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Quantum-limited optical lever measurement
of a torsion oscillator
C. M. Pluchar, A. R. Agrawal, AND D. J. Wilson*
Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
*dalziel@optics.arizona.edu

Received 22 November 2024; revised 25 February 2025; accepted 25 February 2025; published 14 March 2025

The optical lever is a precision displacement sensor with broad applications. In principle, it can track the motion of a
mechanical oscillator with added noise at the standard quantum limit (SQL); however, demonstrating this performance
requires an oscillator with exceptionally high torque sensitivity or, equivalently, zero-point angular displacement spec-
tral density. Here, we describe optical lever measurements on Si3N4 nanoribbons possessing Q > 3× 107 torsion modes
with torque sensitivities of 10−20 Nm/

√
Hz and zero-point displacement spectral densities of 10−10 rad/

√
Hz. By

compensating for aberrations and leveraging immunity to classical intensity noise, we realize angular displacement mea-
surements with imprecisions 20 dB below the SQL and demonstrate feedback cooling, using a position-modulated laser
beam as a torque actuator, from room temperature to∼5000 phonons. Our study signals the potential for a new class
of torsional quantum optomechanics. © 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing

Agreement
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Optical metrology enables precise tracking of mechanical oscil-
lators. This is a key paradigm in the search for new physics, as
mechanical oscillators can transduce weak forces such as radiation
pressure [1], gravitational waves [2], and electrostatic force [3]
into tangible displacements. In the last decade, optomechanical
measurements have reached a regime where their added noise
is limited by quantum fluctuations of the light field, including
radiation pressure shot noise [4]. Subsequently, squeezed light [5]
and backaction-evading [6,7] techniques have provided reductions
in quantum noise, leading to force and displacement measure-
ments below the standard quantum limit (SQL) [8,9]. This has
allowed for a new generation of fundamental physics experiments
with even greater sensitivity, which may be useful for dark matter
searches [10] and novel tests of gravity [11].

While theory and experiment in optical displacement mea-
surement have focused on interferometry, the quantum limits of
alternative techniques, such as the optical lever (OL), have been
largely ignored. The OL is notable because of its long history as a
precision measurement tool [12], including direct measurements
of radiation pressure [1] and gravity [13,14], and its employment
in commercial atomic force microscopes [15]. Moreover, there is
no fundamental advantage to interferometry, as previous analy-
ses indicate that the displacement sensitivity of the OL is on par
[16,17]. While the quantum limit of the OL and the closely related
lateral beam displacement problem have been studied [18–21],
including enhancement using squeezed light [19,22,23], radiation
pressure quantum backaction was not accounted for. As contri-
butions of both imprecision and backaction enforce the SQL, this
remains an unexplored regime. A notable exception is the recent
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Fig. 1. (a) Sketch of an optical lever measuring angular displacement
θ using a split photodetector (SPD). (b) Quantum noise model: the
incident field in a HG00 coherent state beats against the HG10 vacuum,
resulting in uncertainty in the incidence angle θ (imprecision) and
position x (backaction) due to phase and amplitude vacuum noise, respec-
tively. (c) Photo of a 400 µm wide Si3N4 nanoribbon [26]. (d) Ringdown
of the nanoribbon’s fundamental torsion mode (inset).

demonstration of classical backaction evasion in an OL [24], which
has heavily influenced our study.

In this paper, we present a platform to explore the quantum
limits of the OL and angular displacement measurements. Two
challenges need to be addressed: first, the thermal torque noise
of the mechanical oscillator S th

τ (here expressed as a single-sided
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power spectral density evaluated at resonance) needs to be made
comparable to the quantum backaction torque SBA

τ . Second, the
optical receiver must possess a high quantum efficiency η, in the
sense that the product of the backaction and measurement impre-
cision S imp

θ approaches the Heisenberg limit S imp
θ SBA

τ = ~2/η≥ ~2

or equivalently, the total measurement noise approaches the
SQL, S imp

θ + SBA
θ ≥ SZP

θ , where SZP
θ is the oscillator’s zero-point

motion [25].
To address these challenges, we probe Si3N4 nanoribbons [26]

possessing Q > 3× 107 torsion modes with thermal torques of
S th
τ ∼ (10−20 Nm/

√
Hz)2 and zero-point spectral densities of

SZP
θ ∼ (10−10 rad/

√
Hz)2. For the receiver, we use a split photo-

detector, which is known to produce a near-ideal η= 2/π OL
measurement [20,27]. We also carefully account for aberrations
stemming from the finite size and curvature of the nanoribbon
and exploit access to large optical powers afforded by the relative
immunity of the OL to classical intensity noise.

