Progress in Polymer Science 153 (2024) 101828

journal homepage: www.elsevier.com/locate/progpolymsci

ey

Contents lists available at ScienceDirect

PROGRESS IN

POLYMER
SCIENCE

Progress in Polymer Science

\

\
Machine learning for analyses and automation of structural % Tients )\}
characterization of polymer materials

/ North

} 2024

Check for
updates ‘

Shizhao Lu®P, Arthi Jayaraman >

aDepartment of Chemical and Biomolecular Engineering, University of Delaware

b Data Science Institute, University of Delaware

¢ Department of Materials Science and Engineering, University of Delaware

ARTICLE INFO

Article history:

Received 31 January 2024
Revised 21 April 2024
Accepted 2 May 2024
Available online 3 May 2024

Keywords:

Machine learning
Microscopy

Small angle scattering
Automation

Polymer characterization
Structure data

ABSTRACT

Structural characterization of polymer materials is a major step in the process of creating materials’
design-structural-property relationships. With growing interests in artificial intelligence (Al)-driven mate-
rials design and high-throughput synthesis and measurements, there is now a critical need for develop-
ment of complementary data-driven approaches (e.g., machine learning models and workflows) to enable
fast and automated interpretation of the characterization results. This review sets out with a description
of the needs for machine learning specifically in the context of three commonly used structural char-
acterization techniques for polymer materials: microscopy, scattering, and spectroscopy. Subsequently, a
review of notable work done on development and application of machine learning models | workflows for
these three types of measurements is provided. Definitions are provided for common machine learning
terms to help readers who may be less familiar with the terminologies used in the context of machine
learning. Finally, a perspective on the current challenges and potential opportunities to successfully inte-
grate such data-driven methods in parallel/sequentially with the measurements is provided. The need for
innovative interdisciplinary training programs for researchers regardless of their career path/employment
in academia, national laboratories, or research and development in industry is highlighted as a strategy

to overcome the challenge associated with the sharing and curation of data and unifying metadata.

© 2024 Elsevier Ltd. All rights reserved.

Abbreviations: AFL, Autonomous formulation laboratory; AFM, Atomic force mi-
croscopy; Al, Artificial intelligence; CASGAP, Computational approach for structure
generation of anisotropic particles; CDF, Cumulative distribution function; CNN,
Convolutional neural network; CREASE, Computational reverse engineering analy-
sis of scattering experiments; CRIPT, Community resource for innovation in poly-
mer technology; CTAB, Cetyltrimethylammonium bromide; DKL, Deep kernel learn-
ing; FAIR, Findable, accessible, interoperable, reusable; FCN, Fully connected net-
work; FTIR, Fourier transform infrared spectroscopy; GA, Genetic algorithm; GISAS,
Grazing incidence small-angle scattering; GISAXS, Grazing incidence small-angle X-
ray scattering; GNoME, Graph networks for material exploration; GRF, Gaussian
random field; HAADF, High-angle annular dark-field; iPP, Isotactic polypropylene;
LBNL, Lawrence Berkeley National Laboratory; LLM, Large language models; ML, Ma-
chine learning; MOF, Metal Organic Framework; MSDNets, Multi-scale dense net-
works; MSE, Mean squared error; NEXAFS, Near edge X-ray absorption fine struc-
ture spectroscopy; NLP, Natural language processing; NMR, Nuclear Magnetic Reso-
nance; P3HT, Poly(3-hexylthiophene); P4VP, Poly(4-vinyl pyridine); PCA, Principle
component analysis; PEO, Polyethylene oxide; PLS, Partial least squares; PMMA,
Poly(methyl methacrylate); PS, Polystyrene; PVAc, Poly(vinyl acetate); R&D, Re-
search and development; SANS, Small-angle neutron scattering; SAS, Small-angle
scattering; SAXS, Small-angle X-ray scattering; SEM, Scanning electron microscopy;
STEM, Scanning transmission electron microscopy; TEM, Transmission electron mi-
croscopy; t-SNE, t-distributed stochastic neighbor embedding; UMAP, Uniform man-
ifold approximation and projection; UV, Ultraviolet; VAE, Variational autoencoder;
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1. Introduction

Establishing structure-property relationships for macromolecu-
lar materials (e.g., block copolymers [1-6], polymer blends [7,8],
polymer nanocomposites [9-21]) has been the subject of active re-
search within polymer science and engineering for many decades.
It has been shown for various classes of polymeric materials that
in addition to the choices of polymer chemistry and architecture,
their assembled structures, which could be hierarchical and mul-
tiscale in many cases, dictate the ultimate properties of materi-
als composed of these polymers. With recent advances in poly-
mer synthesis and innovative polymer processing techniques, the
variety of equilibrium and non-equilibrium structures accessible
within the materials has grown exponentially. Identification of the
optimal structure(s) that give rise to the desired properties and
that require minimal costs and efforts to scale up to industrial level
production drive the need for high-throughput experimentation.

WAXS, Wide-angle X-ray scattering; XANES, X-ray absorption near edge spec-
troscopy; XRD, X-ray diffraction.
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With high-throughput experiments comes the associated push for
fast and preferably automated analyses of the synthesized materi-
als and their characterization, and in turn, the need for develop-
ment of appropriate machine learning (ML) workflows.

Development and use of ML workflows in (non-polymer) ma-
terials domains have already made great strides [22-25]. An ex-
ample of the power of ML for materials design is the latest work
from Google DeepMind which used graph networks for materi-
als exploration (GNoME) [26] and predicted ~380,000 new the-
oretically stable inorganic crystalline materials [27]. Researchers
from Lawrence Berkeley National Laboratory (LBNL) then synthe-
sized more than 40 new materials in just 17 days in A-Lab [28];
A-Lab is a robotic (automated) laboratory with capability for syn-
thesis, characterization, and analysis of synthesized inorganic crys-
talline samples. Similarly, significant advances have been made in
ML-based analysis of inorganic/small molecule materials charac-
terization results from microscopy [29-37], scattering [38-40] and
spectroscopy [38,40-42]. In contrast to the many successes in the
inorganic and small-molecule organic materials domains, the use
of ML, high-throughput experimentation, and automation for syn-
thesis and characterization within polymers and soft materials is
still in initial stages. To achieve similar success for Al and ML in
the field of polymer science and engineering requires investment
into creating polymer databases that enable polymer informatics
[43,44], high-throughput experimentation [45-47], characterization
techniques [48-52], ML, and data science methods customized to
visualize and analyze the type of data seen with polymer materi-
als [46,53-58].

In this Review we present noteworthy studies aimed at devel-
opment and application of ML models and ML based workflows
specifically aimed at fast and automated analyses of polymer struc-
tural characterization data. We hope that these studies inspire the
readers to either develop new ML models and methods or adapt
these published methods for their own polymer characterization
analyses. We also encourage the readers to look at previously writ-
ten review articles and perspectives on other relevant subjects
that we do not cover, within the broader topic of machine learn-
ing for polymer science and engineering namely, polymer informatics
[43,44,59,60], featurization of polymers use in ML models [61], au-
tomation in polymer synthesis [62,63], and natural language pro-
cessing for extracting polymer data from literature [64,65].

This review article is organized as follows: Section 2 presents
relevant background information of three commonly used classes
of experimental techniques for structural characterization of
polymeric materials (microscopy, scattering and spectroscopy).
Section 3 presents a review of ML methods applied for analyses,
interpretation, and automated data acquisition of such character-
ization of polymeric materials. Section 4 provides current chal-
lenges and potential future directions for accelerating progress on
the topic of this Review, with the aid of open-access database cura-
tion, unified metadata, and interdisciplinary education on relevant
topics.

2. Common structural characterization in polymer materials

In this section we provide a high-level summary of the three
commonly used classes of techniques for structural characteriza-
tion of polymers, without many details of the instrumentation or
the sophisticated protocols that researchers follow to use the in-
strumentation in these techniques correctly. Instead, our emphasis
is on describing the types of data generated from these character-
ization techniques and the types of physical/chemical information
one can obtain by analyzing that raw or processed data. We believe
that the attention to the type of data and the information gathered
from the data is necessary for the reader to consider suitable types
of ML models for interpreting such data.
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2.1. Microscopy

To characterize the morphology of polymer materials, the com-
monly used microscopy techniques are Optical Microscopy, Scan-
ning Electron Microscopy (SEM), Transmission Electron Microscopy
(TEM), Scanning Transmission Electron Microscopy (STEM), cryo-
TEM, and Atomic Force Microscopy (AFM); we direct the reader
to a recent review on electron microscopy for soft materials. [66]
Briefly, SEM and TEM provide atomic-level to microstructure im-
ages by using electrons as the imaging radiation source. [67] The
use of electrons as the source allows for images with spatial res-
olution as low as tens of picometers in contrast to the hundreds
of nanometers resolution obtained using photons in optical mi-
croscopy. In contrast to electron microscopy, optical microscopy
is used for imaging colloidal materials when the relevant lengths
scales are between 100 s of nm and 100 s of microns. SEM and
TEM differ in the way the techniques work (e.g., thickness of the
sample required, sample preparation, cost, expertise for using the
techniques) as well as the types of images they provide. SEM im-
ages provide information about the composition and roughness of
the polymer film. Typically, in composites or blends, one of the
components (polymers or additives) forms the continuous phase
(the matrix) and the other minority component(s) forms the dis-
persed phases. Via SEM images one can delineate the shapes,
sizes, and spatial distribution of these phases and in the case of
thin films, the surface topography as well. TEM images provide
higher resolution information as compared to SEM images and the
types of structural details one can obtain from TEM images include
molecular-level structure, dimensions, and shapes of the nanoscale
objects in a polymer matrix, crystalline arrangements, and defects.
In STEM, a mode of TEM, the incident focused beam scans across
the specimen and the transmitted signal are collected as a function
of the beam location as it rasters across the sample. One can ob-
tain the atomic arrangement, orientation, and crystalline or semi-
crystalline structure of polymer materials from STEM. Cryo-TEM is
a subclass of TEM that enables imaging soft materials in solvated
environment by rapidly freezing the solvated sample. Cryo-TEM re-
duces sample damage during preparation and from the electron
beams and has gained attention as a valuable method for deter-
mining macromolecular solution structure. Another complemen-
tary technique to SEM and TEM is AFM which gives information
of the surface topography (e.g., roughness) as well as the hard-
ness/softness of the probed domains in the polymer material; typ-
ical length scales probed range from a few Angstroms to a few mi-
crons.

The type of data one obtains from these above microscopy tech-
niques are two-dimensional images where the pixels intensity at
various positions in the images conveys the intended physical in-
formation about the structure of the polymer sample being probed.
Examples of raw data (colored or grayscale) from TEM, SEM and
AFM are shown in Figs. 1a, 1b, and 1c, respectively. One has to
remember that these images are 2D projections of complex struc-
tural features that may have irregular shapes, asymmetric surfaces,
and heterogeneity in the 3D structure. The quality of microscopy
images is subject to the different sample staining techniques, ex-
tent of in-focus vs. out-of-focus, and contrast between object of
interest and the background.

