absence or anisotropy in struc- 

ures) and quantitative (e.g., domain sizes, signature peaks of func- 

ional groups) information of structural characterization data. We 

elieve that when the dataset size is small and practical for man- 

al analyses and interpretation, these traditional approaches will 

ontinue to remain the best option. When the amount of data 

eing generated is too fast and too large for manual analyses, 

here is a clear need for development of ML workflows that en- 

ble fast and objective analysis of polymer structural character- 

zation data. In the next sub-sections, we present noteworthy 

L workflow developments in microscopy, scattering, and spec- 

roscopy and divide these ML developments by the specific anal- 

sis tasks they accomplish. For readers with minimal experience 

ith ML jargon, we provide in Table 1 basic definition of com- 

on ML terms (in alphabetical order) that we use extensively in 

he following sections. We choose to present these definitions in a 

able rather than explain each term as it is occurring in the follow- 

ng sections, to maintain smooth flow of information with minimal 

isruptions. 

.1. Applications of ML in microscopy 

As the typical output of SEM, TEM, STEM, cryoTEM, and AFM 

easurements are images, it is logical to consider successful ML 

odels that have been applied for automated analyses of images in 

ther fields (e.g., biomedical images [ 95 , 96 ], facial recognition [ 97 ],

utonomous driving [ 98 , 99 ]) and extend those models to learn- 

ng features of polymer characterization images as well. Regard- 

ess of the tasks that one wishes to accomplish, the ML model has 

o understand the information (e.g., pattern shapes and sizes, tex- 

ures, light vs. dark regions) present in the microscopy image to 

onnect those patterns with a specific type of morphology/domain 

hape/size or physical/chemical feature(s) relevant to polymer sci- 

nce. Convolutional Neural Network (CNN) is one such deep learn- 

ng approach that has been used successfully to learn, extract, and 

ncode information from an image. [ 100 ] CNN typically consists of 

 hierarchical structure of convolutional layers placed in between 

n input layer and an output layer. [ 101 ] Each convolutional layer 

onsists of multiple filters each of which encodes pieces of in- 

ormation by conducting convolution on a small perception field 

f the entire image. The input image is sequentially encoded into 

maller and smaller feature maps through the hierarchical convo- 

utional layers. The last feature map is used as input for training 

he classifier which is typically a couple layers of fully connected 

etworks after the hierarchical convolutional layers. As one goes 

eeper into the convolutional network, the information learned 

n the feature maps goes from being specific and local to being 

bstract and global. The hierarchical convolutional architecture of 

NN enables more generalizable learning of abstract and complex 

atterns in images and minimizes the risk of vanishing gradients 

nd exploding gradients problems seen previously in deep fully 

onnected neural networks. [ 100 ] Some of the established CNN ar- 

hitectures include: LeNet-5 [ 102 ], AlexNet [ 103 ], VGG16 [ 104 ], In-

eptionV3 [ 105 ], ResNet50 [ 106 ], Xception [ 107 ], Inception-ResNet- 

2 [ 108 ], ResNeXt-50 [ 109 ], MobileNet [ 110 ], and EfficientNet [ 111 ].

hese CNN architectures differ in the type, number of layers, and 

he size of trainable parameters. For additional information on con- 

epts, architectures, applications of CNN we direct the reader to a 

ecent review [ 112 ]. 
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Table 1 

Guide to Machine Learning Terms and Definitions. 

Term Definition 

Autoencoder An artificial neural network model used for learning abstract, condensed, low-dimensional 

representations of high-dimensional data. An autoencoder consists of an encoder and a decoder. 

Classification The action or process of grouping things according to shared qualities or characteristics. 

Classifier A classifier is any machine learning model that can tackle a classification task. 

Decoder An artificial neural network model for learning the forward relationship between a low-dimensional 

input and a high-dimensional output. 

Dimensionality reduction A category of methods that does transformation of high-dimensional data into low-dimensional 

representations / latent variables / feature maps while retaining key intrinsic properties of the 

original data. 

Encoder An artificial neural network model for learning the forward relationship between a 

high-dimensional input and a low-dimensional output. 

Exploding gradient The problem encountered in training neural network model when there is large or not-a-number 

(NaN) gradient updates to the neural network model weights. The trained model will produce 

erroneous predictions. 

Feature engineering The process of selecting, wrangling, and transforming raw / unprocessed data into features that can 

be used for more efficient learning / better training and testing performances in supervised 

learning, often require guidance from domain expertise. 

Feature map / vector A feature map / vector is a condensed / distilled set of features (or low-dimensional data 

representation) for the more complex and high-dimensional data. 

Filter A small matrix of learnable weights in a convolutional neural network that would slide over the 

input image data to apply matrix multiplications. 

ImageNet dataset An open-access dataset containing more than one million photographic images of everyday objects 

(like cats, dogs, houses, cars) split into 1000 categories. 

k-nearest neighbors A non-parametric, supervised learning method, which uses proximity and majority vote of k nearest 

neighbors to decide the label of unlabeled points in space. 

Latent feature / variable / space A latent feature / variable is the low-dimensional representation obtained through dimensionality 

reduction processes. A latent space is a collection of such latent features / variables. Latent feature / 

variable is synonymous with feature map / vector. 

Layer A layer is a building block of a neural network that is a collection of vectors or matrices containing 

learnable parameters known as weights. 

Principle Component Analysis (PCA) A linear dimensionality reduction method. 

Reinforcement Learning Training of machine learning models with a balance of exploration and exploitation for long-term 

reward optimization 

Segmentation In the context of image learning, segmentation is the task of delineation of objects of interest from 

the image background. 

Self-supervised learning Training of machine learning models without manually labeled data; machine-generated labels are 

used during training. 

Semi-supervised learning A data-efficient way to conduct supervised learning by combining self-supervised learning / 

unsupervised learning of the machine learning model with supervised learning using the trained 

model. The data used for the two parts of learning are often different datasets but can also be the 

same dataset. 

Skip connection Skip connections are connections made between non-adjacent layers (separated by one or more 

layers) in a residual convolutional neural network for learning of the residual (output vs. input) of 

the layer for improved performance. 

Supervised learning Training of machine learning models with manually labeled data. 

t-distributed Stochastic Neighbor Embedding (t-SNE) A non-linear dimensionality reduction method 

Transfer learning The use of a trained machine learning model to train and learn on a different dataset for improved 

performance and reduced amount of the training data needed. 

Uniform Manifold Approximation and Projection (UMAP) A non-linear dimensionality reduction method. 

Unsupervised learning Training of machine learning models without manually labeled data. 

Vanishing gradient The problem encountered in training of neural network model when there is exceedingly small or 

zero gradient updates to the neural network model weights. The model stops learning. 

Variational Autoencoder (VAE) A modified version of autoencoder that maps the low-dimensional representations to a probabilistic 

multi-dimensional Gaussian distribution. 
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In the following sub-sections, we describe the various analysis 

asks one would want to accomplish using ML models when they 

re analyzing polymer characterization microscopy images. 

.1.1. Task: classification 

Classification of microscopy images in the context of polymer 

cience and engineering usually involves these types of tasks: la- 

eling an image as corresponding to one or other type of mor- 

hology (e.g., lamellar vs. spherical), identifying shapes of one or 

ore domains in the image (e.g., circular, elliptical, fractal, etc.), 

dentifying particle or aggregated chains’ orientations (isotropically 

rranged, dispersed, aggregated, orientationally aligned, fibrillar, 

tc.). The majority of the literature where ML models have been 

rained for classification tasks has been in the area of nanomateri- 

ls; next, we survey some of those recent works that we consider 

o be readily extendable to images from polymer materials as well. 
5

Modarres et al. have used a CNN model that was pretrained 

n the ImageNet dataset [ 113 ] to classify SEM images belonging to 

ifferent nanomaterial subcategories like nanoparticles, nanofibers, 

orous structures, films, coated surfaces, powder, etc. [ 114 ] The 

lassification performances of individual subcategories has revealed 

ome categories with significantly lower classification accuracy. 

he lower classification accuracy has been explained by one of 

hese two reasons: some images from distinct categories were too 

imilar (leading to poor classification) or some images contained 

lements of multiple categories (leading to difficulty in classifica- 

ion). The model achieved an overall accuracy of 90 % with their 

anostructure classification workflow. 

Xu et al. have used CNN to classify copolymer microstruc- 

ures from AFM images. [ 115 ] In their study, they synthe- 

ized styrene-co-(n-butylacrylate) copolymers with five different 

rchitectures- random, diblock, triblock, linear-gradient and V- 
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haped gradient- and used microscopy and differential scan- 

ing calorimetry to characterize microstructure and thermal 

roperties (e.g., glass transition temperature, Tg ) of spin-coated 

lms of each of these polymers. In their quest to use ML to 

onnect macroscopic (thermal) properties, microstructure, and 

opolymer architecture, in one step, they employed CNNs for clas- 

ifying the AFM images into their respective microstructures. The 

uthors discussed the difficulty in training CNNs (with many pa- 

ameters to be learned) with small data sets; the smaller size 

f the data set is a universal problem within soft materials. So 

he authors took advantage of transfer learning; they used a 

odel pre-trained on a much larger simulated microstructure im- 

ge dataset [ 116 ] (what the authors call as “introducing domain 

nowledge into the ML model”) to learn the specifics of the ex- 

erimental data by fine-tuning the pre-trained model’s parame- 

ers with the data from their own experiments. Transfer learn- 

ng is a viable approach when dealing with small image data 
ig. 2. Machine learning classification of phases or morphologies of polymer materials fro

lassification of nanowire morphologies from TEM images. Reprinted with permission f

orkflow for classification of the miscibility of polymer blends. Reprinted with permissio

lassification of chirality of nanoparticles from SEM using CNN. Reprinted with permission

6

ets common to academic research labs without high-throughput 

nstrumentation. 