A sketch of the experiment is shown in Fig. 1(a). Light from
a laser (wavelength λ) in the fundamental Hermite–Gaussian
(HG00) mode is focused onto the ribbon to a spot size (1/e 2

intensity radius) w0, corresponding to the diffraction angle
θD = λ/(πw0). In the small displacement limit θ� θD, the field
reflected from the ribbon can be written as a superposition of HG00

and HG10 modes [24,28]:

E r ≈ A00u00 + (Aθ10 + Avac
10 )u10, (1)

where u00 (u10) is the HG00 (HG10) mode shape, and
Aθ10 = 2iθ/θD is the amplitude of the HG10 mode.

A split photodetector (SPD) placed in the far field of the ribbon
acts as a HG10 mode sorter, producing a photocurrent propor-
tional to Aθ10 and, therefore, θ . In Eq. (1), we have included a term
Avac

10 representing vacuum fluctuations of the HG10 mode. As
illustrated in Fig. 1(b), these fluctuations produce angular and
lateral beam displacement noise, yielding imprecision S imp

θ and
backaction SBA

τ , respectively. Referring to an apparent angular
displacement, the total SPD output can be written as

Sθ [ω] = S imp
θ + |χ [ω]|

2
(

SBA
τ + S th

τ + 2~|χ−1
[ωm]|

)
, (2a)

= S imp
θ + SBA

θ [ω] + S th
θ [ω] + SZP

θ [ω], (2b)

where χ [ω] = I−1/(ω2
−ω2

m − iγmω), ωm, γm, and I are the
mechanical susceptibility, frequency, damping rate, and moment
of inertia of the torsion mode, respectively; S th

τ ≈ 4kBT Iγm is the
thermal torque in the high-temperature limit (T� ~ωm/kB );
and SBA

θ and S th
θ are the backaction and thermal displacement,

respectively.
As shown in Refs. [24,26,29] and in Supplement 1, placing the

SPD in the far field yields an imprecision:

S imp
θ ≈

θ2
D

8N
π

2ηd
=

1

w2
0

~cλ
4π P

π

2ηd
, (3)

where N (P ) is the photon flux (optical power) on the photodetec-
tor, andηd is its quantum efficiency.

Likewise, the radiation pressure backaction torque on the
ribbon can be expressed as [24,29] (see Supplement 1)

SBA
τ =

8N

θ2
D

w2

w2
0

~2
=w2 4π~P

cλ
, (4)
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Fig. 2. (a) Experimental setup. The nanoribbon is housed in a vacuum
chamber at 10−8 mbar. An auxiliary acousto-optic modulated (AOM)
beam is used for radiation pressure backaction simulation and feedback
control. (b) White light profile of the ribbon near its midpoint, exhibiting
effective parabolic curvature. (c) Typical displacement signal showing
the torsion mode of interest (t1), “potato chip” modes (p1, p2, p3, p4),
and a weakly coupled flexural mode (f1). The total noise model includes
thermal noise and imprecision noise. (d) Finite element simulations of the
various ribbon modes.

wherew is the spot size on the ribbon.
Combining Eqs. (3) and (4), the imprecision–backaction prod-

uct for the optical lever can be written as

S imp
θ SBA

τ =
~2

ηSDηd

w2

w2
0

, (5)

where ηSD = 2/π characterizes the intrinsic nonideality of the
SPD, stemming from its inability to distinguish HG00 and HG10

modes [18,20,27]. The final term w2/w2
0 corresponds to excess

backaction if the spot size on the ribbon is larger than the beam
waist, implying that focusing on the ribbon (w=w0) gives the
optimal imprecision [16] and imprecision–backaction product.