2.2. Scattering

For investigating multi-scale 3D amorphous polymer structures
ranging from 10 A up to few microns, small-angle scattering (SAS)
is a powerful technique. [48,68-76] Small-angle neutron scatter-
ing (SANS) and small-angle X-ray scattering (SAXS) have been used
extensively in the polymer science and engineering community,
for example, to study domains within microphase separated struc-



S. Lu and A. Jayaraman Progress in Polymer Science 153 (2024) 101828

AFM

(a)

(d) SAXS-1D

10° - -
1(em™) =59,
$si02=5%V/V
10* = 200
[ ] 100
r s
£ [pva
100 1 g
[ -§ %
1F g
i £ [
001 F
F 3 60%
0,0001 et Ka¥) 14 16 18 20 22 24
00001 0001 001 01 1 20 (dogrees)
- .
(@)  FTIR (h)  UV-vis ()  NEXAFS
& sL & & & —— Poly(3-methylthiophene)
PVAC i : T PR . — Sexi3-methylthiophene)
02 k N o ©%, — Bi(3-methylthiophene)
.21 H & A CN-450 3 "
: e ON-500 ;
g O T el = 5
g K \ ]
g 02 ]
2 3 \ g
2 < \ =
g o \ %)
< ro
0.2{PVACSiica; \ 4
00 =N : s \N J, P |
2000 1800 1600 1400 1200 1000 800 280 285 290 295 300 305

250 300 350 400 450 500 550 600 650 700
Wave length / nm

Energy (eV)

wavenumber [cm™']

Fig. 1. Examples from polymer literature solely to depict the typical presentation of processed data from the various characterization techniques discussed in this re-
view; the values, tick labels, and scale bars are specific to these examples and not general to all such measurements in the field of polymers. (a)TEM characteriza-
tion of silica-polystyrene nanocomposite morphology. Reprinted with permission from ref. [88]. Copyright 2010 American Chemical Society. (b) SEM characterization of
polystyrene—polydimethylsiloxane block copolymer thin film morphology. Reprinted with permission from ref. [89]. Copyright 2007 American Chemical Society. (c) AFM char-
acterization of neat poly(vinyl alcohol) (PVA). Reprinted with permission from ref. [90]. Copyright 2001 American Chemical Society. (d) 1D SAXS profile of silica-polystyrene
nanocomposite with 5 % volume fraction inclusion of silica nanoparticles. Reprinted with permission from ref. [88]. Copyright 2010 American Chemical Society. (e) 2D SAXS
profile of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer thin film. Reprinted with permission from ref. [91] 2023 Creative Commons Attribution
License. (f) XRD profile of neat PVA and PVA-sodium montmorillonite (MMT) nanocomposite with different MMT loading. Reprinted with permission from ref. [90]. Copyright
2001 American Chemical Society. (g) FTIR spectra of pure poly(vinyl acetate) (PVAc), pure silica nanoparticle, and PVAc absorbed onto silica nanoparticle surface. Reprinted
with permission from ref. [92]. Copyright 2013 American Chemical Society. (h) UV-vis spectra of polymeric graphitic carbon nitride at different preparation temperatures.
Reprinted with permission from ref. [93]. Copyright 2014 American Chemical Society. (i) NEXAFS spectra of dimer, oligomer, and poly(3-methylthiophene). Reprinted with
permission from ref. [94]. Copyright 2017 American Chemical Society.

polymer blend, anisotropic aggregates of nanoparticles or extruded
fibers within polymer nanocomposites), the steps taken during

tures in block copolymers, dispersion or aggregated states of par-
ticles in polymer nanocomposites, and network structure in poly-

mer gels. [48,51,77] The raw SAXS and SANS data is intensity (I)
versus magnitude of scattering wavevector q and azimuthal an-
gle. For polymer systems without any anisotropy in spatial ar-
rangements, the scattering data is averaged azimuthally to cre-
ate one-dimensional (1D) scattering profile, I(q) vs. magnitude of
wavevector ¢q. (Fig. 1d) Traditionally, the I(q) vs. q profile is an-
alyzed in one of two ways: First, by fitting the data to analyti-
cal models (e.g., core-shell [78,79], core-multishell [80,81] etc.) de-
veloped for various canonical polymer structures, on user-friendly
analysis packages like SASVIEW [https://www.sasview.org/] or SAS-
Fit [https://sasfit.org/], or second, by using shape-dependent anal-
yses (e.g., Kratky plot, g% I(q) vs. q). [52,75,76]

For samples where one expects to see anisotropic structures
(e.g., liquid crystalline order within one or more domains of the

measurement as well as analyses is more complex than that for
isotropic structures. In such cases, first the scattering measure-
ments have to be made along carefully selected orientations (with
some domain knowledge of which orientations are strategically
better than others depending on direction of anisotropy) and then
the resulting data has to be analyzed as a 2D scattering profile,
without averaging over all or sections of azimuthal angles. (Fig. 1e)
Ways to analyze such 2D profiles are quite complex as com-
pared to 1D profiles. 2D profiles can be analyzed using packages
like GRASP [https://www.ill.eu/users/support-labs-infrastructure/
software-scientific-tools/grasp] and DAWN [https://dawnsci.org/].
The qualitative analyses of such images involve looking for dif-
fuse halos (implying disorder or weak ordering), patterns of dots
with high intensity like Fig. 1d (indicating ordered domains), and
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asymmetry in the image (implying presence of some anisotropic
arrangement along the direction of input beam). The quantita-
tive interpretation of the 2D profiles traditionally relies on av-
eraging sections of the 2D profile into 1D profiles that are
then fit to shape dependent or independent models as described
above.

While amorphous polymers usually lack precise order and spa-
tial arrangement of atoms, semi-crystalline polymers exhibit peri-
odic and precise atomic and polymer segment-level arrangements.
To discern this atomic arrangement and extent of crystallinity
in semi-crystalline polymer materials, X-ray diffraction (XRD) and
wide-angle X-ray scattering (WAXS) techniques are used. [82,83]
The plot in Fig. 1f shows the typical processed XRD data one an-
alyzes to interpret structural information. The presence of peaks,
their intensity and location along x-axis, are then interpreted
to structural information about the type of crystalline order. 1D
WAXS profiles look similar to the SAXS profiles of materials with
more order (e.g., Fig. 1d), however, the length scales probed by
WAXS are smaller than SAXS and related to atomic-level spatial
arrangements.

2.3. Spectroscopy

Spectroscopy techniques such as Fourier Transform Infrared
(FTIR) spectroscopy, UV-vis spectroscopy, and X-ray absorption
spectroscopy are useful for studying the atomic and electronic
composition of polymer materials. [84-86] Depending on the wave-
length of the incident light wave, spectroscopy methods can detect
or identify different chemical species or functional groups. FTIR
spectroscopy is often used to identify functional groups present in
molecules that have signature absorption peaks at tabulated vibra-
tional frequencies in the FTIR spectrum. For UV-vis spectroscopy,
researchers look for certain ratios of different absorption peaks
present in the UV-vis spectrum for identification of the molecules
or polymer materials. X-ray Absorption Near Edge spectroscopy
(XANES) or Near-Edge X-ray Absorption Fine Structure (NEXAFS)
can generate information of the electronic state, coordination en-
vironment, oxidation state of atoms or molecules from the X-ray
absorption peaks.

Typical data from spectroscopic measurements are in the form
of 1D vector array or 2D image containing a plot of the intensi-
ties of the measured physical property vs. the light beam wave-
length (Figs. 1g and 1h) or energy (Fig. 1i). Analyses of these
measurements require extensive expertise assigning features to
known chemical species and in many cases comparison of the
spectra of the new sample to a reference spectrum (or spectra)
in a database. For example, in Ref. [87], focused on NEXAFS tech-
niques for chemical analysis of polyurethanes, the authors show
how spectra of model polymers provide reference standards for
the quantitative analysis (‘speciation’) of polyurethane polymers
(e.g., quantify the amounts of aromatic and aliphatic components
of polyurethanes). We quote a section from Ref. [87]: “For ac-
curate quantitation, well-characterized NEXAFS spectra of care-
fully chosen models of the polymer components is required. For a
blend of two or more homopolymers (i.e., polystyrene/poly(methyl
methacrylate)), the analytical models can simply be the individual
homopolymers. For quantitation of components in a random block
copolymer (i.e., styrene acrylonitrile), the spectra of the homopoly-
mers (polystyrene and polyacrylonitrile) can be used as compo-
nent models if the polymer and monomer spectra are additive.
Polyurethane polymers are complex, and care must be taken in the
choice of analytical models.” The need for an established reference
spectra database for polymer materials can be a barrier to analyses.
Machine learning methods are deemed as attractive alternatives to
not only circumvent the challenge of reference spectra but also ac-
celerate the data analysis process.
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3. Applications of ML models and workflows

In the polymer science and engineering community, traditional
analyses of the results from microscopy, scattering, and spec-
troscopy relies on experts with knowledge and experience to
interpret qualitative (e.g., identifying shapes of domains, types of
ordered structure, or presence or absence or anisotropy in struc-
tures) and quantitative (e.g., domain sizes, signature peaks of func-
tional groups) information of structural characterization data. We
believe that when the dataset size is small and practical for man-
ual analyses and interpretation, these traditional approaches will
continue to remain the best option. When the amount of data
being generated is too fast and too large for manual analyses,
there is a clear need for development of ML workflows that en-
able fast and objective analysis of polymer structural character-
ization data. In the next sub-sections, we present noteworthy
ML workflow developments in microscopy, scattering, and spec-
troscopy and divide these ML developments by the specific anal-
ysis tasks they accomplish. For readers with minimal experience
with ML jargon, we provide in Table 1 basic definition of com-
mon ML terms (in alphabetical order) that we use extensively in
the following sections. We choose to present these definitions in a
table rather than explain each term as it is occurring in the follow-
ing sections, to maintain smooth flow of information with minimal
disruptions.

