PHYSICAL REVIEW RESEARCH 7, 023154 (2025)

Astronomical interferometry using continuous variable quantum teleportation
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We propose a method to build an astronomical interferometer using continuous-variable quantum telepor-
tation to overcome transmission loss between distant telescopes. The scheme relies on two-mode squeezed
states shared by distant telescopes as entanglement resources, which are distributed using continuous-variable
quantum repeaters. We find the optimal measurement on the teleported states, which uses beam splitters and
photon-number-resolved detection. Compared to prior proposals relying on discrete states, our scheme has the
advantages of using linear optics to implement it without wasting stellar photons, and making use of multiphoton
events, which are regarded as noise in previous discrete schemes. We also outline the parameter regimes in which
our scheme outperforms the direct detection method, schemes utilizing distributed discrete-variable entangled

states, and local heterodyne techniques.
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I. INTRODUCTION

Interferometric imaging is a widely used method in astron-
omy that employs multiple spatially separated telescopes for
enhanced resolution and sensitivity. By synthesizing data from
these telescopes, the method effectively attains the resolution
of a much larger aperture, with the maximum resolution de-
termined by the longest baseline between the telescopes. It is
based on the Van Cittert-Zernike theorem [1], which shows
one can determine the Fourier component of the intensity
distribution in the source plane by interfering with the light
received at different locations in the image plane and measur-
ing the mutual coherence function. The successful application
of interferometer arrays in astronomy, especially at radio fre-
quencies, provides a very powerful tool for high-resolution
imaging. For example, the first image of a supermassive black
hole at the center of the Messier 87 Galaxy was provided by
a radio interferometer array [2]. However, unlike radio wave-
lengths, for which the light is directly measured and recorded
separately at each telescope [3], at optical wavelengths the
light signals received at different locations in the interferome-
ter array are at frequencies too high to be recorded, so instead
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they are brought together to interfere in what is referred to
as the direct-detection method [4]. However, in this method
there is unavoidable transmission loss while bringing light
from distant telescopes together, and this limits the length of
the baseline and hence the resolution of optical interferometer
arrays. It is also possible to measure the coherence function
through local measurements with a shared phase reference,
but for weak thermal sources at optical wavelengths the mean
photon number per temporal mode is much less than one, and
it is not possible to distinguish the vacuum and single photon
states locally. This strongly degrades the sensitivity of local
measurements at each telescope [5].

Several proposals have been made recently that overcome
transmission loss based on quantum networks [6—10]. Tak-
ing advantage of entanglement resources provided by the
quantum network, the coherence function can be measured
without directly interfering with the light and with sensitivity
comparable to the direct-detection method. These proposals
can be understood qualitatively as leveraging teleportation
from one telescope to another using entanglement resources
shared by the distant telescopes. Transmission loss affects
the distribution of the entanglement resource, which can be
overcome by quantum repeaters. A quantum repeater distills
high-fidelity entangled states from many copies of distributed
noisy entangled states between nearby quantum nodes and
creates long-distance entanglement from short-distance en-
tanglement using entanglement swapping [11]. Although this
in principle means we can arbitrarily increase the baseline
between telescopes, these proposals have their own difficul-
ties in implementation. Reference [6] requires an excessive
amount of distributed entangled photons. References [7—-10]
exploits quantum memory to encode the arrival time of the
stellar photons to avoid wasting entanglement resources when
a vacuum state is received. This approach introduces the extra
difficulties of implementing two-qubit quantum gates and re-
quires reliable quantum memories. By contrast, we are mainly
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focused on a new entanglement-assisted protocol that does not
require memories at the telescopes and is compatible with a
near-term quantum network. Along this direction, protocols
using N-copy single-photon entangled states and other en-
tangled states have been developed [12—15], demonstrating a
significant quantum enhancement over the original quantum
telescope scheme [6], particularly in scenarios with trans-
mission loss [13]. However, these phase-estimation protocols
based on N-copy entangled states have only been applied to
sensing astronomical objects approximated as point sources,
and only apply when the astronomical source can be approx-
imated as a weak thermal source. In this paper, we propose a
continuous-variable entanglement-assisted protocol designed
to achieve enhanced performance in quantum telescopy across
a broader range of sources, varying both in intensity and
intensity distribution.

In this paper, we extend the concept of quantum-network-
based astronomical interferometry to another version of
quantum teleportation, namely, continuous-variable (CV)
quantum teleportation [16-18]. Compared to Refs. [6-8],
where the weak thermal light received from the astronomical
source is approximated as discrete states, namely, vacuum or
single photon states, here we directly work with the exact
thermal state, which is a Gaussian state with representation
in terms of Gaussian functions [19]. Our scheme relies on
the analog of Einstein-Podolsky-Rosen (EPR) states in con-
tinuous variables, i.e., the two-mode squeezed states. Here,
we discuss the sensitivity of our scheme under transmission
loss and construct optimal measurements for estimating the
coherence function from the teleported state. We find that
the required repetition rate to cover all temporal modes is
approximately 150 GHz at wavelength A = 800 nm, much
higher than state-of-the-art pulsed squeezing with 163 MHz
repetition rate and 6.8 dB squeezing level [20]. Neverthe-
less, our method still provides a meaningful alternative for
building an astronomical interferometer that may be more
feasible than other quantum network protocols, depending
on the development of quantum repeaters. In particular, our
scheme can exploit multiphoton events that are discarded as
noise in Refs. [6—8], which can provide an advantage when
imaging a stronger astronomical source or at a longer wave-
length. Assuming ideal implementation of each scheme, we
explicitly compare our CV quantum-network-based scheme
with the original proposal based on discrete-variable (DV)
quantum networks [6], and local heterodyne detection. Inter-
estingly, we identify a regime corresponding to the source
having intermediate strength, in which our approach out-
performs both of these schemes. Furthermore, we account
for imperfections in the practical implementation of our CV
quantum-network-based scheme and compare its performance
with direct detection, the DV quantum-network-based scheme
[6], and local heterodyne detection under realistic conditions.
We show that even in the nonideal case, our scheme can still
provide advantages in certain scenarios.

II. TELEPORTATION OF STELLAR LIGHT

In this section, we consider the CV teleportation of stellar
light from one telescope to another telescope. As shown in
Fig. 1, we assume the bipartite thermal state p, of mode a; »
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FIG. 1. Setup for astronomical interferometry using continuous-
variable quantum teleportation. p, is the stellar state from the
astronomical source and p, is the two-mode squeezed state. The
dashed line indicates classical communication from telescope A to
telescope B about the outcome gs, pg of homodyne detection. ﬁqs, P
is the displacement conditional on gs, ps. Us is the phase delay added
for the measurement of the teleported state.

from the astronomical source is received by two telescopes
A, B in an interferometer array [21], with the form

: i — * * — o
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where g =|gle® is the coherence function we want to
measure and € is the mean photon number per temporal
mode. Any Gaussian state can be completely described with
its mean value x; = tr(p,%;) and covariance matrix V;; =
sUlp (ARAR; + A% AR)],  where X = (G, p1. G, P2),
4i = (@i +a)/V2, pi= @ —a))/V2i, A% =% —x; [19].
The mean value x; and covariance matrix V;; for p, are

x,~=0

1+e€ 0 €lglcosf® —elg|sinf
1 0 l+e€ €lg|sinf  €|g|cos6
2| €elglcosO®  €|g|sinf 14€ 0
—e€lg|sinf  €|g|cosb 0 1+e¢
(3)

In order to teleport the state received at telescope A to
telescope B, we send the two-mode squeezed state p, =
ITMSV) (TMSV/|, where [TMSV) = 8,(r)|0, 0), with the
squeezing operator given by S,(r) = exp (r(&;fz;'t — a3dy)),
where r is the squeezing parameter, from the entanglement
source to the two telescopes through two lossy channels with
the same transmission coefficient 7. For the case where we
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need a quantum repeater, we just need to consider the output
of the repeater with the effective transmission coefficient T
and use the same results derived below.