Another study that has used transfer learning in a semi- 

upervised manner to address the difficulty of training from small- 

ize image datasets is the work by Lu et al. to classify TEM im- 

ges to identify nanowire morphologies. Lu et al. have developed a 

emi-supervised transfer learning workflow to facilitate automatic 

nd label-efficient classification of protein / peptide nanowire mor- 

hologies from TEM images ( Fig. 2 a). [ 117 ] Semi-supervised learn- 

ng refers to ML workflow consisting of a self-supervised learning 

art (i.e., no manual labels required, target label can be derived by 

he machine from the input data) and a supervised learning part 

i.e., process where images and their corresponding labels are pro- 

ided by the user to the model). Lu et al.’s workflow has performed 

ransfer learning using an image encoder of ResNet50 architecture 

 106 ] that was trained via self-supervised learning on generic mi- 

roscopy images, as a feature encoder for their task-specific images 
m microscopy data. (a) Semi-supervised machine learning workflow for automated 

rom ref. [ 117 ] 2022 Creative Commons Attribution License. (b) Machine learning 

n from ref. [ 120 ]. Copyright 2023 American Chemical Society. (c) Machine learning 

 from ref. [ 121 ]. Copyright 2023 American Chemical Society. 
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ontaining nanowire morphologies. They showed classification ac- 

uracy above 90 % and their workflow requires fewer than ten la- 

eled images for classification using the encoded features as in- 

ut data for the downstream classifier. They also demonstrated the 

bility to generalize their workflow to classification of morpholo- 

ies of nanoparticle assembly and identification of virus types from 

EM images found in open-access datasets [ 118 , 119 ]. 

Liang et al. have utilized transfer learning methods to classify 

iscibility of polymer blends from SEM images in Fig. 2 b. [ 120 ]

ore than five hundred SEM images depicting either miscible or 

mmiscible polymer blends were collected from literature and used 

or training and testing their ML methods. They used and com- 

ared three different CNNs for learning and classification of SEM 

mages, all of which showed better performance when applying 

ransfer learning methodology. They achieved 94 % accuracy on the 

est dataset with the best classification model. 

While not directly connected to polymers, a study by Visher- 

tina et al. using Siamese learning protocol to create feature vec- 

ors of SEM images containing chiral nanoparticles ( Fig. 2 c) is 

orth sharing. [ 121 ] Chirality is an important aspect for charac- 

erization of hierarchical structure of semi-crystalline polymer as- 

emblies. In Siamese learning, the feature vectors of images be- 

onging to the same chirality (left-hand or right-hand) have sim- 

lar values. Using this idea of Siamese learning, then the authors 

rained a nearest neighbor classifier to classify the chirality class 

f the nanoparticle in the SEM images using the feature vectors as 

nput with 93 % accuracy. 

.1.2. Task: particle detection / segmentation / shape analysis 

Identifying the spatial arrangement of nanoparticles in a poly- 

er matrix/medium is a common structural characterization task 

n polymer nanocomposites sub-field because the physical proper- 

ies of polymer nanocomposites have been shown to be dictated 

y the nanoparticles’ spatial arrangement. [ 9 , 13 , 14 , 122 , 123 ] Under-

tanding if the nanoparticles are in a dispersed state or if they 

re aggregated, and if so in what arrangement, requires ML mod- 

ls capable of particle detection, segmentation, and shape analysis. 

n this sub-section we describe ML model development and appli- 

ation, regardless of the materials science field, which have been 

uccessful specifically for these tasks – particle detection, segmen- 

ation, and shape analysis. 

Ziatdinov et al. have demonstrated the potential of using deep 

earning for atomic detection in STEM images ( Fig. 3 a). [ 124 ] They

ave also shown that one can track atomic reorientation using 

heir deep learning workflow; such ML methods could be extended 

or analysis of time series of electron microscopy images. 

Qu et al. have used a deep learning model for detecting silica 

nd iron oxide nanoparticles in a polymer (polymethylmethacry- 

ate, PMMA or polyethylene oxide, PEO) matrix from TEM images. 

 125 ] They broke down a large TEM image into smaller images and

xtracted the nanoparticle positions and sizes automatically using 

heir particle detection ML model. Using the location and size in- 

ormation of the nanoparticles, they quantified the assembly state 

f the nanoparticles in the polymer matrix by calculating a sur- 

ogate parameter termed as the particle number fluctuations. In 

 subsequent work, Qu et al. applied that same particle detection 

orkflow to detect and track nanoparticles in semicrystalline poly- 

er nanocomposites from AFM images [ 126 ]. 

Yao et al. have integrated real-time ML segmentation analysis 

odels with liquid-phase TEM videos to study the diffusion, kinet- 

cs, and assembly of colloidal nanoparticles. [ 127 ] They used a pop- 

lar neural network architecture U-Net [ 128 ] that in the past had 

een shown to do segmentation tasks for biomedical image anal- 

ses well. [ 129 ] Compared to conventional algorithms that require 

sers to select a priori a threshold value in intensity to mark as 

ixel or region as belonging to one domain or another, U-Net does 
7

ot require a threshold value to be selected manually as input. In- 

tead, U-net automatically decides key features from the TEM im- 

ge that determine what domain should be assigned to each pixel. 

hese authors also showed that U-Net can deliver robust segmen- 

ation results even when the images are blurry or have low signal- 

oise ratio. 

After particle detection and/or segmentation tasks are com- 

leted, one can also pursue automated shape analysis of the 

etected nanoparticles or segmented regions ( Figs. 3 b and 3 c). 

 118 , 130-134 ] For readers interested in learning more about U-Net 

nd use of the U-Net architecture for image analyses tasks, we 

ecommend a recent comparison of model performances of U-Net 

 128 ] and other versions of U-Net by Saaim et al. [ 135 ] Five adap-

ations of U-Net including: R2U-Net [ 136 ], Attention U-Net [ 137 ], 

DC U-Net [ 138 ], U-Net ++ [ 139 ] and U-Net 3 + [ 140 ] have been

ompared alongside with U-Net on segmentation of nanoparticles 

rom TEM images. 

.1.3. Task: automation in image acquisition and analyses 

While the previous two sub-sections describe the ML model de- 

elopment for tasks to be done after the microscopy images have 

een obtained, one can also use computational methods to auto- 

ate image acquisition prior to analyses. Here we highlight some 

f those types of studies and their accomplishments. 

Touve et al. have reported a high-throughput TEM experiment 

o map the phase diagram of block copolymer amphiphile as- 

isted by automated image analysis [ 141 ]. By varying the sample 

lock copolymer compositions, they saw formation of spherical mi- 

elle, wormlike micelle, or vesicle morphologies. They used an au- 

omated image acquisition software SerialEM [ 142 ] to automate 

he high-throughput generation of high-resolution montages over 

 large area of 45 samples. Following that, statistical shape anal- 

sis was applied to quantify block copolymers’ assembled struc- 

ures’ shapes and sizes. A robust image binarization method [ 143 ] 

as used for segmentation of micelle particles from the back- 

round. Subsequently, an elastic curve-based shape clustering al- 

orithm [ 144 ] was used for categorizing different particle shapes 

nto spherical micelle, wormlike micelle, and vesicles. 

Krull et al. have developed a ML framework called DeepSPM 

or automating acquisition of high-quality scanning probe mi- 

roscopy (SPM) images. [ 145 ] DeepSPM includes an active learning 

f regions in the image/sample that have points of interest. They 

rained a CNN model to assess the quality of SPM images in real- 

ime. When the SPM image quality was assessed as poor by the 

NN model, then a deep reinforcement learning agent would ad- 

ust the condition of the probe to obtain higher-quality images. 

uch models can be valuable in acquisition and classification of 

olymer film data continuously during a multi-day long experi- 

ent and for automatically correcting the probe as the experimen- 

al conditions (e.g., temperature, solvent composition) vary. 

To develop a method friendly to beam-sensitive materials, Roc- 

apriore et al. have applied Bayesian optimization methods to 

igh-Angle Annular Dark-field (HAADF) STEM image acquisition 

hat can map the domains through adaptive sampling. [ 146 ] They 

sed small patches of atomic-resolution regions as input features 

nd a Deep Kernel Learning (DKL) model [ 147 ] to predict experi- 

ental diffraction patterns acquired at these image locations. The 

KL model combines the deterministic deep neural network and 

he stochastic Gaussian Process model; the Gaussian Process op- 

rates on low-dimensional representation of the microscopy im- 

ge patches learned by the deep neural network. The DKL model 

redicts functional responses such as the diffraction patterns and 

ives uncertainty of the responses as part of the Gaussian Process 

odel. For samples that are sensitive to electron beam dosage, 

hey accomplished efficient sampling for different systems of ex- 
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Fig. 3. Machine learning particle detection, segmentation, and shape analysis of nanoparticles from microscopy data. (a) Atomic resolution particle tracking machine learning 

workflow. Reprinted with permission from ref. [ 124 ]. Copyright 2017 American Chemical Society. (b) Machine learning segmentation and metrology analysis of nanoparti- 

cles. Reprinted with permission from ref. [ 131 ] 2020 Creative Commons Attribution License. (c) Automated machine learning workflow for morphological analysis of metal 

nanoparticles. Reprinted with permission from ref. [ 118 ] 2021 Creative Commons Attribution License. 

p

d

3

s

t

i

f

m

d

s

i

p

c

M

d

i

c

f

v

t

m

s

l

t

f

a

o

s

erimental samples with low uncertainty in the responses (e.g., 

iffraction patterns). 