3.1. Applications of ML in microscopy

As the typical output of SEM, TEM, STEM, cryoTEM, and AFM
measurements are images, it is logical to consider successful ML
models that have been applied for automated analyses of images in
other fields (e.g., biomedical images [95,96], facial recognition [97],
autonomous driving [98,99]) and extend those models to learn-
ing features of polymer characterization images as well. Regard-
less of the tasks that one wishes to accomplish, the ML model has
to understand the information (e.g., pattern shapes and sizes, tex-
tures, light vs. dark regions) present in the microscopy image to
connect those patterns with a specific type of morphology/domain
shape/size or physical/chemical feature(s) relevant to polymer sci-
ence. Convolutional Neural Network (CNN) is one such deep learn-
ing approach that has been used successfully to learn, extract, and
encode information from an image. [100] CNN typically consists of
a hierarchical structure of convolutional layers placed in between
an input layer and an output layer. [101] Each convolutional layer
consists of multiple filters each of which encodes pieces of in-
formation by conducting convolution on a small perception field
of the entire image. The input image is sequentially encoded into
smaller and smaller feature maps through the hierarchical convo-
lutional layers. The last feature map is used as input for training
the classifier which is typically a couple layers of fully connected
networks after the hierarchical convolutional layers. As one goes
deeper into the convolutional network, the information learned
in the feature maps goes from being specific and local to being
abstract and global. The hierarchical convolutional architecture of
CNN enables more generalizable learning of abstract and complex
patterns in images and minimizes the risk of vanishing gradients
and exploding gradients problems seen previously in deep fully
connected neural networks. [100] Some of the established CNN ar-
chitectures include: LeNet-5 [102], AlexNet [103], VGG16 [104], In-
ceptionV3 [105], ResNet50 [106], Xception [107], Inception-ResNet-
V2 [108], ResNeXt-50 [109], MobileNet [110], and EfficientNet [111].
These CNN architectures differ in the type, number of layers, and
the size of trainable parameters. For additional information on con-
cepts, architectures, applications of CNN we direct the reader to a
recent review [112].
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Table 1
Guide to Machine Learning Terms and Definitions.
Term Definition
Autoencoder An artificial neural network model used for learning abstract, condensed, low-dimensional
representations of high-dimensional data. An autoencoder consists of an encoder and a decoder.
Classification The action or process of grouping things according to shared qualities or characteristics.
Classifier A classifier is any machine learning model that can tackle a classification task.
Decoder An artificial neural network model for learning the forward relationship between a low-dimensional

Dimensionality reduction

Encoder

Exploding gradient

Feature engineering

Feature map | vector
Filter

ImageNet dataset
k-nearest neighbors

Latent feature / variable | space

Layer

Principle Component Analysis (PCA)
Reinforcement Learning

Segmentation
Self-supervised learning

Semi-supervised learning

Skip connection

Supervised learning

t-distributed Stochastic Neighbor Embedding (t-SNE)

Transfer learning

Uniform Manifold Approximation and Projection (UMAP)

Unsupervised learning
Vanishing gradient

Variational Autoencoder (VAE)

input and a high-dimensional output.

A category of methods that does transformation of high-dimensional data into low-dimensional
representations / latent variables | feature maps while retaining key intrinsic properties of the
original data.

An artificial neural network model for learning the forward relationship between a
high-dimensional input and a low-dimensional output.

The problem encountered in training neural network model when there is large or not-a-number
(NaN) gradient updates to the neural network model weights. The trained model will produce
erroneous predictions.

The process of selecting, wrangling, and transforming raw |/ unprocessed data into features that can
be used for more efficient learning |/ better training and testing performances in supervised
learning, often require guidance from domain expertise.

A feature map / vector is a condensed |/ distilled set of features (or low-dimensional data
representation) for the more complex and high-dimensional data.

A small matrix of learnable weights in a convolutional neural network that would slide over the
input image data to apply matrix multiplications.

An open-access dataset containing more than one million photographic images of everyday objects
(like cats, dogs, houses, cars) split into 1000 categories.

A non-parametric, supervised learning method, which uses proximity and majority vote of k nearest
neighbors to decide the label of unlabeled points in space.

A latent feature | variable is the low-dimensional representation obtained through dimensionality
reduction processes. A latent space is a collection of such latent features / variables. Latent feature |
variable is synonymous with feature map | vector.

A layer is a building block of a neural network that is a collection of vectors or matrices containing
learnable parameters known as weights.

A linear dimensionality reduction method.

Training of machine learning models with a balance of exploration and exploitation for long-term
reward optimization

In the context of image learning, segmentation is the task of delineation of objects of interest from
the image background.

Training of machine learning models without manually labeled data; machine-generated labels are
used during training.

A data-efficient way to conduct supervised learning by combining self-supervised learning |
unsupervised learning of the machine learning model with supervised learning using the trained
model. The data used for the two parts of learning are often different datasets but can also be the
same dataset.

Skip connections are connections made between non-adjacent layers (separated by one or more
layers) in a residual convolutional neural network for learning of the residual (output vs. input) of
the layer for improved performance.

Training of machine learning models with manually labeled data.

A non-linear dimensionality reduction method

The use of a trained machine learning model to train and learn on a different dataset for improved
performance and reduced amount of the training data needed.

A non-linear dimensionality reduction method.

Training of machine learning models without manually labeled data.

The problem encountered in training of neural network model when there is exceedingly small or
zero gradient updates to the neural network model weights. The model stops learning.

A modified version of autoencoder that maps the low-dimensional representations to a probabilistic
multi-dimensional Gaussian distribution.

In the following sub-sections, we describe the various analysis
tasks one would want to accomplish using ML models when they
are analyzing polymer characterization microscopy images.

3.1.1. Task: classification

Classification of microscopy images in the context of polymer
science and engineering usually involves these types of tasks: la-
beling an image as corresponding to one or other type of mor-
phology (e.g., lamellar vs. spherical), identifying shapes of one or
more domains in the image (e.g., circular, elliptical, fractal, etc.),
identifying particle or aggregated chains’ orientations (isotropically
arranged, dispersed, aggregated, orientationally aligned, fibrillar,
etc.). The majority of the literature where ML models have been
trained for classification tasks has been in the area of nanomateri-
als; next, we survey some of those recent works that we consider
to be readily extendable to images from polymer materials as well.

Modarres et al. have used a CNN model that was pretrained
on the ImageNet dataset [113] to classify SEM images belonging to
different nanomaterial subcategories like nanoparticles, nanofibers,
porous structures, films, coated surfaces, powder, etc. [114] The
classification performances of individual subcategories has revealed
some categories with significantly lower classification accuracy.
The lower classification accuracy has been explained by one of
these two reasons: some images from distinct categories were too
similar (leading to poor classification) or some images contained
elements of multiple categories (leading to difficulty in classifica-
tion). The model achieved an overall accuracy of 90 % with their
nanostructure classification workflow.

Xu et al. have used CNN to classify copolymer microstruc-
tures from AFM images. [115] In their study, they synthe-
sized styrene-co-(n-butylacrylate) copolymers with five different
architectures- random, diblock, triblock, linear-gradient and V-
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shaped gradient- and used microscopy and differential scan-
ning calorimetry to characterize microstructure and thermal
properties (e.g., glass transition temperature, Tg) of spin-coated
films of each of these polymers. In their quest to use ML to
connect macroscopic (thermal) properties, microstructure, and
copolymer architecture, in one step, they employed CNNs for clas-
sifying the AFM images into their respective microstructures. The
authors discussed the difficulty in training CNNs (with many pa-
rameters to be learned) with small data sets; the smaller size
of the data set is a universal problem within soft materials. So
the authors took advantage of transfer learning; they used a
model pre-trained on a much larger simulated microstructure im-
age dataset [116] (what the authors call as “introducing domain
knowledge into the ML model”) to learn the specifics of the ex-
perimental data by fine-tuning the pre-trained model’s parame-
ters with the data from their own experiments. Transfer learn-
ing is a viable approach when dealing with small image data
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sets common to academic research labs without high-throughput
instrumentation.

Another study that has used transfer learning in a semi-
supervised manner to address the difficulty of training from small-
size image datasets is the work by Lu et al. to classify TEM im-
ages to identify nanowire morphologies. Lu et al. have developed a
semi-supervised transfer learning workflow to facilitate automatic
and label-efficient classification of protein / peptide nanowire mor-
phologies from TEM images (Fig. 2a). [117] Semi-supervised learn-
ing refers to ML workflow consisting of a self-supervised learning
part (i.e., no manual labels required, target label can be derived by
the machine from the input data) and a supervised learning part
(i.e., process where images and their corresponding labels are pro-
vided by the user to the model). Lu et al.’s workflow has performed
transfer learning using an image encoder of ResNet50 architecture
[106] that was trained via self-supervised learning on generic mi-
croscopy images, as a feature encoder for their task-specific images

(a)

Generic microscopy

Semi-supervised machine learning
workflow for TEM image analysis

images

train

No labels

Self-supervised

Ig image encoder
Task-specific TEM ! \Transfer Downstieam
images Il tasks
N . Classification
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encoder Object detection
4 Few labels

Convolutional
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Fig. 2. Machine learning classification of phases or morphologies of polymer materials from microscopy data. (a) Semi-supervised machine learning workflow for automated
classification of nanowire morphologies from TEM images. Reprinted with permission from ref. [117] 2022 Creative Commons Attribution License. (b) Machine learning
workflow for classification of the miscibility of polymer blends. Reprinted with permission from ref. [120]. Copyright 2023 American Chemical Society. (c) Machine learning
classification of chirality of nanoparticles from SEM using CNN. Reprinted with permission from ref. [121]. Copyright 2023 American Chemical Society.
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containing nanowire morphologies. They showed classification ac-
curacy above 90 % and their workflow requires fewer than ten la-
beled images for classification using the encoded features as in-
put data for the downstream classifier. They also demonstrated the
ability to generalize their workflow to classification of morpholo-
gies of nanoparticle assembly and identification of virus types from
TEM images found in open-access datasets [118,119].

Liang et al. have utilized transfer learning methods to classify
miscibility of polymer blends from SEM images in Fig. 2b. [120]
More than five hundred SEM images depicting either miscible or
immiscible polymer blends were collected from literature and used
for training and testing their ML methods. They used and com-
pared three different CNNs for learning and classification of SEM
images, all of which showed better performance when applying
transfer learning methodology. They achieved 94 % accuracy on the
test dataset with the best classification model.

While not directly connected to polymers, a study by Visher-
atina et al. using Siamese learning protocol to create feature vec-
tors of SEM images containing chiral nanoparticles (Fig. 2c) is
worth sharing. [121] Chirality is an important aspect for charac-
terization of hierarchical structure of semi-crystalline polymer as-
semblies. In Siamese learning, the feature vectors of images be-
longing to the same chirality (left-hand or right-hand) have sim-
ilar values. Using this idea of Siamese learning, then the authors
trained a nearest neighbor classifier to classify the chirality class
of the nanoparticle in the SEM images using the feature vectors as
input with 93 % accuracy.

3.1.2. Task: particle detection / segmentation / shape analysis

Identifying the spatial arrangement of nanoparticles in a poly-
mer matrix/medium is a common structural characterization task
in polymer nanocomposites sub-field because the physical proper-
ties of polymer nanocomposites have been shown to be dictated
by the nanoparticles’ spatial arrangement. [9,13,14,122,123] Under-
standing if the nanoparticles are in a dispersed state or if they
are aggregated, and if so in what arrangement, requires ML mod-
els capable of particle detection, segmentation, and shape analysis.
In this sub-section we describe ML model development and appli-
cation, regardless of the materials science field, which have been
successful specifically for these tasks - particle detection, segmen-
tation, and shape analysis.