We follow the standard CV quantum teleportation scheme
discussed in [16—18]. As shown in Fig. 1, we first combine the
mode a; of the stellar state and the mode a3 of the two-mode
squeezed state on a beam splitter at telescope A. We then
perform homodyne detection on the two output ports of the
beam splitter and obtain the outcome gs, pg. The outcome
gs, pe is communicated to telescope B using a classical chan-
nel. We then implement a correction by displacing the state
on telescope B. The teleported state can be described by its
Wigner function as [22-26]

W(az, atg)

1
T 27 4 27 (e” — DT?

/dzaW(a,az)

x exp{ [(p— ps)’ +(q—q4>2]},

24 2(e ¥ — T2

“

which is equivalent to the state after a thermalizing channel,
as derived in Ref. [26]. Its mean value and covariance matrix
are

x; =0,
1 0 0 O
L L0 1 0 0
Vi=V 4+ 2e 00 0 0l )
0 0 0 O

where V is the covariance matrix of stellar light in Eq. (3),
and we have defined the effective squeezing parameter r’ such
that e =1 — T? 4 ¢~ 2" T? for convenience. Since we have
r=r"asT — 1, r canbe regarded as the effective squeezing
level after introducing loss to the channel. Notice that the CV

J

3 2¢2[g]?
2y +eQ+e—elgP+2y)

Foe

teleportation only introduces some noise 2¢ 2" in the diagonal

elements of the covariance matrix. As v’ — oo, the quantum
teleportation is ideal, i.e., V' = V. To improve the effective
squeezing parameter r’, we need to increase both the trans-
mission coefficient 7 and the original squeezing parameter r.
In particular, 1 — T2 has to be comparable to e~ otherwise
increasing r will not have a significant improvement on the
effective squeezing parameter r’.

III. MEASUREMENT ON THE TELEPORTED STATES

We now consider how well we can estimate the co-
herence function g by measuring the nonideal teleported
state. For the estimation of a set of parameters z =
@, gl)", the quantum Cramér-Rao bound (QCRB) [27]
of estimating 6 and |g| is given by the quantum Fisher
information (QFI) F: M, > F~', with its (u,v) element
(M), = E[(z), —Z,,)(zy —Zy)], where 7, is the unbiased
estimator of the uth unknown parameter. The QCRB is a
fundamental bound of the sensitivity optimized over all possi-
ble measurements and estimators. We here calculate the QFIL
to quantify the performance of our scheme. For a Gaussian
state, the QFI F;; can be derived from its mean value x; and

covariance matrix X(X = %tr[,o(a,-a ; +aja;)] is an equiva-
lent form of covariance matrix V, where a = [a;, ai, a, a;])
[28,29]. Note that ¥ and V are defined in terms of 4; and X;,
respectively, and can be readily converted between each other.
This leads to

Fj=3M,

aﬁywajza,g&z,w + Zl:l)lajx//,aixva (6)

where M =T ® T + 12 ® Q, with Q@ = P)_, io, with o,
being the Pauli y matrix, 9; is the derivative over the jth
unknown parameter, and repeated indices imply summation.
The QFI of estimating 9, |g| is derived as (we use 0, |g| to
label the corresponding matrix element of the QFI)

26 [—e(2+€)* + gt —4(1 + )2+ €)y — 42 + €)y*]

F\XHA’\= — 2N 5 2N 20 _ 2N — ’
[e(—1+ [g]°) — 2ylle(—2 — e + €lg|*) — 2(1 + e)ylle*(—1 + [g]*) —4(1 +y) — 2e(2 + y)]

Fyig =0,

where the squeezing level y = 2¢=%" is used to quantify the

amount noise introduced in the teleportation protocol with fi-
nite squeezing, which vanishes in the infinite squeezing limit,
i.e., lim, oy =0.

The QFI as a function of squeezing level y = 2e is
plotted in Fig. 2. Although our scheme works for sources of
arbitrary strength, it is important to check its performance in
the weak limit € < 1. This is because in the weak limit, the
estimation of the coherence function is strongly affected by
vacuum noise, which degrades sensitivity if there is no shared
entanglement between the two telescopes and only local mea-
surements are performed at each telescope, as pointed out in
Ref. [5]. Reference [5] shows a local scheme without entan-

—2r

(N

(

glement will at most have a Fisher information of F oc €2. To
provide a more quantitative comparison, we now look at the
resultant QFI of our scheme with squeezing parameter r in
different limits:

Low-squeezing limit with y = 2e="

— 2:

2€2|gl?
4+€e6+€—¢€lgP)

y—>2
Foo

ek 1 2.2
= Elgle,

y—>2e«1 1

Figiigl 7€
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which coincides with the performance of heterodyne detec-
tion of a weak thermal source in telescopes [5]. Actually,
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FIG. 2. The quantum Fisher information (QFI) for estimating the
phase 6 and amplitude |g| of the coherence function as a function
of the squeezing level y. The parameters are chosen as |g| = 0.7,
€ =107,

the condition of low squeezing implies that the two-mode
squeezed state becomes the vacuum state used in the protocol,
since a local heterodyne measurement is performed on Tele-
scope A and the corresponding QFI of the conditional state
on Telescope B will be saturated by applying a heterodyne
measurement therein as well. A similar observation has been
made independently by [30]; however, they used a slightly
different CV-teleportation protocol, as we will explain later.
High squeezing limit with y = 22" < e:

YK€ 2€|g|2

F ek 1 2’
T 2qe—elgP gl
Fo 'S 2€[2+€(1+ |g)] ©)
ST T 1121 — [g?) + 4 + 4e]
ek 1 €
1— (g2

which shows our scheme has F o €. Since € < 1 and the
inverse of F' is the lower bound for the variance of the es-
timation, we will demonstrate below that our scheme can
significantly outperform local schemes that do not utilize
entanglement.

We now consider the optimal measurement that attains
the sensitivity limit set by the QFI. To ensure optimality of
the identified measurement, we allow the measurement to
be any positive operator-valued measure (POVM), a broad
framework that extends beyond projective measurements and
provides greater flexibility for describing realistic measure-
ment strategies [31]. Quantum estimation theory provides a
systematic approach to identifying the optimal POVM that
achieves the sensitivity limit, utilizing the symmetric loga-
rithmic derivative (SLD) [32,33]. However, as we will see,
the optimal measurement prescribed by quantum estimation
theory is actually a simple projective measurement. Since the
teleported state is a Gaussian state, we can determine the
SLD as a function of mean value x; and covariance matrix
3. [28,29] as follows:

Li= 30 05 (9 Zap)(@yac — ), 10

where we sum over repeated indices. For the estimation of |g|,
the SLD is

a C .
Ly = 3(2511&4 + 1)+ 5@ + 1)

2b 2b*
+ il + —an e, (11)

where the coefficients a, b, ¢, d, e are given in Appendix D.
"1:0 find its 'eigenbasis, we define dy = (a4 + 6’5&2)/\/5,
dr = (a4 — °a2)//2,
Ly = d{d\(a+ c+be® 4+ b*e™®)/d
4 didatc—be® —be®yd et 6
+didy(a—c+be® —bre ) /d
+C72Tc;'1(a—c—bei5+b*e_i5)/d. (12)