.1.4. Task: design-structure-property relationships 

So far, we have described models for microscopy image acqui- 

ition and image interpretation (classification, segmentation, iden- 

ification of components). In this section we review recent stud- 

es that have used data driven approaches linking information 

rom microscopy images to predict physical properties of the poly- 

er material or to create relationships between the materials 

esign/condition and observed structures. These studies we de- 

cribe below use ML modeling to directly address the holy grail 

n most polymer research activities – establishing design-structure- 

roperty relationships. 

Using AFM images of various styrene-co-(n-butylacrylate) 

opolymer morphologies, Xu et al. have compared regression-based 
8

L methods (linear regression, support vector regression, and ran- 

om forest regression) vs. deep learning methods for predict- 

ng polymer property (e.g., glass transition temperature) from mi- 

roscopy image data. [ 115 ] Visual features were extracted manually 

rom AFM images and served as input to linear regression, support 

ector regression, and random forest regression. They also showed 

hat for deep learning models (e.g., CNN) one does not need to 

anually extract visual features but rather the model selects vi- 

ual features automatically from the AFM images. This makes deep 

earning methods better for generalized feature extraction tasks 

han conventional regression models. 

Vargo et al. have applied various ML models such as random 

orest regressor, gradient boosting regressor, kernel ridge regressor 

nd support vector regressor to identify structural features- peri- 

dicity, microdomain ratio, and grain size from an AFM image. The 

pecific data they used were AFM images (output) of nanocom- 
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osite thin film comprised of polystyrene-b-poly(4-vinyl pyridine) 

r PS- b -P4VP, 3-pentadecylphenol, and iron oxide nanoparticles 

or varying (inputs) block copolymer molecular weight, ratio of 

he two blocks, nanoparticle size and loading, solvent fraction, 

nd the nanocomposite thin film thickness [ 148 ]. The authors cu- 

ated ∼600 AFM images from past literature for ML model train- 

ng and testing. They then performed feature engineering to cre- 

te a 3-level hierarchical feature vector - whole-image, grain-scale, 

icrodomain-scale - from an AFM image depicting block copoly- 

er morphology as the prediction targets. By inspecting the corre- 

ation matrix between the inputs and outputs, they noted that the 

eriodicity is heavily determined by the molecular weight, whereas 

he grain size was not correlated to any of the input variables. The 

icrodomain ratio was deemed a more “interesting” target as it 

s non-linearly dependent on the different com ponent ratios. With 

he random forest regressor, they satisfactorily predicted the mi- 

rodomain ratio using experimental parameter inputs . 

.2. Applications of ML in scattering 

The typical output of scattering measurements is a 1D profile 

f I(q ) (intensity) vs. q (magnitude of wave vector) or 2D profiles 

apturing intensity as a function of azimuthal angle and magni- 

ude of wave vector, q . As shown in Figs. 1 d, 1 e and 1 f, the 1D

rofiles are curves and the 2D profiles are two-dimensional im- 

ges of intensity patterns that look like spots in a specific pattern, 

harp or diffuse symmetric or asymmetric rings, and all of these 

atterns hold information about the sizes, orientations, and pack- 

ng of atoms, molecules, and domains. Deep learning models, en- 

emble ML models, and optimization algorithms can be used for 

cattering data analyses tasks like automated classification of the 

easured data (e.g., connecting the measured profile to a specific 

lass of morphology like spheres, rods, etc.) and interpretation of 

he scattering profile by quantifying relevant aspects of the struc- 

ure (e.g., domain shapes, sizes, radius of gyration of the polymer). 

L can also help in automating high throughput scattering mea- 

urements. In the following sub-sections, we review how ML de- 

elopments have aided scattering tasks – classification, interpreta- 

ion, and automation – in polymer science and engineering. As we 

id in the previous sections, here too we highlight work done in 

oft materials as well as promising ML work in other areas of ma- 

erials sciences that could be extended to polymer sciences. 

.2.1. Task: classification 

As one of the outputs of scattering experiments is a 2D image 

f intensities, we first describe ML model development for clas- 

ification of scattering images based on the patterns of intensi- 

ies they show. Wang et al. have used CNN and convolutional au- 

oencoders to classify measured X-ray scattering patterns of self- 

ssembled polymer films, nanoparticles, lithographic gratings, and 

rganic semiconductors. [ 149 ] They trained their models to learn 

ttributes of the scattering images, specifically an isotropic ring, 

nisotropic/isotropic halo, anisotropic/isotropic diffuse low q fea- 

ures. They noted that automatic attribute recognition can be a 

hallenge because multiple images with the same attribute can be 

ifferent morphologies. Upon inspection of classification precision 

core of individual labeling categories in their dataset, they found 

hat for some cases where classification precision was low, either 

he target attribute had an unusual appearance or was highly lo- 

alized or there was subtlety in some of the attributes, ambigu- 

us labeling, and/or error happening during the measurements. To 

mprove the classification accuracy of such atypical images, they 

uggest that researchers augment the training data with additional 

xamples of the borderline cases; one way to augment the over- 

ll training data is by creating/generating synthetic (i.e., simulated) 

mages exhibiting such atypical or marginal patterns. 
9

While not directly related to polymers, it is worth noting that 

NN models have also been used for classification of nanopar- 

icle shapes from grazing incidence small-angle X-ray scattering 

GISAXS) [ 150 ] and extraction of nanoparticle orientation distribu- 

ions from grazing incidence small-angle scattering (GISAS) [ 151 ]. 

n the former study [ 150 ], the authors calculated ‘synthetic’ GISAXS 

ntensities using the FitGISAXS code [ 152 ]. Specifically, they simu- 

ated the GISAXS patterns of tellurium nanoparticles on a Si sub- 

trate with a specific incident angle. Their data contained GISAXS 

atterns of eight classes: “capsule, spheroid, ellipsoid, truncated 

pheroid, hemispheroid, prism based on an equilateral triangle 

prism3), prism based on a regular hexagon (prism6), and cylin- 

er”. These particle shapes were mathematically described by their 

iameter, aspect ratio in the vertical plane, and size dispersion; for 

llipsoid and truncated spheroid, parameters more specific to those 

hapes were added (e.g., ratio of vertical diameter to height for 

he truncated spheroid and aspect ratio in the horizontal plane for 

he ellipsoid). After training and testing the CNN with simulated 

ISAXS images, they demonstrated that trained CNN could classify 

he shapes of Te nanoparticles in the GISAXS images from the ex- 

eriments. Such models can be valuable for researchers working 

ith polymer nanocomposites composed of inorganic nanoparti- 

les embedded within a polymer matrix. Understanding how pro- 

essing of such composites alters the spatial arrangement and ori- 

ntation of the various nanoparticles (depending on their shape, 

ize, filler fraction) can be valuable in predicting the resulting 

acroscopic properties of the composite. 

Aty et al. have developed a computer vision-based ML pipeline 

or classification of lipid phases (e.g., lamellar, hexagonal, and cubic 

hases) from 2D SAXS patterns. [ 153 ] With a transfer learning ap- 

roach, larger volumes of simulated (or ‘synthetic’) SAXS patterns 

ere used for pretraining of their CNN model before finetuning on 

 small set of real experimental SAXS patterns. They used unsu- 

ervised clustering methods such as Principle Component Analysis 

PCA) [ 154 ], t-distributed Stochastic Neighbor Embedding (t-SNE) 

 155 ] and Uniform Manifold Approximation and Project (UMAP) 

 156 ] to show that their simulated SAXS data are representative of 

he real experimental data. Synthetic data can be generated with a 

arger range of tunable parameters and smoother variations whilst 

onstraining the noteworthy features of each phase. They achieved 

9.6 % classification accuracy on the test samples with the trans- 

er learning approach. Dealing with coexisting lipid phases, the au- 

hors suggested potential expansion of classification of individual 

ipid phases to classification of the composition of the coexist- 

ng phases. We feel that such ML approaches could be useful for 

olymer researchers who work with design parameters or condi- 

ions that lead to coexistence of two phases (e.g., perforated lamel- 

ar and cylinders or perforated lamellar and imperfect gyroids in 

lock copolymer phase diagram) at equilibrium or due to inten- 

ional/unintentional kinetic trapping. 

On that note of co-existence, many commercially used polymers 

e.g., polyurea) and conducting polymers (e.g., poly(3- hexylth- 

ophene) or P3HT) exhibit semi-crystalline morphologies where 

rystalline phases co-exist with amorphous phases. Relevant to 

rystallinity, we note that many studies have shown success in 

sing ML for classification of inorganic crystalline phases from 

-ray diffraction patterns [ 157-164 ]. These studies have greatly 

enefited from large databases of well-defined and characterized 

rystal structures (e.g. Inorganic Crystal Structure Database [ 165 ]). 

ven though XRD is often used to identify crystallinity in semi- 

rystalline polymers [ 166-169 ], unfortunately, there is a dearth 

f similarly well-curated databases comprising different semi- 

rystalline polymers. Additionally, unlike inorganic crystalline ma- 

erials, for polymers it is vital to also store the processing history 

f the material along with this data as the extent of crystallinity 

easured is dependent on the processing steps and history. [ 170 ] 
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e circle back to this topic of ongoing challenges in polymer com- 

unity in later sections to discuss what polymer researchers can 

o better so that we can transfer such successful ML models from 

ther materials community for semi-crystalline polymer character- 

zation purposes. 