Ziatdinov et al. have demonstrated the potential of using deep
learning for atomic detection in STEM images (Fig. 3a). [124] They
have also shown that one can track atomic reorientation using
their deep learning workflow; such ML methods could be extended
for analysis of time series of electron microscopy images.

Qu et al. have used a deep learning model for detecting silica
and iron oxide nanoparticles in a polymer (polymethylmethacry-
late, PMMA or polyethylene oxide, PEO) matrix from TEM images.
[125] They broke down a large TEM image into smaller images and
extracted the nanoparticle positions and sizes automatically using
their particle detection ML model. Using the location and size in-
formation of the nanoparticles, they quantified the assembly state
of the nanoparticles in the polymer matrix by calculating a sur-
rogate parameter termed as the particle number fluctuations. In
a subsequent work, Qu et al. applied that same particle detection
workflow to detect and track nanoparticles in semicrystalline poly-
mer nanocomposites from AFM images [126].

Yao et al. have integrated real-time ML segmentation analysis
models with liquid-phase TEM videos to study the diffusion, kinet-
ics, and assembly of colloidal nanoparticles. [127] They used a pop-
ular neural network architecture U-Net [128] that in the past had
been shown to do segmentation tasks for biomedical image anal-
yses well. [129] Compared to conventional algorithms that require
users to select a priori a threshold value in intensity to mark as
pixel or region as belonging to one domain or another, U-Net does
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not require a threshold value to be selected manually as input. In-
stead, U-net automatically decides key features from the TEM im-
age that determine what domain should be assigned to each pixel.
These authors also showed that U-Net can deliver robust segmen-
tation results even when the images are blurry or have low signal-
noise ratio.

After particle detection and/or segmentation tasks are com-
pleted, one can also pursue automated shape analysis of the
detected nanoparticles or segmented regions (Figs. 3b and 3c).
[118,130-134] For readers interested in learning more about U-Net
and use of the U-Net architecture for image analyses tasks, we
recommend a recent comparison of model performances of U-Net
[128] and other versions of U-Net by Saaim et al. [135] Five adap-
tations of U-Net including: R2U-Net [136], Attention U-Net [137],
BDC U-Net [138], U-Net++ [139] and U-Net 3+ [140] have been
compared alongside with U-Net on segmentation of nanoparticles
from TEM images.

3.1.3. Task: automation in image acquisition and analyses

While the previous two sub-sections describe the ML model de-
velopment for tasks to be done after the microscopy images have
been obtained, one can also use computational methods to auto-
mate image acquisition prior to analyses. Here we highlight some
of those types of studies and their accomplishments.

Touve et al. have reported a high-throughput TEM experiment
to map the phase diagram of block copolymer amphiphile as-
sisted by automated image analysis [141]. By varying the sample
block copolymer compositions, they saw formation of spherical mi-
celle, wormlike micelle, or vesicle morphologies. They used an au-
tomated image acquisition software SerialEM [142] to automate
the high-throughput generation of high-resolution montages over
a large area of 45 samples. Following that, statistical shape anal-
ysis was applied to quantify block copolymers’ assembled struc-
tures’ shapes and sizes. A robust image binarization method [143]
was used for segmentation of micelle particles from the back-
ground. Subsequently, an elastic curve-based shape clustering al-
gorithm [144] was used for categorizing different particle shapes
into spherical micelle, wormlike micelle, and vesicles.

Krull et al. have developed a ML framework called DeepSPM
for automating acquisition of high-quality scanning probe mi-
croscopy (SPM) images. [145] DeepSPM includes an active learning
of regions in the image/sample that have points of interest. They
trained a CNN model to assess the quality of SPM images in real-
time. When the SPM image quality was assessed as poor by the
CNN model, then a deep reinforcement learning agent would ad-
just the condition of the probe to obtain higher-quality images.
Such models can be valuable in acquisition and classification of
polymer film data continuously during a multi-day long experi-
ment and for automatically correcting the probe as the experimen-
tal conditions (e.g., temperature, solvent composition) vary.

To develop a method friendly to beam-sensitive materials, Roc-
capriore et al. have applied Bayesian optimization methods to
High-Angle Annular Dark-field (HAADF) STEM image acquisition
that can map the domains through adaptive sampling. [146] They
used small patches of atomic-resolution regions as input features
and a Deep Kernel Learning (DKL) model [147] to predict experi-
mental diffraction patterns acquired at these image locations. The
DKL model combines the deterministic deep neural network and
the stochastic Gaussian Process model; the Gaussian Process op-
erates on low-dimensional representation of the microscopy im-
age patches learned by the deep neural network. The DKL model
predicts functional responses such as the diffraction patterns and
gives uncertainty of the responses as part of the Gaussian Process
model. For samples that are sensitive to electron beam dosage,
they accomplished efficient sampling for different systems of ex-
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perimental samples with low uncertainty in the responses (e.g.,
diffraction patterns).

3.1.4. Task: design-structure-property relationships

So far, we have described models for microscopy image acqui-
sition and image interpretation (classification, segmentation, iden-
tification of components). In this section we review recent stud-
ies that have used data driven approaches linking information
from microscopy images to predict physical properties of the poly-
mer material or to create relationships between the materials
design/condition and observed structures. These studies we de-
scribe below use ML modeling to directly address the holy grail
in most polymer research activities - establishing design-structure-
property relationships.

Using AFM images of various styrene-co-(n-butylacrylate)
copolymer morphologies, Xu et al. have compared regression-based

ML methods (linear regression, support vector regression, and ran-
dom forest regression) vs. deep learning methods for predict-
ing polymer property (e.g., glass transition temperature) from mi-
croscopy image data. [115] Visual features were extracted manually
from AFM images and served as input to linear regression, support
vector regression, and random forest regression. They also showed
that for deep learning models (e.g., CNN) one does not need to
manually extract visual features but rather the model selects vi-
sual features automatically from the AFM images. This makes deep
learning methods better for generalized feature extraction tasks
than conventional regression models.

Vargo et al. have applied various ML models such as random
forest regressor, gradient boosting regressor, kernel ridge regressor
and support vector regressor to identify structural features- peri-
odicity, microdomain ratio, and grain size from an AFM image. The
specific data they used were AFM images (output) of nanocom-
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posite thin film comprised of polystyrene-b-poly(4-vinyl pyridine)
or PS-b-P4VP, 3-pentadecylphenol, and iron oxide nanoparticles
for varying (inputs) block copolymer molecular weight, ratio of
the two blocks, nanoparticle size and loading, solvent fraction,
and the nanocomposite thin film thickness [148]. The authors cu-
rated ~600 AFM images from past literature for ML model train-
ing and testing. They then performed feature engineering to cre-
ate a 3-level hierarchical feature vector - whole-image, grain-scale,
microdomain-scale - from an AFM image depicting block copoly-
mer morphology as the prediction targets. By inspecting the corre-
lation matrix between the inputs and outputs, they noted that the
periodicity is heavily determined by the molecular weight, whereas
the grain size was not correlated to any of the input variables. The
microdomain ratio was deemed a more “interesting” target as it
is non-linearly dependent on the different component ratios. With
the random forest regressor, they satisfactorily predicted the mi-
crodomain ratio using experimental parameter inputs .

3.2. Applications of ML in scattering

The typical output of scattering measurements is a 1D profile
of I(q) (intensity) vs. q (magnitude of wave vector) or 2D profiles
capturing intensity as a function of azimuthal angle and magni-
tude of wave vector, g. As shown in Figs. 1d, 1e and 1f, the 1D
profiles are curves and the 2D profiles are two-dimensional im-
ages of intensity patterns that look like spots in a specific pattern,
sharp or diffuse symmetric or asymmetric rings, and all of these
patterns hold information about the sizes, orientations, and pack-
ing of atoms, molecules, and domains. Deep learning models, en-
semble ML models, and optimization algorithms can be used for
scattering data analyses tasks like automated classification of the
measured data (e.g., connecting the measured profile to a specific
class of morphology like spheres, rods, etc.) and interpretation of
the scattering profile by quantifying relevant aspects of the struc-
ture (e.g., domain shapes, sizes, radius of gyration of the polymer).
ML can also help in automating high throughput scattering mea-
surements. In the following sub-sections, we review how ML de-
velopments have aided scattering tasks - classification, interpreta-
tion, and automation - in polymer science and engineering. As we
did in the previous sections, here too we highlight work done in
soft materials as well as promising ML work in other areas of ma-
terials sciences that could be extended to polymer sciences.

3.2.1. Task: classification

As one of the outputs of scattering experiments is a 2D image
of intensities, we first describe ML model development for clas-
sification of scattering images based on the patterns of intensi-
ties they show. Wang et al. have used CNN and convolutional au-
toencoders to classify measured X-ray scattering patterns of self-
assembled polymer films, nanoparticles, lithographic gratings, and
organic semiconductors. [149] They trained their models to learn
attributes of the scattering images, specifically an isotropic ring,
anisotropic/isotropic halo, anisotropic/isotropic diffuse low q fea-
tures. They noted that automatic attribute recognition can be a
challenge because multiple images with the same attribute can be
different morphologies. Upon inspection of classification precision
score of individual labeling categories in their dataset, they found
that for some cases where classification precision was low, either
the target attribute had an unusual appearance or was highly lo-
calized or there was subtlety in some of the attributes, ambigu-
ous labeling, and/or error happening during the measurements. To
improve the classification accuracy of such atypical images, they
suggest that researchers augment the training data with additional
examples of the borderline cases; one way to augment the over-
all training data is by creating/generating synthetic (i.e., simulated)
images exhibiting such atypical or marginal patterns.
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While not directly related to polymers, it is worth noting that
CNN models have also been used for classification of nanopar-
ticle shapes from grazing incidence small-angle X-ray scattering
(GISAXS) [150] and extraction of nanoparticle orientation distribu-
tions from grazing incidence small-angle scattering (GISAS) [151].
In the former study [150], the authors calculated ‘synthetic’ GISAXS
intensities using the FitGISAXS code [152]. Specifically, they simu-
lated the GISAXS patterns of tellurium nanoparticles on a Si sub-
strate with a specific incident angle. Their data contained GISAXS
patterns of eight classes: “capsule, spheroid, ellipsoid, truncated
spheroid, hemispheroid, prism based on an equilateral triangle
(prism3), prism based on a regular hexagon (prism6), and cylin-
der”. These particle shapes were mathematically described by their
diameter, aspect ratio in the vertical plane, and size dispersion; for
ellipsoid and truncated spheroid, parameters more specific to those
shapes were added (e.g., ratio of vertical diameter to height for
the truncated spheroid and aspect ratio in the horizontal plane for
the ellipsoid). After training and testing the CNN with simulated
GISAXS images, they demonstrated that trained CNN could classify
the shapes of Te nanoparticles in the GISAXS images from the ex-
periments. Such models can be valuable for researchers working
with polymer nanocomposites composed of inorganic nanoparti-
cles embedded within a polymer matrix. Understanding how pro-
cessing of such composites alters the spatial arrangement and ori-
entation of the various nanoparticles (depending on their shape,
size, filler fraction) can be valuable in predicting the resulting
macroscopic properties of the composite.