We want to choose § such that (a — ¢ + be’® — b*e ™) /d =
(a—c — be® + b*e™)/d = 0, which implies the eigenbasis
is the Fock basis of d) , modes. If y < 1 and y < ¢, to the
leading order of y, we have

(a—c+be® —be ) /d
=—(a—c—be® +b*e)/d

.. 2
_ 2isin(6 —0)(2 + € +€|gl?) Loy, (13)
(=1 + g4 —de + 2(=1 + [g])]
This means we can choose § = 6 in the measurement, and
the POVM is {|m, n) (m, nl},, ,, where ledl |m, n) = m|m, n)
and dzT dy |m, n) = n|m, n). This measurement can be imple-
mented using beam splitters and photon-number-resolving
detection with phase delay § = 0, as shown in Fig. 1.
For the estimation of phase 6, the SLD is given by

Lo = 2p*a4a§ + 2paza2, (14)

where the coefficient p is given in Appendix D. To
find its‘ eigenbasis, we define d| = (a4 + e’5a2)/«/§, d) =
(as — P ay) /2,

Ly =d{d\(p*e® + pe™®) — djdr(p*e”® + pe*)
+didy(p*e® — pe ) + djd(—p*e® + pe™®). (15)

To have (p*e® — pe=) =0, we can choose § =6 + 7 /2.
And the POVM is {|m, n) (m, n|},.,, where drdl |m, n) =
m|m, n) and d;dz |m, n) = n|m,n) (with a different § when
compared with the estimation of |g|). This POVM can be
also implemented using beam splitters and photon-number-
resolving detection as in Fig. 1 with phase delay 6 = 6 + 7 /2.

Since in the limit y < €, we can expect the teleported
light to be the same as the state after directly bringing the
light together to one location losslessly, the classical mea-
surement schemes developed in astronomy should work as
usual. For example, if we just measure the intensity dif-
ference between the two output ports d;, with observable
O = (d]d, — d}d»)/(2¢), we have (O) = |g|cos(f — ) and
the variance

(0% —(0) =[e +y+e(e/2+Y)
— €%1gl*/2 + €*|gl* cos* (6 — 8)1/€*, (16)
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which is comparable to the performance predicted by the QFI.
Note that we do not need to know the squeezing parameter r to
estimate the coherence function and this estimator is unbiased
even if the squeezing level is finite or even lower than the
threshold. Intuitively, when y is finite, there is background
noise introduced by y for the intensity measured at d, », which
is canceled when we take the difference between the intensi-
ties at d .

Furthermore, since # is an unknown parameter, it is in
general not possible to implement the optimal measurement
strategy for the estimation of 6 and |g|. We can certainly
perform the measurement adaptively and gradually optimize
the phase in practice. We briefly discuss the influence of
having a phase delay in our measurement deviating from the
optimal values. For simplicity, we assume y < € < 1. We
again consider the measurement that interferes with the light
after adding the phase delay § just as in Fig. 1. The Fisher
information (FI) of estimating € and g using this measurement
to the leading order of € is

|g|* sin*(6 — 8)
1 —|g?cos?(0 — 8)’
. cos?(6 — §) ’ a7
1 —|g|? cos?(® — &)
|gl sin(@ — 8) cos(8 — §)
1 —|gl?cos?(® —8)

19926

lyjg = —€

We observe that the optimal é for estimating 6 is § = 6 4 7 /2
and the optimal § for estimating |g| is § = 6. The perfor-
mance decreases if § deviates from the optimal values § = 6,
6 + /2 for estimation of 6 and |g|, respectively. If we fo-
cus on scenarios where the size of the source exceeds the
resolution limit and the intensity distribution becomes more
complex than simple point sources, it is highly probable that
|gl < 1. This is because the parameter g represents a weighted
sum of various phases. When these weights approach a more
uniform or flat distribution, g tends to approach 0. Thus, the
performance is mainly determined by the numerator of the FI
in Eq. (17). Therefore, reasonable performance can still be
achieved as long as the deviation of § from the optimal choice
is not too large.

IV. COMPARISON WITH OTHER PROPOSALS
FOR ASTRONOMICAL INTERFEROMETERS

We first want to expand on the practical implications of
our method based on CV teleportation for astronomical imag-
ing. The resolution of an imaging system is fundamentally
determined by the diffraction limit, given by A/d, where A is
the observation wavelength and d is the aperture diameter for
single-lens imaging or the baseline length for interferomet-
ric imaging. The highest angular resolution in ground-based
astronomical imaging has been achieved using radio inter-
ferometry, where the maximum baseline is limited by the
diameter of the Earth. This limit has already been reached
in current radio astronomical interferometers, such as the
Event Horizon Telescope (EHT), which observed M87 at a
wavelength of 1.3 mm [2]. Given an Earth-sized baseline
of approximately 13 000 km, the corresponding resolution is

around 0.02 mas, where we express the resolution in milliarc-
seconds (mas) rather than radians.

A significant improvement in resolution can be achieved
by reducing the observation wavelength. If similar interfero-
metric techniques were applied at optical wavelengths—for
example, at 1550 nm—the achievable resolution would im-
prove to approximately 2.5x 107> mas, nearly two orders
of magnitude finer than current radio interferometry. How-
ever, existing optical astronomical interferometers, such as the
CHARA array [4], have a baseline limited to around 330 m,
significantly shorter than the Earth-sized baselines used in
radio interferometry. Extending the baseline for optical as-
tronomical interferometry is therefore a crucial challenge. A
promising solution is the use of quantum-enhanced astronom-
ical interferometry based on quantum networks, as initially
proposed in Refs. [6-8] and further developed in our study.

To put this into perspective, one of the smallest astro-
nomical objects observed to date using a radio interferometer
array is the central compact source of the supermassive black
hole candidate at the core of the giant elliptical galaxy M87,
with an angular size of 0.04 mas [2]. In contrast, one of the
smallest sources observed at optical wavelengths is exoplanet
host stars, which typically have angular diameters of about
1 mas [34]. This highlights the potential of high-resolution
optical interferometry to resolve even finer details than what
is currently achievable.

Moreover, observations at different wavelengths provide
complementary information about astronomical sources. If
optical interferometry could achieve resolutions comparable
to or even surpass those of radio frequencies, it would become
a powerful tool for high-resolution astronomical imaging, sig-
nificantly enhancing our ability to study the fine details of
celestial objects.

In the following, we compare our proposal with several
other proposals for astronomical interferometers and elaborate
the advantages as indicated by the FI. We first compare our
proposal with the direct detection method, which involves
transmitting the stellar light collected by two distant tele-
scopes to a single location, where the stellar light interferes
and is then measured. The QFI/FI Fyy, Fjg, lower-bound the
variance of estimating the coherence function |g|, 8, which
implies that the signal-to-noise ratio (SNR) for |g|, 6 is lower-
bounded by 6+/FyN, |gl\/FigigN, where N is the number
of measurement events. Thus, the advantage identified for
QFI/FI can be directly translated to the advantage for SNR
in astrophysics. Consider the previously mentioned CHARA
interferometer array [4], a currently operating optical as-
tronomical interferometer with a baseline of approximately
330 m. We provide a rough example by considering a loss
of 1 dB/km as an imperfection in the practical implementa-
tion, which corresponds to the transmission loss of free space
propagation in weakly degraded conditions [35-37]. The total
transmission loss is 7 = 0.92683. We can then calculate the
SNR of estimating the phase of the coherence function 6 as

0
SNRy = = < 0+/Nlpg = 0|g|Tv/Ne, (18)

where N is the number of temporal modes we measure and
Iyg is the FI of estimating 6 using direct detection. We
can set |g| = 1072, 6 = m/4, € = 10~%, N =2x108; then
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FIG. 3. The Fisher information (FI) for estimating the phase
6 of the coherence function by discrete variable (DV) quantum-
network-based astronomical interferometry, continuous-variable
(CV) quantum-network-based astronomical interferometry, and local
heterodyne detection, as a function of the mean photon number per
temporal mode of the stellar light e.