.2.2. Task: interpretation of small-angle scattering profiles of 

olymers 

Interpretation of small-angle scattering profiles (i.e., SAXS and 

ANS) from polymer materials can be qualitative – i.e., identify- 

ng the predominant shape of domains- or can be quantitative –

.e., calculating the distribution of shapes and sizes and other rele- 

ant structural parameters. For qualitative interpretation, ML mod- 

ls have been developed to take as input SAXS and SANS profiles 

nd to directly output the most likely/closest shapes of the do- 

ain structures (e.g., spheres, rods, sheets) [ 40 , 171 ] Fig. 4 a shows

he use of transfer learning for re-training a convolutional neu- 

al network (CNN) to take as input a 2D SANS profile and output 

he shape of the structure(s) that is (are) in the material. [ 172 ]

lternately, ML models have also been used to identify the best 

hoice of the shape-based analytical model one should use to fit 

he scattering profile to arrive at the quantitative structural infor- 

ation. [ 173 ] ( Fig. 4 b) While these methods are valuable in iden-

ifying standard shapes, they will not work for systems where the 

bserved structures do not fit these standard shapes. 

ML workflows have also been developed to directly obtain 

uantitative structural information from scattering profiles. Along 

hese lines, Fig. 4 c shows work by Franke et al. developing ML 

ethods for analyzing SAXS data from protein solutions. [ 174 ] 

ranke et al. transform experimental SAXS patterns into feature 

ectors and then use k-nearest neighbor method to obtain not only 

he shape of the protein but also its maximal diameter as well 

s molecular mass. He et al. developed a deep learning method 

or model reconstruction from SAXS data [ 175 ]. They used an 

uto-encoder for protein 3D models to compress the information 

bout the protein’s 3D shape information into vectors of a 200- 

imensional latent space. These vectors were optimized using ge- 

etic algorithms to build 3D models that are consistent with the 

nput scattering data. 

It is vital that we emphasize key differences between proteins 

nd a variety of non-biological polymers (synthetic or bio-derived 

nd functionalized) in this context of scattering analyses. Most pro- 

eins have the advantage of having precise secondary and tertiary 

tructures and large protein databanks that contain the coordinates 

f thousands of such proteins’ precise structures. In contrast, most 

ynthetic polymers do not have precision in size (e.g., molecular 

eight distribution) or structures (amorphous, disorder structures 

ith dispersity in sizes and shapes). As a result, most polymer 

tructures are not stored in databases and thus, the polymer com- 

unity lacks the advantage of having large protein databases that 

erve as training data and testing data for many ML models aimed 

t protein structure prediction. To specifically address the need to 

utomate and accelerate interpretation of SAXS and SANS profiles 

btained from polymer systems that are mostly amorphous (i.e., 

ack of secondary or tertiary structures as in proteins, zero to min- 

mal crystalline arrangements) and have dispersity in most rele- 

ant structural dimensions, Jayaraman and coworkers developed 

REASE – Computational Reverse Engineering Analysis of Scatter- 

ng Experiments. [ 176-184 ] ( Fig. 4 d) 

CREASE was developed to overcome some traditional challenges 

n scattering analyses in the field of polymer science and engi- 

eering. The scattering profiles in polymer systems have tradition- 

lly been interpreted using conventional analytical model-based 

tting, as mentioned earlier and as described in many relevant re- 

iew articles. [ 4 8 , 6 8-75 ] Conventional analytical scattering mod- 

ls involve assumptions about the ‘primary particle’ (i.e., macro- 
10
olecule, micelle, coated nanoparticles, particles with unconven- 

ional shapes) and/or the interactions that lead to their spatial ar- 

angement (e.g., sticky hard-sphere model). With significant ad- 

ances in polymer synthesis and processing, polymer scientists are 

bserving or deliberately achieving unconventional, novel struc- 

ural arrangements that are not captured by the large library of 

xisting analytical models. One can always develop new analytical 

odels from scratch and manually fit the scattering profiles to ar- 

ive at the information they wish to learn. However, manual fitting 

s not conducive for analyzing high-throughput or time-series data. 

ence, CREASE was developed to alleviate these problems, espe- 

ially this reliance on analytical models, and to accelerate scatter- 

ng analyses to enable automation. 

CREASE [ https://github.com/arthijayaraman-lab/crease_ga ] uses 

 simple, easy to adopt optimization method - genetic algorithm. 

s shown in the schematic in Fig. 4 d, CREASE’s genetic algorithm 

CREASE-GA) takes as input SAXS and/or SANS scattering profiles 

 Iexp (q) or Iexp (q, θ ) where θ is the azimuthal angle. CREASE re- 

uires the user to choose their relevant structural features (‘genes’) 

ased on their domain knowledge of the general shape of the as- 

embled structure from other imaging techniques and/or subject 

atter expertise. Then, CREASE-GA starts with an initial ‘genera- 

ion’ of many ‘individuals,’ where each individual has a unique set 

f ‘genes.’ CREASE-GA iterates towards identifying all optimal indi- 

iduals whose structural features gives rise to a computed scatter- 

ng profile, Icomp (q), that closely matches the input experimentally 

easured scattering profile, Iexp (q). 

One important step in the CREASE-GA loop is the calcula- 

ion of Icomp (q) for each individual in every generation. The 

raditional (physics-based) way to calculate the Icomp (q) is to 

reate for each individual representative three-dimensional real 

pace structures corresponding to the structural features (genes) 

f that individual. These real-space structures are then filled with 

oint scatterers whose scattering length densities represent the 

onstituents of the system, and using the Debye equation on 

he scatterer positions one arrives at the Icomp (q). This calcula- 

ion can be computationally intensive. The faster way to calcu- 

ate Icomp (q) is by using a ML surrogate model that links the 

tructural features directly to Icomp (q). Jayaraman and cowork- 

rs have used both neural networks [ 178 , 181-183 ] and XG-Boost 

ased model [ 184 ] to train on thousands of computed (or ‘syn- 

hetic’) scattering profiles calculated from the Debye method for 

arious sets of genes and structures. Through ML enhancement, 

REASE has been shown to be fast and suitable for identify- 

ng multiple real-space structures simultaneously, which is es- 

ential to the success of the proposed high-throughput screening 

xperiments. 

CREASE method has been used successfully to interpret experi- 

ental SAXS or SANS profiles from amphiphilic polymer solutions 

t dilute concentrations. CREASE identified structural features for 

 variety of assembled polymer structures in solution – spherical 

ore-shell micelles, [ 185 ] polypeptide- based vesicles, [ 180 ] syn- 

hetic cylindrical micelles, [ 178 , 179 , 186 ] and bioderived polymer 

brils[182]. In the above studies, either CREASE was shown to out- 

erform the analytical models (e.g., polydisperse vesicles [ 180 ], mi- 

elles composed of unique new polymer chemistries [ 185 ]) or per- 

ormed just as well as analytical models (e.g., methylcellulose fib- 

ils [ 182 ]). In some cases, CREASE enabled testing of hypothesized 

tructures even if corresponding analytical models did not exist. 

 186 ] We note that in these studies, the shapes of the assembled 

tructures were known from microscopy and the user chose only 

he relevant structural features for CREASE-GA to iterate over. If 

uch shape information is not known, one potential new direction 

s to combine shape-classifying ML models described under clas- 

ification and ML-CREASE. This way the classification ML model 

ould identify the potential (closest) shapes, and then the user can 

https://github.com/arthijayaraman-lab/crease_ga
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Fig. 4. a) Convolutional neural network taking as input 2D neutron scattering images of shapes of objects to be able to classify shapes of structures – sphere, ellipsoid, 

cylinder, etc. Adapted with permission from Ref. [ 172 ] 2020 Creative Commons Attribution License. b) Image adapted from a recent perspective on machine learning ap- 

proaches for analysis of scattering and spectroscopy. This selected image conveys the idea of training ML models on analytical form factors to identify shapes of structures. 

Reprinted with permission from Ref. [ 174 ] 2023 Creative Commons Attribution License; c) Form factors of various canonical shapes – sphere, cube, ring, fractal chain, etc. 

Reprinted with permission from Ref [ 40 ]. Copyright 2018 with permission from Elsevier. d) ML-CREASE for interpretation of form and/or structure factors from SAXS and/or 

SANS profiles of macromolecular materials that may not have appropriate analytical models (form factors or structure factors). 
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ustomize ML-CREASE to optimize relevant structural features (e.g., 

imensions) for each of those potential shapes. 

CREASE has also been used to understand the extent of mix- 

ng and demixing in amorphous materials at high concentrations. 

or example, CREASE was used to analyze SAXS and SANS pro- 

les from concentrated binary mixture of polydisperse spherical 

anoparticles (i.e., P(q) is a sphere form factor) to determine the 

xtent of segregation/mixing of the two types of nanoparticles –

olydopamine and silica - and the precise mixture composition. 