Aty et al. have developed a computer vision-based ML pipeline
for classification of lipid phases (e.g., lamellar, hexagonal, and cubic
phases) from 2D SAXS patterns. [153] With a transfer learning ap-
proach, larger volumes of simulated (or ‘synthetic’) SAXS patterns
were used for pretraining of their CNN model before finetuning on
a small set of real experimental SAXS patterns. They used unsu-
pervised clustering methods such as Principle Component Analysis
(PCA) [154], t-distributed Stochastic Neighbor Embedding (t-SNE)
[155] and Uniform Manifold Approximation and Project (UMAP)
[156] to show that their simulated SAXS data are representative of
the real experimental data. Synthetic data can be generated with a
larger range of tunable parameters and smoother variations whilst
constraining the noteworthy features of each phase. They achieved
99.6 % classification accuracy on the test samples with the trans-
fer learning approach. Dealing with coexisting lipid phases, the au-
thors suggested potential expansion of classification of individual
lipid phases to classification of the composition of the coexist-
ing phases. We feel that such ML approaches could be useful for
polymer researchers who work with design parameters or condi-
tions that lead to coexistence of two phases (e.g., perforated lamel-
lar and cylinders or perforated lamellar and imperfect gyroids in
block copolymer phase diagram) at equilibrium or due to inten-
tional/unintentional kinetic trapping.

On that note of co-existence, many commercially used polymers
(e.g., polyurea) and conducting polymers (e.g., poly(3- hexylth-
iophene) or P3HT) exhibit semi-crystalline morphologies where
crystalline phases co-exist with amorphous phases. Relevant to
crystallinity, we note that many studies have shown success in
using ML for classification of inorganic crystalline phases from
X-ray diffraction patterns [157-164]. These studies have greatly
benefited from large databases of well-defined and characterized
crystal structures (e.g. Inorganic Crystal Structure Database [165]).
Even though XRD is often used to identify crystallinity in semi-
crystalline polymers [166-169], unfortunately, there is a dearth
of similarly well-curated databases comprising different semi-
crystalline polymers. Additionally, unlike inorganic crystalline ma-
terials, for polymers it is vital to also store the processing history
of the material along with this data as the extent of crystallinity
measured is dependent on the processing steps and history. [170]
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We circle back to this topic of ongoing challenges in polymer com-
munity in later sections to discuss what polymer researchers can
do better so that we can transfer such successful ML models from
other materials community for semi-crystalline polymer character-
ization purposes.

3.2.2. Task: interpretation of small-angle scattering profiles of
polymers

Interpretation of small-angle scattering profiles (i.e., SAXS and
SANS) from polymer materials can be qualitative - i.e., identify-
ing the predominant shape of domains- or can be quantitative —
i.e,, calculating the distribution of shapes and sizes and other rele-
vant structural parameters. For qualitative interpretation, ML mod-
els have been developed to take as input SAXS and SANS profiles
and to directly output the most likely/closest shapes of the do-
main structures (e.g., spheres, rods, sheets) [40,171] Fig. 4a shows
the use of transfer learning for re-training a convolutional neu-
ral network (CNN) to take as input a 2D SANS profile and output
the shape of the structure(s) that is (are) in the material. [172]
Alternately, ML models have also been used to identify the best
choice of the shape-based analytical model one should use to fit
the scattering profile to arrive at the quantitative structural infor-
mation. [173] (Fig. 4b) While these methods are valuable in iden-
tifying standard shapes, they will not work for systems where the
observed structures do not fit these standard shapes.

ML workflows have also been developed to directly obtain
quantitative structural information from scattering profiles. Along
these lines, Fig. 4c shows work by Franke et al. developing ML
methods for analyzing SAXS data from protein solutions. [174]
Franke et al. transform experimental SAXS patterns into feature
vectors and then use k-nearest neighbor method to obtain not only
the shape of the protein but also its maximal diameter as well
as molecular mass. He et al. developed a deep learning method
for model reconstruction from SAXS data [175]. They used an
auto-encoder for protein 3D models to compress the information
about the protein’s 3D shape information into vectors of a 200-
dimensional latent space. These vectors were optimized using ge-
netic algorithms to build 3D models that are consistent with the
input scattering data.

It is vital that we emphasize key differences between proteins
and a variety of non-biological polymers (synthetic or bio-derived
and functionalized) in this context of scattering analyses. Most pro-
teins have the advantage of having precise secondary and tertiary
structures and large protein databanks that contain the coordinates
of thousands of such proteins’ precise structures. In contrast, most
synthetic polymers do not have precision in size (e.g., molecular
weight distribution) or structures (amorphous, disorder structures
with dispersity in sizes and shapes). As a result, most polymer
structures are not stored in databases and thus, the polymer com-
munity lacks the advantage of having large protein databases that
serve as training data and testing data for many ML models aimed
at protein structure prediction. To specifically address the need to
automate and accelerate interpretation of SAXS and SANS profiles
obtained from polymer systems that are mostly amorphous (i.e.,
lack of secondary or tertiary structures as in proteins, zero to min-
imal crystalline arrangements) and have dispersity in most rele-
vant structural dimensions, Jayaraman and coworkers developed
CREASE - Computational Reverse Engineering Analysis of Scatter-
ing Experiments. [176-184] (Fig. 4d)

CREASE was developed to overcome some traditional challenges
in scattering analyses in the field of polymer science and engi-
neering. The scattering profiles in polymer systems have tradition-
ally been interpreted using conventional analytical model-based
fitting, as mentioned earlier and as described in many relevant re-
view articles. [48,68-75] Conventional analytical scattering mod-
els involve assumptions about the ‘primary particle’ (i.e., macro-
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molecule, micelle, coated nanoparticles, particles with unconven-
tional shapes) and/or the interactions that lead to their spatial ar-
rangement (e.g., sticky hard-sphere model). With significant ad-
vances in polymer synthesis and processing, polymer scientists are
observing or deliberately achieving unconventional, novel struc-
tural arrangements that are not captured by the large library of
existing analytical models. One can always develop new analytical
models from scratch and manually fit the scattering profiles to ar-
rive at the information they wish to learn. However, manual fitting
is not conducive for analyzing high-throughput or time-series data.
Hence, CREASE was developed to alleviate these problems, espe-
cially this reliance on analytical models, and to accelerate scatter-
ing analyses to enable automation.

CREASE [https://github.com/arthijayaraman-lab/crease_ga] uses
a simple, easy to adopt optimization method - genetic algorithm.
As shown in the schematic in Fig. 4d, CREASE’s genetic algorithm
(CREASE-GA) takes as input SAXS and/or SANS scattering profiles
- Iexp (q) or lexp (q,0) where 6 is the azimuthal angle. CREASE re-
quires the user to choose their relevant structural features (‘genes’)
based on their domain knowledge of the general shape of the as-
sembled structure from other imaging techniques and/or subject
matter expertise. Then, CREASE-GA starts with an initial ‘genera-
tion’ of many ‘individuals,” where each individual has a unique set
of ‘genes.” CREASE-GA iterates towards identifying all optimal indi-
viduals whose structural features gives rise to a computed scatter-
ing profile, Icomp (q), that closely matches the input experimentally
measured scattering profile, Iexp (q).

One important step in the CREASE-GA loop is the calcula-
tion of Icomp (q) for each individual in every generation. The
traditional (physics-based) way to calculate the Icomp (q) is to
create for each individual representative three-dimensional real
space structures corresponding to the structural features (genes)
of that individual. These real-space structures are then filled with
point scatterers whose scattering length densities represent the
constituents of the system, and using the Debye equation on
the scatterer positions one arrives at the Icomp (q). This calcula-
tion can be computationally intensive. The faster way to calcu-
late Icomp (q) is by using a ML surrogate model that links the
structural features directly to Icomp (q). Jayaraman and cowork-
ers have used both neural networks [178,181-183] and XG-Boost
based model [184] to train on thousands of computed (or ‘syn-
thetic’) scattering profiles calculated from the Debye method for
various sets of genes and structures. Through ML enhancement,
CREASE has been shown to be fast and suitable for identify-
ing multiple real-space structures simultaneously, which is es-
sential to the success of the proposed high-throughput screening
experiments.

CREASE method has been used successfully to interpret experi-
mental SAXS or SANS profiles from amphiphilic polymer solutions
at dilute concentrations. CREASE identified structural features for
a variety of assembled polymer structures in solution - spherical
core-shell micelles, [185] polypeptide- based vesicles, [180] syn-
thetic cylindrical micelles, [178,179,186] and bioderived polymer
fibrils[182]. In the above studies, either CREASE was shown to out-
perform the analytical models (e.g., polydisperse vesicles [180], mi-
celles composed of unique new polymer chemistries [185]) or per-
formed just as well as analytical models (e.g., methylcellulose fib-
rils [182]). In some cases, CREASE enabled testing of hypothesized
structures even if corresponding analytical models did not exist.
[186] We note that in these studies, the shapes of the assembled
structures were known from microscopy and the user chose only
the relevant structural features for CREASE-GA to iterate over. If
such shape information is not known, one potential new direction
is to combine shape-classifying ML models described under clas-
sification and ML-CREASE. This way the classification ML model
would identify the potential (closest) shapes, and then the user can
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customize ML-CREASE to optimize relevant structural features (e.g.,
dimensions) for each of those potential shapes.

CREASE has also been used to understand the extent of mix-
ing and demixing in amorphous materials at high concentrations.
For example, CREASE was used to analyze SAXS and SANS pro-
files from concentrated binary mixture of polydisperse spherical
nanoparticles (i.e.,, P(q) is a sphere form factor) to determine the
extent of segregation/mixing of the two types of nanoparticles -
polydopamine and silica - and the precise mixture composition.
[181,187-189] The extent of mixing/demixing and the composition
of the mixture were relevant to predict structural colors. [187-
189] Even though CREASE iterates over a lower-dimensional rep-
resentation of the real-space structures, one of the advantages of
CREASE is that at the end of the optimization loop it also out-
puts a 3D real-space structure(s) representative of those optimized
structural features. These 3D real-space structures are valuable for
follow-up simulations or calculations of properties (e.g., color, me-
chanics, rheology) using those real-space coordinates. Refs [187-
189] demonstrate such calculations which serves to further con-
firm CREASE predictions.