SNRy ~ 1. Note that we roughly need Ne = 2x10* photons
to get SNRy =~ 1 using direct detection. The resolution of the
optical interferometer is determined by the length of baseline
as A/d, where X is the wavelength and d is the baseline. The
CHARA telescope has resolution

2.2 um

x 206265000 mas/rad = 1.375 mas. (19)

330 m
If we increase the baseline 100 times, the resolution becomes
0.01375 mas but SNR becomes 0.00054 for the same set of
parameters and the number of measured temporal modes N.
We can, of course, improve the SNR by having a longer obser-
vation time; i.e., increasing N, which, though, means higher
cost. Thus, it is clear that, limited by the SNR, we cannot
extend the baseline for conventional methods too much. How-
ever, with our method, assuming a quantum repeater operates
effectively between two distant telescopes, i.e., provides the
effective squeezing parameter r’ over the threshold, it can en-
hance the SNR or extend the baseline while keeping the SNR
constant. For our CV scheme with squeezing level above the
required threshold, the required number of temporal modes
is N = 1.72x 10® to achieve SNRy =~ 1. In other words, with
N =1.72x108 temporal modes, we can still get SNRy ~ 1
as long as we can build an effective CV repeater between
these distant telescopes. In the following, we will provide
an example to show the threshold for the necessary effective
squeezing parameters. In the next section, we will discuss in
detail quantum telescopes using CV-quantum teleportation in
the absence and presence of quantum repeaters.

We can also explicitly compare our scheme based on a CV
quantum network in the high squeezing limit with the scheme
based on discrete-variable (DV) quantum networks proposed
by Ref. [6] and heterodyne techniques by calculating the FI
of estimating 6. As shown in Fig. 3, as the mean photon
number € < 1, we observe the ratio between the FI of the CV
and DV methods approaches a constant of 1/2. This factor
of 1/2 is because of the fact that Ref. [6] wastes half of the
stellar photons because it is not possible to implement the
whole set of Bell measurements only using linear optics. In
contrast, our scheme relies on homodyne detection instead and

can be implemented with only linear optics. As € increases,
the performance gap between the schemes based on DV and
CV quantum networks increases. This is because multiphoton
events become more and more important as € increases, and
since our method makes use of the general stellar state with
possibly more than one photon in Eq. (1), it can use multipho-
ton events instead of regarding them as noise as in Refs. [6-8].
As an example, consider a stellar source with A = 800 nm,
a bandwidth AA = 0.1 nm, and a magnitude of —1.43 (the
magnitude of the brightest star, Sirius), observed by telescopes
with an 18-m diameter, which have ¢ ~ 0.4. For |g| = 0.01
and 6 = 7 /4, the FI of the CV method is Fyg = 3.33x 1073,
while for the DV method, it is Fyy = 8.04x107°. This indi-
cates that the variance in estimating 6 for our CV method
will outperform the DV method by a factor of 4.147 with
the same number of temporal modes. The factor 4.147 arises
from two contributions as pointed out above. First, the DV
teleportation performs worse by a factor of 1/2 because a full
Bell measurement cannot be implemented only using linear
optics. Second, multiphoton events from a relatively strong
source can be measured in the CV telescope but are ignored
in the DV telescope. To achieve the same SNRy ~ 1, our CV
method would require approximately 5x 10* temporal modes,
whereas the DV method would need around 2x 10° temporal
modes. The above calculation of the FI for the DV method
assumes a direct implementation of Ref. [6]. It is possible to
bridge this performance gap in the DV method using more
entanglement by performing teleportation in higher dimen-
sions, which is generally more challenging to implement, as
discussed in Ref. [38]. In contrast, the continuous-variable
(CV) scheme has a relatively lower threshold for the squeez-
ing parameter when imaging brighter sources as estimated
using 2¢~2" ~ €, which can be as low as 7 dB in our example.
The estimation of € may vary depending on the parameters
chosen. However, in general, the brightest source imaged by
large telescopes might be within the regime where our scheme
shows advantages over the DV scheme.

However, we emphasize that as € becomes large enough,
it becomes possible to perform measurements locally without
any entanglement resources as claimed in Ref. [5]. We calcu-
late the performance of estimating 6 only using heterodyne
detection locally at each telescope (the FI calculation for
heterodyne detection is given in Appendix C). It is clear from
the figure that for € > 1, local heterodyne detection without
any entanglement can perform as well as our scheme based
on a CV quantum network for the estimation of phase 6.
This shows that there exist schemes that only do measurement
locally without any entanglement and still have the optimal
performance for imaging strong thermal sources using in-
terferometry with two telescopes. For intermediate values of
€, our method can perform significantly better than methods
based on DV quantum networks and local heterodyne detec-
tion.

When comparing with local heterodyne detection, our pro-
tocol offers significant advantages in the weak source limit,
as shown in Fig. 3. This contrasts with the findings reported
in Ref. [30], where it is argued that the quantum enhancement
using two-mode squeezed vacuum states and CV teleportation
is limited. We would like to emphasize that this conclusion
about minimal enhancement is drawn from scenarios lacking
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a CV repeater connecting distant telescopes. In cases without
a CV repeater, the two-mode squeezed state source used for
teleportation shows only a low effective squeezing level,
which is consistent with the low squeezing limit of our
scheme. However, with a well-performing CV repeater, the
potential benefits could be substantial. Furthermore, a close
comparison with our protocol reveals that the key difference
between these two CV-teleportation-based protocols is the
presence and absence of a conditional displacement operation.
In our protocol, we introduce the conditional displacement
operation as shown in Fig. 1 such that the measurement at
telescope B is performed after completion of the whole CV-
teleportation protocol, while a postselected teleportation is
performed in Ref. [30] and the quantum Fisher information of
the teleported state at telescope B is postprocessed and com-
puted from the ensemble average over different measurement
outcomes at telescope A. An additional difference between
the schemes is that, in order to perform the conditional dis-
placement operation in our scheme, classical information is
required to be sent from telescope A to telescope B, in general,
a delay line needs to be included locally at telescope B for
synchronization. Such a delay line could be made much more
resilient to noise and loss in the laboratory compared to the
optical channel connecting two telescopes—for example, us-
ing a broadband all-optical delay-line quantum memory [39].

V. AMPLIFICATION OF ENTANGLEMENT RESOURCES

We first explore for both DV and CV cases the situation
where entanglement resources are distributed without any
entanglement distillation or quantum repeaters. As shown in
Fig. 5 below, we consider the Fisher information (FI) of esti-
mating the phase of the coherence function versus the baseline
length L for different strengths € of the stellar source. We
assume a typical transmission loss of 0.2 dB/km for optical
fiber at 1550 nm [40,41]. The FI for the DV case decays
exponentially with L because loss increases for the terrestrial
photons, resulting in a higher probability for vacuum state
contributions. The behavior of the FI as a function of L in the
CV cases depends on the source strength €. This is because
the value of the effective squeezing parameter r’ at which the
QFI starts to significantly drop depends on €. This can be seen
from Fig. 2 and Eq. (9), which show y = 2¢2" should be at
least comparable to € to obtain sensitivity close to the optimal
case when y — 0. To make r’ comparable to r, the effective
transmission coefficient T needs to satisfy 1 — T2 ~ 2",
Given a squeezing parameter r high enough such that the QFI
approaches its optimal value, to keep reasonable performance
1 — T2 should be at least comparable to €. When € is small,
the requirement on 7 is very high and the performance of our
scheme based on CV teleportation decays very fast. When
€ ~ O(1), our scheme based on CV teleportation becomes
more robust to loss. This is because in this case, the threshold
of T can be estimated by 1 — T2 ~ € ~ O(1), which suggests
a relatively relaxed requirement of 7 ~ O(1).