 181 , 187-189 ] The extent of mixing/demixing and the composition 

f the mixture were relevant to predict structural colors. [ 187- 

89 ] Even though CREASE iterates over a lower-dimensional rep- 

esentation of the real-space structures, one of the advantages of 

REASE is that at the end of the optimization loop it also out- 

uts a 3D real-space structure(s) representative of those optimized 

tructural features. These 3D real-space structures are valuable for 

ollow-up simulations or calculations of properties (e.g., color, me- 

hanics, rheology) using those real-space coordinates. Refs [ 187- 

89 ] demonstrate such calculations which serves to further con- 

rm CREASE predictions. 

Most recently. CREASE has been extended to overcome another 

cenario one may face when trying to interpret structure in poly- 

er solutions where both the structure S(q) and form factors P(q) 

hange with varying experimental conditions. [ 183 , 190 ] The reader 

s reminded that the measured I(q) has both P(q) and S(q) contri- 

utions, I(q) = P (q) S(q). Traditionally, in many cases, researchers 

ssume that the P(q) calculated at one condition (where S(q) = 1) 

oes not change with concentration and use that calculated P(q) 

s is to interpret S(q) at higher concentration. This assumption is 

ot necessarily valid if the ‘primary particle’ (e.g., micelles, vesi- 

les) evolves with changing system/solution conditions. This drives 

he need for simultaneous identification of form and structure [i.e., 

(q) and S(q)] and structural interpretation at the conditions of in- 

erest without assumptions about P(q) not changing and without 

sing approximate analytical models that may be inapplicable for 

he system at hand. To address this need, in recent work, Jayara- 

an and coworkers ‘P(q) and S(q) CREASE’ that extends previous 

REASE capabilities. [ 183 ]‘P(q) and S(q) CREASE’ can be used to 

nalyze SAXS or SANS profiles from polymer materials to simul- 

aneously obtain the form factor P(q) (e.g., dimensions of domains 

ith unconventional shapes) and structure factor S(q) (e.g., spa- 

ial arrangement of those domains) without relying on any ana- 

ytical models. They validated the approach by analyzing scatter- 

ng from computationally generated structures for which the di- 

ensions (form factor) and spatial arrangements (structure fac- 

or) are known. The validated method was then used to ana- 

yze SANS profile from experimental measurements of surfactant 

oated nanoparticle solutions with the goal to understand the sur- 

actant coating/shell arrangement with changing salt concentration 

nd temperature, without being limited by off-the-shelf approxi- 

ate/incorrect analytical models. [ 190 ] 

The above studies of CREASE took as input 1D SAXS profiles 

nd/or SANS profiles, either (i) a single SAXS profile of the sys- 

em, or (ii) one SAXS profile and a one SANS profile of the same

ystem, or (iii) multiple SANS profiles with contrast matching one 

r the other component(s) in the system with the solvent. To ex- 

end CREASE to interpret 2D profiles for soft materials that show 

nisotropy in the assembled structure, Jayaraman and coworkers 

ave now developed CREASE-2D [ 184 ]. CREASE-2D enables direct 

nterpretation of 2D profile which is far more complex than anal- 

sis of 1D scattering profiles, I(q) vs. q, obtained by averaging 

long all azimuthal angles. Currently, researchers who study mate- 

ials with any form of anisotropic structure (e.g., processed aligned 

ynthetic conducting fibers, field-driven orientational alignment in 

olymers for sensing/electronics, sheared formulations during rhe- 

logical measurements in personal care industry) need to inter- 
12
ret the entire 2D scattering profile. Yet analyses of such 2D pro- 

les have traditionally only been done by fitting analytical mod- 

ls to 1D profiles obtained by averaging along all azimuthal an- 

les or sections of the 2D profile. Such averaging schemes lose 

ey information about the anisotropic structural arrangements that 

an drive the function of the materials. CREASE-2D method over- 

omes these current limitations and provides polymer researchers 

he speed (due to ML surrogate models) and accuracy (by avoiding 

ny averaging of the 2D profile) to interpret quantitative structural 

nformation (e.g., domain shapes, sizes, orientation, volume frac- 

ion) from the entire 2D scattering profiles without any approxi- 

ations. The surrogate model used to link structural features to 2D 

cattering profile was trained on 3D structures generated by a re- 

ent developed computational method - Computational Approach 

or Structure Generation of Anisotropic Particles (CASGAP) [ 191 ]. 

ASGAP generates representative 3D structures for input desired 

istribution of particle (representing domain) sizes and shapes and 

esired spatial orientations without particles overlapping at de- 

ired packing density. Using 2400 generated structures generated 

rom CASGAP, Jayaraman and co-workers were able to train the 

urrogate XG-Boost ML model. Then, using 600 structures (unseen 

y the surrogate model) they validate the performance of the ML- 

odel as well as the successful performance of the entire CREASE- 

D workflow. 

Another ML-based workflow developed by Röding et al. focused 

n interpreting 3D structures of disordered soft materials with two 

r three phases from their SAXS profiles [ 192 ] They considered 

odel systems consisted of two phases that they label as “pore”

nd “solid” or three phases where the third phase could be an in- 

erface between the “pore” and “solid” phases; all phases have dif- 

erent electron densities. Even though they do not explicitly state 

he types of polymer systems where such structures are seen, one 

nows that binary polymer blends or multi-component polymer 

anocomposites (e.g., binary blends with nanoparticles at inter- 

aces) exhibit such bicontinuous structures making this method 

elevant. They used XG-Boost based model to estimate microstruc- 

ural parameters from SAXS data. The microstructure model is re- 

tricted to a periodic Gaussian random field (GRF) with variable 

ength scale. They process and threshold the GRF to yield two- 

hase (pore and solid) and three-phase (pore, interface, and solid) 

tructures. They noted that for their method development artificial 

eural networks did not perform better than XGBoost for the pur- 

ose of predicting microstructure model parameters. 

It is important to note that the challenge with analyzing scat- 

ering profiles from polymer systems is that the scattering profile 

n most cases does not correspond to one unique structure or one 

nique set of structural features. How well and correctly an ML 

odel interprets the scattering profile as compared to an analytical 

odel will depend on how the ML model is trained. Specifically, 

he quality and quantity of ML model’s training data dictates how 

ell the ML model can interpret the structural features from the 

D scattering profiles. How one generates the data used for train- 

ng the ML model will dictate if the model is learning only physi- 

al realistic structural features or any set of structural features that 

umerically result in the scattering profile. Further, how the train- 

ng data is sampled (not only values of the sampled structural pa- 

ameters but also the structural parameters that lead to unique ef- 

ects on scattering profiles) and how much training data is used to 

rain the ML model, are important factors that dictate the success 

f the ML model in interpreting scattering profiles as compared to 

he traditional analytical models. 

Besides all of the quantitative structural information, one may 

e interested in interpreting information about thermodynamics –

.g., effective interactions – from small-angle scattering profiles. In 

ecent work, Chang et al. have used a ML (inversion) scheme for 

etermining interactions from scattering profiles. [ 193 ] They used 
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 case study of colloidal suspensions and demonstrated that they 

an infer effective potentials from the scattering spectra without 

ny restriction imposed by theoretical model assumptions. They 

emonstrated that their workflow could quantify effective interac- 

ion in highly correlated systems using data from scattering and 

iffraction experiments. 

We end this sub-section on interpretation of small-angle scat- 

ering of polymers by highlighting recent work by Zhao et al. 

ho have used a combination of ML methods to process 2D-SAXS 

atasets of isotactic polypropylene (iPP) films and directly create 

rocessing-structure mapping [ 194 ]. They took experimental 2D 

AXS data into lower-dimensional representation using variational 

utoencoders (VAEs) and through that conversion they were able 

o extract the structural evolution features of iPP films. Their VAE 

as trained using SAXS dataset from their previous work where 

hey stretched iPP films to break at temperatures from 30 to 160 

C and the maximum strain was ca. 400 %. They then used a hy-

rid neural network to create a processing-structure mapping of 

PP and notably, generated 2D SAXS patterns at processing param- 

ters that had not yet been experimented at. 

.2.3. Task: automation in scattering data acquisition 

Doerk et al. have reported an automated phase exploration 

f thin film morphologies of blends of PS- b -PMMA block copoly- 

ers incorporating elements of chemical template for combina- 

ory sampling, high-throughput SAXS measurements and Gaussian 

rocess-based active learning module in Fig. 5 a [ 91 ]. A frame- 

ork for Gaussian process guided autonomous experimental data 

cquisition called gpCAM [ 195 , 196 ] developed by Noack et al. 

as used as the active learning module. The automated work- 

ow seamlessly integrated SAXS measurement, SAXS data analysis, 

nd Bayesian modeling-based candidate suggestion of next sam- 

le in phase space. In their Bayesian modeling-based candidate 

uggestion model, they leveraged three acquisition functions for 

he selection of the promising next measurement candidate with 

he ability to choose between balanced random exploration, tar- 

eted exploration of rarely visited regions, and exploitation of re- 

ions deemed “interesting” by the experimenter for more efficient 

ampling. Through the use of their automated workflow, multi- 

le novel morphologies have been discovered, visualized with top- 

own and cross-sectional SEM images, and the driving forces for 

hese morphologies have been explained by physics-based coarse- 

rained molecular dynamics simulations. 