Most recently. CREASE has been extended to overcome another
scenario one may face when trying to interpret structure in poly-
mer solutions where both the structure S(q) and form factors P(q)
change with varying experimental conditions. [183,190] The reader
is reminded that the measured I(q) has both P(q) and S(q) contri-
butions, 1(q) = P(q) S(q). Traditionally, in many cases, researchers
assume that the P(q) calculated at one condition (where S(q) = 1)
does not change with concentration and use that calculated P(q)
as is to interpret S(q) at higher concentration. This assumption is
not necessarily valid if the ‘primary particle’ (e.g., micelles, vesi-
cles) evolves with changing system/solution conditions. This drives
the need for simultaneous identification of form and structure [i.e.,
P(q) and S(q)] and structural interpretation at the conditions of in-
terest without assumptions about P(q) not changing and without
using approximate analytical models that may be inapplicable for
the system at hand. To address this need, in recent work, Jayara-
man and coworkers ‘P(q) and S(q) CREASE’ that extends previous
CREASE capabilities. [183]'P(q) and S(q) CREASE’ can be used to
analyze SAXS or SANS profiles from polymer materials to simul-
taneously obtain the form factor P(q) (e.g., dimensions of domains
with unconventional shapes) and structure factor S(q) (e.g., spa-
tial arrangement of those domains) without relying on any ana-
lytical models. They validated the approach by analyzing scatter-
ing from computationally generated structures for which the di-
mensions (form factor) and spatial arrangements (structure fac-
tor) are known. The validated method was then used to ana-
lyze SANS profile from experimental measurements of surfactant
coated nanoparticle solutions with the goal to understand the sur-
factant coating/shell arrangement with changing salt concentration
and temperature, without being limited by off-the-shelf approxi-
mate/incorrect analytical models. [190]

The above studies of CREASE took as input 1D SAXS profiles
and/or SANS profiles, either (i) a single SAXS profile of the sys-
tem, or (ii) one SAXS profile and a one SANS profile of the same
system, or (iii) multiple SANS profiles with contrast matching one
or the other component(s) in the system with the solvent. To ex-
tend CREASE to interpret 2D profiles for soft materials that show
anisotropy in the assembled structure, Jayaraman and coworkers
have now developed CREASE-2D [184]. CREASE-2D enables direct
interpretation of 2D profile which is far more complex than anal-
ysis of 1D scattering profiles, I(q) vs. q, obtained by averaging
along all azimuthal angles. Currently, researchers who study mate-
rials with any form of anisotropic structure (e.g., processed aligned
synthetic conducting fibers, field-driven orientational alignhment in
polymers for sensing/electronics, sheared formulations during rhe-
ological measurements in personal care industry) need to inter-
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pret the entire 2D scattering profile. Yet analyses of such 2D pro-
files have traditionally only been done by fitting analytical mod-
els to 1D profiles obtained by averaging along all azimuthal an-
gles or sections of the 2D profile. Such averaging schemes lose
key information about the anisotropic structural arrangements that
can drive the function of the materials. CREASE-2D method over-
comes these current limitations and provides polymer researchers
the speed (due to ML surrogate models) and accuracy (by avoiding
any averaging of the 2D profile) to interpret quantitative structural
information (e.g., domain shapes, sizes, orientation, volume frac-
tion) from the entire 2D scattering profiles without any approxi-
mations. The surrogate model used to link structural features to 2D
scattering profile was trained on 3D structures generated by a re-
cent developed computational method - Computational Approach
for Structure Generation of Anisotropic Particles (CASGAP) [191].
CASGAP generates representative 3D structures for input desired
distribution of particle (representing domain) sizes and shapes and
desired spatial orientations without particles overlapping at de-
sired packing density. Using 2400 generated structures generated
from CASGAP, Jayaraman and co-workers were able to train the
surrogate XG-Boost ML model. Then, using 600 structures (unseen
by the surrogate model) they validate the performance of the ML-
model as well as the successful performance of the entire CREASE-
2D workflow.

Another ML-based workflow developed by Roding et al. focused
on interpreting 3D structures of disordered soft materials with two
or three phases from their SAXS profiles [192] They considered
model systems consisted of two phases that they label as “pore”
and “solid” or three phases where the third phase could be an in-
terface between the “pore” and “solid” phases; all phases have dif-
ferent electron densities. Even though they do not explicitly state
the types of polymer systems where such structures are seen, one
knows that binary polymer blends or multi-component polymer
nanocomposites (e.g., binary blends with nanoparticles at inter-
faces) exhibit such bicontinuous structures making this method
relevant. They used XG-Boost based model to estimate microstruc-
tural parameters from SAXS data. The microstructure model is re-
stricted to a periodic Gaussian random field (GRF) with variable
length scale. They process and threshold the GRF to yield two-
phase (pore and solid) and three-phase (pore, interface, and solid)
structures. They noted that for their method development artificial
neural networks did not perform better than XGBoost for the pur-
pose of predicting microstructure model parameters.

It is important to note that the challenge with analyzing scat-
tering profiles from polymer systems is that the scattering profile
in most cases does not correspond to one unique structure or one
unique set of structural features. How well and correctly an ML
model interprets the scattering profile as compared to an analytical
model will depend on how the ML model is trained. Specifically,
the quality and quantity of ML model’s training data dictates how
well the ML model can interpret the structural features from the
1D scattering profiles. How one generates the data used for train-
ing the ML model will dictate if the model is learning only physi-
cal realistic structural features or any set of structural features that
numerically result in the scattering profile. Further, how the train-
ing data is sampled (not only values of the sampled structural pa-
rameters but also the structural parameters that lead to unique ef-
fects on scattering profiles) and how much training data is used to
train the ML model, are important factors that dictate the success
of the ML model in interpreting scattering profiles as compared to
the traditional analytical models.

Besides all of the quantitative structural information, one may
be interested in interpreting information about thermodynamics -
e.g., effective interactions - from small-angle scattering profiles. In
recent work, Chang et al. have used a ML (inversion) scheme for
determining interactions from scattering profiles. [193] They used
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a case study of colloidal suspensions and demonstrated that they
can infer effective potentials from the scattering spectra without
any restriction imposed by theoretical model assumptions. They
demonstrated that their workflow could quantify effective interac-
tion in highly correlated systems using data from scattering and
diffraction experiments.

We end this sub-section on interpretation of small-angle scat-
tering of polymers by highlighting recent work by Zhao et al
who have used a combination of ML methods to process 2D-SAXS
datasets of isotactic polypropylene (iPP) films and directly create
processing-structure mapping [194]. They took experimental 2D
SAXS data into lower-dimensional representation using variational
autoencoders (VAEs) and through that conversion they were able
to extract the structural evolution features of iPP films. Their VAE
was trained using SAXS dataset from their previous work where
they stretched iPP films to break at temperatures from 30 to 160
°C and the maximum strain was ca. 400 %. They then used a hy-
brid neural network to create a processing-structure mapping of
iPP and notably, generated 2D SAXS patterns at processing param-
eters that had not yet been experimented at.

3.2.3. Task: automation in scattering data acquisition

Doerk et al. have reported an automated phase exploration
of thin film morphologies of blends of PS-b-PMMA block copoly-
mers incorporating elements of chemical template for combina-
tory sampling, high-throughput SAXS measurements and Gaussian
process-based active learning module in Fig. 5a [91]. A frame-
work for Gaussian process guided autonomous experimental data
acquisition called gpCAM [195,196] developed by Noack et al
was used as the active learning module. The automated work-
flow seamlessly integrated SAXS measurement, SAXS data analysis,
and Bayesian modeling-based candidate suggestion of next sam-
ple in phase space. In their Bayesian modeling-based candidate
suggestion model, they leveraged three acquisition functions for
the selection of the promising next measurement candidate with
the ability to choose between balanced random exploration, tar-
geted exploration of rarely visited regions, and exploitation of re-
gions deemed “interesting” by the experimenter for more efficient
sampling. Through the use of their automated workflow, multi-
ple novel morphologies have been discovered, visualized with top-
down and cross-sectional SEM images, and the driving forces for
these morphologies have been explained by physics-based coarse-
grained molecular dynamics simulations.

Another noteworthy study in automation is that by Beaucage
and Martin who have developed a state-of-the-art Autonomous
Formulation Laboratory (AFL) - an adaptable platform for auto-
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mated synthesis and characterization of complex polymer formula-
tions using x-ray and neutron scattering techniques in Fig. 5b and
5c. [197] This platform incorporates hardware systems of robotic
auto-pipetting, mixing, scattering characterization, and comple-
mentary software systems programmed in Python for control
over the experiments with a simple and user-friendly interface.
Beaucage and Martin showed three proof-of-concept examples us-
ing AFL: (i) classification of SAXS profiles of silica nanoparticle of
various sizes in aqueous solution; (ii) study of the micellization
of cetyltrimethylammonium bromide (CTAB) under the influence
of salt and sodium salicylate; and (iii) the phase mapping of in-
dustrial polymer formulations where a model system containing
Poloxamer F127, hexanes, water and salt was studied using AFL
and SAXS as the measurement technique. Their AFL platform has
the potential to incorporate other measurement modalities such as
UV-vis-NIR spectroscopy and microscopy with rigorous control of
the sample preparation. The facilitation of FAIR [198] data man-
agement also makes the AFL a promising automation platform for
future integration with data-driven analysis.

3.3. Applications of ML in spectroscopy

The typical output of spectroscopy measurements is a 1D vec-
tor array or 2D image of the intensities of the measured physi-
cal property vs. the light beam wavelength or energy (as shown
in Figs. 1g-i). Spectroscopy data often contain signature peaks for
identification of specific molecules, functional groups only in a
small part of the data. Dimensionality reduction methods are of-
ten used to preprocess the spectroscopy data into low-dimensional
representations and clustering methods are used to classify the
lower-dimensional data. In the following sub-sections, we review
recent ML model development for - classification of molecules or
functional groups from spectroscopic data and automation of ma-
terial synthesis and screening using spectroscopic data as an op-
timization target. As in previous sections, we highlight promising
ML workflows using spectroscopic data in other areas of materials
sciences that we believe has promise for use in polymer materials.

3.3.1. Task: classification

Tetef et al. have demonstrated the use of unsupervised meth-
ods for the classification of both x-ray absorption spectra and X-ray
emission spectra of sulphorganic molecules [199]. Unsupervised di-
mensionality reduction methods such as PCA, VAE and t-SNE were
utilized to generate lower-dimensional representation of the X-ray
spectra. This lower-dimensional representation was then used for
classification of degree of oxidation state, aromaticity, and aromatic
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or aliphatic sub-categories with a supervised learning k-nearest
neighbors method. The authors found that feature maps generated
with t-SNE not only outperformed other unsupervised methods at
classification, but also enabled discovery of new chemically rele-
vant clusters (e.g., distinguishing nuances within a sub-category of
aromaticity of the sulphorganic compounds) not seen by other di-
mensionality reduction methods.

Jung et al. have used CNN for the identification and classifica-
tion of functional groups in molecules given the FTIR spectra as
input (Fig. 6a) [200]. Trained on over 50,000 FTIR spectra and over
30,000 molecules, their model can classify 37 types of functional
groups with good classification performance. Given that multiple
functional groups can exist in the same molecule, they also evalu-
ated their model for multi-label classification and observed a rate
of exact matching of 0.72 for up to 9 functional groups in one
molecule.