An important question is how to achieve in practice a high-
fidelity two-mode squeezed state shared by distant telescopes
connected by lossy quantum channels. As discussed in the
previous section, a lossy squeezed state will strongly limit
the sensitivity. As in the discrete case [6], where one must

Entanglement
distribution

distillation

distillation

swapping

p
) swapping
p
p

) distillation

FIG. 4. Continuous-variable quantum repeater. The two-mode
squeezed states are distributed to adjacent quantum nodes through
lossy channels. After several rounds of entanglement distillation and
entanglement swapping, we create entanglement over a long dis-
tance. The blue circles are quantum nodes. The dashed line indicates
entanglement and the thickness indicates the number of copies. The
states are stored in quantum memories in each quantum node until
their use.

build shared entanglement between distant telescopes with a
DV quantum repeater, we will need to apply the CV quantum
repeater to the problem of creating long-baseline astronomi-
cal interferometers [42—48]. This will allow us to extend the
baseline of interferometers beyond what is possible to achieve
by direct interference.

A CV quantum repeater network, as illustrated in Fig. 4,
consists of a series of repeater nodes strategically placed at
moderate distances from one another. The process of estab-
lishing entanglement between distant telescopes begins with

(a) 10° (b) 1071
————— DV YY)
cv — v
Fygr0? Fgro2\
I = Y- S—— Lle=005
0 005 0.10 0.15 0.20 0.25 0 005 0.10 0.15 0.20 0.25
- km . L(km
@ * 17— ov | (@)
10-3 cv
Foo | r’ 100
1074
Lo-sLe =0.005 -

0 005 010 0.15 020 025 0 005 0.10 0.15 0.20 0.25
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FIG. 5. Influence of transmission loss on interferometric imag-
ing based on discrete-variable (DV) and continuous-variable (CV)
schemes when there is no entanglement distillation or quantum re-
peaters. We assume the transmission loss is 0.2 dB/km. (a)—(c) The
Fisher information Fyy of estimating the phase 6 of the coherence
function versus the baseline between telescopes L, for the mean
photon number per temporal mode € = 0.5, 0.05, 0.005. For the CV
case, we assume the squeezing parameter » = 5 before the two-mode
squeezed state is sent through the lossy channel. (d) The effective
squeezing parameter r’ decreases with the baseline L.
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the distribution of two-mode squeezed states between adja-
cent nodes. These initially noisy entangled states undergo
entanglement distillation, which reduces noise by transform-
ing a larger number of low-quality entangled states into a
smaller set of higher-fidelity ones. Following this, entangle-
ment swapping is employed to extend entanglement across
multiple nodes, ultimately creating long-distance entangled
links between telescopes [44,45,47,48]. In our setup for a
quantum-enhanced astronomical interferometer, we avoid us-
ing long-lived quantum memories at the telescopes. This is
in contrast to the memory-based quantum telescopy protocols
proposed in [7,8], which require a quantum memory with
a lifetime exceeding 1 ms for an experiment with 10 GHz
detector bandwidth and € = 10~ source photon rate. A quan-
tum repeater protocol typically demands a quantum memory
with only ~10 ps lifetime for telescopes separated by a few
kilometers. Moreover, it can even be implemented using an
all-optical quantum repeater protocol, eliminating the need for
quantum memory altogether [49].

CV quantum repeaters help mitigate two primary types of
noise. The first type is the phase noise caused by the variation
of the path length of the interferometer. This can be solved
by active stabilization [50], where the distance is tracked by
a reference laser. Or the phase noise can be overcome by
entanglement distillation [46]. The second major source of
noise is transmission loss, which can be effectively reduced
using entanglement distillation techniques.

One notable entanglement distillation method for overcom-
ing transmission loss is based on nondeterministic noiseless
linear amplification (NLA) [42,43]. Consider the distribution
of two-mode squeezed states with a squeezing parameter r
through a channel with a specific transmission coefficient. In
this method, the transmitted quantum state is first split into N
modes using balanced beam splitters. Each mode undergoes
the quantum scissor operation [51,52], which relies on linear
optics and single-photon detection. Conditioned on successful
detection events, the quantum scissor truncates the state to
the Fock subspace |0), |1) while simultaneously amplifying
the coefficient of |1). The modes are then recombined using
a beam splitter and postselection is performed by detecting
vacuum in all but one output port. This process yields an
amplified two-mode squeezed state with an improved effec-
tive squeezing parameter and higher effective transmissivity,
although it comes at the cost of probabilistic success owing
to the reliance on specific measurement outcomes. This tech-
nique enables the distillation of entanglement between distant
nodes, allowing highly entangled states to be established even
in the presence of significant transmission loss.

Other entanglement distillation methods for combating
transmission loss include symmetric photon replacement [53]
and purifying distillation [54]. These non-Gaussian operations
generally produce non-Gaussian states as outputs, which can
be further processed using Gaussification protocols to restore
Gaussian characteristics when needed [55,56].

While the development of CV quantum repeaters is still
in its early stages, ongoing research is exploring ways to
enhance their performance. One promising direction involves
the integration of CV quantum error correction codes [57-59],
which could form the foundation of quantum repeaters, offer-
ing improved robustness against noise and loss. Exploring the

TABLE I. Threshold squeezing level for different magnitude of
stellar sources with A = 800 nm, AA = 0.1 nm. The threshold is
calculated by setting ' = —1/2log(e/2).

Magnitude € Squeezing (dB) r

=5 4x107! 7 0.80
2.5 4x1072 17 1.96
0 4x1073 27 3.11
2.5 4x10~* 37 4.26
5 4%107 47 541
7.5 4x107° 57 6.56

potential role of polarization-squeezed states in CV quantum
teleportation and repeater protocols represents an intriguing
future direction [60], while quantum averaging offers tech-
niques for stabilizing squeezed states and could be valuable
for the future development of CV quantum repeaters [61]. For
more details regarding the implementation of CV quantum
repeaters, please refer to Appendix A.

For the purpose of imaging, the parameters relevant to
performance are the squeezing parameter r, transmission
loss in the distribution of entanglement 7', and repetition
rate. A CV quantum repeater can ensure transmission loss is
limited to a small constant over long distances [44], which
suggests a fixed T in the output of the repeater. Recall that
we have defined effective squeezing parameter ' such that
e =1—T?*+ e ¥T? As a simple model, we consider
the case of fixing r" with the help of CV repeaters even when
the distance increases. Then, the goal is to make sure T is
large enough so that 7' can be comparable to r. The repetition
rate of a quantum repeater depends on the rate of the sources
at each repeater node and the success probability of quantum
operations at each node, such as entanglement distillation
and swapping. The repetition rate will be polynomial in the
distance between two telescopes. If we consider the CV
repeater proposed in Ref. [44], the transmission loss between
nearby repeater nodes and the squeezing level will determine
the order of the polynomial.