Details of the experiment are shown in Fig. 2(a). For the OL,
we use λ= 850 nm light from a Ti-Sapphire laser (red). The light
is passed through an optical fiber followed by a collimating lens
(not shown) to produce a near-diffraction-limited HG00 beam.
A second lens ( f ) focuses the beam on the ribbon, and the return
beam is directed to a SPD via a polarizing beamsplitter (PBS).
The beam waist w0, focal position relative to the sample z, and
detector-sample separation (optical lever arm) LOL are important
parameters for optimizing sensitivity. Nominally, we arrange the
setup so that 2w0 <wr, z . z0, and LOL = 0.49 m� z0, where
wr is the sample (ribbon) width and z0 = πw

2
0/λ is the beam’s

Rayleigh length.
In addition to the OL, we introduce an auxiliary position-

modulated 633 nm laser as a radiation pressure torque actuator.
Following Ref. [24], position modulation is achieved by passing

https://doi.org/10.6084/m9.figshare.28498166
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the beam through a frequency-modulated acousto-optic modu-
lator. A dichroic filter (not shown) is used to isolate the SPD from
this laser.

Our mechanical oscillator is a Si3N4 nanoribbon with length
L ≈ 7 mm, widthwr = 400 µm, thickness h = 75 nm [Fig. 1(c)],
fundamental torsion mode frequency ωm = 2π × 52.5 kHz≈
(π/L)

√
σ/ρ, and finite-element-simulated moment of inertia

I = 3.8× 10−18 kg m2
≈ ρLhw3

r /24, where σ ≈ 0.85 GHz
and ρ ≈ 2700 kg/m3 are the ribbon tensile stress and density,
respectively. Previously [26], we found that strain-induced dis-
sipation dilution in these ribbons yields torsional Q factors as
high as Q0σw

2
r /(E h2)≈ 108, where E and Q0 are the ribbon

elastic modulus and intrinsic Q. This is attractive because it implies
access to exceptionally high torque sensitivities and zero-point
spectral densities through the scaling laws S th

τ = 4kB T Iωm/Q ∝
h3wr/Q0 and SZP

θ = 2~Q/(Iω2
m)∝ Q0/(h3wrL) [26] (motivat-

ing the use of wider, thinner devices). Specifically, for the device
used in this study, we measure Q = 3.3× 107 via ringdown
[Fig. 2(c)], corresponding to S th

θ ≈ (2.5× 10−20 Nm/
√

Hz)2 and
SZP
θ = (1.3× 10−10 rad/

√
Hz)2.

Figure 3 shows a set of experiments aimed at optimizing
the efficiency of an OL measurement performed on the fun-
damental torsion mode of a nanoribbon. First, we leverage the
waist size dependence S imp

θ ∝w
−2
0 [Eq. (3)] to reduce impre-

cision for a fixed power P . Figure 3(b) shows a compilation of
P = 100 µW measurements with different waist sizes by varying
f . For w0 ≤ 50 µm, imprecision scales as w−2

0 , as expected. For
w0 & 60 µm, it increases. We attribute this discrepancy to two
sources of extra diffraction: (1) the finite ribbon width results in
clipping, and (2) the ribbon imparts a position-dependent phase
shift due to the photoelastic effect. Figure 2(d) shows a white light
interferogram of the ribbon cross section, fit to a polynomial. The
dominant fit parameter is quadratic, implying that the ribbon acts
like a parabolic reflector with a radius of curvature Rr ≈ 3 cm.
The dashed curve in Fig. 3(b) is the Fraunhofer diffraction model
accounting for both effects (see Supplement 1). The model fits the

data well and implies that instead of decreasing monotonically with
w0, S imp

θ is minimized for our device atw0 ≈ 60 µm.
In an effort to recover the ideal imprecision noise at large waist

sizes, we investigated compensating for the phase profile of the rib-
bon. To this end, we adjusted the beam focus position z to engineer
a finite radius of curvature, R(z)= z(1+ (zR/z)2), at the ribbon
surface, where zR = πw