Different featurization approaches, dimensional reduction
methods, and classification models have been examined by Chen
et al. for the classification of oxidation states from XANES of metal
oxides [201]. Originally trained on computed data, cumulative
distribution function (CDF) featurization method showed higher
robustness (compared to other types of featurization such as
peak features or continuous wavelet transform) when the authors
applied their workflow to classify experimental XANES data.

In physics-driven modeling, the optical response e.g., UV-vis
spectra are determined by the refractive index as well as the thick-
ness of the thin film material. Tian et al. have used CNN for the
inverse design and interpretation of UV-vis spectra of perovskite
thin films (Fig. 6b) [202]. The UV-vis spectra were instead used
as input to predict the thickness as well as the real and imagi-
nary part of the refractive index of the thin film. To tackle the data
scarcity problem, they leveraged transfer learning to first train a
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generalist model on data from a generic source domain and then
finetune the pretrained model on the data from target domain that
contained only 18 spectra data achieving 92 % prediction accuracy
on thickness.

All of the above studies are excellent examples of ML models
applied to spectroscopy data from small molecules or metal ox-
ides; we share these to show that they also have potential for an-
alyzing FTIR and UV-vis spectra from polymer materials.

Similar to FTIR and UV-vis spectra, solid-state and solution
phase nuclear magnetic resonance (NMR) spectroscopy data can
also be analyzed using dimensionality reduction methods such as
PCA, VAE and t-SNE. While there is a dearth of papers aimed at ap-
plying these methods to NMR data directly from polymeric mate-
rials, there are other noteworthy studies and reviews [42,203-206]
that show how ML can be applied to NMR data from bioinformat-
ics and protein structure characterization; these approaches could
easily be extended to similar analyses of NMR data collected from
polymer systems. For example, one can train ML models to iden-
tify NMR peaks (i.e., noted as the “peak picker” problem) by using
a database of NMR spectra of polymers with peaks corresponding
to known chemical composition; then these models can be used
to identify NMR signals from new polymers. Analyses of patterns
in 2D NMR data can be done in a manner similar to deep learning
(e.g., neural networks) based 2D image analyses, described in prior
sections. A recent perspective on the role of ML in analyses of NMR
spectra from biomolecular systems could serve as a starting point
for polymer researchers who wish to extend these ML techniques
to polymer NMR data. [206]

Lastly, we share one noteworthy ML study on NMR data from
metal-organic frameworks (MOFs) field that could be relevant for
the nanoporous polymer materials. [204] In this study, the authors
obtained data from NMR relaxometry that is highly sensitive to
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the materials’ nanoscale porosity. They used PCA and partial least
squares (PLS) regression techniques on this NMR data to classify
the studied MOFs into high and low surface area porous materials.
The pore sizes for these materials were in the range of 0.5-100 nm
which is similar to pore sizes found in polymeric membrane ma-
terials. Furthermore, their data set was similar in size to typical
polymer experiments’ outputs; specifically, they worked with 15
MOF materials with 20 solvent contents per material, “resulting
in over 300 NMR time decays of 1000 points each”. We find this
study noteworthy not only for its PCA and PLS regression analy-
ses but also because the authors highlight that this approach is
“high-throughput and a non-destructive way to assess porosity in
~1 minute, resulting in a pore surface area estimate ~1440 times
faster than a gas adsorption isotherm measurement which requires
~1 day to perform”. Researchers working with high-throughput de-
sign and testing of porous polymer membranes would find the
methods described in this study [204] valuable.

3.3.2. Task: automation

Pozzo and coworkers have applied Bayesian optimization meth-
ods for the automated synthesis of gold nanorods with target op-
tical properties [207]. They also defined a new distance metric
called amplitude-phase distance that works better than the con-
ventional metrics such as Mean Squared Error (MSE) for similarity
quantification of high-dimensional spectra data. The authors com-
pared the performance of Bayesian optimization of UV-vis spectra
of synthesized nanorods with surrogate Gaussian ML models us-
ing MSE or amplitude-phase distance as the similarity quantifica-
tion. They demonstrated that the surrogate with amplitude-phase
distance was better at mapping out the underlying phase diagram
with identifications of multiple phases. The authors also extended
the application of amplitude-phase distance criteria to phase map-
ping of polymer blends using SAXS and of metal alloys using XRD
[208]. In a subsequent study, they also used a composite distance
metric that included the amplitude-phase distance and distances of
the intensity, peak position, and area under the curve of two spec-
tra to quantify whether a UV-vis spectrum comes from a plate-
like silver nanoparticle. Leveraging the high-throughput capabili-
ties of UV-vis, they rapidly screened through the plate-like silver
nanoparticles for more direct characterization of the nanoparticle
structure using SAXS and obtain particle shape and size distribu-
tions [209].

Gormley and coworkers have developed an ML guided au-
tomation platform for high-throughput design and screening of
polymer-enzyme hybrids [210]. Copolymers synthesized from var-
ious methacrylate monomers were used to stabilize the three
model enzymes. The authors used a Bayesian optimization work-
flow for iterative design, selection, and testing of copolymer stabi-
lized enzymes. A large design space of copolymers was explored,
and new copolymer formulations were found to outperform en-
zyme stabilizing ability of the initial copolymer designs hypothe-
sized with systematic variation of design parameters. We direct the
readers to Gormley and coworkers’ recently published tutorial/user
guide on how to use ML in a step-by-step manner to accelerate de-
sign and testing of next generation biomacromolecules. They also
provide a python script that provides the user a hands-on experi-
ence with the ML pipeline [211].

3.4. ML models for reconstruction and generation of characterization
data

The previous three sub-sections (3.1, 3.2, and 3.3) Sections 3.1
focused on ML models aiding acquisition and analyses of data ob-
tained from microscopy, scattering, and spectroscopy. In practical
scenarios, researchers may not have access to some instruments or
have challenges with sample preparation that serves as a barrier
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to doing certain measurements. In such cases, using the previously
collected relevant data as training set for ML models, researchers
may want to reconstruct or generate new data. This sub-section
presents recent work with ML models for generation and recon-
struction for microscopy, scattering, and/or spectroscopy. We note
here that use of generated images can be controversial in pub-
lishing as it may constitute as ‘fake data’ unless declared explic-
itly as ‘generated’ data vs. a measured data. Furthermore, the au-
thors in publications should be clear about their motivation for us-
ing ‘generated’ data. For example, image reconstruction/generation
practices are valuable for other downstream calculation of physical
properties that are dependent on the distribution of the structural
features - in such cases, one may generate an ensemble of images
from ML models trained on a few time-consuming intensive real
measurements and use the ensemble of images to get the distribu-
tion of structural features. These calculations can then inform the
researcher of how small variations in structural features manifest
as variance in the calculated physical property. Researchers should
follow all scientific ethical practices when reporting such data.

3.4.1. Reconstruction of microscopy images

Reconstruction of various modes of microscopy images
[212-216] and other types of characterization data [213,215-
223] have relied heavily on autoencoders. An autoencoder is a
pair of neural networks -an encoder and a decoder - built to
reconstruct the input in a fully unsupervised (i.e., without any
manual labeling) mode. The encoder converts the information
from the input image into a set of lower dimensional latent vari-
ables and the decoder deciphers information back to the original
target space. To reconstruct images Long et al. have proposed
an autoencoder called Fully Convolutional Network (FCN) with
a CNN as the encoder part and a neural network consisting of
transpose-convolutional layers as the decoder. [224] A drawback
of autoencoder is that the set of latent variables is discrete and
tends to do poor reconstruction when the test target is outside of
the training set. To mitigate the discrete latent space problem, a
modified version of autoencoder, a VAE [225] has been used. VAE
projects the latent space to a continuous Gaussian random field
and randomly samples a set of latent variables when reconstruct-
ing from the latent variables to the target space. Ronneberger
et al. have proposed a modified version of fully connected network
(FCN) called U-Net by establishing skip connections between the
same hierarchical layers in both the encoder and decoders, feeding
more information about local features in the image from earlier
encoder layers directly to later decoder layers. [128] U-Net which
was first developed to tackle reconstruction of biomedical images
has now become more broadly applicable for other types of image
reconstruction cases [127,226-234].

Li et al. have compared multiple methods for reconstruction
of various material microstructures including polymer composites,
sandstone, copolymer thin film morphology, and rubber compos-
ites from images [235]. The authors found that CNN autoencoders
outperformed decision trees and Gaussian random fields at recon-
struction of the material microstructures quantified by morpholog-
ical metrics. Chavez et al. have made a comparison of several deep
learning architectures for reconstructing of missing slices in ex-
perimental X-ray scattering profiles [236]. CNN autoencoders, tun-
able U-Net and multi-scale dense networks (MSDNets) [237] were
compared with the baseline method - biharmonic functions for re-
construction of horizontal and vertical gaps in the X-ray scattering
data.

3.4.2. Generation of cross-modal and multimodal characterization
data

In all materials domain, researchers often use multiple comple-
mentary characterization techniques to elucidate different pieces of
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information about the materials’ structure, morphology, and prop-
erties. Such complementary, yet distinct, pairs or triplets of data
obtained from the same system can be useful for ML modelers
who wish to generate one form of characterization data from an-
other form of characterization; we call this cross-modal or multi-
modal generation or reconstruction. One may ask "Why would such
cross-modal or multi-modal reconstruction be useful in polymer sci-
ence and engineering?". Depending on the availability and acces-
sibility of the different characterization techniques (e.g., scatter-
ing, microscopy, spectroscopy), each polymer research facility or
academic research lab may have access to high-throughput ca-
pability in one technique but face limitations (sample prepara-
tion, resolution) with other technique(s). Researchers in smaller
academic laboratories may have easier access to lower resolution
microscopy instruments but not higher resolution imaging tech-
niques or scattering time. Researchers in national laboratories may
have access to high-throughput characterization techniques (e.g.,
SAXS) but have to deal with extensive sample preparation steps
for a complementary technique (e.g., SEM). Some forms of char-
acterization (e.g., microscopy images) are direct visuals and eas-
ier to interpret forms of data while other forms of characteriza-
tion (e.g., scattering) being in Fourier space are harder to interpret
with naked eye. In all of these scenarios, it would be valuable to
have ML models that can generate one form of the characterization
data (that is useful but either unavailable to a researcher or is not
amenable to high throughput measurement) from another form of
characterization data (that is easier to access or amenable to high-
throughput measurements). Simultaneously, such cross-modal re-
construction can be used to convert harder-to-interpret characteri-
zation data to easier-to-interpret characterization data. For estab-
lishing design-structure-property relationships it would be valu-
able to have paired structural characterization from multiple tech-
niques, regardless of ease or access.