As the squeezing level and repetition rate of the quantum
repeater become high enough, we can expect quantum tele-
portation to be approximately ideal. In the previous section,
we examined the threshold for the squeezing parameter using
a specific example involving very bright sources and large
telescopes. In the following section, we will provide a more
comprehensive analysis of this threshold, considering smaller
telescopes and varying magnitudes of sources. If we choose
A =800 nm, AA = 0.1 nm, the threshold for the repetition
rate of our repeater to make sure our distributed two-mode
squeezed states cover all the temporal modes is roughly
150 GHz. We assume the diameter of each telescope is 6 m.
We list the threshold squeezing level for different magnitudes
of stellar sources in Table I. If we can distribute two-mode
squeezed states with both the squeezing level and repetition
rate better than their thresholds, our scheme can overcome
the transmission loss and hence significantly outperform the
direct detection case, which suffers from transmission loss.
Since € will determine the required squeezing level and very
strong squeezing levels are required to image weak sources, it
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may be advantageous to increase the mean photon number per
temporal mode by having more than two telescopes work to-
gether in this scheme while imaging weak sources. However,
this scheme would require a modified version of the standard
CV quantum teleportation, which is left as a possible future
direction of work.

We now seek to further assess the technical feasibility
of implementing our scheme. Building an optical parametric
oscillator (OPO) with nonlinear crystals is a well-established
method for generating squeezed light. Recent experiments
using continuous-wave OPOs have achieved squeezing levels
as high as 15 dB below the vacuum noise limit [62]. How-
ever, as the level of enhancement increases, the operational
bandwidth becomes increasingly narrow. An alternative ap-
proach leverages the x ® nonlinearity of optical fibers, where
intense laser pulses propagate through low-loss, highly non-
linear fibers to induce squeezing without requiring the light to
resonate in a cavity. Although the squeezing levels obtained
with this method are generally lower than those achieved with
OPOs [63], higher repetition rates can be realized using a
pulsed light source. For instance, a repetition rate of 163 MHz
combined with 6.8 dB of squeezing has been demonstrated
using fiber-based techniques [20]. A third method employs
optical waveguides to tightly confine light spatially. By com-
bining waveguides with pulsed light sources, it is, in principle,
possible to generate broadband, highly squeezed light with
enhanced compactness and stability; an experiment reported
arepetition rate of 86.5 MHz and a squeezing level of 5.88 dB
[64].

Although the ambitious target of 150 GHz repetition rate
remains a technical challenge, advances in material engineer-
ing and waveguide design are paving the way towards this
goal. Furthermore, as shown in Table I and Fig. 3, in the
regime of € ~ l—where our CV scheme outperforms both
DV methods and local heterodyne detection—the threshold
squeezing level is within the capabilities of current state-
of-the-art technology. While this reflects only the current
capabilities of squeezed state generation, realizing our ap-
proach will also require quantum repeaters to distribute the
entanglement and distill noisy two-mode squeezed states.
Nonetheless, these developments highlight the potential fea-
sibility of implementing our method.

We explicitly compare the performance of our scheme
with both the direct-detection method—where light from two
distant telescopes is directly combined—and local heterodyne
detection at each telescope, as shown in Fig. 6. We focus
on a relatively bright stellar source of magnitude -5, as our
scheme demonstrates an advantage over both the DV scheme
in Ref. [6] and local heterodyne detection when € ~ O(1), as
previously discussed in Fig. 3. For an astronomical source of
magnitude —5 observed with 6-meter-diameter telescopes at
A = 800 nm and spectral bandwidth AA = 0.1 nm, the mean
photon number per temporal mode is approximately € ~ 0.4.
This lies in the regime where the requirement for effective
squeezing is moderate, with a threshold effective squeezing
parameter of approximately 7’ =~ 0.8. The required repetition
rate to cover all temporal modes is about 150 GHz. We
analyze a range of values for r’ and the repetition rate for
quantum repeaters operating over a 10 km distance in Fig. 6.
For longer distances, we account for the polynomial decrease

direct 000 m=——— 150GHz 7/=3  sereeennes 10GHzr'=3
heterodyne —:=—:= 150GHzs'=1 = - :+ = 10GHzy'=1

0.2dB/km

20 40 60 80 100 120 140
L(km)

20 40 60 80 100 120 140
L(km)

FIG. 6. Ratio of achieved FI over the maximum FI in the ideal
case for estimating the phase of the coherence function 0 for differ-
ent transmission losses. The solid-blue line corresponds to the case
of directly combining the light from telescopes with baseline L in
units of kilometers. The horizontal-dashed line corresponds to local
heterodyne detection. The other plotted lines are the performance of
our CV quantum-network-based scheme for different repetition rates
and effective squeezing parameters r’. Here, we assume the quantum
repeater operates with the chosen repetition rate at a distance of
10 km, and that the repetition rate starts to decrease polynomially
with distances larger than 10 km. We assume A = 800 nm, AX =
0.1 nm, the source has magnitude —5, and we are using telescopes of
diameter 6 m.

in repetition rate while keeping r’ fixed, following the scaling
in Ref. [44]. In practice, this can be achieved through entan-
glement distillation, which consumes multiple copies of noisy
two-mode squeezed states to generate states with a larger
effective squeezing parameter r’.

As shown in Fig. 6, even if the required repetition rate and
squeezing values are not fully achieved, our scheme remains
preferable as the distance increases. A key observation from
this figure is that the performance of the direct detection
method decreases exponentially with distance, whereas our
scheme, based on CV quantum teleportation, exhibits only a
polynomial decrease. Notably, this polynomial scaling per-
sists even when the required repetition rate and squeezing
parameter are not fully met, allowing for a parameter regime
where our scheme outperforms direct detection even under
nonideal conditions. This highlights the feasibility of our ap-
proach despite technological challenges.

When comparing our scheme with the direct detection
method under different transmission loss conditions, we find
that direct detection can outperform our approach at short dis-
tances, particularly when the transmission loss is small. This
is because the nonideal implementation of our method intro-
duces additional noise into the state. However, as the distance
increases, the polynomial scaling of our scheme ensures that
it eventually surpasses the direct detection method. Moreover,
the transition distance L, beyond which our scheme becomes
superior, decreases as the transmission loss increases. This
is expected, as quantum repeaters are designed to mitigate
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transmission loss and should offer greater advantages in
higher-loss scenarios.

The performance of local heterodyne detection depends
only on the strength of the source and appears as a hori-
zontal line in the figure. At sufficiently large distances, both
the direct detection method and our CV quantum teleporta-
tion scheme eventually perform worse than local heterodyne
detection. Furthermore, as transmission loss increases, the
threshold distance at which heterodyne detection surpasses
both methods decreases.

It is important to note that the performance of our scheme
estimated here is based on a nonideal model, where the repeti-
tion rate of the squeezing source is assumed to be limited. As
the distance increases, we assume that the quantum repeater
maintains the effective squeezing level by consuming noisy
two-mode squeezed states, causing the repetition rate to de-
crease with distance. This demonstrative model, similar to that
in Ref. [44], captures the essential features of our scheme in
practical settings. However, we emphasize that if a sufficiently
high-performance CV quantum repeater can be implemented,
our scheme will always outperform both the direct detection
method and local heterodyne detection.

We previously compared our scheme based on CV quan-
tum repeaters with the scheme based on DV quantum
repeaters proposed in Ref. [6] in Fig. 3, assuming the re-
peaters are ideal. However, the real-world implementation
of CV and DV quantum repeaters will obviously affect the
imaging quality of the two schemes. As the preliminary pro-
posal for CV quantum repeaters appeared only recently [44],
and the development of CV quantum repeaters is still in its
early stages, it is hard for us to predict which scheme will
eventually show better performance. We note that there are
some theoretical efforts on the direct comparison between DV
and CV quantum repeaters [65]. They consider the ability
to distribute a two-mode squeezed vacuum as the figure of
merit to compare DV and CV repeaters. Their results suggest
that CV repeaters may outperform DV repeaters for a certain
fidelity of DV entangled pairs. Although this paper suggests
an inspiring way to benchmark the two different approaches
and suggests that CV repeaters may outperform DV repeaters
in some parameter regimes, their comparison relies on several
assumptions, such as using DV entanglement to distribute
CV entanglement and the strength of the two-mode squeezed
vacuum. The comparison between our scheme and Ref. [6] in
actual implementation requires more theoretical and experi-
mental effort and is left as future work.