Another noteworthy study in automation is that by Beaucage 

nd Martin who have developed a state-of-the-art Autonomous 

ormulation Laboratory (AFL) - an adaptable platform for auto- 
ig. 5. Machine learning automation of scattering experiment. (a) Novel block copolymer

ermission from ref. [ 91 ] 2023 Creative Commons Attribution License. (b) Experimental 

utonomous Formulations Laboratory. Reprinted with permission from ref. [ 197 ]. Copyrigh

13
ated synthesis and characterization of complex polymer formula- 

ions using x-ray and neutron scattering techniques in Fig. 5 b and 

 c. [ 197 ] This platform incorporates hardware systems of robotic 

uto-pipetting, mixing, scattering characterization, and comple- 

entary software systems programmed in Python for control 

ver the experiments with a simple and user-friendly interface. 

eaucage and Martin showed three proof-of-concept examples us- 

ng AFL: (i) classification of SAXS profiles of silica nanoparticle of 

arious sizes in aqueous solution; (ii) study of the micellization 

f cetyltrimethylammonium bromide (CTAB) under the influence 

f salt and sodium salicylate; and (iii) the phase mapping of in- 

ustrial polymer formulations where a model system containing 

oloxamer F127, hexanes, water and salt was studied using AFL 

nd SAXS as the measurement technique. Their AFL platform has 

he potential to incorporate other measurement modalities such as 

V–vis-NIR spectroscopy and microscopy with rigorous control of 

he sample preparation. The facilitation of FAIR [ 198 ] data man- 

gement also makes the AFL a promising automation platform for 

uture integration with data-driven analysis. 

.3. Applications of ML in spectroscopy 

The typical output of spectroscopy measurements is a 1D vec- 

or array or 2D image of the intensities of the measured physi- 

al property vs. the light beam wavelength or energy (as shown 

n Figs. 1 g-i). Spectroscopy data often contain signature peaks for 

dentification of specific molecules, functional groups only in a 

mall part of the data. Dimensionality reduction methods are of- 

en used to preprocess the spectroscopy data into low-dimensional 

epresentations and clustering methods are used to classify the 

ower-dimensional data. In the following sub-sections, we review 

ecent ML model development for – classification of molecules or 

unctional groups from spectroscopic data and automation of ma- 

erial synthesis and screening using spectroscopic data as an op- 

imization target. As in previous sections, we highlight promising 

L workflows using spectroscopic data in other areas of materials 

ciences that we believe has promise for use in polymer materials. 

.3.1. Task: classification 

Tetef et al. have demonstrated the use of unsupervised meth- 

ds for the classification of both x-ray absorption spectra and X-ray 

mission spectra of sulphorganic molecules [ 199 ]. Unsupervised di- 

ensionality reduction methods such as PCA, VAE and t-SNE were 

tilized to generate lower-dimensional representation of the X-ray 

pectra. This lower-dimensional representation was then used for 

lassification of degree of oxidation state, aromaticity, and aromatic 
 morphology discovery for aided by automated SAXS experiments. Reprinted with 

setup and (c) schematic of automated experimentation of formulations using the 

t 2023 American Chemical Society. 
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Fig. 6. Machine learning classification of spectroscopy data. (a) An automated machine learning workflow for classification of functional groups present in small molecules 

from IR spectra. Reprinted with permission from ref. [ 200 ] 2023 Creative Commons Attribution License. (b) Demonstration of transfer learning for data-efficient prediction 

of UV–vis spectra of perovskite thin film material. Reprinted with permission from ref. [ 202 ] 2023 Creative Commons Attribution License. 
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r aliphatic sub-categories with a supervised learning k-nearest 

eighbors method. The authors found that feature maps generated 

ith t-SNE not only outperformed other unsupervised methods at 

lassification, but also enabled discovery of new chemically rele- 

ant clusters (e.g., distinguishing nuances within a sub-category of 

romaticity of the sulphorganic compounds) not seen by other di- 

ensionality reduction methods. 

Jung et al. have used CNN for the identification and classifica- 

ion of functional groups in molecules given the FTIR spectra as 

nput ( Fig. 6 a) [ 200 ]. Trained on over 50,0 0 0 FTIR spectra and over

0,0 0 0 molecules, their model can classify 37 types of functional 

roups with good classification performance. Given that multiple 

unctional groups can exist in the same molecule, they also evalu- 

ted their model for multi-label classification and observed a rate 

f exact matching of 0.72 for up to 9 functional groups in one 

olecule. 

Different f eaturization approaches, dimensional reduction 

ethods, and classification models have been examined by Chen 

t al. for the classification of oxidation states from XANES of metal 

xides [ 201 ]. Originally trained on computed data, cumulative 

istribution function (CDF) featurization method showed higher 

obustness (compared to other types of featurization such as 

eak features or continuous wavelet transform) when the authors 

pplied their workflow to classify experimental XANES data. 

In physics-driven modeling, the optical response e.g., UV–vis 

pectra are determined by the refractive index as well as the thick- 

ess of the thin film material. Tian et al. have used CNN for the 

nverse design and interpretation of UV–vis spectra of perovskite 

hin films ( Fig. 6 b) [ 202 ]. The UV–vis spectra were instead used

s input to predict the thickness as well as the real and imagi- 

ary part of the refractive index of the thin film. To tackle the data

carcity problem, they leveraged transfer learning to first train a 
14
eneralist model on data from a generic source domain and then 

netune the pretrained model on the data from target domain that 

ontained only 18 spectra data achieving 92 % prediction accuracy 

n thickness. 

All of the above studies are excellent examples of ML models 

pplied to spectroscopy data from small molecules or metal ox- 

des; we share these to show that they also have potential for an- 

lyzing FTIR and UV–vis spectra from polymer materials. 

Similar to FTIR and UV–vis spectra, solid-state and solution 

hase nuclear magnetic resonance (NMR) spectroscopy data can 

lso be analyzed using dimensionality reduction methods such as 

CA, VAE and t-SNE. While there is a dearth of papers aimed at ap- 

lying these methods to NMR data directly from polymeric mate- 

ials, there are other noteworthy studies and reviews [ 42 , 203-206 ] 

hat show how ML can be applied to NMR data from bioinformat- 

cs and protein structure characterization; these approaches could 

asily be extended to similar analyses of NMR data collected from 

olymer systems. For example, one can train ML models to iden- 

ify NMR peaks (i.e., noted as the “peak picker” problem) by using 

 database of NMR spectra of polymers with peaks corresponding 

o known chemical composition; then these models can be used 

o identify NMR signals from new polymers. Analyses of patterns 

n 2D NMR data can be done in a manner similar to deep learning

e.g., neural networks) based 2D image analyses, described in prior 

ections. A recent perspective on the role of ML in analyses of NMR 

pectra from biomolecular systems could serve as a starting point 

or polymer researchers who wish to extend these ML techniques 

o polymer NMR data. [ 206 ] 

Lastly, we share one noteworthy ML study on NMR data from 

etal-organic frameworks (MOFs) field that could be relevant for 

he nanoporous polymer materials. [ 204 ] In this study, the authors 

btained data from NMR relaxometry that is highly sensitive to 
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he materials’ nanoscale porosity. They used PCA and partial least 

quares (PLS) regression techniques on this NMR data to classify 

he studied MOFs into high and low surface area porous materials. 

he pore sizes for these materials were in the range of 0.5–100 nm 

hich is similar to pore sizes found in polymeric membrane ma- 

erials. Furthermore, their data set was similar in size to typical 

olymer experiments’ outputs; specifically, they worked with 15 

OF materials with 20 solvent contents per material, “resulting 

n over 300 NMR time decays of 10 0 0 points each”. We find this

tudy noteworthy not only for its PCA and PLS regression analy- 

es but also because the authors highlight that this approach is 

high-throughput and a non-destructive way to assess porosity in 

1 minute, resulting in a pore surface area estimate ∼1440 times 

aster than a gas adsorption isotherm measurement which requires 

1 day to perform”. Researchers working with high-throughput de- 

ign and testing of porous polymer membranes would find the 

ethods described in this study [ 204 ] valuable. 

.3.2. Task: automation 

Pozzo and coworkers have applied Bayesian optimization meth- 

ds for the automated synthesis of gold nanorods with target op- 

ical properties [ 207 ]. They also defined a new distance metric 

alled amplitude-phase distance that works better than the con- 

entional metrics such as Mean Squared Error (MSE) for similarity 

uantification of high-dimensional spectra data. The authors com- 

ared the performance of Bayesian optimization of UV–vis spectra 

f synthesized nanorods with surrogate Gaussian ML models us- 

ng MSE or amplitude-phase distance as the similarity quantifica- 

ion. They demonstrated that the surrogate with amplitude-phase 

istance was better at mapping out the underlying phase diagram 

ith identifications of multiple phases. The authors also extended 

he application of amplitude-phase distance criteria to phase map- 

ing of polymer blends using SAXS and of metal alloys using XRD 

 208 ]. In a subsequent study, they also used a composite distance 

etric that included the amplitude-phase distance and distances of 

he intensity, peak position, and area under the curve of two spec- 

ra to quantify whether a UV–vis spectrum comes from a plate- 

ike silver nanoparticle. Leveraging the high-throughput capabili- 

ies of UV–vis, they rapidly screened through the plate-like silver 

anoparticles for more direct characterization of the nanoparticle 

tructure using SAXS and obtain particle shape and size distribu- 

ions [ 209 ]. 