We start with a couple of strong examples of such ML model
developments in nanomaterials community. Stein et al. have used
VAE to reconstruct optical microscopy images and UV-vis spectra
of solution droplets containing various compositions of metal ox-
ides (Fig. 7a). [213] A VAE model was trained to reconstruct the
optical microscopy images and to obtain low-dimensional feature
maps of optical microscopy images that were used to reconstruct
UV-vis spectra. A conditional VAE model was trained to take both
the optical microscopy image and the accompanying UV-vis spec-
tra and reconstruct the optical microscopy image. They achieved
good reconstruction performance supported by the underlying con-
nection of the UV-vis spectra and the color exhibited by the im-
aged droplet.

Yaman et al. have used VAEs to enable cross-reconstruction of
surface plasmonic spectra and SEM images of gold nanoparticles
(Fig. 7b). [215] By matching the similarity of the latent space of
spectra data and latent space of SEM images, they reconstructed
one type of characterization from the other with particularly good
accuracy for images containing a single nanoparticle.

Lu and Jayaraman have extended such cross-modal reconstruc-
tion capability to polymer data. They developed PairVAE [216]
for universal cross-reconstruction of material characterization data
with a proof-of-concept application to novel morphologies of PS-b-
PMMA block copolymer thin film assemblies synthesized by Doerk
et al. [91] (Fig. 7c). They used the openly available high-throughput
SAXS data and SEM data from Doerk et al. to train the PairVAE.
They demonstrate that one does not need much supervision during
model training and that it works well even with a small amount of
data (e.g., ~ 50 pairs of characterization data). The trained PairVAE
[https://github.com/arthijayaraman-lab/pairvae] successfully gener-
ated a SAXS profile from an SEM image as input or an SEM im-
age from SAXS profile as input. They also found that by pairing
the SEM latent space (relatively sparse) with the SAXS latent space
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(relatively clustered), the SEM latent space becomes more con-
vergent, yielding morphologically closer reconstructions than seen
with solo trained SEM-SEM reconstruction model; similarly, the
paired training makes the SAXS latent space becomes less clus-
tered, yielding more unphysical SAXS patterns than solo trained
SAXS-SAXS reconstruction model. We note for interested readers
that in this PairVAE implementation for SAXS-SEM reconstruction
Lu and Jayaraman incorporated random cropping of larger (and
few) SEM images during training as a means of data augmentation
which helps mitigate the small size of data issue that we often face
in polymer sciences.

4. Current barriers and future directions

To harness the power of all the ML methods and workflows we
described in the sections above and to enable automation in syn-
thesis, characterization, and manufacturing in polymer science and
engineering, we still have a few barriers to overcome. The biggest
barrier in the field of polymer science and engineering arises from
the diversity of ways various laboratories record and store their
characterization data. Laboratory practices range from storing data
only locally on a computer connected to the measurement instru-
ment or locally on an internal laboratory server. However, as many
of the above workflow developments discussed in previous sec-
tions show, openly sharing data with researchers outside of an in-
stitution and laboratory can lead to impactful development of new
and improved computational analyses methods. Thus, storing data
only for sharing within a laboratory or an institution/facility host-
ing the instrument can be quite detrimental for progress in poly-
mer science. With growing advances in cloud computing and stor-
age platforms (e.g., Google drive, Amazon Web Services), measured
data can be stored and shared within larger collaborations (with
two to ten laboratories) using such platforms fairly easily. Further-
more, web-hosted open-data repositories like Zenodo and Figshare
provide venues for anyone to share their scientific data on a pub-
lished / working project that can lead to open-access and utiliza-
tion by other researchers across the globe for model development
and training.

In addition to the measured data itself, the context of the mea-
sured data should also be shared. In some cases, the context (e.g.,
processing history) impacts the measurement far more than the
chemical composition of the polymer material. Such contextual in-
formation - ‘metadata’ - needs to be stored along with the mea-
surement. However, researchers in many polymer laboratories are
either unaware of the phrase “metadata” or do not follow uniform
guidelines for recording metadata about the material processing
history. We quote Pelkie and Pozzo from their recent perspective
[238] that without a community-wide effort towards unified meta-
data and dedicated data management, we will continue to face
roadblocks in our progress towards advancing automation.

With the growing popularity of large language models (LLM) in
materials and chemistry fields, we expect to see a push towards
research involving data collected by using LLM on the decades of
scientific literature. [239,240] When LLM is used to extract data
from publications that have specific phrases, again inclusion of the
metadata with the measured data would be critical. Metadata in-
cluding labeling of the systems, processing history of the synthe-
sized and characterized material can also be used for learning by
LLMs. Ensuring proper data collection with community standard-
ization of metadata records will be a gold standard not only for
adherence to FAIR [198] data principles, but also for ensuring reli-
able data source for LLMs training.

In the following sub-sections, we describe recent progress made
to overcome the challenges we have described so far, as well as
future directions for data-driven research in polymer science and
engineering.
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4.1. Curation of polymer characterization data

Over the past decade, we have seen significant effort in
community-curated databases of polymer properties adhering to
the FAIR principles [198]: PolyIlnfo [241], PolymerGenome [242],
MaterialsMine [243], etc. The macroscale physical property of a
polymer material is influenced by multiple factors including the
chemistry of the polymer(s) and additives, the processing condi-
tions, and the resulting morphology. To capture the characteriza-
tion relevant to all of these - chemistry and structure(s) - two
or more complementary characterization techniques are used. The
majority of open-access characterization data pertaining to poly-
mer materials research are deposited with general purpose (i.e.,
not specifically for polymer research) databases such as Figshare,
Zenodo, Dryad [244], MaterialsDataFacility [245,246], Globus [247],
NOMAD [248], OSF [249], Harvard Dataverse, Materials Project
[27], and ScienceDB [250]. Community Resource for Innovation
in Polymer Technology (CRIPT) [251], a recent community-curated
polymer database is an excellent example of an ongoing effort that
pays attention to the heterogeneous types of data (material, chem-
istry, processing condition, and characterization) that exist during
polymer material synthesis and characterization. CRIPT utilizes a
graph structure for mapping of a particular material synthesis pro-
cessing with material, characterization data, processing procedures
and physical properties. We believe that curation of characteriza-
tion data along with structure and property data of polymer mate-
rials can facilitate better understanding of how the processing his-
tory factor in the making of the material and enable multi-faceted
data-driven research on structure-processing-property relationship
of polymeric materials.

4.2. Uniform metadata of polymer characterization data and
processing procedures

In a recent commentary [252] published in Scientific Data,
Ghiringhelli et al. have described NOMAD Metainfo [253], a data
schema for storing metadata about material and molecular proper-
ties obtainable from computational workflows such as electronic-
structure theory, quantum chemistry, and molecular dynamics sim-
ulations. Examples by Ghiringhelli et al. demonstrate integrated
computational workflows for electronic structure calculations sup-
ported by NOMAD Metainfo. Along these lines, there is a need for
the development of a unified description of metadata for poly-
mer material experimental characterization, and processing pro-
cedures. Individual deposits of polymer synthesis and characteri-
zation data in general purpose databases are like scattered gem-
stones. Unification of metadata of open-access datasets can help
bring more standardization to polymer material synthesis, charac-
terizations, and processing procedures, and provide more insights
into the general challenges and common characteristics of differ-
ent processes. We are witnessing more reports of harnessing nat-
ural language processing (NLP) for knowledge extraction of scien-
tific material research [65,254,255], chemistry [256-258], reactions
[259,260], material synthesis procedures [64,261-264], characteri-
zation data [130,265] and polymer properties [266,267] in recent
years. Built on the inorganic material synthesis procedure datasets
extracted from the Ceder group, Wang et al. have proposed a uni-
fied language for describing synthesis procedures of inorganic ma-
terials called ULSA [268]. Encompassing essential vocabulary of
solid state, sol-gel, and solution-based inorganic material synthe-
sis procedures, ULSA is a valuable effort towards unifying meta-
data describing material synthesis procedures. Similar efforts can
be developed for synthesis schemes developed by researchers in
the polymer science community.
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4.3. Interdisciplinary training of workforce

With the current push for data-driven approaches for accelerat-
ing materials design and for Al-driven automation in chemical in-
dustries’ research and development (R&D), there is a critical need
for universities to invest in educational programs that train the
workforce in an interdisciplinary manner. Higher education insti-
tutions usually only offer graduate degrees (Masters, Doctorates) in
specific disciplines where the graduate students deepen the tech-
nical background knowledge they gained during their undergrad-
uate education. However, it would be valuable to have students
step out of that comfort zone of their core discipline and learn
and collaborate with students from completely different techni-
cal backgrounds and associated cultures. In a real-life scenario, it
takes a team composed of computer scientist(s), data scientist(s),
polymer scientist(s), and electrical/electronics engineer(s) to build
high-throughput characterization instrumentation for formulations
and develop relevant ML methods to achieve the desired analy-
ses tasks on characterization results. If researchers from each of
these diverse disciplines remained in their own silos during their
graduate training, they will not learn about other disciplinary cul-
tures and technical jargon, which can hamper progress in real-life
scenarios in industries and national laboratories. Interdisciplinary
classes will also improve communication across disciplines and
lead to the creation of customized ML models for the polymer sci-
ence problem at hand. For example, for a computer scientist/data
scientist to customize methods that suit the polymer scientists it
would help if they knew how to express with minimal language
barriers their needs (e.g., polymer scientist describing exactly what
the model should accomplish) or their challenges (e.g., why the
collected data is not leading to high-performance with the model
and what can be done better). If academic institutions invest in
personnel (e.g., faculty members) and resources (e.g., classroom
space, laboratories) for creating new and practical interdisciplinary
professional degree or certificate programs that complement ex-
isting pure disciplinary strengths, they will better prepare stu-
dents for future careers in institutions that value collaboration and
interdisciplinary competency. There are often barriers to invest-
ment for development of large degree/certificate programs with-
out proven success in smaller pilot programs. Examples of pilot
programs include project-based interdisciplinary courses that bring
together graduate students from different degree programs within
an institution. Teamwork in project-based classes forces students
to practice effective communication across disciplines and experi-
ence real-life team dynamics that occur in larger collaborations or
in industries.

5. Conclusion

We have provided a review of ML models and methods for
analyzing results from three commonly used classes of struc-
tural characterization methods in polymer science and engineer-
ing: microscopy, scattering, and spectroscopy. We have highlighted
recent developments and applications of ML models and work-
flows that have enabled automation, classification, segmentation,
property prediction, and reconstruction of structural characteriza-
tion data from these techniques. In some cases, we have shared
developments and applications that occurred in fields outside
of polymer science and engineering because we felt these ap-
proaches could be extended to polymer research. In the last sec-
tion we have described some current barriers to wide-spread
use of ML for analyzing polymer characterization and poten-
tial ways to address them so that we can advance the suc-
cessful use of ML for structural characterization of polymer
material.
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