We now compare our method with the intensity interfer-
ometer [66] and heterodyne interferometer [67]. The intensity
interferometer measures the intensity fluctuations at two dis-
tant telescopes independently as a function of time, which
is then used to find the second-order correlation of the re-
ceived light via data post-processing [66]. For thermal light,
the second-order correlation function is directly related to the
coherence function we want to measure. Compared to our
method, the intensity interferometer is much easier to imple-
ment since the measurement is independent at each telescope.
But for weak thermal sources, the intensity interferometer has
much worse sensitivity because it requires at least two photons
within the same temporal mode to extract useful information,
meaning many temporal modes with one photon are wasted.

Heterodyne detection mixes the light from the astronomical
source with a laser on a beam splitter in order to measure the
coherence function [67]. Although the length of the baseline
will be limited due to the optical feedback system used for
phase-locking lasers at the two telescopes, this is still much
easier than distributing fragile entangled states. However, the
sensitivity is once again worse than our method for weak
sources. This is mainly because local heterodyne detection is
unable to distinguish the vacuum state and states with at least
one photon in the stellar light while measuring the coherence
function, which introduces strong vacuum noise to the estima-
tion, as pointed out in Ref. [5].

In gravitational-wave detectors, which represent an impor-
tant application of squeezed states, photon counting noise
can be reduced by injecting the squeezed state into one port
of the interferometer [68]. A natural question is whether
we can enhance the estimation of coherence using squeezed
light instead of only using squeezed states as entanglement
resources to perform quantum teleportation. The answer is un-
fortunately no. Intuitively, this is because in the gravitational
wave detector [68], the squeezed state is also encoded with
the unknown phase we want to estimate, i.e., the squeezed
state can be regarded as part of the probe state. But for astro-
nomical interferometers, the state we receive at the telescopes
is already encoded with the information we want to measure.
The squeezed state can only be used in ancillary modes and
not as a probe state. More details can be found in Appendix B.

VI. CONCLUSIONS

In summary, we propose to use two-mode squeezed states
as an entanglement resource to overcome transmission loss
in astronomical interferometry. Our scheme is based on the
CV teleportation of stellar light. The optimal measurement
on the teleported states to estimate the coherence function is
constructed using beam splitters and photon-number-resolved
detection. Because of phase noise and transmission loss in the
distribution of the two-mode squeezed states, our scheme re-
lies on CV quantum repeaters to build entanglement between
distant telescopes.

Note added. Recently, we became aware of two subsequent
independent studies conducted in a similar setting by Zixin
Huang et al. [30] and Bran Purvis et al. [69]. The differences
between their work and ours are discussed in Appendix E.
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APPENDIX A: CONTINUOUS-VARIABLE
QUANTUM REPEATERS

In the basic CV quantum repeater, many copies of
two-mode squeezed states are distributed to adjacent re-
peater nodes. As shown in Fig. 4, each repeater node then
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performs entanglement distillation and entanglement swap-
ping [44,45,47,48]. There are several types of entanglement
distillation and swapping methods. We now introduce some
representatives of them.

Entanglement distillation dealing with phase noise can
be implemented with quantum memories whose memory
processes are beam-splitter-like operations and balanced
homodyne detection on the transmitted optical modes [46].
Optical two-mode squeezed states are distributed to distant
quantum nodes, during which process they suffer from phase
noise. The optical states are transferred to the quantum memo-
ries at each node. A second optical two-mode squeezed state is
distributed and interfered with the state of the quantum mem-
ories in the memory process, which is a beam-splitter-like
operation. Conditioned on the outcome of homodyne detec-
tion on the transmitted optical mode of the beam-splitter-like
operation, the entanglement is distilled. This entanglement
distillation method provides highly entangled states for
downstream applications under random phase fluctuations
in the quantum channels used for the distribution of the
entangled states.

Entanglement swapping can be a Gaussian operation [70],
which mixes the two modes at the same node on a balanced
beam splitter and performs homodyne detection at the output
ports. The outcomes are then used at the two other nodes
for the corresponding correction operation by displacing the
states. Entanglement swapping can also be a non-Gaussian op-
eration [45], in which one basically swaps the entanglement in
the low-photon-number subspace. This non-Gaussian swap-
ping protocol will of course require further Gaussification.

As an attractive alternative to DV schemes, CV systems are
also compatible with existing optical telecom systems. But in
contrast to the well-developed DV quantum repeater [11], CV
quantum repeaters are still in their infancy. Many existing pro-
posals for CV quantum repeaters are similar to first-generation
DV quantum repeaters, which require two-way classical com-
munication beyond the nearest nodes [44,45,47]. Some efforts
have been made to develop second-generation CV repeaters,
which only require nearest-neighbor two-way classical com-
munication [48] and third-generation CV quantum repeaters,
which do not need two-way classical communication and are
completely one-way [71]. Currently, CV quantum repeaters
certainly cannot work at the repetition rates required in as-
tronomical interferometry. We might expect a large gain in
performance once second- and third-generation CV quantum
repeaters are well established, which requires the development
of CV error correction codes.

APPENDIX B: PHOTON COUNTING NOISE
IN THE PRESENCE OF SQUEEZED STATES

A famous application for squeezed states is in the interfer-
ometer used for gravitational wave detection [68]. Squeezed
states are used as a resource to reduce photon counting noise
at the expense of increasing the fluctuation of radiation pres-
sure, which is useful when the optimal laser power is not
available in the practical implementation. Since our method
involves squeezed states, there is a natural question: if we
assume the ideal implementation of the measurement and
ignore the transmission loss, which is the reason we want
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FIG. 7. Aninterferometer used for phase estimation enhanced by
squeezed states. The two input ports a;, are in coherent state |«)
and squeezed state S(r) |0) = exp(%a2 — %agz) |0). In one arm of the
interferometer, an unknown phase ¢ is encoded on the state by uni-
tary transformation U (¢) = exp(¢b¥b| ). We measure the observable

n= circl — cgcz to estimate ¢.

to use quantum teleportation instead of directly bringing the
light from two telescopes to one location, can we fundamen-
tally enhance the estimation of the coherence function over
the conventional method? To the best of our understanding,
the answer is unfortunately no. A short explanation is that
if we consider the estimation of the coherence function us-
ing quantum estimation theory as discussed in Ref. [72], the
fundamental sensitivity limit is given by the QFI. Moreover,
the measurement that can saturate the optimal sensitivity
for the estimation of the phase and amplitude of the coher-
ence function can be constructed using beam splitters and
photon-number-resolved detection, respectively. The sensi-
tivity bound given by the QFI has been optimized over all
possible measurements that are physically allowed, which of
course includes schemes that use squeezed states as ancillae.
So, we should not expect using squeezed states to enhance the
sensitivity of the astronomical interferometer. Compared with
gravitational wave detection [68], the main difference is that in
gravitational wave detection, the squeezed state is also used as
an input state that is encoded with the information to measure.
In contrast, in the case of the astronomical interferometer, we
cannot change the state received by the astronomical source.
To gain more intuition, we consider an interferometer used
for phase estimation enhanced by squeezed states, which can
be regarded as a simplified version of the discussion in [68],
where we are removing all discussions related to radiation
pressure. The setup is shown in Fig. 7. As we will see, the
squeezed state in the second port of the beam splitter can
reduce the noise in the estimation when compared with the
case where we leave the a» mode as the vacuum state. The
unknown phase ¢ is estimated from the mean value of n =
cler — cJey and its noise is quantified by the variance of n,