Gormley and coworkers have developed an ML guided au- 

omation platform for high-throughput design and screening of 

olymer-enzyme hybrids [ 210 ]. Copolymers synthesized from var- 

ous methacrylate monomers were used to stabilize the three 

odel enzymes. The authors used a Bayesian optimization work- 

ow for iterative design, selection, and testing of copolymer stabi- 

ized enzymes. A large design space of copolymers was explored, 

nd new copolymer formulations were found to outperform en- 

yme stabilizing ability of the initial copolymer designs hypothe- 

ized with systematic variation of design parameters. We direct the 

eaders to Gormley and coworkers’ recently published tutorial/user 

uide on how to use ML in a step-by-step manner to accelerate de- 

ign and testing of next generation biomacromolecules. They also 

rovide a python script that provides the user a hands-on experi- 

nce with the ML pipeline [ 211 ]. 

.4. ML models for reconstruction and generation of characterization 

ata 

The previous three sub-sections (3.1, 3.2, and 3.3) Sections 3.1 

ocused on ML models aiding acquisition and analyses of data ob- 

ained from microscopy, scattering, and spectroscopy. In practical 

cenarios, researchers may not have access to some instruments or 

ave challenges with sample preparation that serves as a barrier 
15
o doing certain measurements. In such cases, using the previously 

ollected relevant data as training set for ML models, researchers 

ay want to reconstruct or generate new data. This sub-section 

resents recent work with ML models for generation and recon- 

truction for microscopy, scattering, and/or spectroscopy. We note 

ere that use of generated images can be controversial in pub- 

ishing as it may constitute as ‘fake data’ unless declared explic- 

tly as ‘generated’ data vs. a measured data. Furthermore, the au- 

hors in publications should be clear about their motivation for us- 

ng ‘generated’ data. For example, image reconstruction/generation 

ractices are valuable for other downstream calculation of physical 

roperties that are dependent on the distribution of the structural 

eatures – in such cases, one may generate an ensemble of images 

rom ML models trained on a few time-consuming intensive real 

easurements and use the ensemble of images to get the distribu- 

ion of structural features. These calculations can then inform the 

esearcher of how small variations in structural features manifest 

s variance in the calculated physical property. Researchers should 

ollow all scientific ethical practices when reporting such data. 

.4.1. Reconstruction of microscopy images 

Reconstruction of various modes of microscopy images 

 212-216 ] and other types of characterization data [ 213 , 215- 

23 ] have relied heavily on autoencoders. An autoencoder is a 

air of neural networks -an encoder and a decoder - built to 

econstruct the input in a fully unsupervised (i.e., without any 

anual labeling) mode. The encoder converts the information 

rom the input image into a set of lower dimensional latent vari- 

bles and the decoder deciphers information back to the original 

arget space. To reconstruct images Long et al. have proposed 

n autoencoder called Fully Convolutional Network (FCN) with 

 CNN as the encoder part and a neural network consisting of 

ranspose-convolutional layers as the decoder. [ 224 ] A drawback 

f autoencoder is that the set of latent variables is discrete and 

ends to do poor reconstruction when the test target is outside of 

he training set. To mitigate the discrete latent space problem, a 

odified version of autoencoder, a VAE [ 225 ] has been used. VAE 

rojects the latent space to a continuous Gaussian random field 

nd randomly samples a set of latent variables when reconstruct- 

ng from the latent variables to the target space. Ronneberger 

t al. have proposed a modified version of fully connected network 

FCN) called U-Net by establishing skip connections between the 

ame hierarchical layers in both the encoder and decoders, feeding 

ore information about local features in the image from earlier 

ncoder layers directly to later decoder layers. [ 128 ] U-Net which 

as first developed to tackle reconstruction of biomedical images 

as now become more broadly applicable for other types of image 

econstruction cases [ 127 , 226-234 ]. 

Li et al. have compared multiple methods for reconstruction 

f various material microstructures including polymer composites, 

andstone, copolymer thin film morphology, and rubber compos- 

tes from images [ 235 ]. The authors found that CNN autoencoders 

utperformed decision trees and Gaussian random fields at recon- 

truction of the material microstructures quantified by morpholog- 

cal metrics. Chavez et al. have made a comparison of several deep 

earning architectures for reconstructing of missing slices in ex- 

erimental X-ray scattering profiles [ 236 ]. CNN autoencoders, tun- 

ble U-Net and multi-scale dense networks (MSDNets) [ 237 ] were 

ompared with the baseline method – biharmonic functions for re- 

onstruction of horizontal and vertical gaps in the X-ray scattering 

ata. 

.4.2. Generation of cross-modal and multimodal characterization 

ata 

In all materials domain, researchers often use multiple comple- 

entary characterization techniques to elucidate different pieces of 
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nformation about the materials’ structure, morphology, and prop- 

rties. Such complementary, yet distinct, pairs or triplets of data 

btained from the same system can be useful for ML modelers 

ho wish to generate one form of characterization data from an- 

ther form of characterization; we call this cross-modal or multi- 

odal generation or reconstruction. One may ask " Why would such 

ross-modal or multi-modal reconstruction be useful in polymer sci- 

nce and engineering? ". Depending on the availability and acces- 

ibility of the different characterization techniques (e.g., scatter- 

ng, microscopy, spectroscopy), each polymer research facility or 

cademic research lab may have access to high-throughput ca- 

ability in one technique but face limitations (sample prepara- 

ion, resolution) with other technique(s). Researchers in smaller 

cademic laboratories may have easier access to lower resolution 

icroscopy instruments but not higher resolution imaging tech- 

iques or scattering time. Researchers in national laboratories may 

ave access to high-throughput characterization techniques (e.g., 

AXS) but have to deal with extensive sample preparation steps 

or a complementary technique (e.g., SEM). Some forms of char- 

cterization (e.g., microscopy images) are direct visuals and eas- 

er to interpret forms of data while other forms of characteriza- 

ion (e.g., scattering) being in Fourier space are harder to interpret 

ith naked eye. In all of these scenarios, it would be valuable to 

ave ML models that can generate one form of the characterization 

ata (that is useful but either unavailable to a researcher or is not 

menable to high throughput measurement) from another form of 

haracterization data (that is easier to access or amenable to high- 

hroughput measurements). Simultaneously, such cross-modal re- 

onstruction can be used to convert harder-to-interpret characteri- 

ation data to easier-to-interpret characterization data. For estab- 

ishing design-structure-property relationships it would be valu- 

ble to have paired structural characterization from multiple tech- 

iques, regardless of ease or access. 

We start with a couple of strong examples of such ML model 

evelopments in nanomaterials community. Stein et al. have used 

AE to reconstruct optical microscopy images and UV–vis spectra 

f solution droplets containing various compositions of metal ox- 

des ( Fig. 7 a). [ 213 ] A VAE model was trained to reconstruct the

ptical microscopy images and to obtain low-dimensional feature 

aps of optical microscopy images that were used to reconstruct 

V–vis spectra. A conditional VAE model was trained to take both 

he optical microscopy image and the accompanying UV–vis spec- 

ra and reconstruct the optical microscopy image. They achieved 

ood reconstruction performance supported by the underlying con- 

ection of the UV–vis spectra and the color exhibited by the im- 

ged droplet. 

Yaman et al. have used VAEs to enable cross-reconstruction of 

urface plasmonic spectra and SEM images of gold nanoparticles 

 Fig. 7 b). [ 215 ] By matching the similarity of the latent space of

pectra data and latent space of SEM images, they reconstructed 

ne type of characterization from the other with particularly good 

ccuracy for images containing a single nanoparticle. 

Lu and Jayaraman have extended such cross-modal reconstruc- 

ion capability to polymer data. They developed PairVAE [ 216 ] 

or universal cross-reconstruction of material characterization data 

ith a proof-of-concept application to novel morphologies of PS- b - 

MMA block copolymer thin film assemblies synthesized by Doerk 

t al. [ 91 ] ( Fig. 7 c). They used the openly available high-throughput

AXS data and SEM data from Doerk et al. to train the PairVAE. 

hey demonstrate that one does not need much supervision during 

odel training and that it works well even with a small amount of 

ata (e.g., ∼ 50 pairs of characterization data). The trained PairVAE 

 https://github.com/arthijayaraman-lab/pairvae ] successfully gener- 

ted a SAXS profile from an SEM image as input or an SEM im- 

ge from SAXS profile as input. They also found that by pairing 

he SEM latent space (relatively sparse) with the SAXS latent space 
16
relatively clustered), the SEM latent space becomes more con- 

ergent, yielding morphologically closer reconstructions than seen 

ith solo trained SEM-SEM reconstruction model; similarly, the 

aired training makes the SAXS latent space becomes less clus- 

ered, yielding more unphysical SAXS patterns than solo trained 

AXS-SAXS reconstruction model. We note for interested readers 

hat in this PairVAE implementation for SAXS–SEM reconstruction 

u and Jayaraman incorporated random cropping of larger (and 

ew) SEM images during training as a means of data augmentation 

hich helps mitigate the small size of data issue that we often face 

n polymer sciences. 

. Current barriers and future directions 

To harness the power of all the ML methods and workflows we 

escribed in the sections above and to enable automation in syn- 

hesis, characterization, and manufacturing in polymer science and 

ngineering, we still have a few barriers to overcome. The biggest 

arrier in the field of polymer science and engineering arises from 

he diversity of ways various laboratories record and store their 

haracterization data. Laboratory practices range from storing data 

nly locally on a computer connected to the measurement instru- 

ent or locally on an internal laboratory server. However, as many 

f the above workflow developments discussed in previous sec- 

ions show, openly sharing data with researchers outside of an in- 

titution and laboratory can lead to impactful development of new 

nd improved computational analyses methods. Thus, storing data 

nly for sharing within a laboratory or an institution/facility host- 

ng the instrument can be quite detrimental for progress in poly- 

er science. With growing advances in cloud computing and stor- 

ge platforms (e.g., Google drive, Amazon Web Services), measured 

ata can be stored and shared within larger collaborations (with 

wo to ten laboratories) using such platforms fairly easily. Further- 

ore, web-hosted open-data repositories like Zenodo and Figshare 

rovide venues for anyone to share their scientific data on a pub- 

ished / working project that can lead to open-access and utiliza- 

ion by other researchers across the globe for model development 

nd training. 