2
0/λ is the Rayleigh length. As shown

in Fig. 3(c), we recorded S imp
θ while varying the focus position

with w0 = 60 µm and P = 100 µW, and found that the optimal
position was indeed offset from the plane of the ribbon (z= 0).
Overlaid is the same diffraction model as in Fig. 3(b), indicating
that for w0 ≤ 64 µm, we can fully compensate for the phase of
the ribbon [for w0 > 64 µm, the maximum Gaussian wavefront
curvature R(zR)= 2zR is too small]. However, displacing the
focus increases the spot size on the ribbon, thereby increasing the
radiation pressure torque according to Eq. (4). In our case, the
offset is z/zR ≈ 1, so backaction is a factor of w2/w2

0 = 2 times
larger than the minimum.

After optimizing the beam waist and focus position, we turned
our attention to increasing optical power. Figure 3(a) shows dis-
placement spectra near mechanical resonance for several powers
in the range P = 0.01− 10 mW, calibrated to a thermal noise
model (red line) [26]. In Fig. 3(d), we plot S imp

θ versus P , aver-
aged over two spectral regions shaded in Fig. 2(b): relatively
close to (green points) and far from (blue points) resonance,
respectively. Overlaid are models for the ideal imprecision and
backaction of an optical lever [Eqs. (3) and (4)] and fits to a model
including a constant extraneous noise floor. For P < 1 mW, we
observe quantum noise scaling with an apparent total efficiency
of η= ηdηSDηφ = 48%. With the detector placed in the far field
(LOL� z0 = .013 m) corresponding to a quadrature angle of
φ =−1.54 rad, the measurement efficiency of the angular dis-
placement quadrature is ηφ = 99% [28], implying a detector
efficiency of ηd = 76%. At higher powers, off-resonant ther-
mal noise of nearby mechanical modes limits S imp

θ in the region
close to resonance to 2.7× 10−22 rad2

/Hz. In the region far
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by fitting the noise spectra in (c) to the closed loop model nm = (γeff/γm)(Sθ (ωm)+ S imp
θ )/(2SZP

θ ) [30,32].

from resonance, we continue to observe quantum noise down to
1.4× 10−22 rad2

/Hz at P = 10 mW. Scaling by 2SZP
θ on the

right axis yields (independent of the absolute value of SZP
θ for a

thermal noise calibration) a minimum effective noise quantum of
nimp = S imp

θ /(2SZP
θ )= 0.004, corresponding to an imprecision

18 dB below that at the SQL (nimp = 1/4) [30,31].
We now turn our attention to radiation pressure backaction in

an OL measurement. To this end, as shown in Fig. 4, we carried
out a series of experiments using the auxiliary position-modulated
laser to simulate a stochastic and coherent (dynamical) backaction
torque.

We first emphasize that the OL can be made immune to clas-
sical backaction due to laser intensity noise—modulation of
the HG00 amplitude in Eq. (1)—when the probe beam is cen-
tered on the torsion axis. We explored this by comparing OL
measurements with different lateral beam positions. As shown
in Fig. 4(a), intensity noise was increased by probing with an
external cavity diode laser (ECDL) current modulated with
white noise. When the beam was centered on the ribbon, we
observed negligible backaction but increased imprecision, as we
were unable to fully balance out the added intensity noise on the
SPD. When the beam was displaced, the total noise (physical
motion and imprecision) increased and displayed an asymmetry
about mechanical resonance. This asymmetry is a signature of
imprecision–backaction correlations mediated by the mechanical
susceptibility, Sθ,τ [ω] ∝ Re[χm], a classical analog to ponderomo-
tive squeezing [33]. Fitting to a standard model [34] (dashed black
line) implies that classical intensity noise backaction overwhelms
thermal noise SBA,IM