(n) = (sinh? r — |a|?*) cos ¢,
(An*) = cos® ¢p(a® + 2 sinh® r cosh® r)

+ sin’ ¢p(a® cosh 2r + sinh? ), B1)
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where (.) is the mean value of the operators for the quantum
state in the output ports of the beam splitter and we have
assumed « is real for simplicity. Following the discussion
of photon-counting error in Ref. [68], we can consider ¢
such that cos ¢ is close to zero. In this case, if we further
assume the coherent state is much stronger than the squeezed
state, the noise is dominated by sin? q)(xzez’ /2, which can be
reduced by r < 0. Now we consider whether this method can
be applied to the astronomical interferometer. Note that the
squeezed state is used as the input of the interferometer. This
is not possible for an astronomical interferometer since the
unknown phase is only encoded in the received thermal state
and the squeezed state can only be used as the ancilla for
implementing the measurement.

Another intuitive question is whether we can use the
squeezed LO in the implementation of the measurement. If
we consider the implementation of heterodyne detection, in
the large LO power limit, the LO noise makes no contribution
to the total noise of the measurement results [73]. So, it is not
meaningful to use squeezed light as the LO because reducing
the LO noise cannot reduce the noise of the measurement, at
least in any obvious way. There are some discussions that try
to improve heterodyne detection using squeezed states such
as Ref. [74], which, however, has invited debate [75,76]. So,
we are satisfied with the answer that squeezed states can only
be used as entanglement resources to overcome transmission
loss and will not fundamentally enhance the estimation of
coherence functions in an obvious way.

APPENDIX C: FISHER INFORMATION
FOR HETERODYNE DETECTION

In this Appendix, we derive the FI of using heterodyne
detection E(u, v) = ni [pv) (uv| to estimate |g| and 6. The
probability distribution is given by

P(u,v) = tr(psE(1, v)

pexp [(u* v*)B(’j)},

1 4
P e —agy

2 2+€ —eg
B= N . (Cl1
—(2+ e +e2gP (—eg 2+ f) b

We can then calculate the FI as

1 (0P, v))
Ly = | d*ud?
% f H vP(u,v)< 20 >

B 2¢%[g?
4t e(@dte—clg?)

(C2)

We can also compute the FI for estimating |g| in a similar way,
but deriving its analytical form is challenging.

APPENDIX D: COEFFICIENTS IN THE DERIVATION

In this Appendix, we provide the coefficients in the for-
mulas of the QFI calculation in the main text from Egs. (11)
to (15).

a=2g[—(1+e)(—2+e(—1+ g +22 + eyl
b=ce -2 +e)+eg* —4(1 + )2 +e€)y

— 42+ €e)y’l,
¢ =2€*|gl[—e(1 + e)(— 2+ e(—1 +[g]*))

+2)[2 4 (4 — (=2 + [gP D] + 41 + )y’
d=[e(—2+e(—1+[g*)—2(1+e)y]

x [2(=1 4 [g]") —4(1 +y) — 262+ y)]

x [e(—1+ [g]*) — 2yl

e= —elgl[
e(—1+gl*») -2y

€
T T PSS TS S g ) +y>]
(D1)
ieg
—e[—24+e(—1+|g)]+2(1 +€)y’

p= (D2)

APPENDIX E: COMPARISON WITH OTHER STUDIES
ABOUT ASTRONOMICAL INTERFEROMETER BASED
ON CV QUANTUM TELEPORTATION

In this Appendix, we highlight the differences between our
study and two relevant studies on astronomical interferometry
based on CV quantum teleportation: one by Zixin Huang et al.
[30] and another by Bran Purvis et al. [69].

In contrast to our result, Zixin Huang et al. determined
that CV teleportation-assisted telescopes offer only limited
enhancement [30]; however, they did not consider the use
of CV repeaters to link distant telescopes. Without a CV
repeater, the two-mode squeezed states used for teleportation
exhibit a low effective squeezing level. As demonstrated in our
protocol, with a well-performing CV repeater and a complete
CV-quantum teleportation protocol where classical messages
are used for adjusting the measurements, the potential benefits
can be substantial.

To see how the lack of a CV repeater plays out in practice,
let us imagine distributing an entangled state through a lossy
channel and directly using this noisy state for teleportation, as
done in [30]. In this scenario, the noise from the lossy channel,
along with additional noise introduced by imperfections in the
subsequent teleportation operations or insufficient squeezing
level of the two-mode squeezed state, will be transferred
to the teleported states. In other words, the noise from the
lossy channel is not effectively mitigated by the teleporta-
tion process, as the entangled state is highly susceptible to
noise during transmission through the noisy channel, and the
teleportation process itself introduces a significant amount of
additional noise. As a result, the teleported state is likely to
be even noisier than a state obtained by directly transmit-
ting the stellar light through the lossy channel without the
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added complexity of entanglement generation, distribution,
and teleportation. Indeed, Huang et al. found that the advan-
tage of using teleportation with such an entangled state in a
repeaterless setting is very limited [30], which aligns with this
reasoning. While the investigation of a repeaterless scenario
is reasonable and interesting for near-term applications, the
deployment of quantum repeaters will ultimately be necessary
to realize the full potential of quantum-enhanced astronomical
interferometry as in Refs. [6-8].

Huang et al. observed that there are certain parameter
regimes in which CV teleportation can outperform direct
detection and local heterodyne approaches [30]. However,
their analysis relies on directly utilizing noisy entangled
states without an entanglement distillation step. In contrast,
our protocol employs CV teleportation using entangled states
that can be distilled through a CV quantum repeater, thereby
mitigating transmission loss. As long as such a repeater is
sufficiently efficient, our scheme consistently outperforms
direct detection, and our scheme surpasses local heterodyne
detection whenever the source intensity is not too high, as
shown in Fig. 3.

We now highlight the key differences between our study
and that of Bran Purvis er al. [69]. Although their protocol
also utilizes entanglement resources in the form of two-mode
squeezed states shared between distant telescopes, it relies

solely on Gaussian measurements, in contrast to our scheme,
which employs non-Gaussian photon-number-resolving de-
tection following quantum teleportation. As a result, a major
drawback of their approach is that the performance, quantified
by the Fisher information (FI) F, scales as F' €2. In contrast,
the advantage of an astronomical interferometer assisted by
a quantum repeater is that its FI scales as F' « €, as in our
protocol when € < 1, as demonstrated in Eq. (9). Note that
the initial proposal for an astronomical interferometer based
on DV quantum repeaters by Daniel Gottesman et al. [6] also
achieves the FI scaling F o« €. When € « 1, this difference
in scaling leads to a substantial performance gap between the
protocol in [69] and ours.

In fact, simple local heterodyne detection alone yields a
Fisher information scaling as F o< €2, as shown in Eq. (C2).
Since the FI in the study of Bran Purvis er al. [69] also follows
the same scaling, F o< €2, its performance is comparable to the
case without the complex steps of entanglement distribution
and teleportation. As noted in Ref. [77], the scaling behavior
of the FI with respect to € is a key characteristic of quantum-
enhanced astronomical interferometry, which relies on shared
entanglement. Given that the approach proposed in Ref. [69]
also relies on shared entanglement but achieves only F o €2,
it does not provide an efficient method to fully exploit the
shared entanglement between distant telescopes.
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