In addition to the measured data itself, the context of the mea- 

ured data should also be shared. In some cases, the context (e.g., 

rocessing history) impacts the measurement far more than the 

hemical composition of the polymer material. Such contextual in- 

ormation – ‘metadata’ – needs to be stored along with the mea- 

urement. However, researchers in many polymer laboratories are 

ither unaware of the phrase “metadata” or do not follow uniform 

uidelines for recording metadata about the material processing 

istory. We quote Pelkie and Pozzo from their recent perspective 

 238 ] that without a community-wide effort towards unified meta- 

ata and dedicated data management, we will continue to face 

oadblocks in our progress towards advancing automation. 

With the growing popularity of large language models (LLM) in 

aterials and chemistry fields, we expect to see a push towards 

esearch involving data collected by using LLM on the decades of 

cientific literature. [ 239 , 240 ] When LLM is used to extract data

rom publications that have specific phrases, again inclusion of the 

etadata with the measured data would be critical. Metadata in- 

luding labeling of the systems, processing history of the synthe- 

ized and characterized material can also be used for learning by 

LMs. Ensuring proper data collection with community standard- 

zation of metadata records will be a gold standard not only for 

dherence to FAIR [ 198 ] data principles, but also for ensuring reli- 

ble data source for LLMs training. 

In the following sub-sections, we describe recent progress made 

o overcome the challenges we have described so far, as well as 

uture directions for data-driven research in polymer science and 

ngineering. 

https://github.com/arthijayaraman-lab/pairvae
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Fig. 7. Machine learning reconstruction of multimodal material characterization data. (a) Conditional variational autoencoder for reconstruction of UV–vis spectra or optical 

microscopy images of metal oxide solution droplets. Reprinted with permission from ref. [ 213 ] 2019 Creative Commons Attribution License. (b) Variational autoencoders 

for cross-reconstruction of surface plasmonic spectra and SEM images of gold nanoparticles. Reprinted with permission from ref. [ 215 ] 2022 Creative Commons Attribution 

License. (c) PairVAE for cross-reconstruction of SAXS and SEM images of block copolymer morphologies. Reprinted with permission from ref. [ 216 ] 2023 Creative Commons 

Attribution License. 
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.1. Curation of polymer characterization data 

Over the past decade, we have seen significant effort in 

ommunity-curated databases of polymer properties adhering to 

he FAIR principles [ 198 ]: PolyInfo [ 241 ], PolymerGenome [ 242 ],

aterialsMine [ 243 ], etc. The macroscale physical property of a 

olymer material is influenced by multiple factors including the 

hemistry of the polymer(s) and additives, the processing condi- 

ions, and the resulting morphology. To capture the characteriza- 

ion relevant to all of these – chemistry and structure(s) - two 

r more complementary characterization techniques are used. The 

ajority of open-access characterization data pertaining to poly- 

er materials research are deposited with general purpose (i.e., 

ot specifically for polymer research) databases such as Figshare, 

enodo, Dryad [ 244 ], MaterialsDataFacility [ 245 , 246 ], Globus [ 247 ],

OMAD [ 248 ], OSF [ 249 ], Harvard Dataverse, Materials Project 

 27 ], and ScienceDB [ 250 ]. Community Resource for Innovation 

n Polymer Technology (CRIPT) [ 251 ], a recent community-curated 

olymer database is an excellent example of an ongoing effort that 

ays attention to the heterogeneous types of data (material, chem- 

stry, processing condition, and characterization) that exist during 

olymer material synthesis and characterization. CRIPT utilizes a 

raph structure for mapping of a particular material synthesis pro- 

essing with material, characterization data, processing procedures 

nd physical properties. We believe that curation of characteriza- 

ion data along with structure and property data of polymer mate- 

ials can facilitate better understanding of how the processing his- 

ory factor in the making of the material and enable multi-faceted 

ata-driven research on structure-processing-property relationship 

f polymeric materials. 

.2. Uniform metadata of polymer characterization data and 

rocessing procedures 

In a recent commentary [ 252 ] published in Scientific Data, 

hiringhelli et al. have described NOMAD Metainfo [ 253 ], a data 

chema for storing metadata about material and molecular proper- 

ies obtainable from computational workflows such as electronic- 

tructure theory, quantum chemistry, and molecular dynamics sim- 

lations. Examples by Ghiringhelli et al. demonstrate integrated 

omputational workflows for electronic structure calculations sup- 

orted by NOMAD Metainfo. Along these lines, there is a need for 

he development of a unified description of metadata for poly- 

er material experimental characterization, and processing pro- 

edures. Individual deposits of polymer synthesis and characteri- 

ation data in general purpose databases are like scattered gem- 

tones. Unification of metadata of open-access datasets can help 

ring more standardization to polymer material synthesis, charac- 

erizations, and processing procedures, and provide more insights 

nto the general challenges and common characteristics of differ- 

nt processes. We are witnessing more reports of harnessing nat- 

ral language processing (NLP) for knowledge extraction of scien- 

ific material research [ 65 , 254 , 255 ], chemistry [ 256-258 ], reactions

 259 , 260 ], material synthesis procedures [ 6 4 , 261-26 4 ], characteri-

ation data [ 130 , 265 ] and polymer properties [ 266 , 267 ] in recent

ears. Built on the inorganic material synthesis procedure datasets 

xtracted from the Ceder group, Wang et al. have proposed a uni- 

ed language for describing synthesis procedures of inorganic ma- 

erials called ULSA [ 268 ]. Encompassing essential vocabulary of 

olid state, sol-gel, and solution-based inorganic material synthe- 

is procedures, ULSA is a valuable effort towards unifying meta- 

ata describing material synthesis procedures. Similar efforts can 

e developed for synthesis schemes developed by researchers in 

he polymer science community. 
18
.3. Interdisciplinary training of workforce 

With the current push for data-driven approaches for accelerat- 

ng materials design and for AI-driven automation in chemical in- 

ustries’ research and development (R&D), there is a critical need 

or universities to invest in educational programs that train the 

orkforce in an interdisciplinary manner. Higher education insti- 

utions usually only offer graduate degrees (Masters, Doctorates) in 

pecific disciplines where the graduate students deepen the tech- 

ical background knowledge they gained during their undergrad- 

ate education. However, it would be valuable to have students 

tep out of that comfort zone of their core discipline and learn 

nd collaborate with students from completely different techni- 

al backgrounds and associated cultures. In a real-life scenario, it 

akes a team composed of computer scientist(s), data scientist(s), 

olymer scientist(s), and electrical/electronics engineer(s) to build 

igh-throughput characterization instrumentation for formulations 

nd develop relevant ML methods to achieve the desired analy- 

es tasks on characterization results. If researchers from each of 

hese diverse disciplines remained in their own silos during their 

raduate training, they will not learn about other disciplinary cul- 

ures and technical jargon, which can hamper progress in real-life 

cenarios in industries and national laboratories. Interdisciplinary 

lasses will also improve communication across disciplines and 

ead to the creation of customized ML models for the polymer sci- 

nce problem at hand. For example, for a computer scientist/data 

cientist to customize methods that suit the polymer scientists it 

ould help if they knew how to express with minimal language 

arriers their needs (e.g., polymer scientist describing exactly what 

he model should accomplish) or their challenges (e.g., why the 

ollected data is not leading to high-performance with the model 

nd what can be done better). If academic institutions invest in 

ersonnel (e.g., faculty members) and resources (e.g., classroom 

pace, laboratories) for creating new and practical interdisciplinary 

rofessional degree or certificate programs that complement ex- 

sting pure disciplinary strengths, they will better prepare stu- 

ents for future careers in institutions that value collaboration and 

nterdisciplinary competency. There are often barriers to invest- 

ent for development of large degree/certificate programs with- 

ut proven success in smaller pilot programs. Examples of pilot 

rograms include project-based interdisciplinary courses that bring 

ogether graduate students from different degree programs within 

n institution. Teamwork in project-based classes forces students 

o practice effective communication across disciplines and experi- 

nce real-life team dynamics that occur in larger collaborations or 

n industries. 

. Conclusion 

We have provided a review of ML models and methods for 

nalyzing results from three commonly used classes of struc- 

ural characterization methods in polymer science and engineer- 

ng: microscopy, scattering, and spectroscopy. We have highlighted 

ecent developments and applications of ML models and work- 

ows that have enabled automation, classification, segmentation, 

roperty prediction, and reconstruction of structural characteriza- 

ion data from these techniques. In some cases, we have shared 

evelopments and applications that occurred in fields outside 

f polymer science and engineering because we felt these ap- 

roaches could be extended to polymer research. In the last sec- 

ion we have described some current barriers to wide-spread 

se of ML for analyzing polymer characterization and poten- 

ial ways to address them so that we can advance the suc- 

essful use of ML for structural characterization of polymer 

aterial. 
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