τ [ω] ≈ 2.5S th
θ and can be suppressed by at least

an order of magnitude.
Quantum torque backaction arises due to vacuum fluctuations

of the HG10 mode in Eq. (1), physically manifesting as lateral
beam fluctuations [24,29]. To simulate this form of “spatial” back-
action [29], we applied white noise to the position-modulated
drive beam until the motion it produced dominated the OL signal
[Fig. 4(b)]. To confirm the backaction mechanism, we picked off
a fraction of the drive beam and tracked its displacement 1x on
an auxiliary SPD. We then computed the cross-spectrum Sθ1x [ω]

with the OL signal θ . Figure 4(b) shows that the magnitude of the
coherence Cθ1x ≡ Sθ1x [ω]/

√
Sθ [ω]S1x [ω] approaches unity

near the mechanical resonance, while the phase of the coherence
(inset) exhibits a π phase shift. This behavior is consistent with
mechanical motion dominated by radiation pressure torque noise
[4,35].

Combining quantum-limited measurement and coherent
backaction (feedback) enables ground-state preparation of a
mechanical oscillator [30,36]. To explore this possibility, as a final
demonstration, we imprinted the OL measurement onto the drive
beam position with an appropriate phase shift to realize cold damp-
ing [37,38]. In the weak backaction limit, the phonon number of
an oscillator cold-damped at rateγeff can be expressed as [30]

nm ≈
γm

γeff
nth +

γeff

γm
nimp ≥ 2

√
nthnimp, (6)

where nth = S th
θ /2SZP

θ = kB T/~ωm is the thermal bath occupa-
tion [39]. Thus, combining our nimp = 0.004 OL measurement
[Fig. 3(d)] and nth = 1.2× 108 torsion oscillator implies access
to nm ≈ 1.4× 103 from room temperature. Figures 4(c) and
4(d) show an experiment in which (for practical reasons related
to the phase margin of our Red Pitaya controller [40]) we relax
our imprecision to nimp ≈ 0.06 and demonstrate cold damping
to nm ≈ 5.3× 103. Our data analysis procedure is described in
Ref. [32].

In summary, we have explored the quantum limits of OL
measurement by probing the high-Q torsion mode of a Si3N4

nanoribbon. A key aim is to highlight the potential for torsional
quantum optomechanics experiments. Toward this end, we
demonstrated a displacement imprecision 18 dB below that at
the SQL, the working principle of radiation pressure shot noise
in torque, and feedback cooling of a torsion oscillator from room
temperature to 5.3× 103 phonons. In conjunction with cryo-
genics, the natural immunity of the OL to technical noise augurs
well for future cavity-free quantum optomechanics experiments.
Indeed, at the time of this writing, we have become aware of a
parallel study of Si3N4 nanoribbons with a “mirrored” OL capable
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of imprecision at a level of S imp
θ ∼ 10−12 rad/

√
Hz by reject-

ing classical beam pointing noise [41] [negligible in our current
experiment (see Supplement 1)]. Applied to optimized nanorib-
bons with Q ≈ 108 [26] and reduced effective curvature (see
Supplement 1) suggests that nm ∼ 1 may be accessible at cryogenic
temperatures [specifically, for our device at 4 K with Q = 108

and S imp
θ ∼ 10−12 rad/

√
Hz, nimp ∼ 10−6 and nth ∼ 106, in

Eq. (6)]. Scaling nanoribbons to the centimeter scale [42] could
also improve performance, owing to the favorable scaling law
nimp ∝ h3/(Q0wr) [26] afforded by torsional dissipation dilution
and optical leverage. Moreover, mass-loading Si3N4 nanoribbons
have been shown not to diminish their torsional Q [26]. Thus, as
emphasized by Shin et al. [41] and Cupertino et al. [43,44], tor-
sional optomechanics may be a promising route to milligram-scale
quantum gravity experiments and tests of the gravitational inverse
square law [45]. Finally, we note that our work has interesting
parallels to optomechanical torque magnetometry [46,47] and
more recent efforts to optimally detect [48] and cool [49] libration
modes of levitated dielectrics.

Note: As mentioned, we recently became aware of a related inde-
pendent study by Shin et al. [41].
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